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Abstract

We consider the Saint-Venant system for shallow water flows with non-flat bottom. This is
a hyperbolic system of conservation laws that approximately describes various geophysical
flows, such as rivers, coastal areas, and oceans when completed with a Coriolis term, and
granular flows when completed with friction. Numerical approximate solutions to this
system may be generated using conservative finite volume methods, which are known to
properly handle any shocks and contact discontinuities. Yet, these schemes prove to be
problematic for near steady states, as the structure of their numerical truncation errors is
generally not compatible with exact physical steady state conditions. This difficulty can
be overcome by using so called well-balanced schemes. We describe a general strategy
based on a local hydrostatic reconstruction that allows us to derive a well-balanced scheme
from any solver for the homogeneous problem (Godunov, Roe, kinetic. . . ). Whenever the
initial solver satisfies some classical stability properties, it yields a simple and fast well-
balanced scheme that preserves the nonnegativity of the water height and satisfies a
semi-discrete entropy inequality.

Key-words: Shallow water equations, finite volume schemes, well-balanced schemes

Mathematics Subject Classification: 65M12, 76M12, 35L65

1 Introduction

The classical Saint-Venant system for shallow water has been widely validated. It assumes
a slowly varying topography z(x) (x denotes a coordinate in the horizontal direction) and
describes the height of water h(t, x), and the water velocity u(t, x) in the direction parallel
to the bottom. It uses the following equations in one space dimension,

{
∂th + ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + gh2/2) = −hgzx,
(1.1)

where g > 0 denotes the gravity constant. For future reference we denote the flux by F (U) =
(hu, hu2 + gh2/2), with U = (h, hu). This model is very robust, being hyperbolic and
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admitting an entropy inequality (related to the physical energy)

∂t η̃(U, z) + ∂x G̃(U, z) ≤ 0, (1.2)

where
η(U) = hu2/2 +

g

2
h2, G(U) =

(
hu2/2 + gh2

)
u,

η̃(U, z) = η(U) + hgz, G̃(U, z) = G(U) + hgzu.
(1.3)

Another advantageous property is that it preserves the steady state of a lake at rest

h + z = Cst, u = 0. (1.4)

When solving numerically (1.1), it is very important to be able to preserve these steady states
at the discrete level and to accurately compute the evolution of small deviations from them,
because the majority of real-life applications resides in this flow regime.

Since the early works of Leroux and coauthors [14], [16], schemes satisfying such a property
are called well-balanced. Several schemes have been proposed that satisfy this property, [23],
[17], [13], [11], [30], [29], [3], but the difficulty is then to get schemes that also satisfy very
natural properties such as conservativity of the water height h, nonnegativity of h, the ability
to compute dry states h = 0 and transcritical flows when the jacobian matrix F ′ of the flux
function becomes singular, and eventually to satisfy a discrete entropy inequality. Theoret-
ically, the exact Godunov scheme satisfies these requirements [20], but it is in practice too
computationally expensive, and not easily adaptable to more complex systems, such as for
example the models proposed in [9]. The first attempt to derive an approximate solver satis-
fying all the requirements was performed in [4] for a scalar equation. A generalization to the
case of the Saint-Venant system was obtained in [26], and another method by relaxation is also
proposed in [7]. However, these approximate solver methods are still quite heavy in practice.
The aim of this paper is to explain how it is possible by a very flexible approach involv-
ing a hydrostatic reconstruction, to obtain a well-balanced scheme satisfying all the above
requirements, and that is computationally inexpensive. The present approach unifies and
generalizes ideas developed independently in [5, 6] for nearly hydrostatic, multi-dimensional
compressible flow, and in [1] for the Saint-Venant shallow water model. By opposition to the
existing literature, it also gives a general method that can be used with any solver.

2 Well-balanced scheme with hydrostatic reconstruction

2.1 Semi-discrete scheme

Finite volume schemes for hyperbolic systems consist in using an upwinding of the fluxes. In
the semi-discrete case they provide a discrete version of (1.1) under the form

∆xi
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = Si, (2.1)

where ∆xi denotes a possibly variable mesh size ∆xi = xi+1/2 −xi−1/2, and the cell-centered
vector of discrete unknowns is

Ui(t) =

(
hi(t)

hi(t)ui(t)

)
. (2.2)
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In a basic first-order accurate scheme, the fluxes are classically computed as Fi+1/2 =
F(Ui(t), Ui+1(t)) with a numerical flux F that is computed via an approximate resolution of
the Riemann problem (a so-called solver), which provides stability of the method. We refer
to [12] for the description of the most well-known solvers: Godunov, Roe, Kinetic. . . It is
known since [14],[16] that cell-centered evaluations of the source term in (2.1) will generally
not be able to maintain steady states of a lake at rest in time, which are characterized by

hi + zi = Cst, ui = 0. (2.3)

Following [1], [5, 6], we propose and analyze finite volume schemes according to (2.1) with
flux functions

Fi+1/2 = F(Ui+1/2−, Ui+1/2+), (2.4)

where the interface values Ui+1/2−, Ui+1/2+ are derived from a local hydrostatic reconstruc-
tion to be described shortly, which is similar to second-order reconstructions in higher-order
methods. The source term is discretized as

Si =

(
0

g
2h2

i+1/2− − g
2h2

i−1/2+

)
. (2.5)

This ansatz is motivated by the balancing requirement as follows. For nearly hydrostatic
flows one has u �

√
gh. In the associated asymptotic limit the leading order water height h

adjusts so as to satisfy the balance of momentum flux and momentum source terms, i.e.

∂x

(
gh2

2

)
= −h gzx . (2.6)

Integrating over, say, the ith grid cell we obtain an approximation to the net source term as

−
xi+1/2∫

xi−1/2

h gzx dx =
g

2
h2

i+1/2− − g

2
h2

i−1/2+ . (2.7)

Thus we are able to locally represent the cell-averaged source term as the discrete gradient of
the hydrostatic momentum flux, and this motivates the source term discretization in (2.5).

It is obvious now that any hydrostatic state is maintained exactly if, for such a state, the
momentum fluxes in (2.1) and the locally reconstructed heights satisfy F hu

i+1/2 = 1
2gh2

i+1/2− =
1
2gh2

i+1/2+. This is the motivation for (2.4), which gives this property if for hydrostatic states

we have Ui+1/2− = Ui+1/2+ = (hi+1/2−, 0) = (hi+1/2+, 0).
The hydrostatic balance in (2.6) is equivalent to the “lake at rest” equation (1.4), so that

the reconstruction of the leading order heights is straightforward,

hi+1/2− = hi + zi − zi+1/2, hi+1/2+ = hi+1 + zi+1 − zi+1/2. (2.8)

The evaluation of the cell interface height zi+1/2 is somewhat subtle since the scheme shall
also robustly capture dry regions where h ≡ 0. The challenge is to design a scheme that
guarantees nonnegativity of the water height even when cells begin to “dry out”. We prove
below that this can be achieved through a biased evaluation of the form

zi+1/2 = max(zi, zi+1), (2.9)
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and with a nonnegativity-preserving truncation of the leading order heights in (2.8), hi+1/2± =
max(0, hi+1/2±).

With these rules in place we can now summarize our first-order well-balanced finite volume
scheme by

∆xi
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = Si, (2.10)

where
Fi+1/2 = F(Ui+1/2−, Ui+1/2+), (2.11)

Ui+1/2− =

(
hi+1/2−

hi+1/2− ui

)
, Ui+1/2+ =

(
hi+1/2+

hi+1/2+ ui+1

)
, (2.12)

hi+1/2± = max(0, hi+1/2±) , (2.13)

and

Si = Si+1/2− + Si−1/2+ ≡
(

0
g
2h2

i+1/2− − g
2h2

i

)
+

(
0

g
2h2

i −
g
2h2

i−1/2+

)
. (2.14)

The latter expression for the source is equivalent to the earlier (2.5), it shows that the source
may be considered as being distributed to the cell interfaces. With this re-interpretation in
mind, we may also rewrite the scheme as

∆xi
d

dt
Ui(t) + Fl(Ui, Ui+1, zi, zi+1) −Fr(Ui−1, Ui, zi−1, zi) = 0, (2.15)

with left and right numerical fluxes

Fl(Ui, Ui+1, zi, zi+1) = Fi+1/2 − Si+1/2− = F(Ui+1/2−, Ui+1/2+) +

(
0

g
2h2

i −
g
2h2

i+1/2−

)
,

Fr(Ui, Ui+1, zi, zi+1) = Fi+1/2 + Si+1/2+ = F(Ui+1/2−, Ui+1/2+) +

(
0

g
2h2

i+1 −
g
2h2

i+1/2+

)
.

(2.16)
Notice that (2.12), (2.13), (2.8) mean that we try to impose interface values satisfying some
modified steady equations hi+1/2− + zi+1/2 = hi + zi, ui+1/2− = ui, hi+1/2+ + zi+1/2 = hi+1 +
zi+1, ui+1/2+ = ui+1, i.e. h+z = cst, u = cst instead of Bernoulli’s law u2/2+g(h+z) = cst,
hu = cst.

Our construction, combined with a centered value of zi+1/2, is not stable. The ‘upwind’
value proposed in (2.9), and the truncation of negative values in (2.13) have the advantage
of giving nonnegative values of hi+1/2± and of being stable, as we state it now.

Theorem 2.1 Consider a consistent numerical flux F for the homogeneous problem that
preserves nonnegativity of hi(t) and satisfies an in-cell entropy inequality corresponding to
the entropy η in (1.3). Then the finite volume scheme (2.8)-(2.14)
(i) preserves the nonnegativity of hi(t),
(ii) preserves the steady state of a lake at rest (2.3),
(iii) is consistent with the Saint-Venant system (1.1),
(iv) satisfies an in-cell entropy inequality associated to the entropy η̃ in (1.3),

∆xi
d

dt
η̃(Ui(t), zi) + G̃i+1/2 − G̃i−1/2 ≤ 0. (2.17)
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Proof. The statement that F preserves the nonnegativity of hi(t) means exactly that
Fh(hi = 0, ui, hi+1, ui+1) − Fh(hi−1, ui−1, hi = 0, ui) ≤ 0, for all choices of the other ar-
guments. Since the sources in (2.14) have no contribution to the first component, hi(t) in our
scheme satisfies a conservative equation with flux F h(Ui+1/2−, Ui+1/2+). Therefore we need

to check that Fh(Ui+1/2−, Ui+1/2+) − Fh(Ui−1/2−, Ui−1/2+) ≤ 0 whenever hi = 0. Our con-
struction (2.8), (2.9), (2.13) (and this is the motivation for (2.9)), gives hi+1/2− = hi−1/2+ = 0
when hi = 0, and this gives (i).

Then we prove statement (ii). On a steady state of a lake at rest, we have hi+1/2− = hi+1/2+,
ui+1 = ui = 0, thus Ui+1/2− = Ui+1/2+ and by consistency of F

Fi+1/2 = F (Ui+1/2−) = F (Ui+1/2+) =

(
0

g
2h2

i+1/2−

)
=

(
0

g
2h2

i+1/2+

)
. (2.18)

Together with the expression of the source terms in (2.14), we get Fi+1/2 − Si+1/2− = F (Ui),
Fi+1/2 + Si+1/2+ = F (Ui+1), and this proves (ii).

To prove (iii), we apply the criterion in [27], [7], and we need to check two properties related
to the consistency with the exact flux F and the consistency with the source. The consistency
with the exact flux Fl(U,U, z, z) = Fr(U,U, z, z) = F (U) is obvious since Ui+1/2− = Ui and
Ui+1/2+ = Ui+1 whenever zi+1 = zi. For consistency with the source, the criterion becomes
for the Saint-Venant system

Fhu
r (Ui, Ui+1, zi, zi+1) −Fhu

l (Ui, Ui+1, zi, zi+1) = −hg∆zi+1/2 + o(∆zi+1/2) (2.19)

as Ui, Ui+1 → U and ∆zi+1/2 → 0, where ∆zi+1/2 = zi+1 − zi. In our case,

Fr −Fl = Si+1/2− + Si+1/2+ =

(
0

g
2h2

i+1/2− − g
2h2

i + g
2h2

i+1 −
g
2h2

i+1/2+

)
. (2.20)

Now, assuming h > 0, the maxima in (2.13) play no role if hi−h, hi+1−h and ∆zi+1/2 are small
enough. Thus we have h2

i+1/2−/2− h2
i /2 = h(zi − zi+1/2) + o(∆zi+1/2), h2

i+1/2+/2− h2
i+1/2 =

h(zi+1 − zi+1/2) + o(∆zi+1/2), which gives (2.19). In the special case h = 0, the maxima in
(2.13) can play a role only when hi = O(∆zi+1/2), and we conclude that (2.19) always holds,
proving (iii).

In order to prove (iv), we first write that the original numerical flux F satisfies a semi-
discrete entropy inequality. According to [7], this means that we can find a numerical entropy
flux G such that

G(Ui+1) + η′(Ui+1)(F(Ui, Ui+1) − F (Ui+1))
≤ G(Ui, Ui+1) ≤ G(Ui) + η′(Ui)(F(Ui, Ui+1) − F (Ui)),

(2.21)

where η′ is the derivative of η with respect to U = (h, hu), η ′(U) = (gh− u2/2, u). Similarly,
having an entropy inequality (2.17) for (1.1) with G̃i+1/2 = G̃(Ui, Ui+1, zi, zi+1) is equivalent

to finding some numerical entropy flux G̃ such that

G̃(Ui+1, zi+1) + η̃′(Ui+1, zi+1)(Fr(Ui, Ui+1, zi, zi+1) − F (Ui+1))

≤ G̃(Ui, Ui+1, zi, zi+1) ≤ G̃(Ui, zi) + η̃′(Ui, zi)(Fl(Ui, Ui+1, zi, zi+1) − F (Ui)).
(2.22)
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Let us prove that (2.22) holds with

G̃(Ui, Ui+1, zi, zi+1) = G(Ui+1/2−, Ui+1/2+) + Fh(Ui+1/2−, Ui+1/2+)gzi+1/2. (2.23)

Since both inequalities are obtained by the same type of estimates, let us prove only the
upper inequality involving Fl in (2.22). By comparison to (2.21), it is enough to prove that

G(Ui+1/2−) + η′(Ui+1/2−)
(
F(Ui+1/2−, Ui+1/2+) − F (Ui+1/2−)

)

+ Fh(Ui+1/2−, Ui+1/2+)gzi+1/2

≤ G(Ui) + η′(Ui)(Fl − F (Ui)) + Fh(Ui+1/2−, Ui+1/2+)gzi.

(2.24)

This inequality can be written, by denoting F = (F h,Fhu) = F(Ui+1/2−, Ui+1/2+),

(u2
i /2 + ghi+1/2−)hi+1/2−ui + (ghi+1/2− − u2

i /2)(Fh − hi+1/2−ui)

+ui(Fhu − hi+1/2−u2
i − gh2

i+1/2−/2) + Fhg(zi+1/2 − zi)

≤ (u2
i /2 + ghi)hiui + (ghi − u2

i /2)(Fh − hiui) + ui(Fhu
l − hiu

2
i − gh2

i /2),

(2.25)

or after simplification

ui(Fhu − gh2
i+1/2−/2) + Fhg(hi+1/2− − hi + zi+1/2 − zi) ≤ ui(Fhu

l − gh2
i /2). (2.26)

Since Fhu
l − gh2

i /2 = Fhu − gh2
i+1/2−/2 by definition of Fl in (2.16), our inequality finally

reduces to

Fh(Ui+1/2−, Ui+1/2+)(hi+1/2− − hi + zi+1/2 − zi) ≤ 0. (2.27)

Now, according to (2.8), (2.13), when this quantity is nonzero, we have hi+1/2− = 0 and
the expression between parentheses is nonnegative. But since F preserves nonnegativity, we
have Fh(hi+1/2− = 0, ui, hi+1/2+, ui+1) ≤ 0 and we conclude that (2.27) always holds. This
completes the proof of (iv).

2.2 Fully discrete scheme and CFL condition

When using the time-space fully discrete scheme

Un+1
i − Un

i +
∆t

∆xi

(
Fl(Ui, Ui+1, zi, zi+1) −Fr(Ui−1, Ui, zi−1, zi)

)
= 0, (2.28)

the consistency and the well-balanced property are of course still valid. The question is then
to obtain a CFL condition that guarantees stability.

One can prove that our hydrostatic reconstruction scheme does not satisfy a fully discrete
entropy inequality. Indeed there exist some data with hi + zi = cst, ui = cst 6= 0 such that
for any ∆t > 0, the fully discrete entropy inequality η̃(U n+1

i , zi) − η̃(Un
i , zi) + ∆t

∆xi
(G̃i+1/2 −

G̃i−1/2) ≤ 0 is violated. However, in practice we do not observe instabilities as long as the
water height hi remains nonnegative.

In order to preserve the nonnegativity of hi, the CFL condition that needs to be used is
not more restrictive than that of the homogeneous solver.
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Proposition 2.2 Assume that the homogeneous flux F preserves the nonnegativity of h by

interface with a numerical speed σ(Ui, Ui+1) ≥ 0, which means that whenever the CFL condi-
tion

σ(Ui, Ui+1)∆t ≤ min(∆xi,∆xi+1) (2.29)

holds, we have

hi −
∆t

∆xi
(Fh(Ui, Ui+1) − hiui) ≥ 0,

hi+1 −
∆t

∆xi+1
(hi+1ui+1 −Fh(Ui, Ui+1)) ≥ 0.

(2.30)

Then the fully discrete hydrostatic reconstruction scheme (2.28) also preserves the nonnega-
tivity of h by interface,

hi −
∆t

∆xi
(Fh(Ui+1/2−, Ui+1/2+) − hiui) ≥ 0,

hi+1 −
∆t

∆xi+1
(hi+1ui+1 −Fh(Ui+1/2−, Ui+1/2+)) ≥ 0,

(2.31)

under the CFL condition

σ(Ui+1/2−, Ui+1/2+)∆t ≤ min(∆xi,∆xi+1). (2.32)

Proof. Under the CFL condition (2.32), we have

hi+1/2− − ∆t

∆xi
(Fh(Ui+1/2−, Ui+1/2+) − hi+1/2−ui+1/2−) ≥ 0,

hi+1/2+ − ∆t

∆xi+1
(hi+1/2+ui+1/2+ −Fh(Ui+1/2−, Ui+1/2+)) ≥ 0.

(2.33)

Noticing that with the choice (2.8), (2.9), (2.13), we have hi+1/2− ≤ hi and hi+1/2+ ≤ hi+1,
we conclude that (2.31) holds as soon as 1+ui∆t/∆xi ≥ 0 and 1−ui+1∆t/∆xi+1 ≥ 0, which
is necessarily the case from (2.32).

3 Second-order extension

Starting from a given first-order method, an usual way to obtain a second-order extension is
- as it was already mentioned before for the analogy with our hydrostatic reconstruction - to
compute the fluxes from limited reconstructed values on both sides of each interface rather
than cell-centered values, see [12], [22] or [28]. These new values are classically obtained with
three ingredients: prediction of the gradients in each cell, linear extrapolation, and limitation
procedure.

In the presence of a source and in the context of well-balanced schemes, this approach needs
to be precised. In particular, according to [18], [19], [7], since not only the reconstructed values
Ui,r at i + 1/2−, and Ui+1,l at i + 1/2+ need be defined but also zi,r, zi+1,l, a cell-centered
source term Sci must by added to preserve the consistency. We remark that even if zi do not
depend on time, the reconstructed values zi,l, zi,r could depend on time via a coupling with
Ui in the reconstruction step. Once known these second-order reconstructed values we apply
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the hydrostatic reconstruction scheme exposed in the previous section at each interface. This
gives the second-order well-balanced scheme

∆xi
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = Si + Sci, (3.1)

where
Fi+1/2 = F(Ui+1/2−, Ui+1/2+), (3.2)

Ui+1/2− =

(
hi+1/2−

hi+1/2− ui,r

)
, Ui+1/2+ =

(
hi+1/2+

hi+1/2+ ui+1,l

)
, (3.3)

and the hydrostatic reconstruction is now

hi+1/2± = max(0, hi+1/2±), (3.4)

hi+1/2− = hi,r + zi,r − zi+1/2, hi+1/2+ = hi+1,l + zi+1,l − zi+1/2, (3.5)

with
zi+1/2 = max(zi,r, zi+1,l). (3.6)

The source term is distributed as before at the interfaces,

Si = Si+1/2− + Si−1/2+, (3.7)

Si+1/2− =

(
0

g
2h2

i+1/2− − g
2h2

i,r

)
, Si−1/2+ =

(
0

g
2h2

i,l −
g
2h2

i−1/2+

)
. (3.8)

A simple well-balanced choice for the centered source term Sci is

Sci =

(
0

g
hi,l+hi,r

2 (zi,l − zi,r)

)
. (3.9)

Using the definitions of the left and right numerical fluxes Fl, Fr in (2.16), a compact for-
mulation of the scheme is

∆xi
d

dt
Ui(t) + Fl(Ui,r, Ui+1,l, zi,r, zi+1,l) −Fr(Ui−1,r, Ui,l, zi−1,r, zi,l) = Sci. (3.10)

This formulation ensures that the second-order scheme inherits the stability properties of the
first-order one.
Theorem 3.1 Consider a consistent numerical flux F for the homogeneous problem that pre-
serves nonnegativity of hi(t). Assume that the second-order reconstruction gives nonnegative
values hi,l, hi,r, is well-balanced and is second-order-centered in z, which means by definition
that whenever the sequences (Ui) and (zi) are the cell averages of smooth functions U(x),
z(x), we have

zi+1,l − zi,r = O
(
(∆xi + ∆xi+1)

3
)
,

zi,r − zi,l

∆xi
= zx(xi) + O

(
(∆xi−1 + ∆xi + ∆xi+1)

2
)
.

(3.11)

Then the finite volume scheme (3.1)-(3.9) preserves the nonnegativity of hi(t), is well-balanced,
i.e. it preserves the steady states of a lake at rest (2.3), and is second-order accurate.

8



Proof. It is well known that the second-order reconstruction strategy preserves the nonneg-
ativity of the water height (under a half CFL condition in the fully discrete case). Here only
the centered source term Sci in (3.10) could cause difficulties, but it does not since its first
component vanishes.

The preservation of the lake at rest steady states can be checked easily from the property of
the second-order reconstruction to be well-balanced, which means by definition that if ui = 0
and hi + zi = hi+1 + zi+1 for all i, then ui,l = ui,r = 0 and hi,l + zi,l = hi,r + zi,r = hi + zi for
all i. Indeed we just have to notice that for a steady state, Sci = (0, g(h2

i,r − h2
i,l)/2).

In order to prove the second-order accuracy, let us assume that (Ui) and (zi) are realized
as the cell averages of smooth functions U(x) and z(x), and denote by ~ the mesh size.
Then, since we assumed implicitly that the second-order reconstruction is second-order, we
have that Ui,r = U(xi+1/2) + O(~2), Ui+1,l = U(xi+1/2) + O(~2), zi,r = z(xi+1/2) + O(~2),
zi+1,l = z(xi+1/2)+O(~2). It follows from (3.3)-(3.6) that Ui+1/2± = U(xi+1/2)+O(~2), thus
by (3.2) Fi+1/2 = F (U(xi+1/2)) + O(~2). This proves the second-order accuracy in the weak
sense of the flux difference in (3.1) since this part is in conservative form. For the right-hand
side, there is no such cancellation thus we can only allow errors in O(∆xi~

2) in (3.1). We
have (hi,l +hi,r)/2 = h(xi)+O(~2), and the second expansion in (3.11) yields with (3.9) that
Sci =

(
0,−gh(xi)zx(xi)∆xi + O(∆xi~

2)
)

=
∫ xi+1/2

xi−1/2
(0,−gh(x)zx(x)) dx + O(∆xi~

2). Since

Si+1/2± = O(zi+1,l − zi,r) = O(~3) by the first expansion in (3.11), this gives that Si = O(~3)
and concludes the proof in the ”regular” case when ~ = O(∆xi), by just considering Si as an
error in (3.1). In the general case, we have to introduce a weighted average flux

F̃i+1/2 =
∆xi+1Fl + ∆xiFr

∆xi + ∆xi+1
= Fi+1/2 +

∆xiSi+1/2+ − ∆xi+1Si+1/2−

∆xi + ∆xi+1
. (3.12)

Then by the first line in (3.11), we have F̃i+1/2 = Fi+1/2 − Si+1/2− + O(∆xi~
2) and also

F̃i+1/2 = Fi+1/2 + Si+1/2+ + O(∆xi+1~
2). Therefore,

F̃i+1/2 − F̃i−1/2 = Fi+1/2 − Fi−1/2 − Si+1/2− − Si−1/2+ + O(∆xi~
2)

= Fi+1/2 − Fi−1/2 − Si + O(∆xi~
2),

(3.13)

and (3.1) can be rewritten as

∆xi
d

dt
Ui(t) + F̃i+1/2 − F̃i−1/2 = Sci + O(∆xi~

2), (3.14)

which proves the second-order accuracy.
Some important features arising in the second-order reconstruction must now be specified.

First, the cell by cell reconstruction preserves the mass conservation property of the finite vol-
ume method. Second, the limitation procedure ensures the nonnegativity of the second-order
reconstructed water heights. The third important point is that the second-order reconstruc-
tion has to preserve the lake at rest steady state. To ensure this property we reconstruct
also the bottom topography z(x) although it is a data. The idea to do so is not so new -
see [21], [11] - but here we give details on the more stable way to do it. Indeed only two
of the three quantities h, z, h + z need be explicitly reconstructed, the last being necessar-
ily a combination of the other two. This is consistent with the strategy for second order
extensions of a well-balanced Godunov-type scheme for multi-dimensional compressible flow
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under gravity in [5, 6], in that the deviations from the non-constant steady state form the
basis for reconstruction and slope limiting. A critical test to make the right choice is given
by considering a lake at rest with non vertical shores, that is nothing else but considering
an interface between a wet cell and a dry cell in the case where the bottom of the dry cell
is higher than the free surface in the wet cell and where the fluid is at rest in the wet cell.
As it appears in Figure 1, for the minmod reconstruction, the only choice which preserves
the steady state - or even the nonnegativity of water height in the worst case, see the third
subfigure - is to work with the quantities h and h + z. Notice that it follows that in some
respect the bottom topography changes at each timestep. It is obvious then that the chosen
second-order reconstruction preserves also the steady state in the classical case of wet-wet
interfaces since we explicitly reconstruct the quantity h + z. The second-order-centered con-
dition (3.11) can be realized with a second-order ENO reconstruction for example, but in
practice we shall not do so because it becomes too complicate for 2d unstructured meshes,
even if it necessarily means a slight loss of accuracy.

4 Numerical results

All numerical tests are computed with a kinetic solver. This solver is based on the kinetic
theory developed in [25] and has the advantage - in the homogeneous case - to keep the water
height nonnegative, to verify a discrete in-cell entropy inequality and to be able to compute
problems with shocks or vacuum.

4.1 1d assessments

We first illustrate that the hydrostatic reconstruction does not affect the robustness of the
homogeneous solver. We present a very classical numerical test of a constant discharge tran-
scritical flow with shock over a bump - refer to [15] for a complete presentation. In Figure
3, where 101 points are used, we observe good first and second-order results for this test
the stiffness of which is well-known. As we are far from a hydrostatic steady state the re-
sults of the well-balanced and standard schemes are quite similar. Notice however that the
well-balanced version is less affected - whatever is the order of resolution - than the standard
scheme where the derivative of the bottom topography presents strong variations.

To exhibit the improvement due to the hydrostatic reconstruction we present now a quasi sta-
tionary case first proposed by Leveque in [23] which consists in computing small perturbations
of the steady state of a lake at rest with a varying bottom topography,

z(x) = (0.25 (cos (π(x − 1.5)/0.1) + 1))+ ,

h(0, x) = 1. + 0.0011I[1.1,1.2].

As we can see by considering the linearized equations, the small perturbation simply move
to the right with a speed equal to

√
h(t, x) i.e.

√
1 − z(x) at first-order approximation - the

gravity is equal to one. We present in Figure 4 the results obtained - at t = 0.7s and with
150 points - with the well-balanced scheme - on the right - and with the standard one - on
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First-order solution

Reconstructed quantities : z and h+z Reconstructed quantities : z and h

Reconstructed quantities : h and h+z

Figure 1: Second-order reconstruction strategy

Free surface (dotted line)
Bottom topography (continuous line)
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Figure 2: Constant discharge problem with shock - Discharge and water height
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First-order well-balanced scheme (plus crosses)

Exact solution and bottom topography (continuous and dotted lines)

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250 300 350 400 450 500

Figure 3: Constant discharge problem with shock - Discharge and water height
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the left. It appears that even for the second-order computation the unphysical perturbations
induced by the standard scheme are larger than the initial perturbation of the free surface -
the vertical scales differ significantly in the two subfigures... Moreover the standard scheme
induced not only perturbation on the bump but also a perturbation which moves to the right
with the same speed as the initial perturbation but which is more than one order of mag-
nitude greater than the initial perturbation. On the contrary the results obtained with the
well-balanced scheme are quite good, even for the first-order solution.
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0.99995
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1.0004

1.00045

1 1.2 1.4 1.6 1.8 2 2.2 2.4

Standard scheme Well-balanced scheme

Figure 4: Quasi stationary problem with a small perturbation

First-order scheme (times crosses)
Second-order scheme (plus crosses)

To end with the 1d numerical assessments we present a test case which is determinant to
test the robustness of a solver, since it needs to treat vacuum. It exhibits very clearly the
improvement due to the second-order extension. We are interested in the case of an oscillating
lake with a non flat bottom and non vertical shores. The lake is initially at rest but a small
sinusoidal perturbation affect the free surface,

z(x) = .5(1 − .5(cos(π(x − .5)/.5) + 1)),

h(0, x) = max(0, .4 − z(x) + .04 sin((x − .5)/.25) − max(0,−.4 + z(x))).

Then the flow oscillates and at each timestep we have to treat an interface between a wet cell
and a dry cell on each shore of the lake. We present in Figure 5 the results obtained with the
well-balanced scheme - with 200 points and at t = 19.87s because it corresponds to a time
where the flow reaches its higher level on the left shore. Both first and second-order well-
balanced schemes are robust but the first-order scheme damps the oscillations quickly, fifty
oscillations are enough to get back to rest. On the other hand the second-order well-balanced
scheme keeps the periodic regime up to the machine accuracy.
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4.2 2d assessments

As the extension to second-order accuracy, the extension to the bidimensional case does not
modify the idea of the method. Nevertheless there exist some specific problems, especially
for the construction of a 2d well-balanced second-order scheme. Then we just explain here
the very basic background to fix the ideas and we refer to [2] for a more detailed description
- and especially for the explanation of the 2d hydrostatic second-order reconstruction.
Starting from a triangulation of a 2d domain, the 2d finite volume method consists in con-
structing the so-called dual cells and then in using an upwinding of the fluxes on each cell
interface with an interpolation of the normal component of the flux along each edge of the
cell. Since the problem locally looks like a planar discontinuity at the cell interface, the in-
terpolation can be performed using a 1d solver. For more details we refer to [1]. Then locally
the well-balanced property is also a 1d problem and the hydrostatic reconstruction can be
extended from the 1d case without major modification. By construction, the 2d well-balanced
scheme preserves the lake at rest steady state and it preserves the water height nonnegativity
if the original 1d solver does.

We first present the academic case of a dam break on a dry bed but containing a wet zone
which consists in a small lake at rest. This case involves the vacuum and it allows to exhibit
the effect of the hydrostatic reconstruction to preserve the initially at rest area. The first
subfigure in Figure 6 presents the mesh and the bottom topography - the bottom topography
of the lake we can see on the right is hemispheric. On the second subfigure we can see the
initial water height: we see the dam on the middle and the small lake at rest on the right - the
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free surface level in the lake coincides with the reference level of the bottom topography of
the river, i.e. (h + z)(0, x, y) = 0 everywhere on the right of the dam. On the third subfigure
we can see the rarefaction wave. Since it does not yet reach the lake, the steady state is
preserved. Then on the fourth subfigure the rarefaction wave reaches the lake and the water
begins to move. On the last subfigure is presented the free surface level at this final time.
We can notice strong variations on the lake area which lead to the formation of a hole - in
the left part of the lake, in blue on the subfigure - and a bump - in the right part, in green
in the subfigure - in the free surface.

Then we present in Figure 7 another 2d numerical test corresponding to the filling up of
a river. This test still involves vacuum but also deals with complex realistic geometry and
bottom topography since it takes into account a jetty in the transversal direction - on the
upper part of the figures, a bridge pillar - the square on the lower part - and a small bump in
the bottom topography. We start with an empty river and we prescribe a given water level
as inflow condition. On the first subfigure are presented the mesh and the associated bottom
topography. Then we can notice that the strong variations in the bottom topography due to
the jetty or the pillar bridge does not affect the robustness of the computation. On the third
and fourth subfigures we can see the bump since the water skirts it.

More results can be found in [1], [10], [26], [24], and in [8] with Coriolis force.
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