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1 Introdu
tionIn the vast literature devoted to urn models (see Johnson and Kotz [12℄ as a generalreferen
e), a good number of re
ent papers have been devoted to random repla
ementpoli
ies. Ea
h time a ball is drawn, the types of balls whi
h are added or removed arerandom variables, whose distribution depends on the type of the ball that has beenpi
ked: see for instan
e [1, 2, 3, 10, 11℄. Strong 
onvergen
e results [9, 10℄, as well asfun
tional 
entral limit theorems [2, 8, 11℄ are now available for a vast range of models.However, in all these referen
es, some irredu
ibility hypothesis is made to ensure thatthere is only one possible limit for the frequen
y ve
tor. Our aim here is to answer thenatural question: what happens when there are more than one?We study the simplest possible model: balls are added one by one, the type of theadded ball only depends on the type of the one that has been drawn. We believe thatour results 
an be extended to more general s
hemes, su
h as those of Janson [11℄ orBenaïm et al. [3℄. The types are numbered from 1 to d. If a ball of type i has beendrawn, then a ball of type j is added with probability pi,j. The matrix P = (pi,j) isa (redu
ible) sto
hasti
 matrix on {1, . . . , d}. As expe
ted, the distribution of types
onverges almost surely to a stationary distribution for the matrix P (Theorem 2.1).The proof is based on the 
lassi
al sto
hasti
 algorithm te
hnique [3, 10, 13℄, and usesthe results of Delyon [5℄.The limit is a random element of the set of stationary measures, hen
e a random
onvex 
ombination of the measures 
orresponding to irredu
ible re
urrent 
lasses.The question arises to 
hara
terize its probability law. Theorem 3.1 �rst redu
es theproblem to 
omputing the d 
ases where initially a single ball is present, then 
har-a
terizes those d distributions as the solution to a �xed point problem. The 
lassi
alEggenberger-Pólya model [7℄ 
an be seen as a parti
ular 
ase of ours: if P is the iden-tity matrix, it is well known that the ve
tor of frequen
ies 
onverges to a Diri
hletrandom ve
tor. In our 
ase, it 
ould seem natural to expe
t a Diri
hlet law for thelimit stationary distribution: this would be 
oherent with the numerous 
onne
tionsbetween Diri
hlet distributions and urn models (see for instan
e [12, 15℄). We provethat it is a
tually the 
ase if no return to a transient state is allowed (Proposition 3.2).We also show in Proposition 3.3 that the asymptoti
 distribution is not Diri
hlet ifreturns to transient states are allowed.The 
onvergen
e result is stated and proved in Se
tion 2, the probability distributionof the limit is studied in Se
tion 3.2 Almost sure 
onvergen
eIn this se
tion, the model is des
ribed, then the strong 
onvergen
e result is stated andproved.Re
all that a transition matrix P = (pi,j) on the set of types {1, . . . , d} is given.Initially, the number of balls in the urn is n0 and the distribution of types is X0(deterministi
 or not). At ea
h instant n > 0 a ball is added to the urn, hen
e thenumber of balls in the urn at time n is n0 + n. The type of the ball whi
h is added2



depends on that of a ball drawn with uniform probability. If a ball of type i hasbeen drawn, the probability to add a ball of type j is pi,j. We denote by Xn thedistribution of types in the urn at time n: Xn is a d-dimensional ve
tor, whose i-th
oordinate is the frequen
y of type i after the n-th addition. It is a random element ofthe (d− 1)-dimensional simplex, denoted by ∆d.
∆d = { (x1, . . . , xd) ∈ [0, 1]d , x1 + · · ·+ xd = 1 } .We will prove that the frequen
y distributions Xn 
onverge almost surely to astationary distribution of P . We denote by S their set, i.e. the set of (line) ve
tors xin ∆d su
h that xP = x.Theorem 2.1 The sequen
e of random ve
tors (Xn) 
onverges almost surely to a S-valued random ve
tor.Proof: The proof is based on the 
lassi
al te
hnique that 
onsists of expressing (Xn)as a sto
hasti
 algorithm (see [6, 13℄ as general referen
es). That te
hnique has beenused several times for proving strong 
onvergen
e results in urn s
hemes, for instan
eby Benaïm et al. [3℄ and Higueras et al. [10℄.For j = 1, . . . , d, let ej be the d-dimensional ve
tor whose j-th 
oordinate is 1, andthe others 0. For x ∈ ∆d, let ǫ(x) denote the probability distribution on {e1, . . . , ed}su
h that

ǫ(x)(ej) =
d
∑

i=1

xi pi,j .One 
an write:
Xn+1 =

n + n0

n+ n0 + 1
Xn +

1

n+ n0 + 1
εn(Xn) , (2.1)where the 
onditional distribution of εn(Xn) knowing X0 = x0, . . . , Xn = xn is ǫ(xn).Denote by ηn the following random ve
tor.

ηn = εn(Xn) −XnP .The sequen
e (ηn) is adapted to the �ltration Fn generated by (Xn), and
E[ ηn+1

∣

∣ Fn ] = 0 .Let us rewrite (2.1) as:
Xn+1 = Xn +

1

n0 + n+ 1
(Xn(P − I) + ηn) . (2.2)Hen
e Xn 
an be seen as a Robbins-Monro algorithm. We shall use the results ofDelyon [5℄. Equation (2.2) is the same as equation (2) in [5℄:

Xn+1 = Xn + γnh(Xn) + γnηn,with
h(X) = X(P − I) , γn =

1

n + n0 + 1
and ηn = εn(Xn) −XnP .The main assumption in [5℄ is the notion of A-stable algorithm :3



De�nition 2.2 ([5℄, De�nition 1)We say that the algorithm is A-stable (in our parti
ular 
ase) if
• It remains in a 
ompa
t set.
• The serie ∑ γnηn 
onverges a.s.The main steps of the proof are then the following.Step 1 (Xn) is an A-stable algorithm.Step 2 The distan
e from Xn to the set S of stationary measures for P tends to 0 a.s.Step 3 The sequen
e (Xn) 
onverges a.s., hen
e its limit is an element of S.As Xn remains in a 
ompa
t subset of R

d (the simplex of probability ve
tors), step1 is proved as soon as we 
an show that ∑n≥0 γnηn < ∞. Sin
e the random variables
γnηn are the in
rements of a martingale, whi
h is bounded in L2, this result is true.Hen
e it is an A-stable algorithm.A 
lassi
al method to study this type of sto
hasti
 algorithm is to 
ompare itstraje
tories to the �ow of an ordinary di�erential equation, whi
h in our 
ase is y′ =
h(y) = y(P − I). It is linear, and the non-null eigenvalues of its matrix P − I all havea negative real part (sin
e P is a sto
hasti
 matrix). Therefore, if x ∈ R

d and yx is thesolution su
h that yx(0) = x, then limt→+∞ yx(t) exists.Step 2 is rather standard and 
an be proved by using for instan
e Theorem 2.2p. 2153 of [17℄: the limiting set of (Xn) is an internally 
hain re
urrent set for the�ow of the ODE y′ = h(y), hen
e it is in
luded in S. Sin
e (Xn) takes its values in a
ompa
t set, and all possible limits of its subsequen
es are in S, the distan
e from Xnto S must tend to 0.Step 3 is an appli
ation of Theorem 2 in [5℄:Theorem 2.3 ([5℄, Theorem 2)We assume that the algorithm is A-stable.If S satis�es assumption (B):
S is a 
losed set whi
h has a neighbourhood N where h is uniformlyLips
hitz and there exist two uniformly Lips
hitz fun
tions π, W , de�nedon N , taking values in R

d and R respe
tively, and su
h that(a) |π(y(t))−π(y(s))| ≤ |W (y(t))−W (y(s))| for any solution (y(u), s ≤
u ≤ t) of y′ = h(y) on N .(b) π(x) = x if x ∈ S.if d(Xn,S) tends to 0, and if

∞
∑

n=0

γn

∣

∣

∣

∣

∣

∞
∑

i=n

γiηi

∣

∣

∣

∣

∣

< +∞ ,then (Xn) 
onverges a.s. to some point of S.4



Let us prove �rst that S satis�es 
ondition (B) of [5℄. Here we shall take N = R
d and

π(x) = limt→+∞ yx(t). >From the same observation on eigenvalues of P − I as in step2, it follows that π is Lips
hitz. If (yx(u), s ≤ u ≤ t) is any solution of y′ = h(y), thenby de�nition of π, π(yx(s)) = π(yx(t)) and (a) holds with W = 0. Of 
ourse, if x ∈ Sthen h(x) = 0 and yx is 
onstant and equal to x. Thus x ∈ S implies π(x) = x, hen
e(b).There remains to prove that:
∞
∑

n=0

γn

∣

∣

∣

∣

∣

∞
∑

i=n

γiηi

∣

∣

∣

∣

∣

< +∞ .Let us write:
E
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∞
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n=0

γnE





(

∞
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i=n
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)2




1/2

=
∞
∑

n=0

γn

[

∞
∑

i=n

γ2
i

]1/2

< +∞.Hen
e step 3, whi
h ends the proof of Theorem 2.1. �

3 Asymptoti
 distributionTheorem 2.1 proves that the distribution of types in the urn 
onverges to a randomelement of the set S of stationary distributions for the transition matrix P . In thisse
tion we 
hara
terize the probability law of that random element.Assume the re
urrent 
lasses for the transition matrix P are numbered from 1 to k.For c = 1, . . . , k, denote by πc the unique element of S whose 
oordinates are positiveon 
lass number c and null elsewhere. Any element of S is a 
onvex 
ombination of the
πc's. We shall denote by σ the one to one 
orresponden
e between S and ∆k de�nedby:

∀α = (α1, . . . , αk) ∈ ∆k , σ−1(α) =

k
∑

c=1

αc πc .Our goal is to des
ribe the distribution of σ(limXn), whi
h depends on the initial stateof the urn. We will generi
ally denote by A∗ the ∆k-valued random variable σ(limXn)for X0 = ∗:
• AX0 if the initial state of the urn is the random distribution X0,5



• Ax0 if the initial state of the urn is the deterministi
 distribution x0,
• A(i) if the urn initially 
ontains a single ball of type i.Observe that the distribution of X0 is dis
rete. Obviously,

AX0
(d)
=
∑

x0

Ax0 IX0=x0
,where X0 and all the Ax0's are mutually independent.Theorem 3.1 below redu
es the distribution of Ax0 to those of the A(i)'s, thenexpresses the A(i)'s as a solution of a �xed point problem.Let x0 = (x0(1), . . . , x0(d)) be the initial state, let n0 be the initial number of balls.For b = 1, . . . n0 let i(b) be the type of ball b so that, for 1 ≤ p ≤ d,

x0(p) = Card{b, i(b) = p}.Theorem 3.11. Let Y = (Y (1), . . . , Y (n0)) be a random ve
tor, uniformly distributed on ∆n0
. For

1 ≤ b ≤ n0, let Ab be a 
opy of A(i(b)). Assume that Ab, b = 1, . . . , n0 are mutuallyindependent, and independent from the ve
tor Y . Then:
Ax0

(d)
=

n0
∑

b=1

Y (b)Ab . (3.3)(Ab represents the distribution of the des
endents of ball b (and hen
e is distributedas A(i(b))) and Y (b) represents the asymptoti
 proportion of balls that des
end fromball b)2. For i = 1, . . . , d, let A(i)′ , A(i)′′ be independent 
opies of A(i); let Y (i) be uniformlydistributed on [0, 1]; let Ui have distribution (pi,j)j=1,...,d. Assume all these randomvariables are mutually independent. Then
A(i) (d)

=
d
∑

j=1

IUi=j

(

Y (j)A(i)′ + (1 − Y (j))A(j)′′
)

. (3.4)Proof: Assume the n0 initial balls are labelled from 1 to n0. Assume that at ea
h stepthe ball that has been added re
eives the same label as the one that has been drawn.Repla
ing types by labels, one gets a standard Eggenberger-Pólya urn [7℄. Denote by
Yn = (Y

(b)
n ), b = 1, . . . , n0 the distribution of labels at time n: it 
onverges a.s. to arandom ve
tor Y whose distribution is uniform on the simplex ∆n0

. For b = 1, . . . , n0,denote by Z
(b)
n the d-dimensional ve
tor of the frequen
ies of types among the ballswith label k at time n. By Theorem 2.1, Z(b)

n 
onverges a.s. to a random variable Z(b),distributed as if initially the urn only had one ball with label i(b): the distribution of6



Z(b) is that of A(i(b)). Moreover these random variables are mutually independent. Theoverall distribution of types at time n de
omposes as:
Xn =

n0
∑

b=1

Y (b)
n Z(b)

n .As n tends to in�nity, Xn tends to
X =

n0
∑

b=1

Y (b)Z(b) ,hen
e equation (3.3).Assume now that initially, a single ball of type i is present. At time 1, another ballis added, whi
h is of type j with probability pi,j. Let us apply point 1 with n0 = 2: iftwo balls of types i and j are present, then the �nal distribution is that of:
Y (i)A(i)′ + (1 − Y (i))A(j)′′.The limit starting with one single ball of type i or the two balls of time 1 must be thesame, hen
e equation (3.4). �Equations (3.3) and (3.4) 
hara
terize the distribution of Ax0 , for any x0. This followsfrom standard results of Leta
 [14℄ and Chamayou and Leta
 [4℄. In pra
ti
e, �ndingthe a
tual distribution of Ax0 may be rather intri
ate. We shall give two examples witha single transient state, one with no possible return (Proposition 3.2), the other withpossible returns (Proposition 3.3).Observe that from the point of view of Ax0, the 
ontents of re
urrent 
lasses is notrelevant: ea
h re
urrent 
lass 
an be aggregated into one single absorbing state. Thusone 
an assume with no loss of generality that the transition matrix P has k absorbingstates and d− k transient states.Proposition 3.2 Assume the matrix P is the following
P =











0 p2 · · · pd

0 1 0 0

0 0
. . . 0

0 · · · 0 1











,with p2 + . . .+ pd = 1. Assume moreover that initially a single ball of type 1 is present.The probability distribution of A(1) is the Diri
hlet distribution on ∆d−1, with pa-rameter (p2, . . . , pd).Proof: We prove this result by the 
lassi
al method of moments, using a martingaleargument.For u = (u2, . . . , ud) ∈ ∆d−1, we set for every z ∈ N
d

hu(z) =
(s(z) − 1)!

Γ(z2 + p2) · · ·Γ(zd + pd)
uz2

2 · · ·uzd

d7



where s(z) =

d
∑

i=1

zi.Then, if ei denotes the ith ve
tor of the 
anoni
al basis of R
d, we have, for 2 ≤ i ≤ d

hu(z + ei) =
s(z)

zi + pi
uihu(z)and hen
e

d
∑

i=2

p(z, z + ei)hu(z + ei) =
d
∑

i=2

uihu(z) = hu(z).This shows that hu is an harmoni
 fun
tion and so the pro
ess (hu(Zn)) is a martingale.Let α = (α2, . . . , αd) ∈ R
d−1 su
h that αi + pi − 1 ≥ 0. We set

gα(z) =

∫

∆d−1

hu(z)u
α2

2 · · ·uαd

d λd−1(du)where λd−1 denotes the Lebesgue measure on ∆d−1. Remark that (gα(Zn)) is still amartingale.Let us here suppose that for every 2 ≤ i ≤ d, Z i
n tends to in�nity. Then, using that

Γ(x+ h)

Γ(x)
∼

x→+∞
xh,we have (re
all s(Zn) = n + 1)

gα(Zn) =
Γ(n+ 1)

Γ(n + s(α) + d)

Γ(Z2
n + α2 + 1)

Γ(Z2
n + p2)

· · ·
Γ(Zd

n + αd + 1)

Γ(Zd
n + pd)

∼ n−(s(α)+d−1)(Z2
n)α2+1−p2 · · · (Zd

n)αd+1−pd

=

(

Z2
n

n

)α2+1−p2

· · ·

(

Zd
n

n

)αd+1−pd

−→
(

A
(1)
2

)α2+1−p2

· · ·
(

A
(1)
d

)αd+1−pd

.Let us add that the same kind of 
omputation shows that gα(Zn) tends to 0 if one ofthe Z i
n is bounded so the formula is still true in that 
ase.This 
omputation also proves that gα is a 
ontinuous fun
tion that admits limitsat in�nity and hen
e is bounded. Therefore gα(Zn) is a bounded martingale and the
onvergen
e also holds in L1.Consequently, for every integers k2, . . . , kd, taking αi = pi + ki − 1, we have

E

[

(

A
(1)
2

)k2

· · ·
(

A
(1)
d

)kd

]

= gα((1, 0, . . . , 0)) =
1

Γ(s(k) + 1)

Γ(k2 + p2)

Γ(p2)
· · ·

Γ(kd + pd)

Γ(pd)
·This is also the moments of the Diri
hlet distribution with parameters (p2, . . . , pd) on

∆d−1 and all these moments 
hara
terize the law as its support is 
ompa
t. �We will now show that the pleasant result of Proposition 3.2 worsens as returns totransient states be
ome possible. 8



Proposition 3.3 Let d = 3, and
P =





p1 p2 p3

0 1 0
0 0 1



 ,with p1, p2, p3 stri
tly positive. Starting initially with a single ball of type 1, the distribu-tion A(1) only 
harges the two absorbing states 2 and 3. Let us write A(1) = (A, 1−A)where A is the asymptoti
 frequen
y of type 2. Let ϕ be the generating fun
tion ofmoments of A.
ϕ(z) =

+∞
∑

n=0

E[An] zn .Then
1

ϕ(z)
= (1 − z)p2

2F1(p2,−p1, 1 − p1)(z) , (3.5)where 2F1(p2,−p1, 1−p1) is the hypergeometri
 fun
tion with parameters (p2,−p1) and
1 − p1.Having 
omputed the moments of A, it easy to 
he
k that its distribution is not Beta,ex
ept in the parti
ular 
ase p2 = p3. Hen
e the distribution of A(1) is not Diri
hlet.Proof: >From point 2 of Theorem 3.1, A is equal in distribution to:

Y A′ + (1 − Y )(A′′
IU=1 + IU=2) , (3.6)where A′ and A′′ are distributed as A, Y is uniformly distributed on [0, 1], U hasdistribution (p1, p2, p3) and (A′, A′′, Y, U) are mutually independent.Denote by cn = E[An] the n-th moment of A. From (3.6), the following indu
tionfor cn is dedu
ed.

cn =
1

n + 1
cn +

n−1
∑

k=0

(

n

k

)

E[ρk(1 − ρ)n−k](ckcn−kp1 + ckp2)

⇐⇒ ncn = p1

n−1
∑

k=0

ckcn−k + p2

n−1
∑

k=0

ck

⇐⇒ (n + p1 + p2)cn = p1

n
∑

k=0

ckcn−k + p2

n
∑

k=0

ck.Multiplying by zn and summing leads to
zϕ′(z) + (p1 + p2)ϕ(z) = p1ϕ(z)2 + p2

ϕ(z)

1 − z
. (3.7)Letting ψ = 1/ϕ leads to

z(z − 1)ψ′(z) − (p1(z − 1) + p2z)ψ(z) = p1(1 − z) , (3.8)9



from whi
h (3.5) follows. �The te
hnique of 
onditioning upon the �rst drawn ball also permits to treat the 
asewhere there is a single transient state with possible return, and more than 2 absorbingones. By indu
tion on d, one 
an express the distribution of A(1) using Proposition 3.3.A
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