
OPTIMAL DECAY RATES OF THE ENERGY OF A
HYPERBOLIC-PARABOLIC SYSTEM COUPLED BY AN INTERFACE

THOMAS DUYCKAERTS

Abstract. This work is dedicated to the study of a linear model arising in fluid-struc-
ture interaction and introduced by Rauch, Zhang and Zuazua. The system is formed
of a heat and a wave equation, taking place in two distinct domains, and coupled by
transmission conditions at the interface of the domains. Two different transmission
conditions are considered.

In both cases, when the interface geometrically controls the wave domain, we show
the quick polynomial decay of the energy for solutions with smooth initial data, im-
proving the rate of decay obtained by the previous authors. The polynomial stability
is deduced from an optimal observability inequality conjectured in their work. The
proof of this estimate mainly relies on a known generalized trace lemma for solutions
of partial differential equations and the results of Bardos, Lebeau and Rauch on the
control of the wave equation.

Without the geometric condition, we show, using a Carleman inequality of Lebeau
and Robbiano and an abstract theorem of N. Burq, a logarithmic decay for solution of
the system with one of the two transmission conditions. This result improves the speed
of decay obtained by Zhang and Zuazua, and is also optimal in some geometries.
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1. Introduction

1.1. Presentation of the system. Let Ω1 and Ω2 be two disjoint bounded open sets
of Rd (d ≥ 2) with smooth boundaries, and

γ := ∂Ω1 ∩ ∂Ω2, Γ1 := ∂Ω1\γ, Γ2 := ∂Ω2\γ.
Assume that γ is not empty, and denote by Ω the interior of Ω1 ∪ Ω2.

In this work, we are interested with the following system, introduced in [22, 27]

(1) ∂tu−∆u = 0, x ∈ Ω1, t > 0,
∂2

t v −∆v = 0, x ∈ Ω2, t > 0,

with one of the following initial-boundary conditions

u¹Γ1 = 0, v¹Γ2 = 0
u¹γ = v¹γ , ∂n1u¹γ = −∂n2v¹γ

(BCa)

u¹t=0 = u0 ∈ H1(Ω1), v¹t=0 = v0 ∈ H1(Ω2), ∂tv¹t=0 = v1 ∈ L2(Ω2),(ICa)

(model with “naive” transmission conditions);

u¹Γ1 = 0, v¹Γ2 = 0
u¹γ = ∂tv¹γ , ∂n1u¹γ = −∂n2v¹γ

(BCb)

u¹t=0 = u0 ∈ L2(Ω1), v¹t=0 = v0 ∈ H1(Ω2), ∂tv¹t=0 = v1 ∈ L2(Ω2),(ICb)

(model with “natural” transmission conditions).
Here and in the sequel ∂nj is the outer normal derivative on ∂Ωj . We will refer to

System (1) with initial-boundary conditions (BCa) and (ICa) as (1a), and to the same
equation, but with initial-boundary conditions (BCb) and (ICb) as (1b). These systems
are rough linear models for fluid-structure interaction, the heat part modeling the fluid
and the wave part the solid structure. To get more precise models, one could replace the
heat equation by a Navier-Stokes system and the wave by an elastic equation. In this
context, the transmission condition of System (1b), u¹γ = ∂tv¹γ is more natural, u being
the speed of the fluid and v the displacement of the solid. A model similar to (1b), but
including the pressure of the fluid, is mentionned in the classical book of Dautray and
Lions [7, XVIII, §7.5].

This work is concerned with the stability of the solutions of the two systems, that
is the speed of decay to 0 of the energy. One of our goals is to contribute, through a
simple example, to a better understanding of general transmission problems for partial
differential equations.

Another motivation is to give a first example of precise control-theoretic results on
fluid-structure interaction models, whereas most theoretical works on the subject concern
the issue of existence and uniqueness of solutions for more refined models than (1a) and
(1b), including non-linearities and most of the time a free boundary (see [2, 24, 8, 9, 6,
25]).

We now state the previous stability results for systems (1a) and (1b). Denote by
U(t) :=

(
u(t), v(t), ∂tv(t)

)
the solution of (1a) or (1b). If X is a Banach space, we will

denote by ‖ · ‖X the norm on X, and (when X is an Hilbert space), by
( · ∣∣ · )

X
the scalar
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product on X. For two positive functions f and g, we shall write f . g when there is a
constant C depending only on Ω1 and Ω2, such that f ≤ Cg.

Both systems (1a) and (1b) have a natural energy, that we shall denote respectively
by Ea and Eb

Ea(U(t)) :=
1
2

(∫

Ω1

|∇u(t)|2dx+
∫

Ω2

|∂tv(t)|2dx+
∫

Ω2

|∇v(t)|2dx
)
,(2)

Eb(U(t)) :=
1
2

(∫

Ω1

|u(t)|2dx+
∫

Ω2

|∂tv(t)|2dx+
∫

Ω2

|∇v(t)|2dx
)
.(3)

Both energies are decreasing, the dissipation coming from the heat component u of the
system (see Section 2 for details).

1.2. The case of naive transmission conditions. In [22] J. Rauch, X. Zhang and
E. Zuazua have proven that the energy of the solutions of (1a) tends to 0 as t goes to
infinity. Using Gaussian beam solutions of the two equations, they have shown that
this decay is not uniform with respect to the initial energy. Furthermore, under the
condition that the interface γ geometrically controls Ω2 (see subsection 1.4), they have
shown polynomial decay for smooth initial conditions

(4) Ea(U(t)) . 1
t
‖U0‖2

D(Aa).

where ‖U0‖2
D(Aa) is the first order energy at time t = 0 (the sum of the energies of

U¹t=0 and ∂tU¹t=0). This decay is deduced from an observability inequality with loss
of one time derivative on (1a) which implies (4). The author also conjectured that the
optimal decay was not (4), but rather a decay in 1

t2
for solutions of finite first order

energy, which corresponds to the same observability inequality, but with the loss of only
half a derivative. As they noticed, according to their Gaussian beam construction, this
observability inequality would be optimal.

In [27], Zhang and Zuazua have shown, without the geometric control condition, the
following logarithmic decay result

(5)
√
Ea(U(t)) . 1

logs(1 + t)
‖U0‖D(Aa)

where s is any number strictly smaller than 1/8. Once again, this result does not seem
optimal, as the power s does not usually appear in this context (Carleman inequalities
usually yield exponential loss, which gives the same decay with s = 1).

1.3. The case of natural transmission conditions. System (1b) was studied in the
recent work by Zhang and Zuazua [27]. Note that according to the definition (3) of
Eb, the two equations are on a different energy scale, L2 for u and H1 for v, and that√
Eb is a norm on the energy space only when Γ2 is not empty. Otherwise, there exists

nontrivial stationnary solutions for the system, of energy 0, such that v is constant and
u = 0. The stability should be understood as the convergence for infinitely large time to
this one-dimensional space of constant solutions.

Zhang and Zuazua have shown that all solutions tend to 0 in the energy space, but
without uniformity with respect to the initial energy. Under the geometric control condi-
tion of Ω2 by γ, they have also proven that the energy of finite first-order energy solutions
decays at the rate 1/t1/3, which corresponds to the loss of 3 time-derivatives in the ob-
servability inequality. As in the previous case, they conjectured a loss of time-derivative
of only 1/2, which should be optimal according to the ray construction.

The study of System (1b) seems more difficult, due in particular to the unusual fact
that the embedding of the domain D(Ab) of the dissipative operator associated to the
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system in the energy space is not compact. Indeed, as observed in [27] this is the main
obstacle to show the logarithmic decay for solution of (1b) in the absence of geometric
control condition.

1.4. Main results. In this work, we study a model case (see figure 1), where Ω1 and
Ω2 are smooth domains, and the C∞ manifolds γ, Γ1 and Γ2 have empty intersections
so that

∂Ω1 = γ ∪ Γ1, ∂Ω2 = γ ∪ Γ2.

We show, under the geometric control condition, the optimal observability and a poly-
nomial decay at the speed 1/t2−ε for solution of finite first order energy. Furthermore,
for solutions of (1a), we show the optimal logarithmic decay (that is, with s = 1 in (5))
without further condition.

Consider the following wave equation on Ω2 with (inhomogeneous) Dirichlet boundary
conditions

(6)
∂2

tw −∆w = 0, w¹γ = g, w¹Γ2 = 0

w¹t=0 = w0 ∈ H1
0 (Ω2), ∂tw¹t=0 = w1 ∈ L2(Ω2).

We say that γ controls geometrically Ω2 in a time T when all the rays of geometric
optic in Ω2 of length T hit γ at least one time at a point which is not strictly diffractive
1. According to the classical work [1] by Bardos, Lebeau and Rauch, this condition
is equivalent to the exact control, in time T , of the wave equation (6) by a function
g ∈ H1((0, T ) × γ). The typical situation where this Geometric Control Condition
(GCC) is fullfilled in our case is when Γ2 is empty and γ is the entire boundary ∂Ω2

(see figure 1, a). In this case, Ω2 is inside Ω1. Nevertheless, even under our strong
smoothness assumptions, there exist geometries such that the heat domain Ω1 is inside
the wave domain Ω2, but γ controls Ω2 (see figure 1, c). We now state our main results.

Theorem 1. Assume that γ controls Ω2 in a time T ′ > 0 and that ∂Ω2 does not have any
contact of infinite order with its tangents. Let T > T ′. Then the following observability
inequality (with loss of one half time-derivative) holds for solutions of (1a) with initial
conditions in D(Aa)

(7) Ea(U(T )) . ‖∂tu‖2
H1/2(0,T ;L2(Ω1))

.

1A strictly diffractive point ρ is one where the optic ray is tangent to γ and such that γ is, near ρ,
contained in the interior of Ω2
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Assume furthermore that Γ1 is not empty. Then the observability inequality with loss of
one half time-derivative also holds for solutions of (1b) with initial conditions in D(Ab)

(8) Eb(U(T )) . ‖∇u‖2
H1/2(0,T ;L2(Ω1))

.

Remark 1.1. The assumption that ∂Ω2 does not have any contact of infinite order with
its tangents, that ensures the existence and uniqueness of the optic flow in Ω2, is standard
in this context. It is fullfilled, for example, when Ω2 is analytic.

Remark 1.2. The observability inequalities (7) and (8) are the one conjectured by Rauch,
Zhang and Zuazua in [22, 27]. In these works, weaker form of these estimates are proven,
namely with H1 instead of H1/2 in (7) and with H3 instead of H1/2 in (8).

Theorem 2. Under the assumptions of Theorem 1, the following holds for solutions of
(1a) or (1b)

(9) ∀s < 2, ∃Cs > 0, ∀U0 ∈ D(A), E(U(t)) . Cs

ts
‖U0‖2

D(A).

Here D(A) is the space of initial conditions with finite first order energy (see Section 2)
for the operator Aa or Ab, and E is the energy Ea or Eb of the equation.

Indeed it would be natural to expect a decay in 1/t2, but for technical reasons (due
to the fact that the loss of derivative is fractional), we were not able to show better than
Theorem 2. Apart from this technical difficulty, the deduction of polynomial decay from
observability inequality with loss is standard.

The proof of Theorem 1 has two steps. The first one consists in applying a generalized
trace lemma (from Hörmander [13]), which allows to bound some traces of u (and thus,
by the transmission condition, of v), by the observation. The loss of one-half derivative
in the observability inequalities comes from the same loss in the trace theorems. In the
second step of the proof we apply the control results of [1] to observe, with the traces,
all the interior energy of the equation.

Remark 1.3. To weaken the smoothness assumptions in Theorems 1 and 2 one should
use the results of N. Burq in [3] generalizing the work of Bardos, Lebeau and Rauch to
open sets of class C2. This would yield a lot of technicalities (in the use of the control
results of [3] but also in the trace theorems of Subsection 3.1), so that we prefered to
restrict ourself to this model case to show precisely the influence of the geometry on the
decay of the solutions.

Remark 1.4. In the case of System (1b), when Γ2 is empty, Theorem 2 asserts that U
converges (at the speed given by (9)) in the natural energy spaceHb defined in Subsection
2.2, to the one-dimensional linear subspace of stationnary solutions of (1b).

The logarithmic decay result reads as follows:

Theorem 3. Assume that the boundary of each connex component of Ω2 has a non-empty
intersection with γ. Then the energy of a smooth solution of (1a) decays at logarithmic
speed:

√
Ea(U(t)) ≤ C

log(t+ 1)
‖u‖D(Aa).

Remark 1.5. When Ω is a ball and ∂Ω2 is the circle ∂Ω, the decay of Theorem 3 is
optimal, due to the so-called whispering gallery eigenfunctions, which form a sequence
of eigenfunctions of the Dirichlet Laplace operator on Ω which concentrate exponentially
on ∂Ω (see for example the remark in 2.3 of [12]).
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The proof of Theorem 3 uses two known results: an abstract theorem of N. Burq
(see [4]) which links, for dissipative operators, logarithmic decay to resolvent estimates
with exponential loss, and some high frequency Carleman inequalities of G. Lebeau and
L. Robbiano [16]. Apart from these two deep results, the argument is elementary.

It is a general property of dissipative systems that in Theorem 2 and 3, the speed of
decay is related to the smoothness of the initial data. More precisely, for initial conditions
in D(Ar0), r0 > 0,

√
E decays at least as fast as Cr/t

r, for all r < r0, in the case of
Theorem 2 and as C/ logr0(t + 1) in the case of Theorem 3, which may be shown by
elementary interpolation and iteration arguments.

It is interesting to compare System (1) with a wave equation in Ω2, with Dirichlet
boundary condition on Γ2 and strict dissipation on γ. According to the work [1] of Bardos,
Lebeau and Rauch, under the geometric control condition, the stability is uniform (and
thus exponential). When this condition does not hold, Lebeau and Robbiano [17] have
shown the logarithmic decay of the energy as in Theorem 3, which is again optimal in
some geometries. According to the gaussian beams constructions of [22] and [27], and
Theorems 1 and 2 above, the dissipation on γ is half a time-derivative weaker for System
(1) than for the damped wave equation. Naturally, this difference of polynomial order is
not seen in Theorem 3, where exponential losses are allowed. From this point of view,
one may also hope Theorem 3 to hold for solutions of (1b), but it is not clear whether
the difficulties posed by the lack of compactness of A−1

b are of technical nature, or if they
are really an obstacle to the decay.

Let us mention other linear systems coupling two, or more, equations by an interface.
The behaviour of the solutions of the classical transmission problem for Schrödinger and
wave equations is by now well understood (see the complete study of L. Miller [20] in a
microlocal setting). In the recent work of Koch and Zuazua [15], a system coupling 3
waves equation is introduced. The mathematical novelty brought by the study of System
(1) is a better understanding of the coupling of two equations of different nature and
of the transfer, through γ, of the dissipative properties of the parabolic equation to the
hyperbolic one.

Our work is also related to the stability of system coupling an elastic wave equation
with a dissipative equation, both taking place in the same domain. In this context,
the speed of decay of the energy has also been linked, through microlocal tools, to
geometric optical-type conditions on the domain (see [18, 5, 10, 26]). In these systems,
the transmission problem is at the boundary of the domain, where the two components
(transversal and longitudinal) of the elastic wave are coupled by a Dirichlet boundary
condition. For related works using multipliers techniques see for example [14, 21].

The structure of the paper is the following. In Section 2, we recall the semi-group
formulation of (1a) and (1b) which ensures the well-posedness of the equations. In
Section 3, we show the observability inequality of Theorem 1. In Section 5 we explain
how this inequality implies the decay stated in Theorem 2. Section 6 deals with the same
questions on System (1b). In Section 7 we prove Theorem 3.

Acknowledgment. The author warmly thanks E. Zuazua to have introduced him to this
subject and greatly contributed to this work, and N. Burq, J. Rauch and X. Zhang for
fruitful discussions on the question.

The author is also grateful to both referees for very helpful comments and suggestions.

2. Well-posedness of systems (1a) and (1b)

In this section we quickly recall, from [22, 27], the definition in term of semi-groups
and well-posedness of systems (1a) and (1b).
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2.1. System (1a).

Notation. If u is a distribution on Ω1, we shall denote by 11Ω1u the distribution on Ω
obtained by extending u by 0 on Ω2. Such an extension is well defined if u is “not too
rough” with respect to the distance z to γ (for example when u is locally in one of the
spaces H0,−N defined in Subsection 3.1). Similarly, we will use the notation 11Ω2v, where
v is a distribution on Ω2.

If u is a distribution on Ω1, v a distribution on Ω2, and E a space of distributions over
Ω, we write:

(u, v) ∈ E
whenever 11Ω1u+ 11Ω2v defines a distribution on Ω which belongs to E. For example

(u, v) ∈ H2(Ω) ⇐⇒ u ∈ H2(Ω1), v ∈ H2(Ω2), u¹γ = v¹γ , and ∂n1u¹γ = −∂n2v¹γ .

Define the energy space Ha and the operator Aa on Ha, of domain D(Aa) by

Ha :=
{
U0 = (u0, v0, v1) ∈ H1(Ω1)×H1(Ω2)× L2(Ω2), (u0, v0) ∈ H1

0 (Ω)
}
,

AaU0 := (∆u0, v1,∆v0)

D(Aa) :=
{
U0 ∈ Ha, (u0, v0) ∈ H2(Ω), v1 ∈ H1(Ω2), (∆u0, v1) ∈ H1

0 (Ω)
}
.

Note that the condition (u0, v0) ∈ H1
0 (Ω) ∩ H2(Ω) for functions in the domain of Aa

implies the boundary and transmission conditions (BCa). System (1a) may thus be
rewritten in the abstract form

(10) ∂tU = AaU, U(t) := (u(t), v(t), ∂tv(t)).

The following proposition (see [22]) ensures the well-posedness of System (1a).

Proposition 2.1. The domain D(Aa) is dense in Ha. The operator Aa is the generator
of a contractive semi-group. The energy Ea of a solution of (1a), defined by (2), is
decreasing and:

(11) ∀T > 0, Ea(U(0))−Ea(U(T )) =
∫ T

0

∫

Ω1

|∂tu(t, x)|2dxdt.

Furthermore, 0 is in the resolvent set of Aa, A−1
a is compact as an operator in Ha and

for every U0 ∈ Ha, the solution U of (1a) satisfies

U(t)−→
t→∞0 in Ha.

2.2. System (1b). Define the energy space Hb by

Hb :=
{
U0 = (u0, v0, v1) ∈ L2(Ω1)×H1

Γ2
(Ω2)× L2(Ω2)

}
,

when H1
Γ2

(Ω2) is defined as the space

H1
Γ2

(Ω2) :=
{
v0 ∈ H1(Ω2), v0¹Γ2 = 0

}
,

endowed with the usual H1 norm. Note that when Γ2 is not empty, the H1 norm of v0 is
equivalent, on H1

Γ2
(Ω2), to ‖∇v0‖L2(Ω2), so that the energy defined by (3) is the square

of a norm on Hb. However, this is not the case when Γ2 is empty (the elements of Hb:
(u0 = 0, v0 = c, v1 = 0), where c is an arbitrary constant, have 0 energy). Consider the
operator Ab on Hb, of domain D(Ab)

AbU0 := (∆u0, v1,∆v0)

D(Ab) :=
{

(u0, v0, v1) ∈ Hb, u0 ∈ H1(Ω1), ∆u0 ∈ L2(Ω1),

v1 ∈ H1
Γ2

(Ω2), ∆v0 ∈ L2(Ω2), u0¹γ = v1¹γ , ∂n1u0¹γ = −∂n2v0¹γ
}
.
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Proposition 2.2. The domain D(Ab) is dense in Hb. The operator Ab is the generator
of a strongly continuous semi-group. Furthermore, for every U0 ∈ Hb, the solution U of
(1b) satisfies

Eb(U(t))−→
t→∞0.

The energy Eb(U(t)) of a solution of (1b) decays. More precisely

(12) ∀T > 0, Eb(U(0))−Eb(U(T )) =
∫ T

0

∫

Ω1

|∇u(t, x)|2dxdt.

Remark 2.3. When the energy Eb is not the square of a norm on Hb, i.e. in the case
Γ2 = ∅, we will also need to study the natural norm on Hb. Note that

(13) ‖U(t)‖2
Hb

= 2Eb(U(t)) + ‖v(t)‖2
L2(Ω2).

Differentiating (13) and using Gronwall’s inequality, it is easy to show

(14) ∀t ≥ t′ ≥ 0, ‖U(t)‖2
Hb
≤ et−t′‖U(t′)‖2

Hb
.

Remark 2.4. The embedding of D(Ab) into Hb is not compact, due to the lack of gain
of regularity of v0 near γ (that is, if U0 = (u0, v0, v1) is in D(Ab), v0 has a local H2

regularity in the interior of Ω2, but not better, in general, than a global H1 regularity
on Ω2).

3. High-frequency observability inequality for (1a)

In this section (first step of the proof of Theorem 1), we show

Proposition 3.1. Under the assumptions of Theorem 1, consider a smooth cut-off func-
tion ψ on (0, T ), equal to 1 in the neighborhood of an interval (α, β) of length greater
than T ′. Then for all solution U of (1a) with initial condition in D(Aa)

(15) E(U, t = T ) . ‖ψ(t)∂tu‖2
H1/2(R,L2(Ω1))

+ ‖ψ(t)u‖2
L2(R×Ω1) + ‖ψ(t)v‖2

L2(R×Ω2)︸ ︷︷ ︸
QT (U)

.

Note that if U(t) is a solution of (1a) with initial condition in D(Aa), both quantities

‖∂tu‖2
L2(0,T ;L2(Ω1)), ‖∂2

t u‖2
L2(0,T ;L2(Ω1))

are well defined and finite according to the energy decay law (11), so that (15) makes
sense for such a solution.

Proposition 3.1 says that the observability inequality (7) is valid, up to terms that are
compact with respect to the energy space Ha. These terms will be removed in the next
section using a standard uniqueness-compactness argument.

The proof takes two steps. We first show (paragraph 3.2) that QT (U) controls the
traces of ∂2

t v on γ, in suitable Sobolev spaces. For this we need a generalized trace lemma
for solutions of partial differential equations that are transverse to the boundary. This
result which we deduce from two lemmas of Hörmander, is stated in paragraph 3.1.

The second step (paragraphs 3.3 and 3.4) of the proof of Proposition 3.1 consists in
using the geometric control condition to bound v in the energy space by its traces on
γ. The direct application of the geometric control condition, in paragraph 3.3, will only
yield a bound on ‖∂2

t v‖2
H−1 . Nevertheless, it is easy to deduce from this bound the

complete high-frequency observability estimate (15) (paragraph 3.4). The “compact”
terms in QT (U) appears in this last step.

3.1. Asymmetric Sobolev spaces and trace lemma.
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3.1.1. Asymmetric Sobolev spaces. In this paragraph we work in the Euclidean space Rn,
where n ≥ 2. We will denote a point of Rn by x = (y, z), with y in Rn−1, and z in R.
Let Rn

+ be the open half-space, formed by all points such that z > 0, Rn
+ the closed

half-space, formed by all points such that z ≥ 0, and ∂Rn
+ the boundary {z = 0}. It

is natural, in the context of boundary-value problems, to introduce Sobolev spaces that
are asymmetric with respect to the tangential variable y and the normal variable z. Let
r and s be two real numbers and

Hr,s(Rn) :=
{
f ∈ S ′(Rn), ‖f‖2

r,s :=
∫
|f̂(ξ)|2 (

1 + |ξ|2)r (
1 + |η|2)s

dξ < +∞
}
,

where f̂ is the Fourier transform of f , and the Fourier variable ξ is decomposed as (η, ζ),
with η in Rn−1 and ζ in R. Note that

Hr,0(Rn) = Hr(Rn), H0,s(Rn) = L2
(
Rz,H

s(Rn−1
y )

)
.

The spaces Hr,s(Rn) restrict to spaces Hr,s(Rn
+), that may be defined as quotient spaces

with respect to the equivalence relation

f ∼ g ⇐⇒ f¹z>0 = g¹z>0.

Each space Hr,s(Rn
+) may be identified with a space of distribution over Rn

+. This
identification gives in particular

Hr,0(Rn
+) = Hr(Rn

+), H0,s(Rn
+) = L2

(
(0,+∞)z,H

s(Rn−1
y )

)
.

Furthermore, we have

f ∈ Hr,s(Rn
+) and χ ∈ C∞0 (Rn) =⇒ χf ∈ Hr,s(Rn

+).

Thus the local spaces

Hr,s
loc(R

n
+) =

{
f ∈ D′(Rn

+)
∣∣ ∀χ ∈ C∞0 (Rn), χf ∈ Hr,s(Rn

+)
}

are well defined.
The properties of the spaces Hr,s are similar to those of standard Sobolev spaces. We

will use in particular that a differential operator of degree m with C∞ coefficients on Rn
+

maps Hr+m,s
loc (Rn

+) to Hr,s
loc(R

n
+).

Denote by C∞0 (Rn
+) the set of smooth functions with compact support in {z ≥ 0}

(thus this functions do not need to be 0 on {z = 0}). This space is dense in each of
the Sobolev space Hr,s(Rn

+). We now state two lemmas of Hörmander concerning these
asymmetric spaces. The first one (which is Theorem B.2.7 in [13]) is a trace theorem.

Lemma 3.2. If j is a natural number and r a real number such that r > j + 1/2, then
the mapping

C∞0 (Rn
+) 3 f 7−→ ∂j

zf(., 0)

can be extended continuously to a mapping from Hr,s
loc(R

n
+) to Hr+s−j−1/2

loc ({z = 0}).
The proof of Lemma 3.2 is a staightforward generalization of that of the classical trace

theorem in Sobolev spaces Hr, r > j + 1/2.
The second lemma (see [13, Thm B.2.9]) shows the equivalence of the tangential vari-

able y and global variable x = (y, z) for solutions of partial differential equations trans-
verse to the boundary.

Lemma 3.3. Let P be a differential operator of order N ≥ 1 with C∞ coefficients on
Rn

+

P =
∑

0≤α+|β|≤N

aα,β(x)∂α
z ∂

β
y ,
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with aN,0 := 1. Let r1, r2, s1, s2 be some real numbers. Consider f such that

f ∈ Hr1,s1

loc (Rn
+) and Pf ∈ Hr2−N,s2

loc (Rn
+).

Let r, s be real numbers such that

r + s ≤ rj + sj , j = 1, 2 and r ≤ r2.

Then f is in Hr,s
loc(R

n
+) and satisfies the estimate

‖ϕf‖r,s . ‖ψf‖r1,s1 + ‖ψPf‖r2−N,s2 ,

where ϕ ∈ C∞0 (Rn
+) and ψ ∈ C∞0 (Rn

+) is 1 on the support of ϕ.

3.1.2. A trace lemma for solutions of partial differential equations.

Lemma 3.4. Let ω be an open set of Rn with smooth boundary ∂ω. Let P be a second-
order differential operator with C∞ coefficients in ω, which takes the following form near
∂ω

(16) P = ∂2
n +Q1∂n +Q2,

where the Qj’s are differential operators of order j, tangential to ∂ω, and ∂n is the
normal derivative with respect to ∂ω. Let q be any real number, f ∈ Hq(ω) such that
Pf ∈ Hk(ω), for some k > −1/2. Then the traces f¹∂ω and ∂nf¹∂ω are well defined and

f¹∂ω ∈ Hq−1/2
loc (∂ω), ∂nf¹∂ω ∈ Hq−3/2

loc (∂ω),

with the estimate

‖χf¹∂ω‖Hq−1/2(∂ω) + ‖χ∂nf¹∂ω‖Hq−3/2(∂ω) ≤ C
(
‖f‖Hq(ω) + ‖Pf‖Hk(ω)

)
,

where χ is any function in C∞0 (∂ω).

Proof. It is just a simple application of Lemma 3.2 and Lemma 3.3. Note that the result
is an immediate consequence of the usual trace lemma when q > 3/2. We may thus
assume that q ≤ 3/2. Furthermore, it is sufficient to show that for all ϕ in C∞0 (ω) such
that suppϕ is small and close to the boundary, the traces of the function ϕf exist and
satisfy the desired estimates. Using local geodesic normal coordinates, one may identify
a small open subset V of ω near the boundary with an open subset of Rn

+ located near
{z = 0}. On V, the operator P takes, according to (16), the form

P = ∂2
z −Q1∂z +Q2.

We will show by an induction argument that for all real m such that q +m ≤ k + 2

(17) ∀ϕ ∈ C∞0 (V), ϕf ∈ Hq+m,−m(Rn
+) and

‖ϕf‖q+m,−m ≤ Cϕ

(
‖f‖Hq(ω) + ‖Pf‖Hk(ω)

)
.

Note that if (17) is true for some m, it is also true for all smaller m. The assumptions
of the lemma says that (17) is true for m = 0. Assume that (17) is true for some m ≥ 0.
Let m′ ≤ m+ 1 such that q +m′ ≤ k + 2. We have

[P,ϕ]f ∈ Hq+m−1,−m(Rn
+), ϕPf ∈ Hk,0(Rn

+),

and their norms are bounded by the norm of f inHq(ω) and of Pf inHk(ω). Furthermore

k ≥ q − 2, k ≥ q +m′ − 2, q +m− 1 ≥ q +m′ − 2.

By Lemma 3.3 with s1 = −m, r1 = q +m, r2 = k + 2, s2 = 0, r = q +m′ and s = −m′,
we get (17) with m′ instead of m. Iterating this argument, we get (17) for all m such
that q +m ≤ k + 2.
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Taking m = k + 2− q, we get

ϕf ∈ Hk+2,q−k−2(Rn
+).

By assumption, k + 2 > 3/2. Lemma 3.2 yields the desired result. ¤
3.2. Observation of the traces. In this paragraph, we show that the solutions of (1a)
satisfy

‖ϕ(t)∂2
t v¹γ‖2

H−1((0,T )×γ) . QT (U),(18)

‖ϕ(t)∂2
t ∂nv¹γ‖2

H−2((0,T )×γ) . QT (U),(19)

where QT (U) is defined in (15), ϕ is a smooth cut-off function with support in {ψ = 1},
and which takes value 1 in a neighborhood of (α, β).

The function ∂2
t u is solution of the heat equation in (0, T )×Ω1, and the heat operator

−∂t + ∆ takes the form (16) near the boundary. Consider a smooth cut-off function ψ1

on R such that

(20) suppϕ ⊂ {t ∈ R, ψ1(t) = 1}, suppψ1 ⊂ {t ∈ R, ψ(t) = 1}.
Thus, using Lemma 3.4, with ω := (0, T )×Ω1 (or rather, to satisfy exactly the smoothness
assumption in this lemma, a smooth open neighborhood of suppψ × Ω1 in (0, T )× Ω1),
we get

‖ϕ(t)∂2
t u¹γ‖H−1((0,T )×γ) + ‖ϕ(t)∂2

t ∂nu¹γ‖H−2((0,T )×γ) .‖ψ1(t)∂2
t u‖H−1/2(R×Ω1)

.‖ψ1(t)∂2
t u‖H−1/2(R,L2(Ω1))

.QT (U).

Using the transmission condition in (BCa), we get (18) and (19).

3.3. Observation of ∂2
t v. The next step of the proof of Proposition 3.1 is to show that

under the geometric control condition

(21) ‖ϕ(t)∂2
t v‖2

H−1((0,T )×Ω2) . QT (U).

We first recall a theorem of Bardos, Lebeau and Rauch [1]:

Theorem 3.5 (Observability from the boundary). Let s ∈ R. Assume that (γ, T ′)
controls geometrically Ω2. Consider w a solution of the wave equation in Ω2

∂2
tw −∆w = 0, (t, x) ∈ (0, T ′)× Ω2(22)

w ∈ Hs((0, T ′)× Ω2)(23)

w¹∂Ω2 = 0.(24)

Then there exists a constant C, independent of w, such that

‖w‖Hs((0,T ′)×Ω2) ≤ C‖∂nw¹γ‖Hs−1((0,T ′)×γ).

Indeed this is Corollary 3.7 in [1]. Note that in our case, the set of invisible solutions
(solutions such that ∂nw¹γ is 0 on (0, T ′)) is reduced to {0}. We now deduce from
Theorem 3.5 an observability result when the Dirichlet boundary condition (24) is non-
homogeneous.

Corollary 3.6. Assume that (γ, T ′) controls geometrically Ω2. Consider a solution w
of the wave equation in Ω2

∂2
tw −∆w = 0, (t, x) ∈ (0, T ′)× Ω2(25)

w ∈ H−1((0, T ′)× Ω2)(26)

w¹∂Ω2 = f ∈ H−1((0, T ′)× ∂Ω2), ∂n2w¹γ ∈ H−2((0, T ′)× γ).(27)
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Then there exists a constant C, independent of w, such that

‖ϕ(t)w‖H−1((0,T ′)×Ω2) ≤ C
{‖w¹∂Ω2‖H−1((0,T ′)×∂Ω2) + ‖∂nw¹γ‖H−2((0,T ′)×γ)

}
.

Note that the norm of ∂nw in the right-hand side is only taken over γ, whereas the
norm of w has to be taken over all ∂Ω2.

Proof. Let ψ1 be a smooth cut-off function on R satisfying (20). Denote by I the interval
{ψ1 = 1}, which contains the support of ϕ. Consider the solution w̃ of the wave equation
with non-homogeneous Dirichlet boundary conditions

(28)
∂2

t w̃ −∆w̃ = 0 on (0, T ′)× Ω2

w̃¹(0,T ′)×∂Ω2
= ψ1(t)f, w̃¹t=0 = 0, ∂tw̃¹t=0 = 0.

By standard mixed problems theory, such a solution exists and satisfies the inequality

(29) ‖w̃‖H−1((0,T ′)×Ω2) + ‖∂nw̃¹∂Ω2‖H−2((0,T ′)×∂Ω2) . ‖ψ1(t)f‖H−1((0,T ′)×∂Ω2)

Let W = w − w̃ which is solution of the wave equation on I × Ω2 with homogeneous
Dirichlet boundary condition

(30) ∂2
tW −∆W = 0 on I × Ω2, W¹I×∂Ω2 = 0

By Theorem 3.5

(31) ‖W‖H−1(I×Ω2) . ‖∂nW¹γ‖H−2(I×γ).

By (29) and (31), one gets

‖ϕ(t)w‖H−1((0,T ′)×Ω2) .‖W‖H−1(I×Ω2) + ‖w̃‖H−1(I×Ω2)

.‖∂nW¹γ‖H−2((0,T ′)×γ) + ‖f‖H−1((0,T ′)×∂Ω2)

.‖∂nw̃¹γ‖H−2((0,T ′)×γ) + ‖∂nw¹γ‖H−2((0,T ′)×γ) + ‖f‖H−1((0,T ′)×∂Ω2)

.‖∂nw¹γ‖H−2((0,T ′)×γ) + ‖f‖H−1((0,T ′)×∂Ω2),

which shows the corollary. ¤
Using Corollary 3.6 together with (18) and (19), one gets (21).

3.4. End of the proof of Proposition 3.1. Let f := 11Ω1u+11Ω2v, which is a function
defined on (0, T ) × Ω and satisfying homogeneous Dirichlet boundary conditions on Ω.
By the transmission conditions (BCa), and the equations satisfied by u and v, we have

∂2
t f + ∆f = 11Ω1(∂tu+ ∂2

t u) + 211Ω2∂
2
t v︸ ︷︷ ︸

g

.

To get a bound on f in H1, using this elliptic equation, we need to bound g in H−1.
Note that the bound on ∂2

t v in H−1((0, T ) × Ω2) given by (21) does not immediately
yield a bound on 11Ω2∂

2
t v in H−1 ((0, T )× Ω). In the next lemma, we use the equation

satisfied by v to obtain such a bound. In this lemma, we take the liberty to shrink the
support of ϕ, still keeping a function with support in {ψ = 1} which takes value 1 in a
neighborhood of (α, β).

Lemma 3.7. The function ϕ(t)g is in H−1(R×Ω), and its norm in this space is bounded
by CQT (U) for a certain constant C independent of the solution.

Proof. Indeed we shall show that each of the three terms in ϕ(t)g satisfies this property.
First note that for solutions with initial condition in D(Aa), both ϕ(t)∂tu and ϕ(t)∂2

t u

are in H−1/2(R, L2(Ω1)) and satisfy the elementary bound

‖ϕ(t)∂tu‖2
H−1/2(R,L2(Ω1)) +

∥∥ϕ(t)∂2
t u

∥∥2

H−1/2(R,L2(Ω1))
. ‖ψ(t)∂tu‖2

H1/2(R,L2(Ω1))

. QT (U).
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Thus

(32) ‖ϕ(t)11Ω1∂tu‖2
H−1/2(R,L2(Ω)) +

∥∥ϕ(t)11Ω1∂
2
t u

∥∥2

H−1/2(R,L2(Ω))
. QT (U).

Obviously H−1/2(R, L2(Ω)) is included in H−1(R × Ω), which yields the desired bound
on both ∂tu and ∂2

t u.
The case of ∂2

t v is a little more delicate. Note that if χ is a smooth function on Ω2

with support away from γ, then, according to (21),

(33)
∥∥11Ω2ϕ(t)χ∂2

t v
∥∥2

H−1(R×Ω)
. QT (U).

It remains to show (33) when χ has small support near γ. In a neighborhood of the
support of such a χ, we use local geodesic normal coordinates (y, z), where y = (t, y′) in
Rd is the tangential space-time variable, and z is the distance to γ, and introduce the
asymmetric Sobolev spaces of paragraph 3.1 (with n = d + 1). The distribution ∂2

t v is
solution of an equation Pf = 0, with P taking the form (16). According to (21)

χ(x)ϕ(t)∂2
t v ∈ H−1,0

(
Rd+1

+

)
,

∥∥χ(x)ϕ(t)∂2
t v

∥∥2

−1,0
. QT (U).

In view of Lemma 3.3 it is easy to show that

χ(x)ϕ(t)∂2
t v ∈ H0,−1

(
Rd+1

+

) ∥∥χ(x)ϕ(t)∂2
t v

∥∥2

0,−1
. QT (U).

This is an L2 space in the normal variable z. Hence

11{z>0}χ(x)ϕ(t)∂2
t v ∈ L2(R,H−1(Rd)),

with the usual bound of its norm by QT (U). Noticing that the space H−1(Rd+1) contains
L2(R,H−1(Rd)), and going back to the original system of coordinates, we also get (33)
when χ is supported near γ, which completes the proof of the lemma. ¤

Now we have

(34) (∂2
t + ∆)(ϕ(t)f) = ϕ′′(t)f + 2ϕ′(t)∂tf + ϕ(t)g︸ ︷︷ ︸

h

Noticing that f is trivially bounded in L2 in a neighborhood of (α, β)×Ω by QT (U) and
using the preceding lemma, we get

‖h‖2
H−1(R×Ω) . QT (U).

Equation (34) is elliptic, with homogeneous Dirichlet boundary on any open set of R×Ω
which contains (0, T )× Ω. By standard elliptic theory, we get in particular

‖f‖H1((α,β)×Ω) . QT (U).

This yields the observability inequality
∫ β

α
E(U, t)dt . QT (U).

The function E(U, t) being time-decreasing, we obtain (15). The proof of Proposition
3.1 is complete.
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4. From high frequency observability to observability

In this part, we show that (15) implies (7), that is, for T > T ′

(7) E(U, t = T ) . ‖∂tu‖2
H1/2(0,T ;L2(Ω1))

,

which concludes the proof of Theorem 1. We will use a classical uniqueness/compactness
argument (see e.g. [19]).

Note that according to (11), for every solution of (1a) with initial condition in Ha, we
have ∫ T

0
‖∂tu‖2

L2(Ω1)dt ≤ ‖U0‖2
Ha
.

Thus the mapping
Sa : U0 7−→ (u(t), v(t)),

where (u, v) is the solution of (1a) with initial condition U0 = (u0, v0, v1), is continuous
from Ha to

XT :=
{
(u, v), u ∈ C0(0, T ;H1(Ω1)), ∂tu ∈ L2((0, T )× Ω1),

v ∈ C0(0, T ;H1(Ω2)) ∩ C1(0, T ;L2(Ω2))
}
.

As a consequence, Sa is a compact map from Ha to

YT := L2
(
(0, T )× Ω1

) × L2
(
(0, T )× Ω2

)
.

Assume that (7) does not hold. Then there is a sequence (Uk
0 ) in D(Aa) such that

(35) 1 = ‖Uk(T )‖Ha > k‖∂tu
k‖H1/2(0,T ;L2(Ω1)).

(where as usual Uk(t) =
(
uk(t), vk(t), ∂tv

k(t)
)

is the solution of (1a) with initial condition
Uk

0 ). According to (35) and the energy dissipation law (11), Uk
0 is bounded in Ha. Thus,

up to the extraction of a subsequence, one may assume that there is a Ũ0 in Ha such
that

(36) Uk −⇀
k→∞

Ũ0 in Ha.

By continuity of Sa

(uk, vk)−⇀
k→∞

(ũ, ṽ) in XT

where (ũ, ṽ) = Sa(Ũ0). Using (35), this shows that (ũ, ṽ) is in the vector space GT of
solutions of (1a) such that ∂tu = 0 on (0, T ) × Ω1. Let us show that GT is reduced to
{0}. Let (u, v) be an element of GT . Then

(37) ∂tu = 0 in (0, T )× Ω1.

Thus by (BCa), one has

∂tv¹(0,T )×∂Ω2
= 0, ∂n2∂tv¹(0,T )×γ = 0.

The function ∂tv is a (weak) solution of the wave equation on (0, T )×Ω2 with Dirichlet
boundary condition, whose traces vanish on γ. It is well known (see [1]), that the
geometric control of Ω2 by (0, T ′)× γ implies

(38) ∂tv = 0 in (0, T )× Ω2.

Let f := 11Ω1u+ 11Ω2v. According to (37), (38) and (BCa)

∆f = 0, in (0, T )× Ω

f = 0, in (0, T )× ∂Ω.

Thus f = 0. This shows as announced that GT = {0}.



DECAY RATES OF A HYPERBOLIC-PARABOLIC SYSTEM COUPLED BY AN INTERFACE 15

Consequently, (ũ, ṽ) is identically zero. The compactness of Sa from Ha to YT yields
together with the weak convergence (36)

(uk, vk)−→
k→∞

0 in YT .

Using high-frequency inequality (15) together with (35), we obtain that Uk(T ) goes to 0
in Ha as k goes to ∞, which contradicts the equality in (35). The proof of Theorem 1 is
complete.

5. From observability inequalities to polynomial decay

In this section we show that Theorem 1 implies Theorem 2. The strategy of the proof
is very classical and goes back to the work of Russell [23]. To get the expected decay
rate at the speed 1/t2, we would need the following observability estimate (omitting the
subscripts a, as we shall do in all the section)

(39) ‖U(T )‖2
H . ‖U(0)‖2

D(A1/2)
− ‖U(T )‖2

D(A1/2)
.

Estimate (7) is very similar, but we were not able to prove that it implies exactly (39).
Note that when the loss of time-derivatives is an integer, the analogues of estimates (7)
and (39) are trivially the same. In this section we use a trick to avoid the technical
obstacle caused by fractional time-derivatives, and show the decay of the energy at the
speed 1/ts, s < 2 when the initial condition is in D(A).

Assume that the hypothesis of Theorem 1 are fulfilled and consider a solution U of (1a)
with regular initial condition. By Theorem 1, (and the fact that the energy decreases
with time) we have, for T large enough and some well-chosen ϕ in C∞0 ((0, T ))

(40) E(U, T ) . ‖ϕ(t)∂tu‖2

H
1/2
T L2(Ω1)

.

The interpolation inequalities

‖f‖Hs0 (R) ≤ ‖f‖α1

Hs1 (R)‖f‖α2

Hs2(R),

α1s1 + α2s2 = s0, α1 + α2 = 1, α1, α2 ∈ (0, 1),

hold for Hilbert-valued functions by Fourier transform. Let N ∈ N∗ and β := 1− 1
2N . In

the sequel we will write
Hs

TB = Hs(0, T ;B)
where B is a Hilbert space, T and s are real nonnegative numbers. Estimate (40) yields

(41) E(U, T ) . ‖∂tu‖2(1−β)

HN
T L2(Ω1)

‖∂tu‖2β
L2

T L2(Ω1)
.

Consider the natural norm on D(AN )

‖F‖2
D(AN ) := ‖F‖2

H + ‖AF‖2
H + . . .+

∥∥ANF
∥∥2

H
.

It is easy to check that (11) implies

‖∂tu‖2
HN

T L2(Ω1)
= ‖U(0)‖2

D(AN ) − ‖U(T )‖2
D(AN ) ≤ ‖U(0)‖2

D(AN ).

From (41), we get

(42) ‖U(T )‖2
H . ‖U(0)‖2(1−β)

D(AN )

(‖U(0)‖2
H − ‖U(T )‖2

H

)β
.

Let ak := ‖U(kT )‖2
H . The inequality (42) with initial time kT yields, taking into account

the decay of U in D(AN )

(43) a
1/β
k+1 ≤M(ak − ak+1)
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where the constant M > 0 depends on ‖U(0)‖D(AN ). The following lemma is classical in
this setting (see [23]):

Lemma 5.1. Let (ak) be a sequence of positive number satisfying (43) with β ∈ (0, 1).
Then there is a constant C such that

ak ≤ Ck−α, α :=
β

1− β
.

Thus, we obtain, when U0 is in D(AN )

‖U(t)‖2
H ≤ C(U0)

tα

An easy application of the closed graph theorem yields

‖U(t)‖2
H ≤ C

tα
‖U0‖2

D(AN ),

where the constant C does not depend on U . Interpolating with the decay bound

‖U(t)‖2
H ≤ ‖U(0)‖2

H ,

we get

(44) ‖U(t)‖2
H ≤ C

t
α
N

‖U0‖2
D(A) .

Furthermore α
N = 2 − 1

N . Thus it may be chosen as close to 2 as desired. The proof of
Theorem 2 is complete.

6. The case of natural transmission conditions

In this section, we follow the steps of the two previous ones, showing first a high
frequency observation inequality, then Theorems 1 and 2 for System (1b). We will keep
exactly the same notations as before but U = (u, v, ∂tv) will now always denote a solution
of (1b). We will assume as announced in Theorems 1 and 2 that Γ1 is not empty, so that

∀u0 ∈ H1(Ω1) s.t. u0¹Γ1 = 0, ‖u0‖H1(Ω1) . ‖∇u0‖L2(Ω1).

6.1. High frequency observability inequality. The next proposition is the analogue
to Proposition 3.1.

Proposition 6.1. Under the assumptions of Theorem 1, consider ψ in C∞0 (0, T ) which
takes value 1 on an interval (α, β) of length more than T ′. Then

(45) ‖U(T )‖2
Hb

. ‖∇u‖2

H
1/2
T L2(Ω1)

+ ‖ψ(t)u‖2
H−1((0,T )×Ω1) + ‖ψ(t)v‖2

L2((0,T )×Ω2)
︸ ︷︷ ︸

QT (U)

.

The strategy of the proof of (45) is exactly the same than the one of (15): to use
Lemma 3.4 to control some traces of v on γ (Paragraph 6.1.1), and then to use the
geometric condition to control v in the energy space (Paragraph 6.1.2). As before, we
will rather control first ∂2

t v in H−1. The compact terms in the right-hand side will appear
when converting this estimate on ∂2

t v into the estimate on the energy of v.
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6.1.1. Control of the traces. Here we show the following

‖ϕ(t)∂2
t v¹γ‖2

H−1((0,T )×γ) . QT (U),(46)

‖ϕ(t)∂n∂
2
t v¹γ‖2

H−2((0,T )×γ) . QT (U),(47)

‖ϕ(t)∂nv¹γ‖2
H−1/2((0,T )×γ)

. QT (U),(48)

where ϕ is as before a function with compact support in (0, T ) and taking value 1
near (α, β). Consider the global system of space coordinate x = (x1, x2, .., xn) in which
∆ =

∑
∂2

xj
. Using Lemma 3.4 as in paragraph 3.2, we get, for any j

‖ϕ(t)∂xj∂tu¹γ‖2
H−1((0,T )×γ) . QT (U).(49)

The normal derivative ∂n1 may be extended, near a point x′ of γ, to a vector field in the
interior of Ω1, of the form

∂n1 =
∑

j

aj(x)∂xj ,

where a1, .., an are C∞ in a neighborhood of x′. Thus (49) implies, together with the
transmission condition ∂n1u¹γ = −∂n2v¹γ , estimate (47).

Under the assumption that Γ1 is not empty, and using the fact that u vanishes on Γ1,
there is a constant C such that

∀t ≥ 0, ‖u(t)‖L2(Ω1) ≤ C‖∇u(t)‖L2(Ω1).

Hence
‖ψ(t)u‖2

H1/2(R,L2(Ω1))
. QT (U).

By Lemma 3.4, we get
‖ϕ(t)∂tu‖2

H−1((0,T )×γ) . QT (U),

which yields (46) with the transmission condition u¹γ = ∂tv¹γ . The estimate (48) is easily
deduced from Lemma 3.4 and the bound

‖∇u‖2
L2((0,T )×Ω1) . QT (U).

6.1.2. Observation in Ω1 and Ω2. Corollary 3.6 yields, together with (46) and (47)

(50) ‖ϕ(t)∂2
t v‖2

H−1((0,T )×Ω2) . QT (U).

We now show that (48), (50) and the Dirichlet boundary condition on Γ2 suffice to
observe all the energy of v with QT (U).

Let ϕ̃ be a C∞, cut-off function with support in ϕ = 1. Then we have

(51)
(
∂2

t + ∆x

)(
ϕ̃(t)v

)
= 2ϕ̃(t)∂2

t v + 2ϕ̃′(t)∂tv + ϕ̃′′(t)v.

Using (50) to bound, in H−1((0, T ) × Ω2), the first term of the right member of (51),
and the norm of ψ(t)v in L2((0, T )× Ω1) to bound the two other terms, we get

(52)

(
∂2

t + ∆x

)(
ϕ̃(t)v

)
= f, ‖f‖2

H−1((0,T )×Ω2) . QT (U)

ϕ̃(t)v¹R×Γ2 = 0, ϕ̃(t)∂nv¹R×γ = g, ‖g‖2
H−1/2(R×γ)

. QT (U).

Consider a bounded, smooth, open subset of R×Ω2 which contains (0, T )×Ω2. Equation
(52) is elliptic, with homogeneous Dirichlet boundary conditions on R×Γ2 and Neumann
inhomogeneous boundary condition in R× γ. It is well known that it implies

‖ϕ̃(t)v‖2
H1((0,T )×Ω2) . QT (U).

Using that
‖u‖L2((0,T )×Ω1) . ‖∇u‖L2((0,T )×Ω1),
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we get ∫ β

α
‖U(t)‖2

Hb
dt . QT (U),

which yields, with (14), the high frequency observability inequality (45).

6.2. From high-frequency observability to observability. In this section we show,
adapting the uniqueness-compactness argument of Section 4, the observation inequality

(8) Eb(U(T )) . ‖∇u‖2
H1/2(0,T ;L2(Ω1))

,

for solutions of System (1b). This will conclude the proof of Theorem 1 in the case of
(1b).

The only new difficulty is when Γ2 = ∅ (so that
√
Eb is not a norm on Hb), which we

shall assume in the sequel. The proof of the case Γ2 6= ∅ is exactly the same as in Section
4 and therefore we omit it.

The map
Sb : U0 = (u0, v0, v1) 7→ (u(t), v(t)),

where (u(t), v(t)) is the solution of (1b) with initial conditions (u0, v0, v1), is continuous
from Hb to

C0
(
[0, T ];L2(Ω1)

)×
{
C1

(
[0, T ];L2(Ω2)

) ∩ C0
(
[0, T ];H1(Ω2)

)}

thus compact from Hb to

YT := H−1
(
(0, T )× Ω1

)× L2
(
(0, T )× Ω2

)
.

Assume that (8) does not hold. Then there is a sequence
(
Uk

0

)
k

of elements of Hb such
that

(53) 1 = Eb(Uk(T )) > k
∥∥∇uk

∥∥2

H1/2(0,T ;L2(Ω1))
.

where Uk(t) =
(
uk(t), vk(t), ∂tv

k(t)
)

is the solution of (1b) with initial condition Uk
0 .

Replacing, if necessary, (uk(t, x), vk(t, x)) by
(
uk(t, x), vk(t, x)− 1

µ(Ω2)

∫

Ω2

vk(0, x)dx
)
, µ(Ω2) =

∫

Ω2

dx

which is also a solution of (1b), we may assume
∫

Ω2

vk(0, x)dx = 0.

Furthermore ∣∣∣∣∂t

∫

Ω2

vk(t, x)dx
∣∣∣∣ =

∣∣∣∣
∫

Ω2

∂tv
k(t, x)dx

∣∣∣∣

≤
{

2µ(Ω2)Eb(Uk(t))
}1/2

.

According to the decay law (12) and to (53), Eb(Uk) is bounded independently of t ∈
(0, T ) and k ∈ N. Thus

(54) ∃C > 0, ∀t ∈ [0, T ], ∀k ∈ N,
∣∣∣∣
∫
vk(t, x)dx

∣∣∣∣ ≤ C.

By (53) and (54)

∃C > 0, ∀t ∈ [0, T ], ∀k ∈ N, ∥∥vk(t)
∥∥

H1(Ω2)
≤ C.
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Thus in view of (53),
(
Uk

0

)
is bounded in Hb. Up to the extraction of a subsequence,

there is a Ũ0 = (ũ0, ṽ0, ṽ1) in Hb such that

Uk
0 −⇀

k→∞
Ũ0 weakly in Hb.

The map Sb being compact from Hb to YT , (uk, vk) converges strongly in YT to the
solution (ũ, ṽ) of (1b) with initial condition Ũ0. According to (53)

∇uk −→
k→∞

0 in H1/2(0, T ;L2(Ω1)).

Thus ∇ũ is identically 0 on (0, T )× Ω1. By similar arguments as in Section 4, one may
deduce from this fact

(55) ∃C0 > 0 s.t. ũ = 0, ṽ = C0, (t, x) ∈ (0, T )× Ω2.

Furthermore, ∫

Ω2

vk
0dx = (vk

0 , 1)L2(Ω2),

so that by weak convergence of vk
0 in Hb,

0 =
∫

Ω2

vk
0dx−→

k→∞

∫

Ω2

ṽ0dx.

Thus C0 = 0, and Ũ = 0. This shows by the high frequency inequality (45) and the
strong convergence of (uk, vk) to (ũ, ṽ) in YT that

Uk(T )−→
k→∞

0 in Hb,

which contradicts (53). Hence (8) holds, which concludes the proof of Theorem 1.

6.3. Polynomial decay. The proof of the polynomial decay for System (1b) from ob-
servability inequality (8) is exactly the same as in the case of System (1a). We therefore
omit the proof of Theorem 2 for System (1b).

7. Logarithmic decay

In this section we prove Theorem 3. We start by recalling, from [4] that it suffices to
show some high-frequency estimates with exponential loss on the resolvent. We will then
deduce this estimates from known Carleman inequalities.

7.1. Preliminaries. Treating separately each connex component of Ω, we may assume
that Ω is connex, which we shall do in the sequel.

The proof of the logarithmic decay relies on an abstract result of N. Burq, which links
it to estimates on the resolvent of Aa. Let A be any maximal dissipative operator, with
dense domain D(A), in a Hilbert space H. Denote by R(A) the resolvent set of A and,
for complex numbers λ in R(A), by Rλ the resolvent (A − λ)−1. Then the following
holds (see [4, Thm 3])

Theorem 7.1. Let D > 0, and

OD :=
{
λ ∈ C, |Reλ| < D−1e−D|Im λ|

}
.

Assume that for some D > 0, OD is included in R(A), and that in OD there is a positive
constant C such that

(56) ‖Rλ‖L(H) ≤ CeC|Im λ|.
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Then for all k there exists Ck such that

∀u0 ∈ D(Ak), ‖etAu0‖H ≤ Ck

(log(t+ 2))k
‖u0‖D(Ak).

Theorem 3 of [4] is written in a more general setting. To check the exact assumptions
of this result, recall that the resolvent Rλ is analytic in the resolvent set, as a function
with values in L(H).

The main difficulty is the high frequency problem, which we will solve using some
Carleman inequalities due to G. Lebeau and L. Robbiano (see [16]) and in this exact
form to N. Burq in [4]. This is the object of the following proposition:

Proposition 7.2. Assume that Ω is connex and Ω1 non-empty. Then there exists C0 > 0
such that for every µ ∈ R with |µ| ≥ C0,

(57) ‖(Aa − iµ)−1‖L(Ha) ≤ C0e
C0|µ|.

In all the sequel we shall omit the subscripts a, writing H and A for Ha and Aa.
We shall prove Proposition 7.2 in Subsection 7.2. Let us first check that it implies the
assumptions of Theorem 7.1. All the imaginary axis is included in R(A), which is an
open set. Thus, for small enough ε

Qε := {λ ∈ C, |Reλ| ≤ ε, |Imλ| ≤ C0} ⊂ R(A),

where C0 is given by Proposition 7.2. Note that by continuity, Rλ is bounded in Qε.
Let us now consider ν ∈ C, µ := Im ν, such that

(58) |µ| ≥ C0, |Re ν| ≤ 1
2C0

e−C0|µ|.

Then, denoting as before Riµ := (A− iµ)−1,

Riµ(A− ν) = 1 + (iµ− ν)Riµ.

Furthermore

‖(iµ− ν)Riµ‖L(H) =|Re ν| ‖Riµ‖L(H)

≤|Re ν|C0e
C0|µ| ≤ 1

2
by (57) and (58). By the Neumann expansion’s theorem in the Banach algebra L(H),
Riµ(A− ν) is invertible and the norm of its inverse Rν(A− iµ) satisfies

‖Rν(A− iµ)‖L(H) ≤ 2.

Using again (57), we get

(59) ‖Rν‖L(H) ≤ 2C0e
C0|µ|.

Take D > 0 such that D−1 is less than ε and 1
2C0

. The argument above shows that OD is
included in R(A). Inequality (59) and the boundedness of Rλ on Qε yield the estimate
(56). The assumptions of Theorem 7.1 are fulfilled. It remains to show Proposition 7.2
to conclude the proof of Theorem 3.

7.2. Proof of Proposition 7.2. Proposition 7.2 is a consequence of the following known
result:

Proposition 7.3 (High frequency Carleman inequalities). Let ω be a non-empty, open
subset of Ω. Then there is a constant C > 0 such that for every large positive number µ,
and for every w in H2(Ω), with w¹∂Ω = 0

(60) ‖(∆ + µ2)w‖2
L2(Ω) + ‖w‖2

H1(ω) ≥ e−Cµ‖w‖2
H1(Ω).



DECAY RATES OF A HYPERBOLIC-PARABOLIC SYSTEM COUPLED BY AN INTERFACE 21

Sketch of the proof. To prove the proposition we will need to recall the Carleman in-
equality of N. Burq, G. Lebeau and L. Robbiano. Consider a bounded smooth open set
U of Rn, ϕ a function in C∞(U), and

pϕ(x, ξ) := (ξ + i∇ϕ(x)).(ξ + i∇ϕ(x))− 1,

(where X.Y is the scalar product
∑
XiYi). Let h > 0 be a small parameter. The function

pϕ, defined on U×Rn, is the semi-classical principal symbol of the semi-classical operator
−eϕ/h ◦ (h2∆ + 1) ◦ e−ϕ/h. For two functions f and g on U × Rn, define the Poisson
bracket of f and g by {f, g} :=

∑
j ∂ξj

f∂xjg−∂xjf∂ξj
g. Then we have the following (see

[4, prop 1.2]):

Proposition 7.4. Let Γ be an non-empty union of connex components of ∂U . Assume
that ϕ satisfies

∀(x, ξ) ∈ U × Rd, ∇ϕ 6= 0,(61)

∀x ∈ ∂U , ∂nϕ(x) 6= 0,(62)

∀x ∈ Γ, ∂nϕ(x) < 0,(63)

∃c > 0, ∀(x, ξ) ∈ U × Rn, pϕ(x, ξ) = 0 ⇒ {Re pϕ, Im pϕ}(x, ξ) ≥ c.(64)

Then there exists C > 0 such that for all u ∈ H2(U) with u¹Γ = 0 and for all small,
positive h

(65)
∫

U
e2ϕ/h|h2∆u+ u|2dx+ h

∫

∂U\Γ
e2ϕ/h

(|u¹∂U |2 + |h∇u¹∂U |2
)
dx

≥ C−1h

∫

U
e2ϕ/h(|u|2 + |h∇u|2)dx.

Remark 7.5. If u is supported away from ∂U\Γ, inequality (65) is valid even if ϕ does
not satisfy (62).

Let ω̃ be a small ball such that ω̃ ⊂ ω, and χ a smooth function such that

χ(x) = 1 if x ∈ Ω\ω, χ(x) = 0 if x ∈ ω̃.
Let U := Ω\ω̃, and Γ := ∂Ω. The function χ clearly vanishes on ∂U\Γ = ∂ω̃. Assume
that there exists a function ϕ satisfying (61), (63) and (64). Then for any function
w ∈ H2(Ω) vanishing at ∂Ω, we have, for small h

C

∫

Ω
e2ϕ/h|h2∆(χw) + χw|2dx ≥ h

∫

Ω
e2ϕ/h(|χw|2 + |h∇(χw)|2)dx.

Let h = µ−1. We may replace ϕ by its maximum at the left-hand side of the equation,
and by its minimum at the right hand side. Dropping the powers of µ (which may be
done by taking a greater constant in the exponential), and using that the commutator
[∆, χ] is of order 1, supported in ω\ω̃ and that χ is 1 outside of ω, we obtain, for large µ

eCµ

{∫

Ω
|∆w + µ2w|2dx+

∫

ω\ω̃
(|∇w|2 + |w|2)dx

}
≥

∫

Ω
(|w|2 + |∇w|2)dx

which yields (60).
It remains to show that there is a function ϕ satisfying (61), (63) and (64). It is

classical (see [11]) that there exists a C∞ function ϕ̃ on Ω such that ∂nϕ̃ < 0 on ∂Ω, and
whose critical points, in finite number, are all in ω̃. Thus for such a function, (61) and
(63) are satisfied. An explicit calculation (cf [4, p.12]) shows that the function ϕ := eβϕ̃

(which still satisfies (61) and (63)) also satisfies (64) when β is large enough. ¤
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We are now ready to prove Proposition 7.2. Let µ be a real number with large absolute
value. Take

(66) F := (f0, g0, g1) ∈ H, U := (A− iµ)−1F, U = (u0, v0, v1) .

The idea of the proof is to bound all the energy of U by the energy of the heat component
u0 on a small subset ω of Ω1. This may be done, with exponential loss in µ, using
Proposition 7.3.

Taking the real part of the scalar product of equation (66) in H by U , one gets

(67) ‖∆u0‖2
L2(Ω1) = −Re (AU,U)H ≤ ‖F‖H‖U‖H .

Equation (66) yields

(68)





(∆− iµ)u0 =f0

∆v0 + µ2v0 =g1 + iµg0

v1 =g0 + iµv0.

Let

K0 :=µ2‖F‖2
H + ‖∆u0‖2

L2(Ω1) + µ4‖u0‖2
L2(Ω1)

:=µ2
{‖f0‖2

H1(Ω1) + ‖g0‖2
H1(Ω2) + ‖g1|2L2(Ω2)

}
+ ‖∆u0‖2

L2(Ω1) + µ4‖u0‖2
L2(Ω1).

By (67) and the first line of (68), we get, for large µ

(69) K0 . µ2
(‖U‖H‖F‖H + ‖F‖2

H

)
.

Thus it suffices to bound ‖U‖2
H by the product of K0 and an exponential in µ. The

following function, thanks to the boundary conditions (BCa), is in H2(Ω) ∩H1
0 (Ω)

w0 := 11Ω1u0 + 11Ω2v0.

We have, by equations (68)

(∆ + µ2)w0 = 11Ω1(iµu0 + µ2u0 + f0) + 11Ω2(g1 + iµg0)︸ ︷︷ ︸
h0

.

Note that ‖h0‖2
L2(Ω) is bounded, up to a constant, by K0. Let ω be a small, non-empty

open subset of Ω1. By the Carleman inequality of Proposition 7.3, we have, for large |µ|
‖w0‖2

H1(Ω) ≤ eC|µ|
{
‖h0‖2

L2(Ω) + ‖u0‖2
H1(ω)

}

Thus, noting that by equations (68)

‖v1‖2
L2(Ω2) . K0 + µ2‖w0‖2

L2(Ω),

we get, for large µ, and some constant C

(70) ‖U‖2
H ≤ eC|µ|

{
K0 + ‖u0‖2

H1(ω)

}
.

It is an easy fact that

‖u0‖2
H1(ω) . ‖u0‖2

L2(Ω1) + ‖∆u0‖2
L2(Ω1) . K0.

We thus get, for some constant C1

‖U‖2
H ≤ eC1|µ|K0.

By (69), using the inequality ab ≤ t
2a

2 + 1
2tb

2

‖U‖2
H ≤ eC1|µ|

{
1
2
e−C1|µ|‖U‖2

H +
1
2
eC1|µ|µ4‖F‖2

H + µ2‖F‖2
H

}
.
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We finally obtain, for large µ, the following bound, which shows the proposition

‖U‖H ≤ Ce2C1|µ|µ4‖F‖H .
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