Exercice 1 Let $a \in \mathbb{R}$ and $A_a = \begin{pmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{pmatrix}$. For which values of a the Jacobi method for

 A_a is convergent?

Exercice 2 Pour $\alpha \in \mathbb{R}$, let

$$A_{\alpha} = \left(\begin{array}{ccc} 2 & \alpha & 0\\ \alpha & 2 & \alpha\\ 0 & \alpha & 2 \end{array}\right).$$

(1) Write the matrix \mathcal{J} of Jacobi algorithm. For which values of α does it converge?

(2) Write the matrix \mathcal{L}_1 of Gauss-Seidel algorithm. For which values of α does it converge?

Exercice 3 Let

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 2 & -1 & 1 \\ 2 & 2 & 2 \\ -1 & -1 & 2 \end{pmatrix}.$$

(1)(a) Write the matrices of Jacobi and Gauss-Seidel algorithm.

(b) Compute their spectral radii. What is known in general about these?

(2) Consider the system to be solved

(S)
$$\begin{cases} x +2y -2z = -9 \\ x + y + z = 2 \\ 2x +2y + z = 1 \end{cases}$$

(a) What is the most appropriate method, between Jacobi and Gauss-Seidel?

(b) Compute the 4 first iterations, starting with $X_0 = (0, 0, 0)^t$. What is the solution of (S)?

Exercice 4 Let

$$A = \begin{pmatrix} 1 & 0 & -m_1 \\ -m_2 & 1 & 0 \\ 0 & -m_3 & 1 \end{pmatrix} \quad \text{et} \quad A' = \begin{pmatrix} 1 & -m_1 & 0 \\ 0 & 1 & -m_2 \\ -m_3 & 0 & 1 \end{pmatrix}$$

with $m_i \in \mathbb{R}$.

(1) By explicit computation, determine for which values of the m_j the Gauss-Seidel algorithm does converge for A, then for A'.

(2) Same questions for Jacobi. Compare the methods.

Exercice 5 Let $C \in \mathcal{M}_n(\mathbb{C})$ defined by

$$C_{i,j} = \begin{cases} 1 & i \neq j \\ 0 & i = j \end{cases}$$

For any $\alpha \in \mathbb{R}$, define $A(\alpha) = \alpha I_n + C$ and $D_n(\alpha) = \det(A(\alpha))$. (1) Show the recursion relation

$$D_n(\alpha) = (\alpha - 1)^{n-1} + (\alpha - 1)D_{n-1}(\alpha).$$

Deduce that $D_n(\alpha) = (\alpha - 1)^{n-1}(\alpha + n - 1)$. Consider now the resolution of the system $A(\alpha)x = b$ (for $\alpha \neq 1, n - 1$). (2) Describe the Jacobi, Gauss-Seidel and Richardson algorithms.

(3) Give a necessary and sufficient condition on α for Jacobi algorithm to converge.

(3) Same question for Gauss-Seidel and Richardson.