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A new class of computational far-field boundary conditions for hyperbolic partial differential equations was 
recently introduced by the authors. These boundary conditions combine properties of absorbing conditions 
for transient solutions and properties of far-field conditions for steady states. This paper analyses the 
properties of the wave equation coupled with these new boundary conditions: well-posedness, dissipativity 
and convergence in time. 

1. Introduction 

Computational far-field boundary conditions are designed in order to restrict the 
spatial domain in the numerical computation of partial differential equations. These 
boundary conditions should generate well-posed problems and be well satisfied by the 
solution over the original unrestricted domain. They should also be computationally 
efficient. 

In [6] we introduced a new class of computational boundary conditions for 
hyperbolic differential equations. The purpose of these boundary conditions is to 
handle the transient phase of a solution as well as a solution close to the steady state. 
Earlier conditions concentrated on only one of these cases (see [7,2] and references 
therein). The basic principles for the design of the new boundary conditions were 
given in [6], together with numerical computations. 

We shall consider here the wave equation in RN, N = 2 or 3: 

u, - Au + a2u = f ( x ) .  
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The right-hand side depends only on x, a is a non-negative number. The data, fand 
the initial values, are compactly supported in WN. It is well known that u converges 
locally to a steady state satisfying 

- A v  + a2u =& (1.2) 
We now introduce a domain R, with boundary r. We suppose that R contains the 

support of the data. The aim of this work is to design a boundary condition on r, such 
that the solution of the equation (1.1) in R with this boundary condition will be close 
to u for both short and long times. To reach the second goal, we write the transparent 
boundary condition for the steady state v.  On the boundary r, v satisfies 

identically, where K is the Calderon operator for -A + a21 in the exterior domain. A 
good boundary condition for the wave equation on r will be 

a U  au 
a t  an 
- + + + K u = ~ .  

This is our new boundary condition. It will force u to converge in R to the steady state 
as time tends to infinity. It is local in time and integral along the boundary. We 
described in [6] a numerical method adapted to this problem. 

In section 2, we write the time-dependent and time-independent problems in the 
adapted frame of Sobolev spaces. In the case where a = 0, we shall need weighted 
Sobolev spaces. 

In section 3, we describe briefly the derivation of the absorbing boundary condi- 
tions. These boundary conditions are designed to give a good representation of the 
solution in the transient phase. 

In section 4, we give the transparent boundary condition for the steady state by 
writing the problem as a coupling between R and its exterior. Some of the results in 
sections 2-4 are well known, but included here for completeness. 

In section 5, we establish a general result of convergence in time for the homogen- 
eous wave equation (i.e. f= 0), with boundary condition (1.4). We prove the expo- 
nential decay of the energy of the solution as time tends to infinity. This result is a 
generalization of the results in control theory (see references in the present paper and 
in [12]). 

In section 6, we use this fundamental result to prove that our new boundary 
condition forces the convergence to the steady state. Furthermore, we express this 
boundary condition as a product (in the sense of operators) of an absorbing boundary 
condition, and the transparent boundary condition for the steady state. These two 
results show the new boundary condition to be well suited for both short- and long- 
time computations. 

In what follows, R will be a bounded domain in Wz or W’, convex, with boundary r 
V2 and compact. 

2. The free-space problems 

We denote by u* the solution of the dispersive wave equation in WN: 
Y u *  = u: - Au* + a2u* = f ( x )  in [0, T ]  x WN (2.la) 
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u*(O) = uo, U?(O) = u1 in RN, (2.1 b) 

where u is a non-negative constant, and the data uo, u' andfare compactly supported 
in D. Note that f depends only on the space variable. The well-posedness of this 
problem is classical. 

Theorem 2.1. For any set ofdata (uo, u',f) compactly supported in RN such that (uo, u') 
belongs to H ' ( R N )  x L 2 ( R N )  and f belongs to L2(RN),  problem (2.1) has a unique 
solution u* such that u*€kPo ([0,  TI, H ' ( R N ) ) ,  U:EU~([O,  TI,  L2(RN)) .  

The proof is a straightforward application of the theory developed in [ 131, relying on 
an energy estimate and the Galerkin method. 

We now introduce the steady state, defined by 

-AD* + u2u* =f in RN. (2.2) 
We shall write a variational formulation for this problem, in a space V defined in a 
proper way. If u is non-zero, the adapted space is H ' ( R N ) ;  if u = 0, we introduce a 
weighted space. The definition is different, depending on whether N is 2 or 3 (see [8]). 

u # 0 V =  H'(RN), (2.3a) 

1 
u = O , N = 2  V =  

[l + log(1 + ?)](I + r 
(2.3b) 

(2.3~) 

In cases (2.3b,c), V is equipped with a natural norm. Let us notice that for u = 0 and 
N = 2, V contains constants. In the following, 1) . I( denotes the norm in L2. 

Theorem 2.2. For any f ( x )  compactly supported belonging to L2(RN), equation (2.2) 
admits a unique solution u* in Vfor u # 0 or u = 0 and N = 3. If a = 0 and N = 2, and if 
in addition J,,f(x)dx = 0, equation (2.2) admits a unique solution in V / R .  

Proof: For a # 0, the result is obvious. If u = 0, we use the results in [8]. If N = 3,f 
belongs to the dual space V' of V and (2.2) admits a variational formulation 

u = 0 ,  N = 3 V =  {ueD'(R3), (1  + rZ)-'/ 'uEL2, V U E L ~ } .  

U*E V 

(Vu*, VU) = (f, 0) VUE V. (2.4) 
The space V has been designed such that 11 Vu )I is a norm on V, equivalent to the norm 
in V: 

l l u l l ~  = 11(1 + r2)-1/2u112 + )IVuII' 

and the result follows from the Lax-Milgram theorem. 
If N = 2, the operator - A  is an isomorphism from V,, onto (q,)' andfbelongs to 

(yR)' if and only if J,,f(x)dx = 0. The equation (2.2) then admits the variational 
formulation 

U * E  I$R 

(Vu*, VU) = (f, 0 )  V U €  v/w.  

Since 1) Vu 1) is an equivalent norm on YR and (f, u )  is linear continuous on v ~ ,  the 
result follows again from the Lax-Milgram theorem. 
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Remark 2.1. Since f is compactly supported, u* can be written using the Green's 
function 

v*(x) = 5 loglx - Ylf(Y)dY + P(X), N = 2 (2.5a) 's 
(2.5b) 

where p is a harmonic polynomial in RN. For large x, we can make the expansion 

N = 3  

(2.6a) 

(2.6b) 

and u* belongs to vlw in Rz if and only if jRz f (y)dy = 0, and p(x) is a constant. In that 
case u* behaves as: u*(x) = O(l/lxl) + a when 1x1 + +a. For N = 3, u*(x) 
= O(l/lx() for anyf: 

Remark 2.2. In R2, i f f  does not satisfy the assumption f f (x)dx = 0, let M = J f (x)dx. 
Let g be any continuous, compactly supported function defined in RN such that 
Ig(x)dx = 1. The problem 

- A w = g i n R N  

has a solution which is go in RN (thus is not a variational solution). Then 17 = u - Mw 
is a solution of 

- A6 = f - Mg 

and f - Mg satisfies the assumption of Theorem 2.2. Thus u* can be written as 
v* = u' + Mg. The solution w has a logarithmic behavior at infinity, and v' belongs 

Let us now define the error between the transient state and the steady state as 

(2.7a) 

(2.7b) 

The initial value for e belongs to V (resp. 5~ if a = 0 and N = 2). We define the 
energy by 

to ylw. 

e = u* - u * .  It is solution of the following problem: 

Y e  = e,, - Ae + a2e = 0 

e(0) = eo = uo - u, e,(O) = u' 

in [0, T ]  x RN 
in RN. 

E(e, t) = + (I Ve [ I 2  + 4 II e, I(' + *a' I( e 11 2 .  (2.8) 
Corollary 2.3. Under the hypothesis of Theorems 2.1 and 2.2, the unique solution e of 
problem (2.7) satisjies the following estimate for any t in R+: 

I1 e, ( I2  + (I e I1 $ < CE(e, 0) 

(I e, ( I 2  + (I e ( 1  tR < CE(e, 0) 

in cases (2.3a) and (2.3c), 

in case (2.3b). 

Proof: We obtain an energy estimate by multiplying equation (2.7a) by e, and 
integrating by parts. It gives 

E(e,  t )  = E(e, 0). 
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The quantity E(e,  0) is finite for u belongs to V (resp. vR if a = 0 and N = 2). Since 
( 1  V. )I defines an equivalent norm on V (resp. vR if a = 0 and N = 2), the estimate 
holds. 

It is well known (see, for instance, [19]) that the local energy of e converges to zero 
as time tends to infinity. We shall now seek artificial boundary conditions in a 
bounded domain, which ensure a convergence (in the energy norm) of the transient 
state to the steady state. We shall first recall the construction of absorbing boundary 
conditions (see [7]). 

3. The transient state: absorbing boundary conditions 

We consider the dispersive wave equation in RN, 
9 u  = u,, - Au + a2u = f ( x ) ,  (3.1) 

where f is compactly supported in D. 
For the sake of simplicity, we recall here the construction of the absorbing 

boundary conditions in [7] on a sphere S R  in R2 . The derivation is general and is valid 
on any boundary of a bounded connected domain in RN. We assume D to be strictly 
included in the ball BR, so that the right-hand side in (3.1) vanishes in a neigh- 
bourhood of s,. 

In polar coordinates the wave operator is 

Y u  = u,, - 

Its symbol is 

L =  - 

urr - 
1 1 
- u, - r’ uBB + a2u. 
r 

1 1 
r r 

w2 + 5’ + ? q 2  - - i t  + a’, 

where w, 5 and q are the dual variables oft, r and 9. 
The principal symbol is given by 

1 
L, = (2 - 0’ + r ’ q 2 ,  

which can be factorized into 

(3.3) 

Following [lS], 9 can be written as 

9 = (0, + al) (0, + cr2) modulo a Cm operator, 

where 0, = (l/i)a,. a1 and a2 are pseudodifferential operators of order 1, given by 
their symbols G l  and e2, with expansions 

m 

Gi = 1 i?i,-j(r, 8, t ,  w, q) .  
j =  - 1 

For any j ,  di, - is homogeneous in w and q of order - j. The Gi, - are computed 
recursively using the composition formula for pseudodifferential operators, which 
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gives 

D, + o2 represents the propagation toward the exterior of the sphere S,. Thus the 
transparent boundary condition on the sphere S ,  is given by 

(3.6) 
It is not a differential equation in t and 8. For computation, a boundary condition in 
the form of a differential equation is desirable. We then approximate the symbol of 02. 
For that purpose, we can make two assumptions 

(D, + 02)u = 0. 

(1) 0 B 1, 
(2) q2/r2w2 < 1. 

The first hypothesis is a high-frequency assumption. The second one expresses that 
the waves are propagating in a direction not too far from the normal to the boundary. 
Truncation of the series in (3 .5)  after the second term, and approximation of the 
square root (1 - q2/r2m2)112 by 1 gives an approximation 

1 
5; = 0 - -. 

2R 

The corresponding approximation of the operator D, + o2 is 

1 D, + D, - -, 2R 

and the absorbing boundary condition is 

U 
u, + u, + - = 0. (3.7) 2R 

If Q is a domain in W N  with a smooth compact boundary r, the same computation 
carries over by taking local coordinates and gives the general absorbing boundary 
condition 

where H ( x )  denotes the mean curvature on the surface r (see the exact definition in 
(6.9)) and u, the normal derivative of u, the normal being oriented to the exterior of R. 

Higher-order boundary conditions can be obtained as well by more accurate 
approximations of 6, (see [7]). 

Remark 3.1. Any boundary condition of the form u, + u, + a(x)u  = 0 with a(x) 2 0 is 
absorbing: if this boundary condition is prescribed on the boundary r of a domain Q 
and i f f= 0, the energy in the domain is a decreasing function of time. This can be 
easily seen by an energy estimate. 

u, + u, + f H ( x ) u  = 0, (3.8) 

4. The steady-state: transparent boundary condition 

We proved in section 2 that the problem 

-Au* + a%* =f in RN 
has a unique solution in V or V ~ R ,  V being defined in (2.3), iffis compactly supported 
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in D and belongs to L2(RN) (witn J ~ z J ' ( x ) d x  = 0 if  a = 0 and N = 2). 
Let Q be an open connected domain with smooth compact boundary r such that 

D c Q. Cl' denotes the exterior domain. We define the normal n as the normal vector 
exterior to a. 

Problem (4.1) is equivalent to 

-Av* + a2v* = f  in 0, (4.2a) 

-Av* + a2u* = 0 in Q', (4.2b) 

u* and av*/an continuous on r. (4.2~) 

Consider the exterior problem 

- Au + a2u = 0 

u = g  on r. 

in Cl', 
and 

(4.3a) 

(4.3b) 

We define the space V(Cl') in the same way as V(RN) in section 2 and we have the 
following result: 

Lemma 4.1. ( i )  For any g in H'12(T), problem (4.3) admits a unique solution in V(f2'), 
and the mapping K:  g + - au/an is continuousfrom H ' / ' ( r )  to H-1/2(r).  

(ii) l f a  # 0 or a = 0 and N = 3, K is strictly coercive, that is there exists a constant B 
strictly positive such that 

(4.4a) 

(iii) If a = 0 and N = 2, the mapping K defined by K g  = - au/an is continuousfiom 
H112(r)p into (H'/'(  r ) I R Y  and strictly coercive, that is there exists a constant f l  strictly 
positive such that 

VS€H"*( r )p ,  ( K g ,  B>r 3 BII6I I&z(ryR,  (4.4b) 

with obvious notation, and (. , .)r represents the duality between H '/2(l-)/R and 
(H1/2(r)/Ry as well. 

Proof: (i) The well-posedness of problem (4.3) is classical if a # 0. It can be found in 
[SJ for a = 0. It relies on the fact that the bilinear form 

(iv) K is symmetric: (Kg, h ) ,  = ( K h ,  g ) n  V(h, g )  E H 'I2( r). 

Q(U,  v )  = (Vu, V v )  + a2(u, u )  

defines a scalar product on V, equivalent to the norm in 
0 -  

V =  D(Q')' = { V E  V, u/,- = 0). 

By the Green's formula we have 

VV E V, U(U,  V )  = ( K g ,  v ) r .  (4.5) 

Since H112(r) is the space of traces on r of elements of V, we can write 

for any extension u of cp in V(Cl') such that 
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In all cases we have by the Cauchy-Schwarz inequality: 

la(u, v)l 6 ca(u, u)112 II v I IY  6 Cab, u)1/2 II cp l l H " q r )  

II K g  II i -  i / z ( r )  < Ca(u, U )  = c ( K g ,  g>r 

110 IIH-tiqr) G C I I ~ I I H ~ / ~ ( ~ )  

and therefore 

which proves that K is a continuous operator. 
(ii) We now prove the estimate (4.4a). By definition we have (Kg, g)r = a(u, u). If 

a # 0, or if a = 0 and N = 3, a(u, u )  is a norm on V ( U )  equivalent to the norm 1) 11". 
Hence, 

( K g ,  g)r  2 a II II t. 2 aII 9 II i i [ z ( r ) .  

(iii) If u is the solution of (4.3) with Dirichlet boundary data g, u + a is the solution 
of (4.3) with Dirichlet boundary data g + a, and 

The operator K then extends to H '/'( qW by KB = - au/an. In formula (4.5) we can 
choose u = 1, which gives (Kg, l)r = 0, and proves that K g  belongs to (H"2(T)p) ' .  
For any (g, h) in H "2(T)/R, we can define ( K g ,  h)r = ( K g ,  h ) ,  where g and h are any 
elements in the class. To prove the coerciveness we write: 

<Kg,g )r  = (Kg,g)r = IIVuII' 2 CIIuIIGR 2 B I I B I I ~ ~ Q ( ~ ) / ~ *  
(iv) (Kg, h ) ,  = a(u, 0 )  for any continuous extension u of g in V(U) .  A good 

candidate is clearly v,  the solution of the exterior problem in R': 

-Av  + a2u = OinR', u = h on r. 
In the same way, we have 

( K h ,  g > r  = a(v, u), 
and since a is symmetric, K is symmetric. 

We introduce the problem in R 
-Av + a2v =f in R, 

The operator K provides the transparent boundary condition for the steady state. 

av  
- + K v = O  o n r .  
an 

Theorem 4.2. Iffbelongs to L2(R) (and in addition JJ(x)dx = 0 i f a  = 0 and N = 2), 
problem (4.6) has a unique solution u in H ' (a)  ( H  '(R)p ifa = 0 and N = 2) which is the 
restriction to Q of v * .  

Proof. We write (4.6) in the variational form: 

vcH' (R)  

b(v, w )  = L(w), VWEH'(R) 
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where the bilinear form b(. , .) and the linear form y.) are given by 

b(u, w )  = (VU, V W )  + a2(u, W )  + ( Ku, w)r 

U W )  = (f, w). 
In all cases, b is bilinear continuous on H (R). 

If a = 0, b is clearly coercive on H (R). If a = 0 and N = 3, we have 

b(v, 0) = IIVvII' + ( K O ,  v>r 2 C(IIVuI12 + IIuIIi1rz(r)). 

The last term on the right defines on H'(R) a norm ( 1 1  111, equivalent to the norm II II 
The proof is classical, and goes by contradiction. In these two cases we conclude from 
the Lax-Milgram theorem that (4.7) admits a unique solution. 

If a = 0 and N = 2, we need to introduce fi = H'(Q),w, and define on fi the 
bilinear form b by 

b(u, li) = (VU, VO) + (Ku, u)r U, l i ~ H " ,  

where u and u are any elements in u and 6. It is easy to see that the definition is 
independent of the elements u and u chosen in the class. The bilinear form b is clearly 
continuous on fi, and 

as before. 
The bilinear form b fulfils the assumptions for the Lax-Milgram lemma, and L is 

continuous on H1(R) ,~  since JJ(x)dx = 0. This completes the study of (4.6). By 
uniqueness, u is clearly the restriction of u* to R. 

b(U9 = II VU II + < Ku, u >r 2 II VU II ' + D II U II $,qr),R > C II t i  II $(n),,, 

5. Long-time behaviour in 42 for the homogeneous wave equation 

We consider the homogeneous wave equation 

u,, - Au + a2u = 0 in R x R, (5.la) 

u(0) = uo, U,(O) = u1 (5.lb) 

(5.1~) 

We first establish the well-posedness of problem (5.1). We denote by E the 

U, + u, + K u  = 0 on r x R, 

corresponding energy: 

E ( u , t ) =  IIVuII'+ IIu,I12 +a'IIUII'+<Ku,U)r. (5.2) 
Theorem 5.1. I f  E(u, 0) < + 0 0 ,  problem (5.1) has a unique solution u such that 
uEVo(R+, H'(R)), U,EV~(R+,  L2(Q)) .  Furthermore if (uo, u ' )  belongs to H'(R) 
x H (a), the following identity holds: 

(5.3) 
d 
--E(u, t )  + II u, II &r) = 0. dt 

The proof is again classical, and relies on the analysis in [ 131, as in section 2. The 
energy estimate is obtained by multiplying (5.la) by u, and integrating by parts, using 
(5.1~). 

We shall now examine the long-time behavior of u. 
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Theorem 5.2. Suppose r is V". If E(u, 0) < + 0 0 ,  there exist two constants M and p 
positive such that 

E(u, t )  < Me-"'E(u, 0) Vt > 0. 

This result is not at all straightforward. Such estimates have been proved by Morawetz 
[l5] in the case of exterior domains by using multipliers, and extended in [5, 111 and 
other work to boundary conditions of the form u, + u, + Ru = 0, where 1 is a non- 
negative constant. It has recently been extended in [3] to more general geometries 
using microlocal analysis. It is closely related to the exact controllability of the wave 
equation through the Robin action (see [12]). 

The result for our operator K has recently been proved in [4] again using 
microlocal analysis. 

Remark 5.1. Consider the case where a # 0, with the classical absorbing boundary 
condition u, + u, = 0. The energy decreases exponentially in time. Let us define on 
H'(R) x L2(R) the operator A by 

A=( A - a21 0 I )  

D(A) = {w€H2(R) x H'(R), u + U, = 0). 

Problem (5.1) can be rewritten as 

aw 
at  
- = AW 

with 

w(0) = wo = ( : Y ) .  
A is maximal dissipative, and thus generates a semi-group of contractions: S( t ) .  It is 
easy to see that A has a compact resolvant. Therefore the spectrum of A consists 
entirely of isolated eigenvalues with finite multiplicity, contained in the half-plane 
Re A <  0 (see [20]). Moreover, following [14], it can be proved that there exist 
four positive constants Ci, 1 < i < 4, such that the eigenvalues of A lie in a region 
defined by 

{A/IReRl < C ,  IImA13/4 + C,} u {A/(ImAl < C,IReR('/4 + C,}. 
Eventually, we can prove that there is no eigenvalue lying on the imaginary axis. Let 
us suppose indeed that iA is an eigenvalue, and u an associated eigenfunction. They 
satisfy the following equations: 

RER, U E H 2 ,  

Au + ( A 2  - a2)u = 0 

u = u n = O  on r. 
in Q 

Thus, by a uniqueness result for the principally normal operators with an elliptic 
principal part, ([9], p. 224) we conclude that u = 0. 

The eigenvalues of A are hence concentrated in the region given in Fig. 1. There is 
no purely oscillatory mode, unlike in the case of the Neumann or Dirichlet boundary 
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Fig. 1. 

condition, and the imaginary part of the eigenvalues is bounded. However, and 
unfortunately, we cannot conclude that exponential decay results from that study, 
since the semi-group could possibly generate a continuous spectrum [17]. The 
exponential decay in time proves that even if S has a continuous spectrum, it is strictly 
included in the disc of radius 1. 

Remark 5.2. The best constant p in Theorem 5.2 can be given explicitly in the special 
case where B corresponds to the absorbing boundary condition (3.8), [lo]. 

6. The new boundary condition: analysis 

It was recalled in section 2 that the local energy of u* - u* converges to zero when 
time tends to infinity. It is thus desirable to produce a boundary condition on r, such 
that the solution of the wave equation with this boundary condition converges to the 
solution u of problem (2.5). Consider the inhomogeneous wave equation with the 
boundary condition (1.4) 

(6.1 a) 

u(0) = uo, u,(O) = ul, (6.lb) 

(6. lc) 

u,, - Au + a2u = f (x) in R x [0, TI,  

u, + U" + Ku = 0 on r x [0, TI,  

Theorem 6.1. Iff belongs to L2(R) and if E(u, 0) < + m , problem (6.1) has a unique 
solution u such that u E Wo ( [0, T I ,  H (R)), u, E Wo ([0, TI,  L2 (R)). 

The proof is exactly the same as in the previous sections. Consider now the 'steady 
state': 

-A6 + a2ii =f in 4 (6.2a) 

ii,+ K i i = O  on r. (6.2b) 

A straightforward consequence of Theorem 5.2 is the following: 

Corollary 6.2. Under the hypothesis of Theorem 6.1, the energy of u - ii converges 
exponentially to zero as t tends to infinity. 
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This result shows that the simplest way to force the convergence of u to the steady 
state u* defined in section 2 is to impose on r the boundary condition: 

a u  a u  
a t  a n  - + - + K u = ~ ,  

This is our new boundary condition. 

Remark 6.1. Suppose we replace K by a multiplication operator, Bu = a(x)u with 
a(s) 2 0. According to [3], u converges (in the energy semi-norm), as t tends to infinity, 
to the solution of 

-A;+ a’ii = f 
u’, + a(x)ii = 0 

in R, 

on l-, 

which is in general different from u*. However, for the special choice of boundary 
condition (3.8), that is a(x) = i H ( x ) ,  ii can be ‘close’ to u* if R is sufficiently large 
(see PI). 

The approximate problem consisting of the wave equation in R coupled with the 
long-time boundary condition (6.3) can be formulated as a transmission problem 
in RN: 

(6.4a) 

-Aw + U’W = 0 i n n  x R,, (6.4b) 

u,, - Au + LX’U = f ( x )  in R x R,, 

with the initial values 

u(0)  = uo, u,(O) = u1 in R (6.44 

u = W ,  U, + U, - w, = 0 on l-. (6.44 

and the transmission conditions 

We have just proved that u converges to u (in the energy semi-norm) and we have 
reached a part of our goal. It remains to see whether (6.3) is still absorbing (in the sense 
defined in remark 3.1). The following theorem gives a representation of the boundary 
condition (6.3) as a product of an absorbing boundary condition for the transient 
state, and the transparent boundary condition for the steady state. This indicates its 
good properties for both short- and long-time computation (for one-dimensional 
numerical tests see [6]). 

Theorem 6.3. l f  u is the solution of the wave equation (6.la) in R, the following identity 
holds on the boundary: 

where H stands for the mean curuature on l-. 

Proo$ Let us first recall that by the definition of K we have 

”( ?!! + K u )  = ;( - !?) 
a n  a n  
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where w is the solution of the exterior problem 

- Aw + a2w = 0 in R', 

W = U  on r. 
We now need some results in differential geometry. The classical definitions on r, and 
the construction of the extension in C2, as well as the divergence lemma, can be found 
in [l]. 

From now on we suppose that r is compact. This ensures the existence of a finite 
atlas on r, 9 = u (w, I)). w is an open subset of r, and I) is defined on an open subset 
C;, of RN- ': I) : C;, -+ w is a system of local coordinates. The tangent space T(x) to r at 
point x is generated by the vectors 

a* 
a f  e,(x) = -(y) a = 1, . . . , N - 1; x = I)(y). 

Furthermore we suppose that the orientation of T(x)  and r are consistent, that is 
(el, . . . , eN- I ,  n) is positive. 

Since r is compact, it is well known that one can define a neighbourhood of r by 

w r  x 1 -&,&[-+ U, 

(x, v )  -+ O(x, v )  = x + vn(x). 

U, = ( x e W N ,  Infix - 21 c E }  zd-. 
The normal vector n, defined on r can be extended to U ,  as a smooth function, 
compactly supported, with a norm identically one, close to r. This extension of n will 
enable us to define 

We introduce on r the metric tensor gas associated with the system of normal 
coordinates (ea)l a - defined by 

g a p  = ea ' es 
and the tensor of curvature defined by 

From C is derived the mean curvature H from 
N -  1 

a =  1 
H(x) = 1 c:. 

(6.7) 

(6.9) 

If r is the sphere of radius R, H(x) is equal to (N - l ) /R.  

defined on r, they are given by 
We can now define the tangential gradient and divergence: if h is a smooth function 

(6.10) 
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where (g3) is the inverse matrix of (gun), and if u is a vector tangent to r then 

(6.11) 

where g is the determinant of (gas). 

derivative: 
We shall denote by yo the trace on r, ll the tangential trace on r, y1 the normal 

Yo(P = (Pin  

nu = u - (u.n)n, 

(6.12) 

Using the local coordinates in U,, it is easy to see that, if cp is a smooth function 
defined in Q we have 

(6.13) 
+ +  

Il grad cp = grad, y 0 q .  

We are now able to link the divergence and the tangential divergence: 

Lemma 6.4. If u is a vector in C 2 ( Uc), one has 

yodivu = div,nu + Hu-n + yl(u.n). (6.14) 

The proof is straightforward and relies on the use of the local coordinates to write the 
divergence. 

We now use the lemma to define: 

Lemma 6.5. If u is  a solution of(6.4a) belonging to Cz(fi), and ifw is the solution of 
(6.4b) belonging to C z ( k ) ,  then 

(6.15) 

+ 
Proof of Lemma 6.5. We write successively (6.14) with u equal to gradu and 
grad w, using (6.13): 
- 

+ 
yoAw = divr(gradr yow)  + H 

since u = w on r, their tangential gradients are equal. Moreover, Au - Aw = u,, + u 
- w = u,, on r, which completes the proof of the lemma. 

This result allows us to establish (6.5), using the following identity: 

Remark 6.2. The absorbing boundary condition in (6.5) differs from the one used in 
(3.8) by lower terms only. It is the same on flat boundaries. 
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Remark 6.3. The new boundary condition is global along the boundary, and the 
operator K is, in general, not known explicitly. There are several ways to overcome 
this difficulty in numerical computations: Fourier series in special cases, use of 
Lagrange multipliers, etc. See [6] and references therein for details. 

Remark 6.4. All the results developed in the previous sections carry over-without 
important modifications if, instead of RN, we consider an exterior domain R, with a 
Dirichlet boundary condition U*/F = g. 
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