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SPECTRAL METHODS IN POLAR COORDINATES

FOR THE STOKES PROBLEM.

APPLICATION TO COMPUTATION IN

UNBOUNDED DOMAINS

LAURENCE HALPERN

Abstract. We present spectral methods for solving the Stokes problem in a
circular domain. Their main feature is the uniform inf-sup condition, which
allows for optimal error estimates. We apply them to the resolution of exterior
problems by coupling with the transparent boundary condition.

1. Introduction

When solving a problem in an unbounded domain, it is customary to introduce
an artificial boundary, and to prescribe on it a so-called “transparent boundary
condition”, which replaces the missing part of the domain. This leads to a well-
posed problem in a bounded domain, with an integral boundary condition. In [10] a
method has been introduced for coupling finite elements and the integral equation
for the Laplace equation in an exterior domain. This method has been extended to
the Stokes problem in [15] and to the Maxwell equations in [13]. Other numerical
methods have been developed, coupling finite elements in the interior and spectral
decompositions on the boundary (see for instance [11, 12]).

The finite element method is often preferable when dealing with complicated
geometries. Nevertheless, in two dimensions, if the artificial boundary is chosen to
be a circle, the transparent boundary condition has a very simple expression in the
angular coordinate θ. It seems most natural to take advantage of it to approximate
the solution with polynomials in r and trigonometric polynomials in θ. Successful
computations using spectral methods have been presented in [4]. A theoretical
formalism is the aim of the present paper.

As an interesting illustration we chose the steady Stokes problem in two di-
mensions. We first consider the problem with homogeneous Dirichlet boundary
condition in the disc of center 0 and radius 1. The weak formulation reads (the
notations can be found in §2):

find (u, p) in H1
0(Ω)× L2

0(Ω) such that:{
∀v ∈ H1

0(Ω), a(u,v) + b(v, p) = 〈f ,v〉,
∀q ∈ L2

0(Ω), b(u, q) = 0.
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Owing to a well-known result of Babuška and Brezzi (see [8]), the most delicate
property to fulfill for well-posedness is the so-called inf-sup condition: there exists
a positive number C > 0 such that

inf
q∈M

sup
v∈X

b(v, q)

‖v‖X‖q‖M
≥ C.

We recall in §2 that this condition is fulfilled for this problem in any regular geom-
etry. In our case, the best value C can be given explicitly: 1/

√
2 (Theorem 2.1). In

most cases we find in the literature (rectangular domains) that the use of spectral
methods produces “parasitic modes”, which perturb the computation of the pres-
sure (see for instance [2, 17]). This is expressed by the fact that the constant C
in the discrete inf-sup condition tends to 0 as the number of modes increases. The
spectral methods we suggest here lead to uniform inf-sup conditions.

We start with the Galerkin method (§3). Here, N and K are two integers
greater than or equal to 2, SK([0, 2π]) is the space of trigonometric polynomials in
θ of degree less than or equal to K, and PN ([0, 1]) the space of polynomials in r of
degree less than or equal to N . The approximation is made in XN ×MN , where
MN = L2

0(Ω)∩(SN−1⊗PN−1) and XN = H1
0(Ω)∩{u s.t. div u and curl u belongs

to SN−1 ⊗PN−1}. The approximate problem is:

find (uN , pN ) in XN ×MN such that:{
∀v ∈ XN , a(uN ,v) + b(v, pN ) = 〈f ,v〉,
∀q ∈MN , b(uh, q) = 0.

A convenient decomposition of vector fields on the circle gives the inf-sup condition,
and the constant is still equal to 1/

√
2. We then give two projection theorems in

the weighted Sobolev spaces on (0, 1),

Hp
r (0, 1) = {ψ ∈ D′(0, 1),

∫ 1

0

r|ψ(j)|2(r) dr < +∞ for 0 ≤ j ≤ p}.

The first one, in L2
r, is classical. The second one, in H1

r , is more delicate. The
technique of the proof is inspired by [1], but the lack of a Hardy inequality requires
new partial results. These theorems lead to “optimal” error estimates: if f belongs
to Hp for p ≥ 0, then ‖u− uN‖X + ‖p− pN‖M ≤ CN−1−p‖f‖p.

In §4, we present a pseudospectral method. It relies on a Gauss-Lobatto quadra-
ture formula on [0, 1] for the weight r. The constant in the inf-sup condition remains
the same. For the error estimates we need results on polynomial interpolation in
Hp
r (0, 1). Again, we use the strategy in [1], but some new lemmas are necessary.

The error estimates are still “optimal”.
With these tools, we are now able to study the problem in an unbounded do-

main (§5). We first reduce it to a disc by giving the transparent operator, and
writing the variational formulation. For the discrete formulation, we introduce the
Galerkin method. In both cases, continuous and discrete, the constant in the inf-sup
condition is equal to 1, which in turn allows for optimal error estimates.

2. The Stokes problem in a disc

2.1. Variational formulation in a bounded domain. Let Ω be a bounded open
connected subset of R2, with smooth boundary Γ. The Stokes problem in Ω with
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homogeneous Dirichlet boundary data reads: find (u, p) such that
−∆u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ.

(2.1)

Here, ∇,∇·, and ∆ denote respectively the gradient, divergence, and Laplace oper-

ators: ∇p = ( ∂p∂x1
, ∂p∂x2

), ∇·u = ∂u1

∂x1
+ ∂u2

∂x2
, ∆u = ∂2u

∂x2
1

+ ∂2u
∂x2

2
. For any positive integer

m, we denote by Hm(Ω) the Sobolev space of distributions in Ω whose derivatives
up to order m belong to L2(Ω), furnished with the inner product

(v, w)0 =

∫
Ω

v(x)w(x) dx, (v, w)m =
∑
|k|≤m

(Dkv,Dkw)0.

The corresponding norm is denoted by ‖v‖m(H0(Ω) = L2(Ω)). By Hm(Ω) (resp.
L2(Ω)) we denote the space of vector-valued distributions whose two components
belong to Hm(Ω) (resp. L2(Ω)), whereas ‖ · ‖m and (·, ·)m are the norm and
scalar product either in Hm(Ω) or in Hm(Ω). Furthermore, L2

0(Ω) is the space of
distributions in L2(Ω) such that (v, 1)0 = 0, H1

0 (Ω) the closure of D(Ω) in H1(Ω),
or equivalently, H1

0 (Ω) = {v ∈ H1(Ω), v = 0 on Γ}, and H−1(Ω) is the dual space
of H1

0 (Ω). The duality between H−1(Ω) and H1
0 (Ω) will be denoted by 〈·, ·〉. In

view of the Poincaré-Friedrichs inequality, the seminorm defined by |v|1 = ‖∇v‖0
is a norm on H1

0 (Ω), equivalent to the ‖ · ‖1 norm. Finally, H1/2(Γ) is the space
of traces on Γ of the elements of H1(Ω), and H−1/2(Γ) its dual space. The duality
between H1/2(Γ) and H−1/2(Γ) will be denoted by 〈·, ·〉Γ.

According to the following result (cf. [8]), problem (2.1) is well-posed.

Theorem A. If f belongs to H−1(Ω), there exists a unique solution (u, p) to (2.1)
in H1(Ω)× L2

0(Ω) and

‖u‖1 + ‖p‖0 ≤ C‖f‖−1.

Moreover, if f belongs to Hm(Ω), then (u, p) belongs to Hm+2(Ω)×Hm+1(Ω) and

‖u‖m+2 + ‖p‖m+1 ≤ C‖f‖m.
The existence and uniqueness rely on the following weak formulation: let X be

the Hilbert space H1
0(Ω) provided with the | · |1 inner product and M be L2

0(Ω)
provided with the L2 scalar product:

(u,v)X = (∇u,∇v)0 = (∇u1,∇v1)0 + (∇u2,∇v2)0; ‖u‖X = ‖∇u‖0;

(u, v)M = (u, v)0; ‖u‖M = ‖u‖0.
We define the bilinear forms a and b, and the linear form L, by

a(u,v) = (∇u,∇v)0 = (u,v)X ,

b(v, q) = −(q,∇ · v)0,

L(v) = 〈f ,v〉.
(2.2)

The weak formulation reads: find (u, p) in X ×M such that{
∀v ∈ X, a(u,v) + b(v, p) = L(v),

∀q ∈M, b(u, q) = 0.
(2.3)

We introduce the subspace V = {v ∈ X,∇ · v = 0}. Theorem A is a consequence
of the following general result (cf. [8]):
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Theorem B. Suppose the following assumptions are fulfilled :
(i) a is bilinear continuous on X and there exists a positive constant α such that

for any v in V , a(v, v) ≥ α‖v‖2X,
(ii) b is bilinear continuous on X ×M ,
(iii) the inf-sup condition of Babuška-Brezzi is satisfied : there exists a real num-

ber C > 0 such that

inf
q∈M

sup
v∈X

b(v, q)

‖v‖X‖q‖M
≥ C,

(iv) L is linear continuous on X.
Then problem (2.3) has a unique solution.

We shall from now on consider the case where Ω = D(0, 1) is the unitary disc
with center 0 and radius 1.

2.2. The inf-sup condition in D(0, 1). In order to construct a “good” approxi-
mation, we shall first calculate the constant C.

Theorem 2.1. For Ω = D(0, 1), one has

inf
q∈M

sup
v∈X

b(v, q)

‖v‖X‖q‖M
=

1√
2
.

Proof. Following [8] or [17], we write

inf
q∈M

sup
v∈X

b(v, q)

‖v‖X‖q‖M
= inf
q∈M

‖w(q)‖X
‖q‖M

,

where w(q) is the unique solution to the problem

w ∈ X, ∀v ∈ X, a(w,v) = b(v, q),(2.4)

which can be rewritten as {
w ∈ H1

0 (Ω),

∆w +∇q = 0.
(2.5)

We shall write w as a function of q. This can easily be done in polar coordinates.
A basis in L2(Γ) is given by the sequence Hm(θ) = 1√

2π
exp(imθ) for m ∈ Z. A

basis in L2(Γ) is given by the two sequences Vm(θ) and Wm(θ) for m ∈ Z, with{
2Vm(θ) = Hm(θ)(e1 + ie2) = Hm+1(θ)(er + ieθ),

2Wm(θ) = Hm(θ)(e1 − ie2) = Hm−1(θ)(er − ieθ).
(2.6)

Here, {e1, e2} is the usual basis in R2, {er, eθ} the moving basis. Note that

Vm(θ) = W−m(θ). The sequence Hm is orthonormal in L2(Γ) (the norm is 1),
the sequence {Vm,Wm} is orthonormal in L2(Γ) (the norm is 1√

2
).

Let us write q and w in separate variables:

q(r, θ) =
∑
m∈Z

qm(r)Hm(θ),(2.7)

w(r, θ) =
∑
m∈Z

vm(r)Vm(θ) +
∑
m∈Z

wm(r)Wm(θ).(2.8)

Since w and q are real functions, we have, for any m, qm = q−m and vm = w−m.
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We introduce L2
r(0, 1) = {ψ ∈ D′(0, 1),

∫ 1

0 r|ψ|
2(r) dr < +∞}, furnished with the

natural norm ‖ψ‖2L2
r

=
∫ 1

0
r|ψ|2(r) dr, and the corresponding inner product (·, ·)r.

The norms of q in L2(Ω) and of w in X are given by

‖q‖20 =
∑
m∈Z

‖qm‖2L2
r

and ‖w‖2X =
∑
m∈Z

(∥∥∥∥dvmdr
∥∥∥∥2

L2
r

+
∥∥∥m
r
vm

∥∥∥2

L2
r

)
.

According to [14], for any m 6= 0, we have vm(0) = 0. Define, for any m, the
operator Dm by

Dmϕ =
dϕ

dr
− m

r
ϕ = rm

d

dr
(r−mϕ).(2.9)

The norm of w in X is given by

‖w‖2X =
∑
m∈Z

‖Dmvm‖2L2
r
.(2.10)

Remark 2.1. Since q belongs to L2
0(Ω), there holds

∫ 1

0 rq0 dr = 0.
We can expand ∇q and ∆w in the basis (Vm,Wm):

∇q =
∑
m∈Z

(
q′m+1 +

m+ 1

r
qm+1

)
Vm +

∑
m∈Z

(
q′m−1 −

m− 1

r
qm−1

)
Wm,(2.11)

∆w =
∑
m∈Z

(
∆rvm −

m2

r2
vm

)
Vm +

∑
m∈Z

(
∆rwm −

m2

r2
wm

)
Wm.

Noting that

∆r −
m2

r2
=

(
d

dr
+
m+ 1

r

)(
d

dr
− m

r

)
=

(
d

dr
− m− 1

r

)(
d

dr
+
m

r

)
,

we see that ∆w +∇q = 0 is equivalent to

∀m ∈ Z,

(
d

dr
+
m+ 1

r

)
(qm+1 +Dmvm) = 0.(2.12)

For any m in Z, (2.12) can be rewritten as qm+1 +Dmvm = cmr
−(m+1). If m is pos-

itive, r−(m+1) does not belong to L2
r, which contradicts the fact that w belongs to

H1(Ω) and q to L2(Ω). Hence, cm vanishes. For m < 0, the constant is determined
by the boundary conditions, and we finally get

m ≥ 0, Dmvm = −qm+1;(2.13a)

m < 0, Dmvm = −qm+1 − 2mr−(m+1)

∫ 1

0

ρ−mqm+1(ρ) dρ.(2.13b)

This can be solved in the correct spaces by

m ≥ 0, vm = rm
∫ 1

r

ρ−mqm+1(ρ) dρ;(2.14a)

m < 0, vm = −rm
∫ r

0

ρ−mqm+1(ρ) dρ+ r−m
∫ 1

0

ρ−mqm+1(ρ) dρ.(2.14b)
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We now express the norms:

For m ≤ −2, ‖qm+1‖2L2
r
− ‖Dmvm‖2L2

r
= −2m

∣∣∣∣∫ 1

0

ρ−mqm+1(ρ) dρ

∣∣∣∣2
= −2m

∣∣∣∣∫ 1

0

ρ−mq−m−1(ρ) dρ

∣∣∣∣2
= −2m

∣∣∣∣∫ 1

0

ρ−mD−m−2v−m−2(ρ) dρ

∣∣∣∣2 .
By the Cauchy-Schwarz inequality we get

for m ≤ −2, ‖qm+1‖2L2
r
≤ ‖Dmvm‖2L2

r
+ ‖D−m−2v−m−2‖2L2

r
;

for m ≥ −1, ‖qm+1‖2L2
r

= ‖Dmvm‖2L2
r
,

which gives

‖q‖20 ≤ 2‖w‖2X .
If q is given by qm = amr

|m|; q0 = 0, then Dmvm vanishes for m < 0, which gives
equality.

3. A Galerkin method for the Stokes problem in a disc

Let N and K be two integers greater than or equal to 2. Let SK([0, 2π]) be
the set of trigonometric polynomials in θ of degree less than or equal to K, and
PN ([0, 1]) the set of polynomials in r of degree less than or equal to N . Before
introducing the discrete spaces, let us write precisely the bilinear forms a and b.
If u and v are expanded in the (Vm,Wm) basis with coefficients (vm, wm) and
(ṽm, w̃m), and if the coefficients of q in the {Hm} are denoted by qm, we have

a(u,v) =
1

2

∑
m∈Z

[(Dm−1vm−1, Dm−1ṽm−1)r + (D−m−1wm+1, D−m−1w̃m+1)r],

b(v, q) =
1

2

∑
m∈Z

(qm, Dm−1ṽm−1 +D−m−1w̃m+1)r.

This suggests to choose q in SN−1 ⊗PN−1, and v in such a space that Dm−1ṽm−1

vanishes for |m− 1| ≥ N − 1, and belongs to PN−1. This introduces a term in ln r,
which cannot be avoided.

The discrete space MN is defined by

MN = M ∩ (SN−1 ⊗PN−1),(3.1)

where M = L2
0(Ω). Any q in SN−1 ⊗PN−1 is expanded in separate variables as

q =
∑

|m|≤N−1

qmHm; qm ∈ PN−1,(3.2)

and the discrete space XN is defined by

XN = X ∩HN ,(3.3)

where X = H1
0(Ω) and HN is the space of real functions v such that

v =
N−2∑
m=−N

vmVm +
N∑

m=−(N−2)

wmWm,(3.4)
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where vm belongs to PN for −N ≤ m ≤ 0, and to PN ⊕Qm for 1 ≤ m ≤ N − 2,
where Qm = {g(r) : g(r) = crm ln r, c ∈ C}. We provide XN and MN with the
inner products of X and M . The discrete problem is the following: find (uN , pN )
in XN ×MN such that{

∀v ∈ XN , a(uN ,v) + b(v, pN ) = L(v),

∀q ∈MN , b(uN , q) = 0.
(3.5)

In order to analyze this problem, we need some classical results on Jacobi polyno-
mials. The definitions and results can be found in [1] or [6].

3.1. Jacobi polynomials on [0, 1]. Let ω be a positive function on [0, 1] such
that, for any k ≥ 0, ωrk is integrable. Define

L2
ω(0, 1) =

{
v ∈ D′(0, 1),

∫ 1

0

ω(r)|v|2(r) dr < +∞
}

and provide this with the natural scalar product (v, w)ω =
∫ 1

0
ω(r)v(r)w(r) dr and

the corresponding norm ‖ · ‖L2
ω
. For any given weight ω, there exists a sequence of

orthogonal polynomials in L2
ω(0, 1). If α, β are two integers, and ω = ωα,β =

(1 − r)αrβ , they are the sequence of Jacobi polynomials Jα,βn , normalized by
Jα,βn (1) =

(
n+α
n

)
. Their norm is given by

‖Jα,βn ‖2L2
ωα,β

=
(n+ α)!(n+ β)!

(n+ α+ β)!(2n+ α+ β + 1)n!
.(3.6)

The unbounded operator Lα,β on L2
ωα,β (0, 1) is defined by

Lα,β = − 1

ωα,β

d

dr
[ωα+1,β+1

d

dr
].(3.7)

It is selfadjoint positive on L2
ωα,β (0, 1), the eigenfunctions are Jα,βn with eigenvalues

λα,βn = n(n+ α+ β + 1). The polynomials Jα,βn satisfy the differential equation

r(1− r)(Jα,βn )′′ + (β + 1− (α+ β + 2)r)(Jα,βn )′ + λα,βn Jα,βn = 0.(3.8)

Moreover, the Jacobi polynomials are given by the recursion formula

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)Jα,βn+1

(3.9)

= (2n+ α+ β + 1)[α2 − β2 + (2n+ α+ β + 2)(2n+ α+ β)(2r − 1)]Jα,βn

− 2(n+ α)(n+ β)(2n+ α+ β + 2)Jα,βn−1,

Jα,β0 = 1; Jα,β1 = (α+ β + 2)r − (β + 1).

We shall use the formula relating Jα,βn and Jα+1,β+1
n−1 :

d

dr
Jα,βn = (n+ α+ β + 1)Jα+1,β+1

n−1 ,(3.10)

and several easy results on J0,1
n and J1,1

n . The sequence J0,1
n is orthogonal for the

weight r. One has

J0,1
n (0) = (−1)n(n+ 1),(3.11)
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and (by integration of (3.8) on [0, 1])∫ 1

0

J0,1
n (r) dr = 2(−1)n‖J0,1

n ‖2L2
ω0,1

.(3.12)

The polynomials J0,1
n and J0,0

n (the nth Legendre polynomial) are related by

J0,1
n =

J0,0
n + J0,0

n+1

2r
.(3.13)

3.2. Existence and uniqueness: the discrete inf-sup condition. Since XN

and MN are subspaces of X and M , properties (i), (ii) and (iv) in Theorem B are
satisfied. For existence and uniqueness, we merely need to prove (iii). We shall
prove the constant in (iii) to be the same as in the continuous case.

Theorem 3.1. On XN ×MN one has the uniform inf-sup condition

inf
q∈MN

sup
v∈XN

b(v, q)

‖v‖X‖q‖M
=

1√
2
.(3.14)

Proof. Again, we have

inf
q∈MN

sup
v∈XN

b(v, q)

‖v‖X‖q‖M
= inf
q∈MN

‖w‖X
‖q‖M

,(3.15)

where w is the unique solution of

∀v ∈ XN , (∆w +∇q,v)0 = 0.(3.16)

Using formula (2.14a), we can easily see that if q belongs to MN , then w =
−(∆)−1∇q belongs to XN . The constant is thus greater than or equal to 1√

2
.

The choice q0 = 0, qm = rm, 1 ≤ m ≤ N − 1, gives equality.

This result, together with Theorem A, leads to the conclusion:

Theorem 3.2. For any f in H−1(D(0, 1)), problem (3.5) has a unique solution
(uN , pN ) in XN ×MN , and

‖uN‖2X + ‖pN‖20 ≤ C‖f‖2−1.

3.3. Projection in weighted spaces on [0, 1]. In order to obtain error estimates,
we need one-dimensional projection results in weighted Sobolev spaces on [0, 1].
Results of the same type have been obtained in [1] for the weights ωα,α; our proofs
rely in a large part on their methods. The additional difficulties come from the fact
that we cannot use any Hardy inequality.

For any positive integer m, we denote Hp
r (0, 1) = {ψ ∈ D′(0, 1), ψ(j) ∈ L2

r(0, 1)
for any j, 0 ≤ j ≤ p} and furnish it with the norm ‖ψ‖2Hpr =

∑
0≤j≤p ‖ψ(j)‖2L2

r
.

Theorem 3.3. (i) For any q in L2
r, there exists a unique polynomial ΠNq in PN

such that

∀Q ∈ PN , ‖q −ΠNq‖L2
r
≤ ‖q −Q‖L2

r
.(3.17)

(ii) For any positive integer p, one has

∀q ∈ Hp
r , ‖q −ΠN q‖L2

r
≤ CN−p‖q‖Hpr .(3.18)
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Proof. Expand q in the polynomials Qn = J0,1
n :

q =
∞∑
n=0

qnQn; qn =
(q,Qn)r
‖Qn‖2L2

r

.(3.19)

Then ΠN q is given by

ΠNq =
N∑
n=0

qnQn,(3.20)

and

‖q −ΠNq‖2L2
r

=
∞∑

n=N+1

|qn|2‖Qn‖2L2
r
.(3.21)

Here, Qn is an eigenfunction of the selfadjoint operator L = L0,1, corresponding to
the eigenvalue λn = λ0,1

n = n(n+ 2). Then, for any integer s,

(q,Qn)r =
1

λsn
(Lsq,Qn)r,(3.22)

‖q −ΠNq‖2L2
r

=
∞∑

n=N+1

1

λ2s
n

[(Lsq,Qn)r]
2

‖Qn‖2L2
r

,(3.23)

which gives, for q sufficiently smooth, the bounds

‖q −ΠNq‖2L2
r
≤ C

N4s
‖Lsq‖2L2

r
, ‖q −ΠNq‖2L2

r
≤ C

N4s+2
|(Lsq, Ls+1q)r|.(3.24)

In order to estimate ‖Lsq‖2L2
r

and (Lsq, Ls+1q)r, we introduce, for any integer k

and any function q defined on [0, 1], the quantities

|||q|||2k =
k∑
j=0

∫ 1

0

rj+1(1− r)j |q(j)|2 dr.

If q belongs to Hk
r , then |||q|||2k is well defined and |||q|||2k ≤ ‖q‖2Hkr . It is easy to see

by induction that for any positive integer s, one has the following bounds:

∀q ∈ H2s
r , ‖Lsq‖L2

r
≤ |||Lsq|||0 ≤ C|||q|||2s;(3.25a)

∀q ∈ H2s+1
r , (Lsq, Ls+1q)r ≤ |||Lsq|||1 ≤ C|||q|||2s+1.(3.25b)

This ends the proof of the theorem.

The results in H1
r are less classical. Let P̃N ([0, 1]) be the subspace of PN ([0, 1])

of polynomials vanishing at r = 1.

Theorem 3.4. (i) For any q in H1
r ∩ C0([0, 1]), there exists a unique polynomial

Π1
Nq in PN such that

Π1
Nq(1) = q(1); ∀Q ∈ P̃N , ((q −Π1

Nq)
′, Q′)r = 0.(3.26)

(ii) For any q in Hp
r with p ≥ 2,

‖(q −Π1
Nq)

′‖L2
r
≤ CN−(p−1)‖q‖Hpr ,(3.27)

|(q −Π1
Nq)(0)| ≤ CN−(p−1)‖q‖Hpr .(3.28)
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Proof. (i) Since q′ belongs to L2
r, its projection ΠN−1q

′ on PN−1 is well defined.
Then Π1

N q is uniquely determined by

Π1
Nq = q(1)−

∫ 1

r

ΠN−1q
′(ρ) dρ.(3.29)

(ii) Assume now that q belongs to Hp
r for p ≥ 2. According to [14], q belongs to

C0([0, 1]), so Π1
Nq is well defined, and

‖(q −Π1
Nq)

′‖L2
r

= ‖q′ −ΠN−1q
′‖L2

r
,

which, together with (3.18) proves (3.27).
In order to prove (3.28), we write

(q −Π1
N q)(0) =

∫ 1

0

(q′ −ΠN−1q
′)(ρ) dρ

and proceed as in Theorem 3.3: expand q′ in the polynomials Qn : q′ =
∑∞
n=0 qnQn,

and ∫ 1

0

(q′ −ΠN−1q
′)(ρ) dρ =

+∞∑
n=N

qn

∫ 1

0

Qn(ρ) dρ = 2
+∞∑
n=N

(−1)nqn‖Qn‖2L2
r

(using (3.12)). Then, for any s ≥ 0,∫ 1

0

(q′ −ΠN−1q
′)(ρ) dρ = 2

+∞∑
n=N

(−1)n

λsn
(Lsq′, Qn)r,

and by the Cauchy-Schwarz inequality,

|(q −Π1
Nq)(0)|2 ≤ 4

(
+∞∑
n=N

[(Lsq′, Qn)r]
2

‖Qn‖2L2
r

)(
+∞∑
n=N

‖Qn‖2L2
r

λ2s
n

)
.

The first term has been estimated in Theorem 3.3. As for the second, we have

2
+∞∑
n=N

‖Qn‖2L2
r

λ2s
n

≤
+∞∑
n=N

1

n4s+1
,

and for s > 0 (cf. [7])

+∞∑
n=N

1

n4s+1
∼
∫ +∞

N

x−(4s+1) dx =
1

4s
N−4s.

This, together with (3.25a), gives the successive bounds:

∀s > 0, |(q −Π1
Nq)(0)| ≤ CN−2s‖Lsq′‖L2

r
≤ CN−2s‖q′‖H2s

r
≤ CN−2s‖q‖H2s+1

r
.

In the same way, for any s ≥ 0, one has

|(q −Π1
Nq)(0)|2 ≤ CN−4s−2|(Lsq′, Ls+1q′)r|

≤ CN−4s−2‖q′‖2
H2s+1
r
≤ CN−4s−2‖q‖2

H2s+2
r

,

which gives (3.28) for any integer p ≥ 2.

We also need to estimate the norm of q − Π1
Nq in L2

r.

Theorem 3.5. For any integer p ≥ 2, for any q in Hp
r , one has

‖q −Π1
Nq‖L2

r
≤ CN−p‖q‖Hpr .(3.30)
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Proof. It goes by a duality argument:

‖q −Π1
Nq‖L2

r
= sup
g∈L2

r

(q −Π1
N q, g)r

‖g‖L2
r

.(3.31)

We shall use a bidimensional result: if Ω is smooth enough, we know (see for
example [3]) that for any f in L2(Ω), there exists a unique u in H1

0 (Ω) such that
−∆u = f . Furthermore u belongs to H2(Ω) and ‖u‖2 ≤ C‖f‖0. Here, Ω is D(0, 1),
and we choose f = g(r) in L2

r. Then u = ψ(r) belongs to H2
r and is such that

−1

r

d

dr

(
r
dψ

dr

)
= g,(3.32)

‖ψ‖H2
r
≤ C‖g‖L2

r
.(3.33)

Integration by parts, using the boundary data, gives

(q −Π1
N q, g)r = ((q −Π1

Nq)
′, ψ′)r.

Moreover, since ψ(1) = 0, we have that Π1
Nψ belongs to P̃N and

((q −Π1
Nq)

′, (Π1
Nψ)′)r = 0.

Hence,

(q −Π1
Nq, g)r = ((q −Π1

Nq)
′, (ψ −Π1

Nψ)′)r ≤ ‖(q −Π1
Nq)

′‖L2
r
‖(ψ −Π1

Nψ)′‖L2
r
.

Using (3.27) and (3.33), we have

‖(ψ −Π1
Nψ)′‖L2

r
≤ CN−1‖ψ‖H2

r
≤ C‖g‖L2

r
,

‖(q −Π1
Nq)

′‖L2
r
≤ CN−(p−1)‖q‖Hpr ,

and for any g in L2
r,

(q −Π1
Nq, g)r ≤ CN−p‖q‖Hpr ‖g‖L2

r
.(3.34)

We now plug (3.34) in (3.31) and get (3.30).

3.4. Approximation results. Because of the ellipticity of the bilinear form a and
the uniform inf-sup condition, Theorem 1.1 in [8] gives a first approximation result:
if (u, p) and (uN , pN ) are the solutions to (2.3) and (3.5), respectively, there exists
a positive constant C such that

‖u− uN‖X + ‖p− pN‖0 ≤ C
{

inf
vN∈VN

‖u− vN‖X + inf
qN∈MN

‖p− qN‖0
}
,(3.35)

where VN is the discrete space corresponding to V :

VN = {vN ∈ XN , ∀qN ∈MN , b(vN , qN ) = 0}.(3.36)

It remains to estimate the expressions in the right-hand side of (3.35).

Theorem 3.6. Let p be an integer greater than or equal to zero. For any q in
M ∩Hp(Ω), its projection q̃ = ΠN,Kq on SK ⊗PN belongs to M and satisfies the
following estimate:

‖q − q̃‖0 ≤ C min

{
1

Np
,

1

Kp

}
‖q‖p.(3.37)

On the other hand, u belongs to V . It can be approximated in V ∩XN :
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Theorem 3.7. Let p be a positive integer. For any v in V ∩Hp(Ω), there exists
w in V ∩XN such that

‖v−w‖X ≤ CN1−p‖v‖p.(3.38)

These two theorems give the final optimal estimate:

Theorem 3.8. Let p be an integer greater than or equal to zero. If f belongs to
Hp(Ω), the solutions (u, p) and (uN , pN ) to (2.3) and (3.5) satisfy the following
estimate:

‖u− uN‖X + ‖p− pN‖0 ≤ CN−1−p‖f‖p.(3.39)

Proof of Theorem 3.6. We expand q in {Hk} as q =
∑
k∈Z qk(r)Hk. Its projection

Π̃K on SK ⊗ L2
r is given by Π̃Kq =

∑
|k|≤K qk(r)Hk, and the operator ΠN,K is

defined by

q̃ = ΠN,Kq =
∑
|k|≤K

ΠNqk(r)Hk.

In particular, if q belongs to M , then q̃ belongs to M , and

‖q − q̃‖0 ≤ ‖q − Π̃Kq‖0 + ‖Π̃Kq − q̃‖0.(3.40)

The first term is estimated through the one-dimensional result in [5]:

‖q − Π̃Kq‖0 ≤ CK−p
∥∥∥∥∂pq∂θp

∥∥∥∥
0

,

which gives

‖q − Π̃Kq‖0 ≤ CK−p‖q‖p.(3.41)

As for the second term, we have

‖Π̃Kq − q̃‖20 =
∑
|k|≤K

‖qk −ΠNqk‖2L2
r
,

and using Theorem 3.3, we get

‖Π̃Kq − q̃‖20 ≤ CN−2p
∑
|k|≤K

‖qk‖2Hpr ,

‖Π̃Kq − q̃‖0 ≤ CN−p‖q‖p.(3.42)

Plugging (3.41) and (3.42) in (3.40) gives the desired estimate in the theorem.

Proof of Theorem 3.7. Recall that for v in Hp(Ω) ∩H1
0 (Ω), its curl ∇∧ v belongs

to Hp−1(Ω), and

‖∇ ∧ v‖p−1 ≤ 2‖v‖p.
If moreover v belongs to V , then ‖v‖X = ‖∇ ∧ v‖0. Here, ∇∧ v can be projected
on SN−1 ⊗PN−1 in the following way. We expand ∇∧ v and ∇ · v in {Hm(θ)}:

∇ · v =
∑
m∈Z

DmvmHm+1 +
∑
m∈Z

D−mwmHm−1,

∇∧ v = i

(∑
m∈Z

DmvmHm+1 −
∑
m∈Z

D−mwmHm−1

)
.
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If v belongs to V , the function ϕ defined by ϕ = − i
2∇ ∧ v belongs to L2(Ω),

and by Theorem 3.6, one has the following error estimate on its projection on

SN−1 ⊗PN−1, χ =
∑N−2
m=−N χmHm+1,

‖ϕ− χ‖0 ≤ cN1−p‖ϕ‖p−1.

We can define w in V ∩XN such that ∇∧w = 2iχ. It is given by

w =
N−2∑
m=−N

ṽmVm +
N∑

m=−(N−2)

w̃mWm,

the coefficients being defined for −(N − 2) ≤ m ≤ N by w̃m = ṽm, and

∗ −N ≤ m ≤ −1, ṽm = rm
∫ r

0

ρ−mχm(ρ) dρ,

∗ṽ0 = −
∫ 1

r

χ0(ρ) dρ,

∗1 ≤ m ≤ N − 2, ṽm = −rm
∫ 1

r

ρ−mχm(ρ) dρ.

The assumptions we made force w to belong to XN ∩ V . Moreover,

‖v −w‖X = ‖∇ ∧ v −∇∧w‖0 = 2‖ϕ− χ‖0 ≤ CN1−p‖ϕ‖p−1,

‖v−w‖X ≤ CN1−p‖v‖p.

There is also an L2-estimate on the velocity:

Theorem 3.9. Let p be a positive integer. If f belongs to Hp(Ω), there exists a
positive constant C such that

‖u− uN‖0 ≤ CN−2−p‖f‖p.(3.43)

The proof is classical and will be omitted (cf. [8]).

4. Pseudospectral method

We start with a description of the quadrature formula we shall use in the r-
variable.

4.1. Discrete formulation. The fully discrete formulation relies on the Gauss-
Lobatto quadrature formula for the weight r on [0, 1] (cf. [6]).

Theorem 4.1. Let N be an integer ≥ 2, r0 = 0, rN = 1. There exists a unique
set of N − 1 points rj in (0, 1) and N − 1 positive weights ρj such that

∀g ∈ P2N−1,

∫ 1

0

rg(r) dr =
N∑
j=0

ρjg(rj).(4.1)

The points rj are the zeros of (J0,1
N )′ = J1,2

N−1, the weights ρj are given by

1 ≤ j ≤ N, ρj =
1

N(N + 2)[J0,1
N (rj)]2

, ρ0 =
2

N(N + 2)(N + 1)2
.(4.2)
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We now introduce on C0([0, 1]) the discrete inner product

(f, g)N =
N∑
j=0

ρjf(rj)g(rj).(4.3)

The corresponding Hermitian form is denoted by | · |N .

Theorem 4.2. For any integer N ≥ 2, | · |N is a norm on PN ([0, 1]), which is
equivalent to ‖ · ‖L2

r
. More precisely, one has

∀ϕ ∈ PN ([0, 1]), ‖ϕ‖L2
r
≤ |ϕ|N ≤

√
3‖ϕ‖L2

r
.(4.4)

Proof. Expand ϕ in PN ([0, 1]) in the J0,1
k , ϕ =

∑N
0 λkJ

0,1
k , express ‖ϕ‖2L2

r
and |ϕ|2N ,

use the fact that the continuous and discrete integration formulae agree on P2N−1,
and formula (4.2) (for details see [1] for the method and [9] in this case).

The discrete inner product is now defined in L2(Ω) by

(ϕ, χ)N,N =

∫ 2π

0

(ϕ(·, θ), χ(·, θ))N dθ.(4.5)

Since we use trigonometric polynomials, we do not discretize the tangential integral.
The discrete bilinear forms aN and bN are given by{

aN (u,v) = (∇u,∇v)N,N ,

bN (v, q) = −(q,∇ · v)N,N ,
(4.6)

which can be rewritten by expanding u and v in the (Vm,Wm) basis with coefficients
(vm, wm) and (ṽm, w̃m), and q in the {Hm} with coefficients qm,

aN (u,v) =
1

2

N−1∑
m=−(N−1)

[(Dm−1vm−1, Dm−1ṽm−1)N

+ (D−m−1wm+1, D−m−1w̃m+1)N ],

bN(v, q) =
1

2

N−1∑
m=−(N−1)

(qm, Dm−1ṽm−1 +D−m−1w̃m+1)N .

The special form of our discrete spaces allows the following pleasant result:

Lemma 4.1. The discrete forms aN and bN are exact on XN ×MN , i.e.,

∀(u,v) ∈ XN ×XN , aN (u,v) = a(u,v),

∀(v, q) ∈ XN ×MN , bN (v, q) = b(v, q).

The proof is straightforward and will be omitted.
The discrete problem now reads: find (ũN , p̃N ) in XN ×MN such that{

∀v ∈ XN , aN (ũN ,v) + bN (v, p̃N ) = LN (v),

∀q ∈MN , bN(ũN , q) = 0,
(4.7)

where LN is defined in the following way: f and v are expanded as

f =
∑
m∈Z

fmVm +
∑
m∈Z

gmWm, v =
N−2∑
m=−N

vmVm +
N∑

m=−(N−2)

wmWm;



SPECTRAL METHODS IN POLAR COORDINATES FOR THE STOKES PROBLEM 521

then

2(f ,v) =
N−2∑
m=−N

(fm, vm)r +
N∑

m=−(N−2)

(gm, wm)r.

For 1 ≤ m ≤ N − 2, define an operator Rm by

Rmh = −r−m−1

∫ r

0

ρm+1h(ρ) dρ.(4.8)

If h belongs to L2
r(0, 1), then Rmh belongs to L2

r(0, 1), and

‖Rmh‖2L2
r
≤ 1

4(m+ 1)
‖h‖2L2

r
.(4.9)

Using integration by parts, we can write

2(f ,v) =
0∑

m=−N
(fm, vm)r +

N−2∑
m=1

(Rmfm, Dmvm)r

+
N∑
m=0

(gm, wm)r +
−1∑

m=−(N−2)

(R−mgm, D−mwm)r.

We can now define the discrete linear operator by

2LN(v) =
0∑

m=−N
(fm, vm)N +

N−2∑
m=1

(Rmfm, Dmvm)N(4.10)

+
N∑
m=0

(gm, wm)N +
−1∑

m=−(N−2)

(R−mgm, D−mwm)N .

Theorem 4.3. If f belongs to C0(Ω), problem (4.7) has a unique solution.

Proof. By Lemma 4.1, we only need to check that the mapping v → LN (v) is
continuous on XN . By Theorem 4.2 and the Cauchy-Schwarz inequality,

|LN (v)|2 ≤ C
[

0∑
m=−N

|fm|2N +
N−2∑
m=1

|Rmfm|2N

]
‖v‖2X .

The first sum is bounded by a constant times ‖f‖2∞. As for the second, we have for
any i,

|Rmfm(ri)|2 ≤
1

2m+ 2
‖fm‖2L2

r

and
|LN(v)| ≤ C‖f‖∞‖v‖X .

4.2. Interpolation formula on [0, 1]. Let h be an element of Hp
r (0, 1), for p ≥ 2.

By [14], h is continuous on [0, 1]. Then define INh as the polynomial interpolating
h at the Gauss-Lobatto points i.e.,

INh ∈ PN ; ∀j, 1 ≤ j ≤ N, INh(rj) = h(rj).(4.11)

The aim of this section is to prove the following result:

Theorem 4.4. Let p be an integer ≥ 2. If h belongs to Hp
r , one has

‖h− INh‖L2
r
≤ CN−p‖h‖Hpr .(4.12)
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The proof goes along the lines in [1]:

(i) Estimate zeros and weights in (4.1).
(ii) If h(1) = 0, estimate ‖INh‖L2

r
by Theorem 4.3.

(iii) Estimate ‖h− INh‖L2
r

by the projection theorems of §3.2.

(i) Estimation of the weights. From ([16, p. 353]), one has

1 ≤ j ≤ N − 1, ρj ∼
π

N
r

3/2
j (1− rj)1/2.(4.13)

Location of the zeros.

Lemma 4.2. For any integer N ≥ 2, the zeros rj = cos2 θj
2 of J1,2

N−1 are such that
θj ∈ Kj, where the intervals Kj are defined by

1 ≤ j ≤ [
N

2
]− 1; Kj =

(
j − 1

4

N + 3
2

π,
j + 1

N + 1
π

)
,(4.14)

[
N

2
] ≤ j ≤ [

N

2
] + 1; Kj =

(
j − 1

4

N + 3
2

π,
j + 3

4

N + 1
2

π

)
,

[
N

2
] + 1 ≤ j ≤ N − 1; Kj =

(
j

N + 2
π,

j + 3
4

N + 1
2

π

)
.

Proof. In ([16, p. 138]) we find the location of the zeros of the Legendre polynomials

J0,0
N . We now use (3.10) and (3.13) to get (4.14).

(ii) Estimation of ‖INh‖L2
r
.

Lemma 4.3. Let p be an integer ≥ 2. If h belongs to Hp
r and h(1) = 0, then

‖INh‖2L2
r
≤ C(‖h‖2L2

r
+N−2‖h′‖2L2

r
+N−4|h(0)|2).(4.15)

Proof. From Theorem 4.3, we have

‖INh‖2L2
r
≤ |INh|2N =

N∑
j=0

ρj |h|2(rj).

If h(1) = 0, then from (4.2),

‖INh‖2L2
r
≤ 2N−4|h(0)|2 +

N−1∑
j=1

ρj |h|2(rj),

and, from (4.13),

‖INh‖2L2
r
≤ C

N−4|h(0)|2 +N−1
N−1∑
j=1

r
3/2
j (1− rj)1/2|h|2(rj)

 .(4.16)

Using the function G defined by

g(r) = r3/2(1− r)1/2f(r), F (θ) = h(r), G(θ) = g(r), with r = cos2 θ

2
,

(4.17)

we can rewrite (4.13) as

‖INh‖2L2
r
≤ C

N−4|h(0)|2 +N−1
N−1∑
j=1

sup
θ∈Kj

|G(θ)|2
 .(4.18)
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Assume for the time being the two following results.

Lemma 4.4. Let p be an integer ≥ 2. If φ belongs to Hp
r and φ(1) = 0, then∫ 1

0

|φ(r)|2
1− r dr ≤

∫ 1

0

r|φ′(r)|2 dr.(4.19)

Lemma 4.5. Let p be an integer ≥ 2. If h belongs to Hp
r , the function G(θ) defined

in (4.17) belongs to H1(0, π) and is such that

‖G‖L2(0,π) = ‖h‖L2
r
, ‖G′‖L2(0,π) ≤ C‖h′‖L2

r
.(4.20)

Lemma 1.4 in [1] reads

sup
θ∈Kj

|G(θ)|2 ≤ C(
1

|Kj |
‖G‖2L2(Kj)

+ |Kj |‖G′‖2L2(Kj)
),(4.21)

where |K| is the length of the interval K. Note that, for any j, Kj and Kj+3 are
disjoined. Thus, the union of intervals Kj covers at most 3 times (0, π). Moreover,

there exists a strictly positive number C such that |Kj | ∼ C
N . These two remarks,

together with (4.20) and (4.21), give (4.15).

Proof of Lemma 4.4. Since φ belongs to H1(0, 1), we write φ(r) = −
∫ 1

r
φ′(s) ds,

and by the Cauchy-Schwarz inequality,

|φ(r)|2 ≤ (1− r)
∫ 1

r

|φ′(s)|2 ds,

which proves that |φ(r)|2
1−r belongs to L1(0, 1) and∫ 1

0

|φ(r)|2
1− r dr ≤

∫ 1

0

∫ 1

r

|φ′(s)|2 ds dr =

∫ 1

0

r|φ′(r)|2 dr.

Proof of Lemma 4.5. A mere change of variables in the integral shows at once that
‖G‖L2(0,π) = ‖h‖L2

r
. As for the derivative, we have

‖G′‖L2(0,π) =

∫ 1

0

r2(1− r)|h′(r)|2 dr +
1

16

∫ 1

0

20r− 16r2 − 3

1− r |h(r)|2 dr.

On [0, 1], the numerator in the second integral is bounded by a strictly positive
constant, and Lemma 4.4 allows us to conclude.

(iii) Estimation of ‖h − INh‖L2
r
. For any h in Hp

r , we introduce Π1
Nh as in

Theorem 3.4. Since it belongs to PN , we can write

‖h− INh‖2L2
r
≤ 2(‖h−Π1

Nh‖2L2
r

+ ‖IN (Π1
Nh− h)‖2L2

r
).

Using Lemma 4.3 for Π1
Nh− h, we get

‖h− INh‖2L2
r
≤ C(‖Π1

Nh− h‖2L2
r

+N−2‖(Π1
Nh− h)′‖2L2

r
+N−4|(Π1

Nh− h)(0)|2).

Theorems 3.4 and 3.5 give (4.12) in Theorem 4.4.
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4.3. Approximation results. We start with the same result as in §3.4. The
solutions (u, p) and (ũN , p̃N ) to (2.3) and (4.7) satisfy a first estimate:

‖u− ũN‖X + ‖p− p̃N‖0(4.22)

≤ C
{

inf
vN∈VN

‖u− vN‖X + inf
qN∈MN

‖p− qN‖0 + ‖L− LN‖
}
,

where VN = {vN ∈ XN , ∀qN ∈MN , bN(vN , qN ) = 0}, and

‖L− LN‖ = sup
vN∈VN

|L(vN )− LN (vN )|
‖vN‖X

.(4.23)

Using the results in §§3.3 and 4.3, we shall prove the following result.

Theorem 4.5. Let p be an integer ≥ 0. If f belongs to Hp(Ω), the solutions (u, p)
and (ũN , p̃N ) to (2.3) and (4.7) satisfy the following estimates :

‖u− ũN‖X + ‖p− p̃N‖0 ≤ CN−p‖f‖p.(4.24)

Proof. From Theorem 3.6, since p belongs to Hp+1(Ω), we have

‖p−ΠN−1,N−1p‖0 ≤ CN−(p+1)‖p‖p+1 ≤ CN−(p+1)‖f‖p,(4.25)

and since u belongs to V ∩Hp+2(Ω), there exists vN in V ∩XN such that

‖u− vN‖X ≤ CN1−(p+2)‖u‖p+2 ≤ CN−(p+1)‖f‖p.(4.26)

It remains to estimate ‖L− LN‖. For any v in XN , we have

|L(v)− LN (v)| ≤
0∑

m=−N
|(fm, vm)N − (fm, vm)r|

+
N−2∑
m=1

|(Rmfm, Dmvm)N − (Rmfm, Dmvm)r|.

Let us estimate the first sum. For −N ≤ m ≤ 0, since the quadrature formula is
exact on P2N−1,

(fm, vm)N − (fm, vm)r = (INfm −ΠN−1fm, vm)N − (fm −ΠN−1fm, vm)r

and by Theorem 4.2,

|(INfm −ΠN−1fm, vm)N | ≤ 3‖INfm −ΠN−1fm‖L2
r
‖vm‖L2

r
,

so that

|(fm, vm)N − (fm, vm)r| ≤ C[‖fm −ΠN−1fm‖L2
r

+ ‖fm − INfm‖L2
r
]‖vm‖L2

r
.

By Theorems 3.3 and 4.4, we conclude that

0∑
m=−N

|(fm, vm)N − (fm, vm)r| ≤ CN−p‖f‖p‖v‖0.(4.27)

In order to estimate the second sum, we need a lemma.

Lemma 4.6. For any p ≥ 0, for any m,−1 ≤ m ≤ N − 2, for any ϕ in Hp
r , Rmϕ

belongs to Hp
r and

‖Rmϕ‖Hpr ≤ 2‖ϕ‖Hpr .(4.28)
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Let us assume the lemma. For 1 ≤ m ≤ N − 2, IN (Rmfm) belongs to PN and
Dmvm belongs to PN−1, so

(Rmfm, Dmvm)N − (Rmfm, Dmvm)r = (IN (Rmfm)−Rmfm, Dmvm)r

and by Theorem 4.4,

N−2∑
m=1

|(Rmfm, Dmvm)N − (Rmfm, Dmvm)r| ≤ CN−p‖f‖p‖v‖X .(4.29)

Adding (4.27) and (4.29) gives

|L(v)− LN(v)| ≤ CN−p‖f‖p‖v‖X .(4.30)

Plugging (4.25), (4.26) and (4.30) in (4.22), we obtain (4.24).

Proof of Lemma 4.6. It is easy to see by induction that, for any k ≥ 0,

(Rmϕ)(k) = − 1

m+ k + 1
{kϕ(k−1) + (m+ 1)Rm+k+1ϕ

(k)}.

We now use (4.9) to get an upper bound on ‖(Rmϕ)(k)‖L2
r
:

‖(Rmϕ)(k)‖2L2
r
≤ 2{‖ϕ(k−1)‖2L2

r
+

1

4
‖ϕ(k)‖2L2

r
}.

Summing for 1 ≤ k ≤ p gives (4.28).

5. Coupling spectral method and transparent boundary condition

We consider the Stokes problem in the whole plane:{
−∆u +∇p = f in R2,

∇ · u = 0 in R2.
(5.1)

We shall assume f to be compactly supported in the disc D(0, R) centered at point
0 and of radius R. If Ω is an unbounded domain, W 1(Ω) is defined by

W 1(Ω) = {v ∈ D′(Ω),
v

(1 + r2)1/2(1 + ln(1 + r2))
∈ L2(Ω),∇v ∈ L2(Ω)},(5.2)

furnished with the natural inner product and norm

‖v‖2W1(Ω) =

∥∥∥∥ v

(1 + r2)1/2(1 + ln(1 + r2))

∥∥∥∥2

0

+ ‖∇v‖20.

Note that R ⊂ W 1(Ω). A result in [15] asserts that if f belongs to (L2
0(R2))2,

this problem has a unique solution (u, p) in (W 1(R2)/R)2 × L2(R2). In order
to compute (u, p), we shall introduce a fictitious boundary, the circle centered at
point 0 and of radius R, and solve the Stokes problem in D(0, R) with the so-called
transparent boundary condition. This boundary condition represents the solution
outside the disc.
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5.1. Transparent boundary condition and reduction to a bounded do-
main. We shall denote Ω = D(0, R), Ω′ = R2 − Ω, Γ their common boundary,
Γ = C(0, R). The normal vector to Γ is oriented toward the exterior of Ω; we
shall call it n (it is er with the notations of §2). Problem (5.1) is equivalent to the
coupling {

−∆u1 +∇p1 = f in Ω,

∇ · u1 = 0 in Ω,{
−∆u2 +∇p2 = 0 in Ω′,

∇ · u2 = 0 in Ω′,

with the transmission conditions{
u1 = u2 on Γ,

σn(u1) = σn(u2) on Γ,

where σn is the normal strain, i.e.,

σn(u) =
∂u

∂n
− pn.(5.3)

Consider the problem 
−∆w +∇q = 0 in Ω′,

∇ ·w = 0 in Ω′,

w = g on Γ.

(5.4)

According to [15] again, if g belongs to H1/2(Γ), this problem has a unique solution
(w, q) in (W 1(Ω′))2 × L2(Ω′) and

‖v‖(W1(Ω′))2 ≤ C‖g‖H1/2(Γ).

Denote by K the linear operator from H1/2(Γ) to H−1/2(Γ) defined by Kw =
−σn(w). Owing to the transmission conditions on Γ, problem (5.1) is equivalent
to the following boundary value problem in Ω:

−∆u +∇p = f in Ω,

∇ · u = 0 in Ω,

σn(u) + Ku = 0 on Γ.

(5.5)

5.2. Basic properties and expression of the transparent operator K. Gen-
eral results valid in any sufficiently smooth geometry assert (see [15] or [9]):

Theorem 5.1. The linear operator K from H1/2(Γ) to H−1/2(Γ) is continuous,
symmetric, positive: for any g in H1/2(Γ), 〈Kg,g〉Γ ≥ 0.

We shall now give the expression of K in polar coordinates. We shall use the
notations in §2, the singularity being here at infinity.

We decompose g in{
g = g(1) + g(2),

g(1)(θ) =
∑
m∈Z gmVm(θ), g(2)(θ) = g(1)(θ) =

∑
m∈Z hmWm(θ).

(5.6)
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The function (Euclidean) orthogonal to g is given by g⊥ = i(−g(1) + g(2)). The
Hilbert operator is defined by

Hg =
∑
m∈Z

i sign(m)gmVm(θ) +
∑
m∈Z

i sign(m)hmWm(θ)(5.7)

(with the convention, sign(m) = 0 if m = 0).

Theorem 5.2. The operator K is given by

Kg =
1

R

∂

∂θ
(g⊥ +Hg),(5.8)

or in extended form,

Kg =
1

R

 ∑
m≤−1

−mgmVm(θ) +
∑
m≥1

3mgmVm(θ)(5.9)

+
∑
m≤−1

−3mhmWm(θ) +
∑
m≥1

mhmWm(θ)

 .
Proof. Since g is given by (5.6), we solve (5.4) in polar coordinates. The first
step is to notice that q is harmonic in Ω′ and belongs to L2

r(1,+∞). Thus, q =∑
m∈Z qmHm, with

qm =

{
αmr

−|m|, |m| ≥ 2,

0, |m| ≤ 1.
(5.10)

With the notations given in (2.9), the first equation gives

∀m ∈ Z, Dmvm − qm+1 = cmr
−(m+1).(5.11)

For any m ≤ 0, r−(m+1) does not belong to L2
r(1,+∞); therefore, cm = 0:

∀m ≤ 0, Dmvm − qm+1 = 0.

For any m ≥ 1, integrate (5.11) from r to +∞ and use (5.10). Then

vm = − 1

2m
(cm + αm+1)r−m, and ∀m ≥ 1, Dmvm = −2m

vm
r
.

The divergence-free condition reads, ∀m ∈ Z, Dm−1vm−1 +D−m−1wm+1 = 0; thus,

∀m ≥ 1, Dmvm = −2m
vm
r

= −qm+1.

The operator K is now defined by

Kg =
∑
m∈Z

(qm+1 −Dmvm −m
vm
r

)(R)Vm

+
∑
m∈Z

(qm−1 −D−mwm +m
wm
r

)(R)Wm,

which gives (5.9). The compact formulation (5.8) comes in a straightforward way
from (5.9).
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5.3. Weak formulation of (5.4). For simplicity, we shall assume from now on
that R = 1. We define on H1(Ω) a bilinear form ã by

ã(u,v) = a(u,v) + 〈Ku,v〉Γ.(5.12)

Lemma 5.1. The bilinear form ã defines on (H1(Ω)/R)2 a scalar product. The
corresponding norm is equivalent to the natural norm in H1(Ω).

The proof is straightforward, since K is positive, and the L2-norm of the gradient
is equivalent to the H1-norm in H1(Ω)/R.

The Hilbert space X is (H1(Ω)/R)2, furnished with the bilinear form ã,M =
L2(Ω). The variational formulation of problem (5.5) reads:

find (u, p) in X ×M such that{
∀v ∈ X, ã(u,v) + b(v, p) = 〈f ,v〉,
∀q ∈M, b(u, q) = 0.

(5.13)

Theorem 5.3. Problem (5.13) has a unique solution. In particular, one has the
Babuška-Brezzi condition

inf
q∈M

sup
v∈X

b(v, q)

‖v‖X‖q‖M
= 1.(5.14)

Proof. By Theorem B, it is enough to prove (5.14). We proceed as in (2.5):

inf
q∈M

sup
v∈X

b(v, q)

‖v‖X‖q‖M
= inf
q∈M

‖w‖X
‖q‖M

,

where w is the unique solution in X to
w ∈ H1(Ω),

∆w +∇q = 0 in Ω,
∂w
∂r + qer +Kw = 0 on Γ.

(5.15)

We shall express w in X in terms of q in M . Here, q and w are given by (2.7), (2.8),
and the norms are easily computed:

a(w,w) =
∑
m∈Z

‖Dmvm‖2L2
r

+
∑
m∈Z

m|vm(1)|2,

〈Kw,w〉Γ = 3
∑
m≥1

m|vm(1)|2 −
∑
m≤−1

m|vm(1)|2,

ã(w,w) =
∑
m∈Z

‖Dmvm‖2L2
r

+ 4
∑
m≥1

m|vm(1)|2.(5.16)

The same arguments as in (2.13a) prove

∀m ∈ Z,

(
d

dr
+
m+ 1

r

)
(qm+1 +Dmvm) = 0,(5.17)

∀m ≥ 0, qm+1 +Dmvm = 0.(5.18)
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The boundary condition, expanded in the basis {Vm,Wm}, gives{
for m ≤ −1, (qm+1 +Dmvm)(1) = 0,

for m ≥ 0, (qm+1 +Dmvm + 4mvm)(1) = 0.
(5.19)

From (5.17), (5.18) and (5.19), we get, for m ≥ 1, vm(1) = 0, and for any m in Z,
1
2qm+1 +Dmvm = 0. This can be solved explicitly (modulo a constant in v0):

m ≥ 1, vm =
1

2
rm
∫ 1

r

ρ−mqm+1(ρ) dρ,(5.20a)

v0 = α− 1

2

∫ 1

r

qm+1(ρ) dρ,(5.20b)

m < 0, vm = −1

2
rm
∫ r

0

ρ−mqm+1(ρ) dρ,(5.20c)

and

‖q‖20 =
∑
m∈Z

‖qm‖2L2
r

=
∑
m∈Z

‖Dmvm‖2L2
r

= a(w,w).

This completes the proof of the theorem.

5.4. The Galerkin method. The discrete spaces are the same as in §3, i.e.,{
MN = M ∩ (SN−1 ⊗PN−1),

XN = X ∩HN ,
(5.21)

and the discrete problem reads: find (uN , pN ) in XN ×MN such that{
∀v ∈ XN , a(uN ,v) + b(v, pN ) = L(v),

∀q ∈MN , b(uN , q) = 0.
(5.22)

Theorem 5.4. On XN ×MN one has the uniform inf-sup condition

inf
q∈MN

sup
v∈XN

b(v, q)

‖v‖X‖q‖M
= 1.(5.23)

Proof. We write again

inf
q∈MN

sup
v∈XN

b(v, q)

‖v‖X‖q‖M
= inf
q∈MN

‖w‖X
‖q‖M

,(5.24)

where w is the unique solution to

∀v ∈ XN , −(∆w +∇q,v)0 + 〈Kw +
∂w

∂r
+ qer, v〉Γ = 0.(5.25)

Using formula (5.20a), we can easily see that if q belongs to MN , then w =
−(∆)−1∇q belongs to XN . The constant is thus greater than or equal to 1. The
choice q0 = 0, qm = rm, 1 ≤ m ≤ N − 1, gives equality.

Theorem B gives the conclusion:

Theorem 5.5. For any f in H−1(Ω), the problem (5.21) has a unique solution
(uN , pN ) in XN ×MN and

‖uN‖X + ‖pN‖0 ≤ C‖f‖−1.

Slight modifications to the proofs in §3 give the optimal error estimates:
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Theorem 5.6. For any integer p ≥ 0, if f belongs to Hp(Ω), the solutions (u, p)
and (uN , pN ) to (5.13) and (5.22) satisfy the optimal error estimates

‖u− uN‖X + ‖p− pN‖0 ≤ CN−1−p‖f‖p,(5.26)

‖u− uN‖0 ≤ CN−2−p‖f‖p.(5.27)

Remark 5.1. By scaling we can solve the problem in D(0, R) with a Galerkin
method. This leads to the following error estimates:

‖u− uN‖X + ‖p− pN‖0 ≤ C(
N

R
)−1−p‖f‖p,

‖u− uN‖0 ≤ C(
N

R
)−2−p‖f‖p.

6. Conclusion

This is a first step toward the solution of exterior problems by spectral methods
in a bounded domain. The second step should be to deal with operators with
nonconstant coefficients, and the third step the three-dimensional case, with the
use of spherical harmonic functions. This will be of great use, for instance in
meteorology.

References

1. C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques,
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