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Abstract Often computational models are too expensive to be solved in the entire
domain of simulation, and a cheaper model would suffice away from the main zone
of interest. We present for the concrete example of an evolution problem of advec-
tion reaction diffusion type a heterogeneous domain decomposition algorithm which
allows us to recover a solution that is very close to the solution of the fully viscous
problem, but solves only an inviscid problem in parts of the domain. Our new algo-
rithm is based on the factorization of the underlying differential operator, and we
therefore call it factorization algorithm. We give a detailed error analysis in one spa-
tial dimension, and show that we can obtain approximations in the viscous region
which are much closer to the viscous solution in the entire domain of simulation than
approximations obtained by other heterogeneous domain decomposition algorithms
from the literature. We illustrate our results with numerical experiments in one and
two spatial dimensions.
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1 Introduction

The coupling of different types of partial differential equations is an active field of
research, since the need for such coupling arises in various applications. A first main
area is the simulation of complex objects, composed of different materials, which
are naturally modeled by different equations; fluid-structure interaction is a typical
example, and many techniques have been developed for this type of coupling prob-
lems, see for example the book [32], or the review on the immersed boundary method
[31], and [9] for domain decomposition coupling techniques. A very important area
of application is the simulation of the cardiovascular system [15]. A second main
area is when homogeneous objects are simulated, but the partial differential equation
modeling the object is too expensive to solve over the entire object, and a simpler, less
expensive model would suffice in most of the object to reach the desired accuracy;
air flow around an airplane is a typical example, where viscous effects are impor-
tant close to the airplane, but can be neglected further away, see the early publication
[10], and also [7] and the references therein. An automatic approach for neglect-
ing the diffusion in parts of the domain is the χ -formulation, see [5, 26], and there
are also techniques based on virtual control, originating in [10], see [1] for the case
with overlap, and [24] for the case without, and also [11] for virtual control with
variational coupling conditions. A third emerging area is the coupling of equations
across dimensions, for example the blood flow in the artery can be modeled by a one
dimensional model, but in the heart, it needs to be three dimensional, see for example
[14]. All these techniques have become known in the domain decomposition commu-
nity under the name heterogeneous domain decomposition methods, a terminology
sparked by the review [35], and the literature has become vast in this field.

We are interested in this paper in the second situation, where the motivation for
using different equations comes from the fact that we would like to use simpler,
less expensive equations in areas of the domain where the full model is not needed,
and we use as our guiding example the advection reaction diffusion equation. We
are in principle interested in the fully viscous solution, but we would like to solve
only an advection reaction equation for computational savings in part of the domain.
Coupling conditions for this type of problem have been developed in the seminal
paper [22], but with the first situation described above in mind, i.e. there is indeed
a viscous and an inviscid physical domain, and the coupling conditions are obtained
by a limiting process as the viscosity goes to zero, see also [23], and [3, 8] for an
innovative correction layer, and [6] for the steady case.

Dubach developed in his PhD thesis [12] coupling conditions based on absorb-
ing boundary conditions, and such conditions have been used in order to define
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heterogeneous domain decomposition methods in [17]. A fundamental question how-
ever in the second situation described above is how far the solution obtained from
the coupled problem is from the solution of the original, more expensive one on the
entire domain. A first comparison of different transmission conditions focusing on
this aspect appeared in [18]. In [19], coupling conditions were developed for sta-
tionary advection reaction diffusion equations in one spatial dimensions, which lead
to solutions of the coupled problem that can be exponentially close to the fully vis-
cous solution, and rigorous error estimates are provided. The coupling conditions are
based on the factorization of the differential operator, see also [28], and the exact
factorization can be used in this one dimensional steady case.

In general however, such an exact factorization is not available, and new ideas are
needed. To show how one can still obtain a very efficient coupling algorithm based on
factorization in these situations, we follow a principle already advocated by Picard,1

and study a specific model problem. We present in Section 2 our new factorization
algorithm for a time dependent model advection reaction diffusion problem in d spa-
tial dimensions. In Sections 3 and 4, we give a detailed analysis of the well-posedness
of the new factorization algorithm in one spatial dimension, and prove asymptotic
error estimates when the viscosity is becoming small. Such one dimensional advec-
tion reaction diffusion problems do not pose any computational challenge these days,
but they allow us to mathematically get a complete understanding of the new algo-
rithm and rigorous error estimates, and also permit a rigorous asymptotic comparison
of the new algorithm with existing techniques from the literature. In Section 5 we
present numerical experiments, first in one spatial dimension, which show that our
theoretical error estimates are sharp, and that the new factorization algorithm gives
approximate solutions which are one order of magnitude more accurate in the vis-
cous region than the best heterogeneous domain decomposition methods known from
the literature. We then show numerical experiments also in two spatial dimensions, to
illustrate that the new factorization algorithm also works beyond the one dimensional
case.

2 A new coupling algorithm based on factorization

We now explain how the factorization technique that led to coupling conditions of
excellent quality for one dimensional problems in [19] can be used to obtain a new
coupling algorithm for evolution problems which we will call factorization algorithm.

1“Les méthodes d’approximation dont nous faisons usage sont théoriquement susceptibles de s’appliquer
à toute équation, mais elles ne deviennent vraiment intéressantes pour l’étude des propriétés des fonctions
définies par les équations différentielles que si l’on ne reste pas dans les généralités et si l’on envisage
certaines classes d’équations”, Émile Picard, Sur l’application des méthodes d’approximations successives
à l’étude de certaines équations différentielles ordinaires, 1893.
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2.1 Model problem

We consider the time dependent advection reaction diffusion equation in Ω =
(−L1, L2) × R

d−1 with boundaries Γ1 = {−L1} × R
d−1 and Γ2 = {L2} × R

d−1:

Ladu := ∂tu − ν�u + a · ∇u + cu = f in Ω × (0,T),

with boundary data B1u = g1 on Γ1 × (0,T),

B2u = g2 on Γ2 × (0,T),

and initial data u = h in Ω × {0},
(1)

where a = (a, aτ ), a ∈ R, aτ ∈ R
d−1 is a constant velocity field, ν > 0 is the

viscosity, and c > 0 is a reaction term. The Bj , j = 1, 2 are suitable boundary
operators, representing Dirichlet or absorbing boundary conditions depending on the
sign of the normal component of a. We will consider two situations:

(2)
In the case a > 0, the flow is given at the inflow boundary, and an absorbing

boundary condition is prescribed at the outflow boundary. This can be compared to
the situation of the tail of a wing, where the flow goes from the complicated model
region into the simplified model region. In the case a < 0, the flow is prescribed
at the inflow and outflow boundary, which can be compared to the situation of the
front of the wing, where the flow goes from the simplified model region into the
complicated model region, and a boundary layer forms.

2.2 The new algorithm based on factorization

Using Nirenberg’s factorization, we can factor the advection-diffusion operator into
a product of two evolution operators in opposite x directions. Such factorizations
have been used to design absorbing boundary conditions and paraxial equations for
hyperbolic problems, see [2]. For parabolic problems, Nataf and coauthors [28, 33]
computed approximations of u via a double sweep, and also obtained transmission
conditions for Schwarz domain decomposition methods [34], which led to the new
class of optimized Schwarz methods, see [16] for an overview. The same factorization
can also be used to obtain incomplete LU preconditioners [20, 21], and is the under-
lying mathematical structure of the recently developed sweeping preconditioner [13].
We now use this factorization to define our new factorization algorithm: we define
two subdomains,

Ω1 = (−L1, 0) × R
d−1, Ω2 = (0, L2) × R

d−1, Γ0 = {0} × R
d−1,

and want to couple the advection-diffusion equation inΩ1 with an advection equation
in Ω2, defined by the transport operator La ≡ ∂t + a · ∇ + c. Our goal is to obtain
a coupled solution which is as close as possible to the fully viscous solution of the
original problem.

We start with the first case described in (2), i.e. a > 0. Suppose we have a fac-
torization Lad = ˜LmaLa with La a transport operator propagating to the right, and
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˜Lma a transport operator propagating to the left, where we use a tilde here to denote
the exact operator which will be later approximated and the index ’ma’ for ’modified
advection’. The original problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

˜LmaLau = f in Ω × (0, T ),

u = g1 on Γ1 × (0, T ),

Lau = g2 on Γ2 × (0, T ),

u = h in Ω × {0}
can then be solved by introducing uma := Lau, and solving the two problems

⎧

⎨

⎩

˜Lmauma = f in Ω2 × (0, T ),

uma = g2 on Γ2 × (0, T ),

uma = Lau in Ω2 × {0},

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Laduad = f in Ω1 × (0, T ),

uad = g1 on Γ1 × (0, T ),

Lauad = uma on Γ0 × (0, T ),

uad = h in Ω1 × {0},
(3)

which leads to uad = u|Ω1 . Unfortunately, the exact factorization Lad = ˜LmaLa

is not available in general; for the simplest case of a steady problem in one spatial
dimension, see [19]. But we can use an approximation with a remainder,

Lad = ν

a2
(LmaLa − R) with R = (∂t + c + aτ · ∇τ )

2 + a2�τ , (4)

where ∇τ and �τ stand for the tangential gradient and Laplacian, and where the
modified advection operator is

Lma = ∂t − a∂x + aτ · ∇τ + c + a2

ν
. (5)

The viscous solution u satisfies LmaLau = a2f/ν + Ru, and the algorithm
corresponding to (3) is

⎧

⎨

⎩

Lmauma = a2

ν
f + Ru in Ω2 × (0, T ),

uma = g2 on Γ2 × (0, T ),

uma = Lau in Ω2 × {0},

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Laduad = f in Ω1 × (0, T ),

uad = g1 on Γ1 × (0, T ),

Lauad = uma on Γ0 × (0, T ),

uad = h in Ω1 × {0}.
Since u is unknown to evaluate the remainder, we approximate it by solving an
advection equation first, and our new factorization algorithm is

Transport to the right in Ω2

⎧

⎨

⎩

Lau
k
a = f in Ω2 × (0, T ),

uk
a = uk−1

ad on Γ1 × (0, T ),

uk
a = h in Ω2 × {0},

Transport to the left in Ω2

⎧

⎨

⎩

Lmau
k
ma = a2

ν
f + R uk

a in Ω2 × (0, T ),

uk
ma = g2 on Γ2 × (0, T ),

uk
ma = f + ν�h in Ω2 × {0},

(6)

Advection-diffusion in Ω1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Laduk
ad = f in Ω1 × (0, T ),

uk
ad = g1 on Γ1 × (0, T ),

Lau
k
ad = uk

ma on Γ0 × (0, T ),

uk
ad = h in Ω1 × {0},
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where we start with a given initial guess u0ad = g0
ad on Γ0×(0, T ). We will prove well

posedness of this algorithm in Section 3 in one spatial dimension, and give precise
error estimates when ν is small, which show that the new factorization algorithm
gives one and a half orders of magnitude better solutions in the viscous subregion
than the best other coupling algorithms from the literature.

When a < 0, we have the factorization with remainder in reverse order, Lad =
ν

a2
(LaLma − R), and now the operator La propagates to the left, and Lma to the

right. The viscous solution u satisfies LaLmau = a2f/ν + Lu, and introducing
ua := Lmau, the algorithm corresponding to (3) is

⎧

⎨

⎩

Laua = a2

ν
f + Ru in Ω2 × (0, T ),

ua = Lmau on Γ2 × (0, T ),

ua = Lmau in Ω2 × {0},

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Laduad = f in Ω1 × (0, T ),

uad = g1 on Γ1 × (0, T ),

Lmauad = ua on Γ0 × (0, T ),

uad = h in Ω1 × {0}.
Since u is unknown to evaluate the remainder and the boundary conditions, we
approximate it again by solving an advection equation, and our new factorization
algorithm becomes

Transport to the left in Ω2

⎧

⎨

⎩

Lau
1
a = f in Ω2 × (0, T ),

u1a = g2 on Γ2 × (0, T ),

u1a(·, 0) = h in Ω2 × {0},

Transport to the left in Ω2

⎧

⎨

⎩

Lau
2
a = a2

ν
f + R u1a in Ω2 × (0, T ),

u2a = Lmau
1
a on Γ2 × (0, T ),

u2a = Lmau
1
a in Ω2 × {0},

(7)

Advection-diffusion in Ω1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Laduad = f in Ω1 × (0, T ),

uad = g1 on Γ1 × (0, T ),

Lmauad = ua on Γ0 × (0, T ),

uad = h in Ω1 × {0},
where one could also directly compute the boundary and initial data from the first
system for the second one as follows: on Γ2 × (0, T ), Lmau

1
a = 2∂tg2 + (2c +

a2/ν)g2 + 2aτ · ∇τ g2 −f and at time t = 0, Lmau
1
a = f − 2a∂xh+ a2h/ν. There is

no iteration for a < 0 in the algorithm, because the boundary condition g2 at x = L2
in the first step can not be updated naturally from the viscous solution uad in Ω1.
We will study this algorithm in one dimension in Section 4, and show that it gives an
order of magnitude better solutions in the viscous subregion than the other coupling
algorithms from the literature.

2.3 Well-posedness results for advection reaction diffusion problems

We focus for our analysis on the one-dimensional case in what follows. We work
in the usual Sobolev spaces in time and space, Hs(0, T ) and Hs(Ω) for Ω ⊂ R,
Hs(Ω × (0, T )) in the hyperbolic case, and the anisotropic spaces Hr,s(Ω × (0, T ))

in the parabolic case. For clarity, we will add an index defining time or space in the
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Sobolev space, for instance Hs
t ≡ Hs(0, T ). We introduce for any domain Ω ⊂ R

the anisotropic Sobolev spaces (see [27])

Hr,s(Ω × (0, T )) = L2(0, T ; Hr(Ω)) ∩ Hs(0, T ; L2(Ω)). (8)

If u is in Hr,s(Ω × (0, T )), then for any integer j and k, we have

∂j

∂xj

∂k

∂tk
u ∈ Hμ,ν(Ω × (0, T )), where

μ

r
= ν

s
= 1 −

(

j

r
+ k

s

)

. (9)

We introduce the space V r,s of traces of functions in Hr,s(Ω × (0, T )) for the half-
space Ω = R

− (and similarly for Ω = R
+). Denoting by fk the trace of the k-th

derivative in time on the initial line, x ∈ R
−, and by gj the trace of the j-th derivative

in space on the boundary x = 0, t ∈ (0, T ), the trace space V r,s is defined by

V r,s :=
{

(fk, gj ) ∈ ∏

k<s− 1
2
Hpk (Ω) × ∏

j<r− 1
2
Hμj (0, T ),

pk = r
s

(

s − k − 1
2

)

, μj = s
r

(

r − j − 1
2

)

,

∂kgj

∂tk
(0) = ∂j fk

∂xj (0), if j
r

+ k
s

< 1 − 1
2

(

1
r

+ 1
s

)

,

∫ ∞
0

∣

∣

∣

∂j fk

∂xj (σ s) − ∂kgj

∂tk
(σ r )

∣

∣

∣

2
dσ
σ

< ∞, if j
r

+ k
s

= 1 − 1
2

(

1
r

+ 1
s

)

}

.

(10)

Theorem 1 ([27]) For positive real numbers r , s such that 1 − 1
2

(

1
r

+ 1
s

)

> 0, the
trace map

u �→
{

{

∂ku

∂tk
(x, 0)

}

k<s− 1
2

,

{

∂ju

∂xj
(0, t)

}

j<r− 1
2

}

(11)

is defined and continuous from Hr,s(Ω × (0, T )) onto V r,s .

We start with well-posedness results for the advection equation, by stating a gen-
eral result, applicable to La in Ω or Ω2, and Lma in Ω2. To this end, we introduce
O = (x1, x2) and consider

Lbv := ∂tv + b ∂xv + ηv = p in O × (0, T ). (12)

Let Mb be the spatial part of the operator Lb, i.e. Lb = ∂t + Mb. We denote the
boundary point where the flux enters the domain by x−, the other boundary point by
x+, and define the characteristic time τ(x) := inf{t ≥ 0, s.t.x − at /∈ Ō}. If b > 0,
x− = x1 and τ(x) = x−x1

b
, and if b < 0, x− = x2 and τ(x) = x−x2

b
. Note that

τ is a continuous function of x. We therefore equip (12) with initial and boundary
conditions

v(·, 0) = h, v(x−, ·) = g. (13)

The following well-posedness result can be found in [30].
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Theorem 2 If p ∈ L2(O×(0, T )), g ∈ L2(0, T ) and v0 ∈ L2(O), then the transport
problem (12, 13) has a unique weak solution v ∈ L2

x,t , given by (the characteristic
function of ω in R2 is denoted by 1ω)

v(x, t) = h(x − bt)e−ηt1t<τ(x) + g(t − τ(x))e−ητ(x)1t>τ(x)

+
∫ t

(t−τ(x))+
p(x − b(t − s), s)e−η(t−s) ds.

(14)

If for some γ > 0 we have h ∈ Hγ (O), g ∈ Hγ (0, T ) and p ∈ Hγ (O × (0, T )),
with the compatibility conditions

dk
t g(0) =

⎛

⎝

k−1
∑

j=0

(−Mb)
j ∂

k−1−j
t p

⎞

⎠ (x−, 0)+(−Mb)
kh(x−) for 0 ≤ k ≤ γ −1,

(15)
then v ∈ Hγ (O × (0, T )) and v(x+, ·) ∈ Hγ (0, T ). Furthermore, we have for
0 ≤ k ≤ γ the estimates

η

∥

∥

∥∂k
t v

∥

∥

∥

2

L2
x,t

+ |b|
∥

∥

∥∂
k
t v

(

x+, ·)
∥

∥

∥

2

L2
t

≤ 1

η

∥

∥

∥∂
k
t p

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k
t v(·, 0)

∥

∥

∥

2

L2
x

+ |b|
∥

∥

∥d
k
t g

∥

∥

∥

2

L2
t

.

(16)

Similarly, we also use well-posedness results for the advection reaction diffusion
equation

Ladu := ∂tu − ν∂2xu + a∂xu + cu = f in O × (0,T),

B1u(x1, ·) = g1 on (0, T ),

B2u(x2, ·) = g2 on (0, T ),

u(x, 0) = h in O,

(17)

with boundary operators according to (2). We define Mad to be the spatial part of
the operator Lad , i.e. Lad = ∂t + Mad .

Theorem 3 For γ > 0, let f ∈ H 2γ,γ (O × (0, T )), g1 ∈ H
γ+ 3

4
t , g2 ∈ H

γ+ 3
4

t for

negative a, and g2 ∈ H
γ− 1

4
t for positive a, h ∈ H

2γ+1
x (O), with the compatibility

conditions for 0 ≤ k < γ − 1
2 and 0 ≤ k′ < γ − 3

2 for negative a given by

1 ≤ j ≤ 2, dk
t gj (0) = (−Mad)kh(xj ) +

⎛

⎝

k−1
∑

j=0

(−Mad)j ∂
k−1−j
t f

⎞

⎠ (xj , 0),

(18)
and for positive a the second compatibility condition is replaced by

dk′
t g2(0)− ν

k′−1
∑

j=0

(−Mad)j ∂
k′−1−j
t ∂2xf (x2, 0)− νd2

x (−Mad)k
′
h(x2) = ∂k′

t f (x2, 0),

(19)
then problem (17) has a unique solution u in H 2(γ+1),γ+1(O × (0, T )).
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Proof Existence and regularity results are well-known for Dirichlet boundary condi-
tions on both sides, see [27, 30], so we do not consider the case of negative advection
further. In [30] more precise results with error bounds in ν for the hyperbolic equa-
tion (see Theorem 4) can be found. In the case where a > 0, due to the absorbing
boundary, we need to modify the proof on the right boundary, and we use a Fourier
transform in time. A weak solution is obtained by a variational formulation, like in
[4, 29] for instance. The regularity is obtained as follows: we first modify the bound-

ary condition in (17) on the right at x = x2 to Dirichlet data g̃2 ∈ H
γ+ 3

4
t . Because of

the compatibility conditions on the left, and imposing symmetric compatibility con-
ditions on g̃2 on the right, there is a unique solution ũ ∈ H 2(γ+1),(γ+1)(O × (0, T )),
see [27]. The difference v = u − ũ is solution of the homogeneous case of (23),
but the boundary condition on the right becomes La(u − ũ) = q2 := g2 − Laũ. By

the regularity results above, q2 is in H
γ− 1

4
t . To estimate v, we will make use of the

Fourier transform. We extend all functions by 0 in R−, and smoothly into (T , +∞),
and define

v̂(ω) = 1

2π

∫

R

e−iω t v(t) dt.

Since the initial value vanishes, the equation is Fourier transformed in time to

̂Lad v̂ := −ν∂2x v̂ + a∂xv̂ + (c + iω)v̂ = 0 on O × C.

This is for each ω an ordinary differential equation, with characteristic roots

λ+(ω) = 1

2ν

(

a +
√

a2 + 4ν(c + iω)
)

, λ−(ω) = 1

2ν

(

a −
√

a2 + 4ν(c + iω)
)

,

(20)
with Re(λ+) > 0 and Re(λ−) < 0. The general solution is

v̂(x, ω) = �+(ω)eλ+x + �−(ω)eλ−x.

Using the boundary conditions, we then get the solution

v̂(x, ω) = q̂2(ω)
eλ+(x−x1) − eλ−(x−x1)

νλ2+eλ+(x2−x1) − νλ2−eλ−(x2−x1)
, (21)

where we have used the relation c + iω + aλ± = ν(λ±)2. The value at x = x2 can
be equivalently written as

v̂(x2, ω) = q̂2(ω)
e−(λ+−λ−)(x2−x1) − 1

νλ2+
(

(

λ−
λ+

)2
e−(λ+−λ−)(x2−x1) − 1

) . (22)

In order to estimate the regularity of v(x2, ·), we need to estimate the multiplicative
factor on the right for large ω. We can see from (20) that λ+(ω) ∼ −λ−(ω) ∼
√

iω
ν
. Therefore |v̂(x2, ω)| ∼

∣

∣

∣

∣

q̂2(ω)

νλ2+

∣

∣

∣

∣

∼
∣

∣

∣

q̂2(ω)
ω

∣

∣

∣ . Since q2 ∈ H
γ− 1

4
t , we conclude

that v(x2, ·) ∈ H
γ+ 3

4
t . Then v is solution of the advection-diffusion equation with

Dirichlet boundary conditions, and the data has sufficient regularity to conclude.
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3 Properties of the factorization algorithm for positive advection

We consider the advection-diffusion equation in Ω = (−L1, L2) with Dirichlet
boundary condition on the left, and absorbing boundary condition given by the
transport operator on the right (see [25]),

Ladu := ∂tu − ν∂2xu + a∂xu + cu = f in Ω × (0, T ),

u(−L1, ·) = g1 on (0, T ),

Lau(L2, ·) = g2 on (0, T ),

u(·, 0) = h in Ω.

(23)

We suppose in this section that f and g1 are compactly supported in (0, T ], that h

is compactly supported in Ω1 = (−L1, 0), and that for each t the function f (·, t) is
compactly supported in Ω . We further assume that the boundary condition at L2 is
absorbing, that is g2 = 0. Therefore the compatibility conditions are satisfied to any

order on both ends of the interval Ω , and for f ∈ H
9
2 , 94 (Ω × (0, T )), h ∈ H

11
2

x , and

g1 ∈ H 3
t , u is defined in H

13
2 , 134 (Ω × (0, T )).

3.1 Well-posedness

The remainder R for computing uk
ma in the new factorization algorithm (6) contains

two time derivatives, which lead to an important loss of regularity at each iteration.
We will however see that the error order in ν can not be improved further after two
iterations, and hence we only study the first two iterations in detail. We start with the
well-posedness of the algorithm.

Algorithm (6) starts with an initial guess g0
ad as boundary condition for ua . We

assume that g0
ad ∈ H 4

t and is compactly supported in (0, T ]. Using that f ∈ H 4(Ω2×
(0, T )), that h vanishes in Ω2, and that the compatibility conditions at x = 0, t = 0
are satisfied, the solution of

Lau
1
a = f in Ω2, u1a(0, ·) = g0

ad, u1a(·, 0) = 0

satisfies u1a ∈ H 4(Ω2 × (0, T )).
The right hand side for the modified advection equation in (6) is then f 1

ma =
a2

ν
f + Ru1a ∈ H 2(Ω2 × (0, T )), and solving

Lmau
1
ma = f 1

ma in Ω2, u1ma(L2, ·) = 0, u1ma(·, 0) = 0,

the compatibility conditions at x = L2 are again satisfied to any order, which implies
that u1ma ∈ H 2(Ω2 × (0, T )) and u1ma(0, ·) ∈ H 2(0, T ). The latter then becomes the
right boundary data for the advection diffusion problem in Ω1,

Ladu1ad =f in Ω1, u1ad(−L1, ·) = g1, Lau
1
ad(0, ·)=u1ma(0, ·), u1ad(·, 0)=h.

We have seen already that the compatibility conditions on the left are satisfied,
and on the right, at the corner (0, 0), with the regularity of u1ma , the condition
u1ma(0, 0) − νd2

xh(0) = f (0, 0) holds, since both sides of this equality vanish. Since

f ∈ H
9
2 , 94 (Ω × (0, T )), h ∈ H

11
2

x , g1 ∈ H 3
t , and u1ma(0, ·) ∈ H 2

t , we obtain
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u1ad ∈ H
13
2 , 134 (Ω1 × (0, T )) and u1ad(0, ·) ∈ H 3

t , and at the corner (0, 0), we have for
g1

ad := u1ad(0, ·)
g1

ad(0) = h(0), dtg
1
ad(0) + Madh(0) = f (0, 0),

d2
t g1

ad(0) − M2
adh(0) = ∂tf (0, 0) − Madf (0, 0). (24)

We now start the second iteration with the computation of u2a , using u1a(0, ·) = g1
ad =

u1ad(0, ·) ∈ H 3
t . Since h is compactly supported in Ω1, Mp

adh(0) = Mp
a h(0) = 0,

and (24) are appropriate compatibility conditions to compute u2a ∈ H 3(Ω2 × (0, T )).
We define the new right hand side

f 2
ma = a2

ν
f + Ru2a ∈ H 1(Ω2 × (0, T )),

and compute the solution of

Lmau
2
ma = f 2

ma in Ω2, u2ma(L2, ·) = 0, u2ma(·, 0) = 0.

We thus obtain u2ma ∈ H 1(Ω2 × (0, T )) and u2ma(0, ·) ∈ H 1(0, T ). The last step of
the second iteration is to compute u2ad solution of

Ladu2ad =f in Ω1, u1ad(−L1, ·)=g1, Lau
1
ad(0, ·)=u2ma(0, ·), u1ad(·, 0) = h,

and we need only to satisfy a compatibility condition on the left, which implies that

u2ad ∈ H
9
2 , 94 (Ω × (0, T )).

3.2 Error estimates for the factorization algorithm

We present now asymptotic error estimates for small viscosity ν when u, the viscous
solution of (23), is approximated by (uk

ad , uk
a), the solution obtained by our new

factorization algorithm (6). We define the error quantities ek
a := uk

a − u, ek
ad :=

uk
ad − u, ek

ma := uk
ma −Lau := uk

ma − uma , and suppose that all our data is C∞ in all
variables. The error equations are

⎧

⎨

⎩

Lae
k
a = −ν∂2xu in Ω2,

ek
a(0, ·) = ek−1

ad (0, ·),
ek
a(·, 0) = 0,

⎧

⎨

⎩

Lmae
k
ma = Rek

a in Ω2,

ek
ma(L2, ·) = 0,

ek
ma(·, 0) = 0,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ladek
ad = 0 in Ω1,

ek
ad(−L1, ·) = 0,
Lae

k
ad(0, ·) = ek

ma(0, ·),
ek
ad(·, 0) = 0,

(25)
with e0ad(0, ·) := g0

ad − u(0, ·). We need more precise estimates than those pro-
vided by Theorems 2 and 3. First, we state precisely the initial conditions for all the
equations involved: the parabolic problems in Ω and Ω1 will use

∂k
t u(·, 0) = (−Mad)kh and ∂k

t u
p
ad(·, 0) = (−Mad)kh,

the forward hyperbolic problem in Ω2 uses

∂k
t u

p
a (·, 0) = (−Ma)

kh = 0,
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and the backward hyperbolic problem in Ω2 uses

∂k
t u

p
ma(·, 0) =

k−1
∑

j=0

(−Mma)
j ∂

k−1−j
t f

p
ma(·, 0) + (−Mma)

kuma,0 = 0.

The solution of the exact backward hyperbolic problem in Ω2 has as initial condition

∂k
t uma(·, 0) =

k−1
∑

j=0

(−Mma)
j ∂

k−1−j
t fma(·, 0) + (−Mma)

kuma,0 = 0,

from which we infer the initial values for the errors such that

∂k
t e

p
ad(·, 0) = 0 in Ω1, ∂k

t e
p
a (·, 0) = 0 and ∂k

t e
p
ma(·, 0) = 0 in Ω2. (26)

We start with estimates for the solution of the advection-diffusion equation (23) with
vanishing initial data and vanishing boundary data g1. A first lemma gives results
for the problem with g2 = 0, based on energy estimates, and a second lemma gives
estimates where only the right-hand side f is non-zero.

Lemma 1 Suppose that a > 0, and that h vanishes identically inΩ , g1 and g2 vanish
on (0, T ), and that f is in C∞

0 (Ω × (0, T ]). Then there is a positive constant C such
that for any ν > 0, and any k ≤ γ , the solution u1 of (23) satisfies the estimates

∥

∥

∥∂k
t u1

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k
t u1(L2, ·)

∥

∥

∥

2

L2
t

+ ν

∥

∥

∥∂k
t ∂xu1

∥

∥

∥

2

L2
x,t

≤ C

∥

∥

∥∂
k
t f

∥

∥

∥

2

L2
x,t

, (27)

ν

∥

∥

∥∂
k
t ∂2xu1

∥

∥

∥

L2
x,t

≤
∥

∥

∥∂
k
t f

∥

∥

∥

L2
x,t

. (28)

Proof Since the compatibility conditions are satisfied, u1 is in H∞, and the initial
value of ∂k

t u1 vanishes as well. We start with k = 0: multiplying the equation by u1
and integrating over Ω , taking into account that u1 vanishes at −L1 gives

1

2

d

dt
‖u1(·, t)‖2L2

x
+ c‖u1(·, t)‖2L2

x
+ ν‖∂xu1(·, t)‖2L2

x

+ a

2
u21(L2, t) − ν(u1∂xu1)(L2, t) =

∫

Ω

f (x, t)u1(x, t)dx.

Using the boundary condition at L2 yields

1

2

d

dt

(

‖u1(·, t)‖2L2
x

+ ν

a
u21(L2, t)

)

+ c‖u1(·, t)‖2L2
x
+ ν‖∂xu1(·, t)‖2L2

x

+
(a

2
+ νc

a

)

u21(L2, t) =
∫

Ω

f (x, t)u1(x, t)dx,

and by Cauchy-Schwarz and Young’s inequality we obtain
∫

Ω

f (x, t)u1(x, t)dx ≤ ‖u1(·, t)‖L2
x
‖f (·, t)‖L2

x
≤ c

2
‖u1(·, t)‖2L2

x
+ 1

2c
‖f (·, t)‖2

L2
x
.
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Integrating in time over (0, T ), and dropping the first term which is positive, we
obtain, since the initial data vanishes, the inequality

c‖u1‖2L2
x,t

+ 2ν‖∂xu1‖2L2
x,t

+ a‖u1(L2, ·)‖2L2
t

≤ 1

c
‖f ‖2

L2
x,t

,

which proves (27) for k = 0. To prove (28), we multiply the equation by −∂2xu1 and
integrate in x,

ν‖∂2xu1(·, t)‖2L2
x

−
(

∂tu1(·, t), ∂2xu1(·, t)
)

− a
(

∂xu1(·, t), ∂2xu1(·, t)
)

− c
(

u1(·, t), ∂2xu1(·, t)
)

= −
(

f (·, t), ∂2xu1(·, t)
)

.

An integration by parts leads to

ν

∥

∥

∥∂
2
xu1(·, t)

∥

∥

∥

2

L2
x

+ 1

2

d

dt
‖∂xu1(·, t)‖2L2

x
+ c‖∂xu1(·, t)‖2L2

x
−
[

∂xu1(·, t)
(

∂tu1+ a

2
∂xu1

+ cu1

)

(·, t)
]L2

−L1

=−
(

f (·, t), ∂2xu1(·, t)
)

.

By the boundary conditions, the boundary terms become

a(∂xu1)
2(−L1, t) + 1

a
(∂tu1 + cu1)

2(L2, t) > 0.

We can now integrate in time and use Cauchy-Schwarz and Young’s inequality to
obtain

ν

∥

∥

∥∂
2
xu1

∥

∥

∥

2

L2
x,t

≤ 1

ν
‖f ‖2

L2
x,t

.

The estimates with the time derivative are obtained by applying the equation to ∂k
t u.

Lemma 2 Assume that a > 0. Then there are constants ν̄ > 0 and C > 0 such that
for ν ≤ ν̄, and for any g2 ∈ C∞

0 ((0, T ]), the solution u2 of (23) with zero data h, f
and g1 satisfies for all k ≤ γ the inequalities

∀x ∈ [−L1, L2],
∥

∥

∥∂
k
t u2(x, ·)

∥

∥

∥

L2
t

≤ Cν‖g2‖Hk
t
,

∥

∥

∥∂
k
t u2

∥

∥

∥

L2
x,t

≤ Cν
3
2 ‖g2‖Hk

t
,

∥

∥

∥∂x∂
k
t u2

∥

∥

∥

L2
x,t

≤ Cν
1
2 ‖g2‖Hk

t
,

∥

∥

∥∂
2
x ∂k

t u2

∥

∥

∥

L2
x,t

≤ Cν− 1
2 ‖g2‖Hk

t
. (29)

Proof We use a Fourier transform argument as in the proof of Theorem 3, and rewrite
(21) as

û2(x, ω) = ĝ2(ω) eλ+(x−L2)
e−(λ+−λ−)(x+L1) − 1

νλ2+
(

(

λ−
λ+

)2
e−(λ+−λ−)(L2+L1) − 1

) . (30)
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Now we search for estimates in ν that are uniform in ω. We have for the roots λ± the
estimates

|λ−/λ+| < 1, Re(λ+ − λ−) ≥ a/ν, |λ+| ≥ a/ν.

The numerator in (30) is bounded by 2. A lower bound for the denominator is

obtained by writing |νλ2+| ≥ a2

ν
together with

∣

∣

∣

∣

∣

1 −
(

λ−
λ+

)2

e−(λ+−λ−)(L2+L1)

∣

∣

∣

∣

∣

≥ 1−
∣

∣

∣

∣

λ−
λ+

∣

∣

∣

∣

2

e−Re(λ+−λ−)(L2+L1) ≥ 1−e− a
ν
(L2+L1).

Inserting these estimates into (30) gives

|û2(x, ω)| ≤ 2ν

a2
|ĝ2(ω)|eReλ+(x−L2)

1

1 − e− a
ν
(L2+L1)

.

Since 1/|1− μ| < 2 for μ < 1/2, for ν sufficiently small so that e− a
ν
(L2+L1) < 1/2,

we have for any ω,

|û2(x, ω)| ≤ 4ν

a2
|ĝ2(ω)|eReλ+(x−L2) ≤ Cν |ĝ2(ω)|. (31)

By Parseval’s identity, we obtain

‖u2(x, ·)‖L2(R+) ≤ Cν ‖g2‖L2(R+). (32)

Modifying now g2 to vanish in [T + ε, ∞), the solution in (0, T ) remains unaffected
by causality and for any positive ε,

‖u2(x, ·)‖L2(0,T ) ≤ Cν ‖g2‖L2(0,T +ε).

Since ε is arbitrary, we conclude that

‖u2(x, ·)‖L2(0,T ) ≤ Cν ‖g2‖L2(0,T ).

From (31) we also obtain for all ω

‖û2(·, ω)‖2
L2

x
≤ Cν2

Reλ+
|ĝ2(ω)|2 ≤ Cν3 |ĝ2(ω)|2.

We thus obtain

‖u2‖L2
x,t

≤ Cν
3
2 ‖g2‖L2

t
.

For the derivative in space, we compute

∂xû2(x, ω) = ĝ2(ω)
λ+eλ+(x+L1) − λ−eλ−(x+L1)

νλ2+eλ+(L2+L1) − νλ2−eλ−(L2+L1)

= ĝ2(ω) eλ+(x−L2)

λ−
λ+ e−(λ+−λ−)(x+L1) − 1

νλ+
(

(

λ−
λ+

)2
e−(λ+−λ−)(L2+L1) − 1

) .



Numer Algor

For small ν, we therefore get as before

|∂xû2(x, ω)| ≤ 4

ν|λ+| |ĝ2(ω)| eReλ+(x−L2) ≤ 4

a
|ĝ2(ω)| eReλ+(x−L2),

which gives ‖∂xû2‖2L2(Ω×R)
≤ Cν‖ĝ2‖2L2(R)

, and using the same arguments as
before,

‖∂xu2‖L2
x,t

≤ Cν
1
2 ‖g2‖L2

t
.

In the same way we find that
∥

∥

∥∂
2
xu2

∥

∥

∥

L2
x,t

≤ Cν− 1
2 ‖g2‖L2

t
.

Theorem 4 Let a > 0. Then there exist positive constants C and ν̄ such that for any
ν ≤ ν̄, and for any set of data h ∈ C∞

0 (Ω), f ∈ C∞
0 (Ω × (0, T ]), g1 ∈ C∞

0 ((0, T ])
and g2 ≡ 0, if U is the solution of the transport equation

LaU = f in Ω × (0, T ), U(·, 0) = h U(−L1, ·) = g1, (33)

then the solution u of the advection-diffusion equation (23) satisfies the estimate
∥

∥

∥∂
k
t (u − U)

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k
t (u − U)(L2, ·)

∥

∥

∥

2

L2
t

+ ν

∥

∥

∥∂
k
t ∂x(u − U)

∥

∥

∥

2

L2
x,t

+ ν2
∥

∥

∥∂
k
t ∂2x (u − U)

∥

∥

∥

2

L2
x,t

≤ Cν2
∥

∥

∥∂
k
t ∂2xU

∥

∥

∥

2

L2
x,t

. (34)

Hence u also satisfies the estimate
∥

∥

∥∂
k
t u

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k
t u(L2, ·)

∥

∥

∥

2

L2
t

+
∥

∥

∥∂k
t ∂xu

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k
t ∂2xu

∥

∥

∥

2

L2
x,t

≤ C

(

‖f ‖2
Hk+2

x,t

+ ‖h‖2
Hk+2

x
+ ‖g1‖2

Hk+2
t

)

. (35)

Proof Since the data is compactly supported, the compatibility conditions are auto-
matically satisfied, so that the solutions of the parabolic and hyperbolic equations
are in C∞

0 (Ω × (0, T ]). The estimates (34) follow directly from Lemma 1, using that
u−U is solution of the advection-diffusion equation in Ω with right hand side ν∂2xU ,
and zero initial and boundary conditions on the left. The boundary condition on the
right also vanishes, La(u − U) = −f (L2, ·) = 0, since f is compactly supported in
Ω . We define now Bk = ‖f ‖2

Hk
x,t

+ ‖h‖2
Hk

x
+ ‖g1‖2

Hk
t

, and use for U the hyperbolic

estimates (16) in O = Ω ,
∥

∥

∥∂
k
t U

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k
t U(L2, ·)

∥

∥

∥

2

L2
t

≤ CBk.
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Next, from the advection equation, we deduce that

a∂xU = −(∂t + c)U + f, and a2∂2xU = (∂t + c)2U + (a∂x − (∂t + c))f,

so that
∥

∥

∥∂
k
t ∂xU

∥

∥

∥

2

L2
x,t

≤ CBk+1,

∥

∥

∥∂k
t ∂2xU

∥

∥

∥

2

L2
x,t

≤ CBk+2,

and from (34) we obtain
∥

∥

∥∂
k
t (u − U)

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂k
t (u − U)(L2, ·)

∥

∥

∥

2

L2
t

≤ Cν2Bk+2,

∥

∥

∥∂
k
t ∂x(u − U)

∥

∥

∥

2

L2
x,t

≤ CνBk+2,

∥

∥

∥∂
k
t ∂2x (u − U)

∥

∥

∥

2

L2
x,t

≤ CBk+2.

Writing u = u − U + U gives
∥

∥

∥∂k
t u

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k
t u(L2, ·)

∥

∥

∥

2

L2
t

≤ C
(

Bk + ν2Bk+2

)

,

∥

∥

∥∂k
t ∂xu

∥

∥

∥

2

L2
x,t

≤ C(Bk+1 + νBk+2),

∥

∥

∥∂k
t ∂2xu

∥

∥

∥

2

L2
x,t

≤ CBk+2.

Therefore there is a new constant C and ν̄ such that for ν ≤ ν̄, (35) holds.

We now present an improved estimate for the solution of the modified advection
problem in Ω2.

Theorem 5 Let a > 0. Then there exist positive constants C and ν̄ such that, for
ν ≤ ν̄, and for any right hand side p compactly supported inΩ2×(0, T ], the solution
v of the initial boundary value problem with modified advection

⎧

⎨

⎩

Lmav = p in (0, L2) × (0, T ),

v(L2, ·) = 0 on (0, T ),
v(·, 0) = 0 in (0, L2)

satisfies the estimate
∥

∥

∥∂
k
t v(0, ·)

∥

∥

∥

2

L2
t

≤ Cν2
(

∥

∥

∥∂
k
t p(0, ·)

∥

∥

∥

2

L2
t

+ e−2
aL2
ν

∥

∥

∥∂
k
t p(L2, ·)

∥

∥

∥

2

L2
t

+ ν

∥

∥

∥∂k
t p

∥

∥

∥

2

H 1
x,t

)

.

(36)

Proof We first extend p by 0 on (T , +∞). As in Theorem 2, v can be obtained using
the method of characteristics,

v(0, t) =
∫ t

max(t− L2
a

,0)
p(a(t − σ), σ )e−c̃(t−σ)dσ,
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where c̃ = c + a2/ν. Integrating by parts, and denoting by dt the characteristic
derivative, i.e. dtφ = ∂tφ − a∂xφ, we obtain

v(0, t) = 1

c̃

⎛

⎜

⎜

⎜

⎜

⎝

p(0, t)
︸ ︷︷ ︸

I

−
{

0 for t < L2/a,

p
(

L2, t − L2
a

)

e−c̃
L2
a for t > L2/a

︸ ︷︷ ︸

II

−
∫ t

max(t− L2
a

,0)
dtp(a(t − σ), σ )e−c̃(t−σ)dσ

︸ ︷︷ ︸

III

⎞

⎟

⎟

⎟

⎠

.

The norm of the first term is ‖I‖L2
t

= ‖p(0, ·)‖L2
t
, and the norm of the second term

can be estimated as

‖II‖2
L2

t
=

∫ +∞
L2
a

p2
(

L2, t − L2

a

)

e−2c̃
L2
a dt ≤ e−2c̃L2/a‖p(L2, ·)‖2L2

t
.

For the norm of the third term, we get

‖III‖2
L2

t
=

∫
L2
a

0

(∫ t

0
dtp(a(t − σ), σ )e−c̃(t−σ) dσ

)2

dt

+
∫ +∞

L2
a

(

∫ t

t− L2
a

dtp(a(t − σ), σ )e−c̃(t−σ) dσ

)2

dt,

and using the Cauchy-Schwarz inequality, we obtain

‖III‖2
L2

t
≤ 1

2c̃

(

∫
L2
a

0

∫ t

0
(dtp)2(a(t − σ), σ ) dσ dt +

∫ +∞
L2
a

∫ t

t− L2
a

(dtp)2(a(t − σ), σ ) dσ dt

)

≤ 1

2c̃

∫ +∞

0

∫ L2

0
(dtp)2(x, t)dx dt ≤ 1

2c̃
‖p‖2

H 1
x,t

, (37)

which finally leads to the estimate

‖v(0, ·)‖2
L2

t
≤ C

c̃2

(

‖p(0, ·)‖2
L2

t
+ e−2c̃

L2
a ‖p(L2, ·)‖2L2

t
+ 1

2c̃
‖p‖2

H 1
x,t

)

.

Since c̃ ≥ a2

ν
, we get

‖v(0, ·)‖2
L2

t
≤ Cν2

(

‖p(0, ·)‖2
L2

t
+ e−2

aL2
ν ‖p(L2, ·)‖2L2

t
+ ν‖p‖2

H 1
x,t

)
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on the enlarged time interval (0, +∞). Using that the extension is vanishing for t ≥
T + ε gives the estimate (36) for k = 0 for any ε, and thus on (0, T ). Applying (36)
to ∂k

t v gives then the general result.

Theorem 6 Assume that a > 0, and letBk := ‖f ‖2
Hk

x,t

+‖h‖2
Hk

x
+‖g1‖2

Hk
t

. Then there

exist positive constants C and ν̄ such that, for any data h ∈ C∞
0 (Ω1), f ∈ C∞

0 (Ω ×
(0, T ]), g1 ∈ C∞

0 ((0, T ]) and g2 ≡ 0, and for any initial guess g0
ad ∈ C∞

0 ((0, T ])
and any ν ≤ ν̄, the approximation from the new algorithm (6) satisfies the error
bounds

∥

∥

∥u − u1a

∥

∥

∥

2

L2
x,t

≤ C

(

B2 +
∥

∥

∥g
0
ad

∥

∥

∥

2

L2
t

)

,

∥

∥

∥u − u1ad

∥

∥

∥

2

L2
x,t

≤ Cν5
(

B5 +
∥

∥

∥g
0
ad

∥

∥

∥

2

H 3
t

)

(38)

∥

∥

∥u − u2a

∥

∥

∥

2

L2
x,t

≤ Cν2
(

B5 + ν2
∥

∥

∥g0
ad

∥

∥

∥

2

H 3
t

)

,

∥

∥

∥u − u2ad

∥

∥

∥

2

L2
x,t

≤ Cν8
(

B8 + ν

∥

∥

∥g
0
ad

∥

∥

∥

2

H 6
t

)

.

(39)

Proof We start with the proof for the first iteration of the new algorithm (6), with the
initial guess g0

ad , which gives e0ad = g0
ad − u(0, ·) in the algorithm (25) satisfied by

the errors:

Advection: The error e1a is solution of an advection equation in Ω2 with right hand
side −ν∂2xu. Since the initial conditions vanish as described in (26), the hyperbolic
estimate in Theorem 2 gives

∥

∥

∥∂
k
t e1a

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k
t e1a(L2, ·)

∥

∥

∥

2

L2
t

≤ C

(

ν2
∥

∥

∥∂k
t ∂2xu

∥

∥

∥

2

L2
x,t

+
∥

∥

∥e0ad

∥

∥

∥

2

Hk
t

)

.

We bound ‖e0ad‖Hk
t

by ‖g0
ad‖Hk

t
+ ‖u(0, ·)‖Hk

t
. From (35), for small ν,

‖∂k
t u(0, ·)‖2

L2
x,t

(by the trace theorem) and ‖∂k
t ∂2xu‖2

L2
x,t

are bounded by CBk+2,

which gives

∥

∥

∥∂
k
t e1a

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k
t e1a(L2, ·)

∥

∥

∥

2

L2
t

≤ C

(

ν2Bk+2 +
∥

∥

∥e
0
ad

∥

∥

∥

2

Hk
t

)

≤ C

(

ν2Bk+2 +
∥

∥

∥g
0
ad

∥

∥

∥

2

Hk
t

+ Bk+2

)

. (40)

This equation gives for k = 0 and small ν the first estimate in (38).
Modified advection: Let p1

a(0, ·) := (∂t + c)2e1a(0, ·) = (∂t + c)2e0ad . We estimate
∂k
t e1ma at x = 0 using Theorem 5,

∥

∥

∥∂
k
t e1ma(0, ·)

∥

∥

∥

2

L2
t

≤ Cν2
(

∥

∥

∥∂k
t p1

a(0, ·)
∥

∥

∥

2

L2
t

+ e−2
aL2
ν

∥

∥

∥∂
k
t p1

a(L2, ·)
∥

∥

∥

2

L2
t

+ ν

∥

∥

∥∂k
t p1

a

∥

∥

∥

2

H 1
x,t

)

≤ Cν2
(

∥

∥

∥e0ad

∥

∥

∥

2

Hk+2
t

+ e−2
aL2
ν

∥

∥

∥∂k
t p1

a(L2, ·)
∥

∥

∥

2

L2
t

+ ν

∥

∥

∥∂
k
t p1

a

∥

∥

∥

2

H 1
x,t

)

. (41)
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For the last term on the right, we obtain
∥

∥

∥∂
k
t p1

a

∥

∥

∥

2

H 1
x,t

=
∥

∥

∥∂k
t p1

a

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂x∂
k
t p1

a

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k+1
t p1

a

∥

∥

∥

2

L2
x,t

≤ C

(

∥

∥

∥p
1
a

∥

∥

∥

2

Hk+1(0,T ;L2
x)

+
∥

∥

∥∂xp
1
a

∥

∥

∥

2

Hk(0,T ;L2
x)

)

≤ C

(

∥

∥

∥e
1
a

∥

∥

∥

2

Hk+3(0,T ;L2
x)

+
∥

∥

∥∂xe
1
a

∥

∥

∥

2

Hk+2(0,T ;L2
x)

)

.

Since Lae
1
a = −ν∂2xu, we get ∂xe

1
a = − 1

a
(ν∂2xu + (∂t + c)e1a), and hence

‖∂xe
1
a‖Hk+2(0,T ;L2

x) ≤ C(ν‖∂2xu‖Hk+2(0,T ;L2
x) + ‖e1a‖Hk+3(0,T ;L2

x)). Using (40), we
finally obtain

∥

∥

∥∂
k
t p1

a

∥

∥

∥

2

H 1
x,t

≤ C

(

ν2Bk+5 +
∥

∥

∥e0ad

∥

∥

∥

2

Hk+3
t

+ ν2
∥

∥

∥∂
2
xu

∥

∥

∥

2

Hk+2(0,T ;L2
x)

)

.

We use now (35) which gives ‖∂2xu‖2
Hk+2(0,T ;L2

x)
≤ CBk+4 and return to (41).

From the hyperbolic estimate (40), we see that ‖∂k
t e1a(L2, ·)‖2

L2
t

and ‖∂k
t e1a‖2L2

x,t

are bounded by the same quantity, and hence we can also use the same bound for

e−2
aL2
ν ‖∂k

t p1
a(L2, ·)‖2

L2
t

and ν‖∂k
t p1

a‖2H 1
x,t

,

∥

∥

∥∂
k
t e1ma(0, ·)

∥

∥

∥

2

L2
t

≤ C

(

ν2
∥

∥

∥e
0
ad

∥

∥

∥

2

Hk+3
t

+ ν5Bk+5

)

. (42)

Advection-diffusion: e1ad is solution of the advection-diffusion equation with non-
zero data only on the right. Therefore, applying Lemma 2 in Ω1 with g2 =
e1ma(0, ·), we obtain

∥

∥

∥e
1
ad

∥

∥

∥

2

L2
x,t

≤ Cν3
∥

∥

∥e
1
ma(0, ·)

∥

∥

∥

2

L2
t

.

Using (42) with k = 0 for the last term, we obtain
∥

∥

∥e
1
ad

∥

∥

∥

2

L2
x,t

≤ Cν5
(

∥

∥

∥e
0
ad

∥

∥

∥

2

H 3
t

+ ν2B5

)

≤ Cν5
(

B5 +
∥

∥

∥g
0
ad

∥

∥

∥

2

H 3
t

)

. (43)

This equation gives the second estimate in (38), but we will also need to estimate
the value of e1ad at x = 0. Using (29) we get

∥

∥

∥∂
k
t e1ad(0, ·)

∥

∥

∥

2

L2
t

≤ Cν2
∥

∥

∥∂
k
t e1ma(0, ·)

∥

∥

∥

2

L2
t

,

which gives by (42) again
∥

∥

∥∂k
t e1ad(0, ·)

∥

∥

∥

2

L2
t

≤ Cν4
(

ν3Bk+5 +
∥

∥

∥e
0
ad

∥

∥

∥

2

Hk+3
t

)

. (44)

In particular, we have
∥

∥

∥R e1ad(0, ·)
∥

∥

∥

2

L2
t

≤ Cν4
(

ν3B7 +
∥

∥

∥e
0
ad

∥

∥

∥

2

H 5
t

)

. (45)

We now prove the error estimates for the second iteration:
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Advection: We again use the hyperbolic estimates for e2a . Since the initial values are
also vanishing, we obtain as in (40) the estimate

∥

∥

∥∂k
t e2a

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k
t e2a(L2, ·)

∥

∥

∥

2

L2
t

≤ C

(

ν2Bk+2 +
∥

∥

∥e1ad(0, ·)
∥

∥

∥

2

Hk
t

)

. (46)

Inserting (44) we get

∥

∥

∥∂
k
t e2a(L2, ·)

∥

∥

∥

2

L2
t

+
∥

∥

∥∂
k
t e2a

∥

∥

∥

2

L2
x,t

≤ C

(

ν2Bk+2 + ν4
(

ν3Bk+5 +
∥

∥

∥e
0
ad

∥

∥

∥

2

Hk+3
t

))

≤ Cν2
(

Bk+5 + ν2
∥

∥

∥e
0
ad

∥

∥

∥

2

Hk+3
t

)

(47)

≤ Cν2
(

Bk+5 + ν2
∥

∥

∥g
0
ad

∥

∥

∥

2

Hk+3
t

+ ν2Bk+5

)

.

The last estimate with k = 0 gives the first result in (39).
Modified advection: Defining p2

a := R e2a = (∂t + c)2e2a , we obtain using (47)

∥

∥

∥∂k
t p2

a(L2, ·)
∥

∥

∥

2

L2
t

+
∥

∥

∥∂
k
t p2

a

∥

∥

∥

2

L2
x,t

≤ Cν2
(

Bk+7 +
∥

∥

∥e
0
ad

∥

∥

∥

2

Hk+5
t

)

. (48)

We estimate e2ma at x = 0 by Theorem 5,

∥

∥

∥e2ma(0, ·)
∥

∥

∥

2

L2
t

≤ Cν2
(

∥

∥

∥p
2
a(0, ·)

∥

∥

∥

2

L2
t

+ e−2
aL2
ν

∥

∥

∥p
2
a(L2, ·)

∥

∥

∥

2

L2
t

+ ν

∥

∥

∥p
2
a

∥

∥

∥

2

H 1
x,t

)

.

(49)
As in the first step, the term at the boundary x = L2 is absorbed in the volume
term, and p2

a(0, ·) = R e1ad(0, ·), which can be estimated by (45). To estimate the
term ‖p2

a‖H 1
x,t
, we proceed as in the first iteration, to obtain

∥

∥

∥p
2
a

∥

∥

∥

2

H 1
x,t

≤ C

(

∥

∥

∥e
2
a

∥

∥

∥

2

H 3(0,T ;L2
x)

+ ν2
∥

∥

∥∂
2
xu

∥

∥

∥

2

H 2(0,T ;L2
x)

)

≤ C

(

∥

∥

∥e
2
a

∥

∥

∥

2

H 3(0,T ;L2
x)

+ ν2B4

)

≤ Cν2
(

B8 + ν2
∥

∥

∥e
0
ad

∥

∥

∥

2

H 6
t

)

. (50)

Inserting (45) and (50) into (49) we get

∥

∥

∥e
2
ma(0, ·)

∥

∥

∥

2

L2
t

≤ Cν2
(

ν4
(

ν3B7 +
∥

∥

∥e
0
ad

∥

∥

∥

2

H 5
t

)

+ ν3
(

B8 + ν2
∥

∥

∥e
0
ad

∥

∥

∥

2

H 6
t

))

≤ Cν5
(

B8 + ν

∥

∥

∥e
0
ad

∥

∥

∥

2

H 6
t

)

.
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Advection-diffusion: e2ad is solution of the advection-diffusion equation with data
only on the right. Therefore, applying Lemma 2 in Ω1 with g2 = e2ma(0, ·), we
obtain

∥

∥

∥e
2
ad

∥

∥

∥

2

L2
x,t

≤ Cν3
∥

∥

∥e2ma(0, ·)
∥

∥

∥

2

L2
t

≤ Cν8
(

B8 + ν

∥

∥

∥e0ad

∥

∥

∥

2

H 6
t

)

.

4 Properties of the factorization algorithm for negative advection

We consider now the advection-diffusion equation for a < 0 in Ω = (−L1, L2) with
Dirichlet boundary conditions on both sides,

Ladu := ∂tu − ν∂xxu + a∂xu + cu = f in Ω × (0, T ),

u(−L1, ·) = g1 in (0, T ),

u(L2, ·) = g2 in (0, T ),

u(·, 0) = h in Ω.

(51)

We suppose again that f and (g1, g2) are compactly supported in (0, T ], but now
that h is compactly supported in Ω2 = (0, L2). We also assume that for each t the
function f (·, t) is compactly supported in Ω .

4.1 Well-posedness of the factorization algorithm

For u1a , suppose that f ∈ H 3+ 3
4 (Ω × (0, T )), g2 ∈ H 3+ 3

4 (0, T ), h ∈ H 3+ 3
4 (Ω), and

that the compatibility conditions (15) are satisfied. Then we have a unique solution

u1a in H 3+ 3
4 (Ω2 × (0, T )). For u2a , using the previous result, we have f − R u1a ∈

H 1+ 3
4 (Ω2 × (0, T )), and Lmau

1
a ∈ H 2+ 3

4 (Ω2 × (0, T )). Therefore the traces at

x = L2 and t = 0 are in H 1+ 3
4 and compatible. Thus (7) defines a unique u2a in

H 1+ 3
4 (Ω2 × (0, T )). Furthermore u2a(0, ·) ∈ H

5
4 (0, T ). For uad , Theorem 3 applies

with γ = 5
4 , and (7) defines a unique uad in H

9
2 , 94 (Ω1 × (0, T )). Finally for u, using

the regularity assumptions above, u ∈ H 2(γ+1),γ+1(Ω × (0, T )) with γ = 11
8 .

4.2 Error estimates for the factorization algorithm

We need a further lemma in order to obtain our asymptotic estimates.

Lemma 3 Suppose a < 0, and let g ∈ L2(0, T ). Then there exists a constant C > 0,
such that for all ν > 0 the solution v of

Ladv = 0 in Ω1 × (0, T ),

v(−L1, ·) = 0 on (0, T ),
(

∂t − a∂x +
(

a2

ν
+ c

))

v(0, ·) = g on (0, T ),

v(·, 0) = 0 in Ω1,

(52)
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satisfies the a priori estimate

‖v‖2
L2

x,t
≤ Cν2‖g‖2

L2
t
.

Proof Multiplying the equation by v, integrating on (−L1, 0) and using the boundary
condition at x = −L1 yields

1

2

d

dt
‖v(·, t)‖2

L2
x
− |a|

2
v2(0, t)+ν‖∂xv(·, t)‖2

L2
x
−ν∂xv(0, t)v(0, t)+c‖v(·, t)‖2

L2
x

= 0.

Inserting the boundary condition at x = 0 we obtain

1

2

d

dt

(

‖v(·, t)‖2
L2

x
+ ν

|a|v
2(0, t)

)

+
( |a|

2
+ νc

|a|
)

v2(0, t)

+ν‖∂xv(·, t)‖2
L2

x
+ c‖v(·, t)‖2

L2
x

= ν

|a|g(t)v(0, t).

Using the inequality ν|g(t)v(0, t)|/|a| ≤ ν2

|a|3 g
2(t) + |a|

4 v2(0, t) and integrating on
the time interval (0, T ) gives for all t ∈ (0, T )

c‖v‖2
L2

x,t
≤ ν2

|a|3
∫ t

0
g2(τ ) dτ.

We can now prove our main theorem for negative advection.

Theorem 7 Suppose a < 0. Then there are positive constants C and ν̄ such that for
any h ∈ C∞

0 (Ω2), f ∈ C∞
0 (Ω × (0, T ]), g1, g2 ∈ C∞

0 ((0, T ]), and for any ν ≤ ν̄,
the solution obtained by the new factorization algorithm (7) satisfies the estimates

∥

∥

∥u − u1a

∥

∥

∥

L2
x,t

≤ Cν

∥

∥

∥∂2xu

∥

∥

∥

L2
x,t

, (53)

‖u − uad‖L2
x,t

≤ Cν2
(

‖u‖H 2
x,t

+ ‖f (·, 0)‖H 2
x

+ ‖h‖H 4
x

+
∥

∥

∥∂2xu(L2, ·)
∥

∥

∥

L2
t

)

,

(54)

which implies that
∥

∥

∥u − u1a

∥

∥

∥

L2
x,t

� ν, ‖u − uad‖L2
x,t

� ν2.

Proof We define the errors e1a := u1a − u, ead := uad − u, and e2a := u2a − Lmau.
Since Lmau(·, 0) = f (·, 0) − 2adxh + a2h/ν + νd2

xh, the equations for the error are

⎧

⎨

⎩

Lae
1
a = −ν∂2xu in Ω2,

e1a(L2, ·) = 0,
e1a(·, 0) = 0,

⎧

⎨

⎩

Lae
2
a = R e1a in Ω2,

e2a(L2, ·) = Lmae
1
a(L2, ·),

e2a(·, 0) = −νd2
xh,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ladead = 0 in Ω1,

ead(−L1, ·) = 0,
Lmaead(0, ·) = e2a(0, ·),
ead(·, 0) = 0.

We now analyze each of the three solves separately:
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First advection equation in Ω2: With Theorem 2, we find that the error e1a satisfies
for k = 0, 1 and2 the estimate

∥

∥

∥∂
k
t e1a

∥

∥

∥

2

L2
x,t

+|a|
∥

∥

∥∂
k
t e1a(0, ·)

∥

∥

∥

2

L2
t

≤ C

(

ν2
∥

∥

∥∂
k
t ∂2xu

∥

∥

∥

2

L2
x,t

+
∥

∥

∥∂
k
t e1a(·, 0)

∥

∥

∥

2

L2
x

)

. (55)

The case k = 0 yields the first result of the theorem. We further compute

∂t e
1
a(·, 0) = −νd2

xh, ∂2t e1a(·, 0) = ν(adx + c)d2
xh − νd2

x∂tu(·, 0),
with ∂tu(·, 0) = f (·, 0) − (adxh + ch − νd2

xh), so that

∥

∥

∥∂t e
1
a(·, 0)

∥

∥

∥

2

L2
x

≤ ν2‖h‖H 2
x
,

∥

∥
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2
t e1a(·, 0)

∥

∥

∥

2 ≤ ν2
(

‖f (·, 0)‖2
H 2

x
+ ‖h‖2

H 4
x

)

.

We thus obtain forR e1a = (c + ∂t )
2e1a the estimate

∥

∥

∥R e1a

∥

∥

∥

2

L2
x,t

≤ Cν2
(

‖u‖2
H 2

x,t
+ ‖f (·, 0)‖2

H 2
x

+ ‖h‖2
H 4

x

)

. (56)

Second advection equation in Ω2: Using again Theorem 2, we obtain the estimate

∥

∥

∥e
2
a(0, ·)

∥

∥

∥

2

L2
t

≤ C

(

∥

∥

∥R e1a

∥

∥

∥

2

L2
x,t
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H 2

x
+

∥

∥

∥Lmae
1
a(L2, ·)

∥

∥

∥

2

L2
t

)

.

To evaluate Lmae
1
a(L2, ·), we observe that u(L2, ·) = ua(L2, ·), so that we have

Lmae
1
a(L2, ·) = −a∂xe

1
a(L2, ·) = ν∂2xu(L2, ·). Therefore, using (56), we get

∥

∥

∥e
2
a(0, ·)

∥

∥

∥
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L2
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x
+

∥

∥
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2
xu(L2, ·)

∥

∥

∥

2

L2
t

)

.

(57)
Advection-diffusion equation in Ω1: With Lemma 3 we obtain

‖ead‖2
L2

x,t
≤ Cν2

∥

∥

∥e
2
a(0, ·)

∥

∥

∥

2

L2
t

.

We can thus conclude using (57).

It remains to estimates ‖∂2xu(L2, ·)‖L2
t
and ‖∂2xu‖L2(Ω2×(0,T )). If the data is

compactly supported, there is only one boundary layer, at x = −L1, and (see [30])

u(t, x) = U(t, x) + ea(x+L1)/νU(t, 0) + O(ν), (note a < 0).

Here, U is the solution of the advection equation in Ω with data g2 at x = L2. The
norm of ∂xxu, though not bounded in the entire interval Ω , is bounded in Ω2, since

∥

∥

∥d2
x ea(x+L1)/ν

∥

∥

∥

2

L2(Ω2)
= |a|3

2ν3

(

e2aL1/ν − e2a(L2+L1)/ν
)

∼ |a|3
2ν3

e2aL1/ν,

which tends to zero as ν goes to zero, because a < 0. Similarly the value at L2 is
bounded.
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Fig. 1 Left: contour plot for the right hand side in space and time. Right: initial condition a > 0

5 Numerical experiments

We start with numerical experiments in one spatial dimension. We use a Crank-
Nicolson scheme for the advection-diffusion equation and an implicit upwind scheme
for the advection equation. We discretize Ω := (−1, 1) with N = 64000 points,
which leads to a spatial step �x = 3.125 × 10−5 and the time step �t = �x. We
choose c = 1, g1 ≡ g2 ≡ 0, T = 1 and the right hand side, shown in Fig. 1 on the
left, is

f (x, t) = f1(t)f2(x, t),

f1(t) = (sin4(4π(t − t0)) + sin4(2π(t − t0))/2)χt>t0 , t0 = 0.1,

f2(x, t) = e−100x2/4 + e−100(x−t/4−0.4)2 + e−100(x+t/2+0.4)2 .

For the case of positive advection, we choose a = 1, with the initial condition,
shown in Fig. 1 on the right,

u0(x) = e−100(x−x0)
2
, with x0 = −0.6.

Figure 2 shows first snapshots in time of the right hand side, and then of the viscous
solution (23) and the solution obtained by the factorization algorithm (6) after one
and two iterations when ν = 10−3. We see that in the first iteration the solution u1ad is
very close to the viscous solution. This solution is improved with the second iteration
when ua is also improved.

Figure 3 shows the L2 space-time error as a function of the viscosity becoming
small for the factorization algorithm (6) and gives a comparison to algorithms from
the literature. These algorithms solve an advection-diffusion equation Laduad = f

in Ω1 and an advection equation Laua = f in Ω2, and use for a > 0 either non-
variational transmission conditions ∂xuad(0, ·) = ∂xua(0, ·) and uad(0, ·) = ua(0, ·),
see [12, 22], or variational transmission conditions ν∂xuad(0, ·) = 0 and uad(0, ·) =
ua(0, ·), see [22, 23]. We see that the variational transmission conditions do not need
an iteration in this case, one can first solve advection-diffusion, and then advection.
The error is however O(ν

3
2 ) in the viscous region Ω1. With only one iteration of
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Fig. 2 From left to right: snapshots at time t = 0.25, 0.5 and 0.75. First line: right hand side. Second line:
solution of Algorithm (6) at iteration k = 1. Third line: solution of Algorithm (6) at iteration k = 2

the factorization algorithm, the error is already O(ν
5
2 ), and with two iterations we

get O(ν4), both corresponding to our theoretical results in Theorem 6. The non-

variational transmission conditions also give an error O(ν
5
2 ), as good as with one

iteration of the factorization algorithm, but one needs to iterate and choosing a good
relaxation parameter to ensure convergence is not easy; we chose heuristically θ =

1
450

√
ν
in our computations. In the inviscid subregion Ω2, the error of all methods is

O(ν), only the initialization step in the factorization algorithm has an error of O(1),
as predicted by Theorem 6.

We now consider a negative advection example, a = −1, with initial condition

u0(x) = e−100(x−x0)
2
, with x0 = 0.5.

Figure 4 shows the L2 space-time error between the viscous solution and the solu-
tion of the factorization algorithm (7), and also a comparison to the errors of the
other coupling algorithms from the literature; the variational coupling conditions for
a < 0 are −ν∂xuad(0, ·) + auad(0, ·) = aua(0, ·), and the non-variational ones are
uad(0, ·) = ua(0, ·). Once again the error in Ω2 is O(ν) for each algorithm, since
each algorithm solves the same advection equation in Ω2. However the factorization
algorithm solves then a second advection equation which provides a better boundary
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value for the advection-diffusion problem in Ω1 and thus can provide an errorO(ν2),
whereas the other algorithms only give an approximation O(ν) in Ω1.

We finally consider a 2-dimensional problem on the domain Ω = (−1, 1)×(0, 1).
We choose a = (2, 1), c = 1, ν = 0.02, g1 ≡ 0, g2 ≡ 0 and T = 0.5, and impose
periodic boundary conditions in the y-direction. We use as right hand side

f (x, y, t) = f1(t)f2(x, t)f3(y, t),

f1(t) = (sin4(4π(t − t0)) + sin4(2π(t − t0)))χt>t0 , t0 = 0.05,

f2(x, t) = e−100x2/4 + e−100(x−t/4−0.4)2 + e−100(x+t/2+0.4)2 ,

f3(y, t) = e−100(y−t/4−0.4)2 + e−100(y+t/4+0.4)2 ,

and the initial condition is u0(x, y) = e−100((x+0.5)2+(y−0.5)2).
Figure 5 shows the solution at several snapshots in time: on the left the fully vis-

cous solution, in the middle the solution of the factorization algorithm after the first
iteration, and on the right after the second iteration. We see that already after the first
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Fig. 5 From top to bottom: snapshots at several time steps. From left to right: viscous solution, solution
of Algorithm (6) at iteration k = 1, and at iteration k = 2

iteration the approximation obtained from the factorization algorithm in the viscous
region is of excellent quality, while u1a is not at all close to the viscous solution. This
is as expected, since we solve the advection equation with zero as Dirichlet bound-
ary condition, but solving the modified advection equation allows u1ad to be already
very close to the viscous solution. At the second iteration, the global coupled solution
gives now an overall better approximation, with even higher accuracy in the viscous
region one is interested in: when �x = �t = 0.01, the error in L∞ between the vis-
cous solution and the solution in Ω1 goes from 2.59 10−3 to 5.8 10−4 between the
first and second iteration.

6 Conclusions

We introduced a new algorithm to solve time dependent advection reaction diffu-
sion problems with advection reaction approximation in a subregion. We call this
algorithm factorization algorithm, because it is based on a factorization of the under-
lying operator. We proved rigorous error estimates in one spatial dimension that
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show that our new algorithm gives solutions that are closer to the fully viscous
solution of interest than other coupling algorithms in the literature. Our numerical
experiments indicate that our estimates are sharp, an issue we are currently investi-
gating using multiscale expansions, and that our new algorithm also works in higher
spatial dimensions.
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