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Abstract Often computational models are too expensive to be solved in the entire
domain of simulation, and a cheaper model would suffice away from the main zone
of interest. We present for the concrete example of an evolution problem of advec-
tion reaction diffusion type a heterogeneous domain decomposition algorithm which
allows us to recover a solution that is very close to the solution of the fully viscous
problem, but solves only an inviscid problem in parts of the domain. Our new algo-
rithm is based on the factorization of the underlying differential operator, and we
therefore call it factorization algorithm. We give a detailed error analysis in one spa-
tial dimension, and show that we can obtain approximations in the viscous region
which are much closer to the viscous solution in the entire domain of simulation than
approximations obtained by other heterogeneous domain decomposition algorithms
from the literature. We illustrate our results with numerical experiments in one and
two spatial dimensions.
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1 Introduction

The coupling of different types of partial differential equations is an active field of
research, since the need for such coupling arises in various applications. A first main
area is the simulation of complex objects, composed of different materials, which
are naturally modeled by different equations; fluid-structure interaction is a typical
example, and many techniques have been developed for this type of coupling prob-
lems, see for example the book [32], or the review on the immersed boundary method
[31], and [9] for domain decomposition coupling techniques. A very important area
of application is the simulation of the cardiovascular system [15]. A second main
area is when homogeneous objects are simulated, but the partial differential equation
modeling the object is too expensive to solve over the entire object, and a simpler, less
expensive model would suffice in most of the object to reach the desired accuracy;
air flow around an airplane is a typical example, where viscous effects are impor-
tant close to the airplane, but can be neglected further away, see the early publication
[10], and also [7] and the references therein. An automatic approach for neglect-
ing the diffusion in parts of the domain is the x-formulation, see [5, 26], and there
are also techniques based on virtual control, originating in [10], see [1] for the case
with overlap, and [24] for the case without, and also [11] for virtual control with
variational coupling conditions. A third emerging area is the coupling of equations
across dimensions, for example the blood flow in the artery can be modeled by a one
dimensional model, but in the heart, it needs to be three dimensional, see for example
[14]. All these techniques have become known in the domain decomposition commu-
nity under the name heterogeneous domain decomposition methods, a terminology
sparked by the review [35], and the literature has become vast in this field.

We are interested in this paper in the second situation, where the motivation for
using different equations comes from the fact that we would like to use simpler,
less expensive equations in areas of the domain where the full model is not needed,
and we use as our guiding example the advection reaction diffusion equation. We
are in principle interested in the fully viscous solution, but we would like to solve
only an advection reaction equation for computational savings in part of the domain.
Coupling conditions for this type of problem have been developed in the seminal
paper [22], but with the first situation described above in mind, i.e. there is indeed
a viscous and an inviscid physical domain, and the coupling conditions are obtained
by a limiting process as the viscosity goes to zero, see also [23], and [3, 8] for an
innovative correction layer, and [6] for the steady case.

Dubach developed in his PhD thesis [12] coupling conditions based on absorb-
ing boundary conditions, and such conditions have been used in order to define
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heterogeneous domain decomposition methods in [17]. A fundamental question how-
ever in the second situation described above is how far the solution obtained from
the coupled problem is from the solution of the original, more expensive one on the
entire domain. A first comparison of different transmission conditions focusing on
this aspect appeared in [18]. In [19], coupling conditions were developed for sta-
tionary advection reaction diffusion equations in one spatial dimensions, which lead
to solutions of the coupled problem that can be exponentially close to the fully vis-
cous solution, and rigorous error estimates are provided. The coupling conditions are
based on the factorization of the differential operator, see also [28], and the exact
factorization can be used in this one dimensional steady case.

In general however, such an exact factorization is not available, and new ideas are
needed. To show how one can still obtain a very efficient coupling algorithm based on
factorization in these situations, we follow a principle already advocated by Picard,'
and study a specific model problem. We present in Section 2 our new factorization
algorithm for a time dependent model advection reaction diffusion problem in d spa-
tial dimensions. In Sections 3 and 4, we give a detailed analysis of the well-posedness
of the new factorization algorithm in one spatial dimension, and prove asymptotic
error estimates when the viscosity is becoming small. Such one dimensional advec-
tion reaction diffusion problems do not pose any computational challenge these days,
but they allow us to mathematically get a complete understanding of the new algo-
rithm and rigorous error estimates, and also permit a rigorous asymptotic comparison
of the new algorithm with existing techniques from the literature. In Section 5 we
present numerical experiments, first in one spatial dimension, which show that our
theoretical error estimates are sharp, and that the new factorization algorithm gives
approximate solutions which are one order of magnitude more accurate in the vis-
cous region than the best heterogeneous domain decomposition methods known from
the literature. We then show numerical experiments also in two spatial dimensions, to
illustrate that the new factorization algorithm also works beyond the one dimensional
case.

2 A new coupling algorithm based on factorization
We now explain how the factorization technique that led to coupling conditions of

excellent quality for one dimensional problems in [19] can be used to obtain a new
coupling algorithm for evolution problems which we will call factorization algorithm.

1“Les méthodes d’approximation dont nous faisons usage sont théoriquement susceptibles de s’appliquer
a toute équation, mais elles ne deviennent vraiment intéressantes pour 1’étude des propriétés des fonctions
définies par les équations différentielles que si I’on ne reste pas dans les généralités et si ’on envisage
certaines classes d’équations”, Emile Picard, Sur I’application des méthodes d’approximations successives
aI’étude de certaines équations différentielles ordinaires, 1893.
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2.1 Model problem

We consider the time dependent advection reaction diffusion equation in £2 =
(—L1, L) x R4~ with boundaries Il = {—L;} x R~V and I = {L,} x R4~ 1:

Logu :=u —vAu+a-Vu+cu = f in 2 x (0,T),
with boundary data Biu = g; on '] x (0,T), )
Bou =g onl»x(0,T),
and initial data u = h in £2 x {0},

where a = (a,a;),a € R, a; € R9-1 is a constant velocity field, v > 0 is the
viscosity, and ¢ > 0 is a reaction term. The B;, j = 1,2 are suitable boundary
operators, representing Dirichlet or absorbing boundary conditions depending on the
sign of the normal component of a. We will consider two situations:

Bl BQ
a>0 Id O +a-V+ec

In the case a > 0, the flow is given at the inflow boundary, and an absorbing
boundary condition is prescribed at the outflow boundary. This can be compared to
the situation of the tail of a wing, where the flow goes from the complicated model
region into the simplified model region. In the case a < 0, the flow is prescribed
at the inflow and outflow boundary, which can be compared to the situation of the
front of the wing, where the flow goes from the simplified model region into the
complicated model region, and a boundary layer forms.

2.2 The new algorithm based on factorization

Using Nirenberg’s factorization, we can factor the advection-diffusion operator into
a product of two evolution operators in opposite x directions. Such factorizations
have been used to design absorbing boundary conditions and paraxial equations for
hyperbolic problems, see [2]. For parabolic problems, Nataf and coauthors [28, 33]
computed approximations of u via a double sweep, and also obtained transmission
conditions for Schwarz domain decomposition methods [34], which led to the new
class of optimized Schwarz methods, see [16] for an overview. The same factorization
can also be used to obtain incomplete LU preconditioners [20, 21], and is the under-
lying mathematical structure of the recently developed sweeping preconditioner [13].
We now use this factorization to define our new factorization algorithm: we define
two subdomains,

21 =(=L1,0) xR 2, =(0,Ly) x RI™, 1y = {0} x RY!,

and want to couple the advection-diffusion equation in £2; with an advection equation
in £2, defined by the transport operator £, = 9; + a - V + ¢. Our goal is to obtain
a coupled solution which is as close as possible to the fully viscous solution of the
original problem.

We start with the first case described in (2), i.e. a > 0. Suppose we have a fac-
torization L,q = LqL, With £, a transport operator propagating to the right, and
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Lmq a transport operator propagating to the left, where we use a tilde here to denote
the exact operator which will be later approximated and the index *'ma’ for "'modified
advection’. The original problem

Lmalau = £ in 2 x(0,T),
u=g onlyx(0T),
Lou =g onlrx(0,7T),
u=nhn in 2 x {0}
can then be solved by introducing u,,, := L,u, and solving the two problems
Lagugg = | in 21 x (0, T),
Ugd = &1 on I x (0, 7),

Latgd = Uma on Iy x (0,T),
Ugg = h in £21 x {0},

Lomatima = f in £, x (0, T),
Uma = &2 onI» x (0,7),
Uma = Lqu  in 25 x {0},

3)
which leads to usq = u|p,. Unfortunately, the exact factorization Loy = LinaLa
is not available in general; for the simplest case of a steady problem in one spatial
dimension, see [19]. But we can use an approximation with a remainder,

Ead = iz(ﬁmaﬁa —_ R) Wlth R == (8; +c +a‘[ : Vr)2 +02A‘[’ (4)
a

where V; and A; stand for the tangential gradient and Laplacian, and where the
modified advection operator is

2
a
ﬁmaza,—aax+a,-vf+c+7. 5)

The viscous solution u satisfies L,qLqu = a’f/v + Ru, and the algorithm
corresponding to (3) is

Log¥haa = f in £21 x (0, 7),
Uad = g1 on It x (0, 7),

Logg = Uymg on Iy x (0, 7T),
Ugd = h in 91 X {0}

Lmama = %f + Ru in £, x (0, 7T),
Umna = §2 on I3 x (0,7),
Uma = Lau in £27 x {0},

Since u is unknown to evaluate the remainder, we approximate it by solving an
advection equation first, and our new factorization algorithm is

Louk = f  in £22 % (0, T),

Transport to the right in £2; u u];;] on I x(0,T),
=h in £2, x {0},
Lonatt, = < f +Ruk in 25 x (0, T),
Transport to the left in £2, uk = g on I x (0, T), (6)

uy., = f+vAh in £2o x {0},
Loy = f  in 21 x(0,7),

ey = g1 onIix(0,7),
Eau];d =uk on Iy x (0, 7),

Advection-diffusion in 2
ma

ugy =h  in 21 x {0},

@ Springer



Numer Algor

where we start with a given initial guess ug 4= gg 4 on Ipx (0, T). We will prove well
posedness of this algorithm in Section 3 in one spatial dimension, and give precise
error estimates when v is small, which show that the new factorization algorithm
gives one and a half orders of magnitude better solutions in the viscous subregion
than the best other coupling algorithms from the literature.

When a < 0, we have the factorization with remainder in reverse order, L,4 =
aiz(lla/ima — R), and now the operator L, propagates to the left, and L,,, to the

right. The viscous solution u satisfies L,Lq,u = a®f/v + Lu, and introducing
ug := Lyqu, the algorithm corresponding to (3) is

Laguga = [ in 2; x (0, 7),
ugg = g1 on Iy x(0,7T),

Laltaq = ug on Iy x (0,T),
Ugg = h in £21 x {0}.

Eaua = é‘f +RM in 92 X (O, T)’
Ug = Lomalt on I3 x (0, T),
ug, = Lpau in £2; x {0},

Since u is unknown to evaluate the remainder and the boundary conditions, we
approximate it again by solving an advection equation, and our new factorization
algorithm becomes

Loul = f in 2, x (0, 7),
Transport to the left in 2, ul = g2 on N x (0, 7),
ul(-,0) = h in £, x {0},
Lok =< f+Rul in2x(0,7T),
Transport to the left in 2 u2 = Lyqul onI»x (0, 7), (D
u% = £maué in £2, x {0},

Lagugg = [ in 21 x (0, 7T),
ugg = g1 only x(0,T),

Lipattag = ug on Iy x (0, 7T),
Ugg = h in 21 x {0},

Advection-diffusion in £2;

where one could also directly compute the boundary and initial data from the first
system for the second one as follows: on 5 x (0, T), Emuu}l = 20:g2» + (2c +
a’/v)ga+2a; - Vg — fandattimet = 0, Lppqul = f —2adh +a’h/v. There is
no iteration for @ < 0 in the algorithm, because the boundary condition g at x = L,
in the first step can not be updated naturally from the viscous solution u,4 in £2;.
We will study this algorithm in one dimension in Section 4, and show that it gives an
order of magnitude better solutions in the viscous subregion than the other coupling
algorithms from the literature.

2.3 Well-posedness results for advection reaction diffusion problems
We focus for our analysis on the one-dimensional case in what follows. We work
in the usual Sobolev spaces in time and space, H*(0, T') and H*($2) for 2 C R,

H*(£2 x (0, T)) in the hyperbolic case, and the anisotropic spaces H"*(£2 x (0, T"))
in the parabolic case. For clarity, we will add an index defining time or space in the
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Sobolev space, for instance HY = H*(0, T'). We introduce for any domain £2 C R
the anisotropic Sobolev spaces (see [27])

H™ (2 x (0,T)) = L*0, T: H (£2)) N H*(0, T: L*(2)). (8)

If uisin H"*(§2 x (0, T)), then for any integer j and k, we have

3/ 9k TR ik
ue H H""(2 x (0, T here —=-=1—-[=4+-]). 9

axd k" ( ©.7). w ros (r + s) ©)
We introduce the space V"¢ of traces of functions in H"%(£2 x (0, T)) for the half-
space £2 = R~ (and similarly for 2 = R™). Denoting by f; the trace of the k-th
derivative in time on the initial line, x € R™, and by g; the trace of the j-th derivative
in space on the boundary x = 0, ¢t € (0, T), the trace space V"* is defined by

Vs = (fio 8) € Tewyy HP@) x T,y H (O, T),

pk=§(s—k——), M,:i(r—j—l),

2
k. .
¥ 0) = E’fk(O) itk <1-4(L+1),

ark

(10)

3jfk( Y) _ ok o8 (O.r)

dxJ otk

Jo

Theorem 1 ([27]) For positive real numbers r, s such that 1 — % (% + %) > 0, the

trace map
{8k”( 0)} {aj”(o t)} (11)
u — — X, 5 — 5
atk k<s—% dx/ j<r—%

is defined and continuous from H-*(§2 x (0, T)) onto V™.

We start with well-posedness results for the advection equation, by stating a gen-
eral result, applicable to £, in £2 or £2;, and L,,, in £2;. To this end, we introduce
O = (x1, x7) and consider

Lyv:=0v+bodv+nuv=pin O x (0, T). (12)

Let M, be the spatial part of the operator Ly, i.e. L, = 9; + Mj. We denote the
boundary point where the flux enters the domain by x ~, the other boundary point by
x7, and define the characteristic time 7(x) := inf{t > 0, s.t.x — at ¢ @}. Ifb > 0,
x~ = xj and t(x) = &AL ~ = xp and 7(x) = *5*2. Note that
T is a continuous function of x. We therefore equip (12) with initial and boundary
conditions

v(-,0)=h, v(x,)=g. (13)

The following well-posedness result can be found in [30].
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Theorem 2 Ifp € L>(Ox (0, T)), g € L*>(0, T) and vy € L*(O), then the transport
problem (12, 13) has a unique weak solution v € L? ,, given by (the characteristic

X,
function of w in R? is denoted by 1,,)
v(x, 1) = h(x —bt)e M lier(r) + gt — T(X))e TP o p ()
13

+/ px — bt —s),s)e "9 ds. a4
(t—t(x)*

If for some y > 0 we have h € HY (0), g € HY(0,T) and p € HY (O x (0, T)),
with the compatibility conditions

k—1
dfg0) = [ Y =Mo" p | 6T O H M RGT) for 0k <y,
j=0
(15)
then v € H”(O x (0,T)) and v(x™,-) € HY(0,T). Furthermore, we have for
0 < k < y the estimates

2
2

2

akv akp fv(-, 0) dtg

oo (x*, )

1
< —
L7~ n

n -+ 1b]

2
L
(16)

2 2
+ 1b| .2 + .

Similarly, we also use well-posedness results for the advection reaction diffusion
equation

Laqu := 0ru — vafu 4adyu+cu = f inOx(0,T),
Blu(xl’ ) = 41 on (09 T)a
BZM(XZ, ') = g2 on (07 T)5
u(x,0) = h in O,

a7)

with boundary operators according to (2). We define M4 to be the spatial part of
the operator L,q4, 1.e. Log = 0; + Mgyq.

3 3
Theorem 3 Fory > 0, let f € H¥"7(O x (0.T), g1 € H/" ¥, g2 € H/ "7 for

_1
negative a, and g» € H,y * for positive a, h € HXZV-H(O), with the compatibility
conditions for0 <k <y — % and0 <k' <y — %for negative a given by
k—1 e
1<j <2, dfgj0) = (—Ma)h(xp) + | D (=M’ 37 f | (x}.0),
Jj=0
(18)
and for positive a the second compatibility condition is replaced by
k' —1
, oK —1—i ’ ’
df 82(0) = v Y " (=Maa)’ 8, ~ 792 f (x2,0) — v (= Maa)* h(x2) = 8f f(x2,0),
Jj=0
(19)

then problem (17) has a unique solution u in H>*YTD:Y+1(©O x (0, T)).
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Proof Existence and regularity results are well-known for Dirichlet boundary condi-
tions on both sides, see [27, 30], so we do not consider the case of negative advection
further. In [30] more precise results with error bounds in v for the hyperbolic equa-
tion (see Theorem 4) can be found. In the case where a > 0, due to the absorbing
boundary, we need to modify the proof on the right boundary, and we use a Fourier
transform in time. A weak solution is obtained by a variational formulation, like in

[4, 29] for instance. The regularity is obtained as follows: we first modify the bound-
3

ary condition in (17) on the right at x = x» to Dirichlet data g, € H,V+Z. Because of
the compatibility conditions on the left, and imposing symmetric compatibility con-
ditions on g, on the right, there is a unique solution i € H2+D-0'+D (O % (0, T)),
see [27]. The difference v = u — u is solution of the homogeneous case of (23),
but the boundary condition on the right becomes L, (u — it) = g2 := g2 — L,u. By

_1
the regularity results above, ¢ is in th 4. To estimate v, we will make use of the
Fourier transform. We extend all functions by 0 in R_, and smoothly into (T, +00),
and define

R 1 _i
V(w) = —/ e () dt.
2 R
Since the initial value vanishes, the equation is Fourier transformed in time to
Laab = —vaff) 4+ ad 0+ (c+iw)v =00n O x C.

This is for each w an ordinary differential equation, with characteristic roots

rA(w) = L (a +vVa?+4v(c+ ia))) , A(w) = i (a —Va?+4v(c+ ia))) ,

2v 2v
(20)
with Re(A4) > 0 and Re(A_) < 0. The general solution is
D(x, ) = Ly (w)e* + 0_(w)e**.
Using the boundary conditions, we then get the solution
R R M x—x1) _ pA(x—x1)
v(x, w) = @2(w) (2D

v)&_eh(xz—xl) — A2 er—(a—x)’
where we have used the relation ¢ + iw + ai+ = v(ki)z. The value at x = x can
be equivalently written as

e~ (=2 )(xa—x1) _ 1

5 .
a2 ((i_—) e~y =) (a—x1) _ 1)
+

In order to estimate the regularity of v(xy, -), we need to estimate the multiplicative
factor on the right for large w. We can see from (20) that Ay (w) ~ —A_(w) ~

0(x2, ®) = g2 (w) (22)

B (w)

_1
7 Since ¢» € H/ *, we conclude
v
2

iT”). Therefore |0(x2, w)| ~

G (w) ‘
2

+3 . . . e . .
that v(xp, ) € th *. Then v is solution of the advection-diffusion equation with
Dirichlet boundary conditions, and the data has sufficient regularity to conclude. [J
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3 Properties of the factorization algorithm for positive advection

We consider the advection-diffusion equation in 2 = (—Lj, L) with Dirichlet
boundary condition on the left, and absorbing boundary condition given by the
transport operator on the right (see [25]),

Loqu := 0ru — vafu 4+adyu+cu = f in 2 x(0,7),
u(_L17 ) = g1 on (O’ T)’
‘C[Iu(L27 ) - 82 on (09 T)a
u(-,0) = h in 2.

(23)

We suppose in this section that f and g; are compactly supported in (0, T'], that &
is compactly supported in £2; = (—L1, 0), and that for each ¢ the function f (-, t) is
compactly supported in 2. We further assume that the boundary condition at L, is
absorbing, that is g» = 0. Therefore the compatibihty conditions are satisfied to any

order on both ends of the 1nterval £2,and for f € H2 4(9 x (0,T)),h e sz , and
g1 € H3, u is defined in H 58 (£2 x (0, 7)).

3.1 Well-posedness

The remainder R for computing %, in the new factorization algorithm (6) contains
two time derivatives, which lead to an important loss of regularity at each iteration.
We will however see that the error order in v can not be improved further after two
iterations, and hence we only study the first two iterations in detail. We start with the
well-posedness of the algorithm.

Algorithm (6) starts with an initial guess ggd as boundary condition for u,. We
assume that g2 4 € Hl4 and is compactly supported in (0, T']. Using that f € H*(£2; x
(0, T)), that h vanishes in £2-, and that the compatibility conditions at x = 0, ¢ = 0
are satisfied, the solution of

Loub = fin 2, ul©,)=2g% ulc,00=0

satisfies ul € H*(£2, x (0, T)).
The right hand side for the modified advection equation in (6) is then f,,ll . =
< f + Rul € HX(@, x (0, T)), and solving

Linallyg = fa 0 22, tp,q(L2,) =0, 14, (-,0) =0,

the compatibility conditions at x = Lj are again satisfied to any order, which implies
thatu) € H*(£2; x (0, T)) and u},,(0,-) € H*(0, T). The latter then becomes the

ma
right boundary data for the advection diffusion problem in 2,

Loaugg=fin 21, uhq(—L1,-) =g1, Lattyg0,)=t,,0,), uy(-,00=h.

We have seen already that the compatibility conditions on the left are satisfied,
and on the right, at the corner (0, 0), with the regularity of uma, the condition
m 4(0,0) — vdzh(O) f@0,0) holds since both sides of this equality vanish. Since

fe H¥1(Q x (0,T), h € HX , 8 € H?, and u},(0,-) € H?, we obtain
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u;d € H%*%(Ql x (0, T)) and u;d(O, ) € H,3, and at the corner (0, 0), we have for
1 .1
8ad = Mad(o’ )
244(0) = 1(0),  digjy(0) + Maah(0) = £(0,0),
dgaq(0) — M24h(0) = 8, £(0,0) — Maa f(0,0).  (24)
We now start the second iteration with the computation of ug, using u tll ©,) = g; q=
u;d ©,) € H,3. Since / is compactly supported in £21, Mgdh(O) = MZh(0) =0,

and (24) are appropriate compatibility conditions to compute uﬁ € H3 (2, x (0, T)).
We define the new right hand side

2 a’ 2 1
fma = Tf +Rug €H (92 X (0’ T))7
and compute the solution of
Lona?, = f2,in 22, u, (L2, ) =0, u>,(-,0)=0.

We thus obtain u2,_ € H'(£2, x (0, T)) and u,zna (0,-) € H'(0, T). The last step of

ma
the second iteration is to compute ufl 4 solution of

Loquly=fin 2y, ul,(=L1,)=g1, Laul, 0, )=u?,0,), ul, 0 =nh,

and we need only to satisfy a compatibility condition on the left, which implies that
W2, € H23(2 x (0, T)).

3.2 Error estimates for the factorization algorithm

We present now asymptotic error estimates for small viscosity v when u, the viscous

solution of (23), is approximated by (uﬁ & u’a‘), the solution obtained by our new

factorization algorithm (6). We define the error quantities ef := u]; —u, e’lj J =

a
uk —u, ek, = uk, — Lou := uk,, — uy,, and suppose that all our data is C*° in all

variables. The error equations are

k .
Lage,; = 0in £21,

Eaela( = —Uafu in Qz, ,Cmaek = Rek in 927 X
k k=1 koo Y esq(—=L1,-) =0,
GO0 = O Guita ) =L Laeky0.) = e, (0, )
: = L0)=0 ad > ma\> ")»
¢ 0)=10. éma( 0) ’ eﬁd(', 0) =0,
(25)
with 62 40, = ggd — u(0, -). We need more precise estimates than those pro-

vided by Theorems 2 and 3. First, we state precisely the initial conditions for all the
equations involved: the parabolic problems in §2 and £2; will use

Ofu(-, 0) = (~Maa)*h and  dful,(-,0) = (=Maa)*h,
the forward hyperbolic problem in £2, uses

K ul (-,0) = (~My)*h =0,
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and the backward hyperbolic problem in £2, uses
k—1
Ofua(.0) =Y (=Mua)’ 8" fha(.0) + (M) ttma,0 = 0.
j=0
The solution of the exact backward hyperbolic problem in £2, has as initial condition
k—1
0 ttma (-, 0) = Y (= Muna) 8 7 frua -, 0) + (= Mona) ttma,0 = 0,
j=0
from which we infer the initial values for the errors such that

el (,0)=0in £21, 8%l (-,0)=0and 8feh,(-,0)=0in 2. (26)

We start with estimates for the solution of the advection-diffusion equation (23) with
vanishing initial data and vanishing boundary data g;. A first lemma gives results
for the problem with g» = 0, based on energy estimates, and a second lemma gives
estimates where only the right-hand side f is non-zero.

Lemma 1 Suppose that a > 0, and that h vanishes identically in §2, g1 and g> vanish
on (0, T), and that f is in Cgo (82 x (0, T]). Then there is a positive constant C such
that for any v > 0, and any k < y, the solution uy of (23) satisfies the estimates

2

2
Lx,r

2
+ C

2
Lx.t

IA

O deuy (27)

B,kLt]’

O ui(La, -)‘

2 X 2
+v 0 ‘ ,
i ez,

v (28)

A

df oFu o f

12

, -
x,t Lx.t

Proof Since the compatibility conditions are satisfied, u; is in H*, and the initial
value of 8[/‘ u1 vanishes as well. We start with k = 0: multiplying the equation by u
and integrating over §2, taking into account that « vanishes at —L1 gives

1d

S 2l DN, + ellan (0l + vl 0l

a
+ Eu%(Lz, 1) —v(uidcuy) (Lo, t) = / fx, Huy(x, Hdx.
2
Using the boundary condition at L, yields

1d v
S (el + Zudain) + el (0l +vlidan .0l

c
2 a

and by Cauchy-Schwarz and Young’s inequality we obtain

+ (z+L)u%([,z,t):Lf(x,t)ul(x,t)dx,

1
LﬂmWMMMSMmMMwnm%s;muw;+%wuwg
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Integrating in time over (0, T'), and dropping the first term which is positive, we
obtain, since the initial data vanishes, the inequality

1
2 2 2 2
cllurl2s +2vlda 12, +alur(La. )25 < ~1F12,
x,t x,t t C X,t

which proves (27) for k = 0. To prove (28), we multiply the equation by —8§u1 and
integrate in x,

Vo (0l = (B (o0, 02 (.0) = a (e ¢, 00, 0k )

— (0.0 ¢0) == (fe0. 0 ¢).

An integration by parts leads to

Vv

82u, (-, r)‘

2 1d 5 5 a
2 g 1 G DN el 01 = [0 ) (B + 50

Ly 5
+ Cul) ('9 t):l L = (f(s t)a axul('7 t)) .
—L]
By the boundary conditions, the boundary terms become
1
a@eun)*(=L1, 1) + — @1 + cu)*(La, 1) > 0.

We can now integrate in time and use Cauchy-Schwarz and Young’s inequality to
obtain

2
v ||0fui

P o 1||f||2
Lz_, R L,%,t'

X

The estimates with the time derivative are obtained by applying the equation to Btk u.
O

Lemma 2 Assume that a > 0. Then there are constants v > 0 and C > 0 such that
forv <V, and for any g> € C5°((0, T1), the solution us of (23) with zero data h, f
and g1 satisfies for all k < y the inequalities

Vx e [=Li, Lo, [ofua(e, )|, = Collgall g,
t
k 3 k 1
ofur , = Cvilgaly [odfun] , = Cvilgalyy,
X, X,
_1
070 ur| , = Cv7TlIgall (29)

Xt
Proof We use a Fourier transform argument as in the proof of Theorem 3, and rewrite

(21) as

e =2)G+LY) _ |

S .
A2 ((i_—) e~ O =) (LatLy) — 1)
+
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Now we search for estimates in v that are uniform in w. We have for the roots A1 the
estimates

A/l <1, Re(hy —A-) Za/v. [ry] Za/v.

The numerator in (30) is bounded by 2. A lower bound for the denominator is
obtained by writing |U)\.3_| > ‘;—2 together with

A 2
1 — <_> e~ A=A )(La+Ly)
Ay

Inserting these estimates into (30) gives

2

Aol RO =3 (La+ L) 5 = b(LatLy),

> 1-

Ay

Rely(x—Ly) 1

. 2v
< — —_— .
|u2(x7w)| — 612 |g2(a))|e 1 _e_%(Lz_;’_L])

Since 1/|1 — u| < 2 for u < 1/2, for v sufficiently small so that e~ (2D < 1/2,
we have for any o,

. 4v _ R
iz (x, )| < — |82(w)[eRA+L2) < Cy |8y (w)]. (31)

By Parseval’s identity, we obtain

[l (x, ')”LZ(R+) <Cv ||82||L2(R+)- (32)

Modifying now g; to vanish in [T + €, 00), the solution in (0, 7') remains unaffected
by causality and for any positive €,

llua(x, ')||L2(0,T) <Cv ||82||L2(0,T+e)'
Since € is arbitrary, we conclude that
[l (x, ')”LZ(O,T) <Cv ||82||L2(0,T)-
From (31) we also obtain for all @
Cv?
N 2 ~ 2 3042 2
ur(-, w < — w)|* < Cv w)|”.
a2 (s )iz, = Rers 1g2(@)|” = 1g2(w)|
We thus obtain
3
luall,2 < Cv3 gl .
For the derivative in space, we compute

Doy GHLD e (etL)

deia(x, 0) = &
xuz(x a)) gZ(w) U)\.%_E)‘+(L2+Ll) _ VAZ_eK_(L2+L1)

Ao gm0 =it
+

1=\ oA (Lot L) ‘
V)\.J,_ (H) e + - 2 1 —1

Ay (x—L2)

= nwe
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For small v, we therefore get as before

4
|82 (x, )| < |82()] R < Z 2y (@) ] eRM+ (L),
a

V[A4]

2

which gives ||dyiip 7

before,

A 2 .
22xR) = Cv||g2||L2(R), and using the same arguments as

1
lwuall2 < Cv3ligall,z.

In the same way we find that

2
Bxuz‘

_1
L <O gl
x,t

O
Theorem 4 Let a > 0. Then there exist positive constants C and v such that for any

v <, and for any set of data h € C3°($2), f € C;°(2 x (0, T1), g1 € C3°((0, T
and g» = 0, if U is the solution of the transport equation

L,U=fin2x0,T), U0 =h U(-Ly,-) =g, (33)
then the solution u of the advection-diffusion equation (23) satisfies the estimate
k 2 k 2 k 2
su-v, + o -z L+ g - o,
2 || qkq2 2 2 ||qkq2 2
+ Btax(u—U)”L%tSCv vl . 6y

Hence u also satisfies the estimate

k| k 2 ka2
o u L3, * atu(L2")‘L,2+ O e L3,
2
+ orocul . sc<||f||§,ﬁ2+||h||§,§+z+||g1||§,lk+2). (35)

Proof Since the data is compactly supported, the compatibility conditions are auto-
matically satisfied, so that the solutions of the parabolic and hyperbolic equations
are in Cgo (82 x (0, T]). The estimates (34) follow directly from Lemma 1, using that
u — U is solution of the advection-diffusion equation in £2 with right hand side van ,
and zero initial and boundary conditions on the left. The boundary condition on the
right also vanishes, £,(u — U) = — f(L2, -) = 0, since f is compactly supported in
£2. We define now B = ||f||§{k + IIhIIiIk + llg1ll%.,, and use for U the hyperbolic

HF
estimates (16) in O = 2,

Jotv]

2
_l’_
L3,

UL, )|

2
< CBxg.
L7
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Next, from the advection equation, we deduce that

adU=—@ +U+f, and a®3>U = 8, + ¢)*U + (ady — (3, + o)) f,

so that
saul’ <cs sou|’ <cs
t Ox L)zm = k+1, t Ox L)zw = k42>
and from (34) we obtain
k 2 k 2 2
-, + |-, =B,
Ly, L7
k 2 ka2 2
Hat 3 (u — U)HE[ < CvBia, Hat Ru-0, =B
Writingu =u — U 4 U gives
k|12 k 2 2
0; u‘ 12, + Hat”(LL )‘ I =C (Bk +v Bk+2),
k 2 ka2 |12
0y Oxu . < C(Bjy1 + vBis2), 9 0 u .2 < CBi2.
X,1 X,1
Therefore there is a new constant C and v such that for v < v, (35) holds. O]

We now present an improved estimate for the solution of the modified advection
problem in £2;.

Theorem 5 Let a > 0. Then there exist positive constants C and v such that, for
v < v, and for any right hand side p compactly supported in §27 x (0, T, the solution
v of the initial boundary value problem with modified advection

Emav = P ln (09 L2) X (07 T)v
v(La,-) = 0 on(0,7),
v(-,0) = 0 in (0, Ly)

satisfies the estimate

2 aly
<C V2

L

2
A pO.)| ,+e v
t

8%v(0, .)‘

o p(La,)|

2 e
L,2+v a’pHHXI, ’

(36)

Proof We first extend p by 0 on (7', +00). As in Theorem 2, v can be obtained using
the method of characteristics,

t ~
v(0, 1) =/ . plat—0),0)e "o,

max(t—=2,0)
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where ¢ = ¢ + a?/v. Integrating by parts, and denoting by d; the characteristic
derivative, i.e. d;¢p = 9;¢p — adyx¢, we obtain

1 0 fort < Ly/a,
0,t) = = 0,1) — L
v(0.1) ¢ L’( — ) p (Lz, t— %) e ¢F fort > Ly/a
I
11
t ~
— / dipla(t —0),0)e " do
max(t—l;—z,O)
11
The norm of the first term is || /]| 2= lp0, )] L2 and the norm of the second term

can be estimated as

o0 L2 ~Ly c
1113, = / P’ (Lw— 7) e dt < e FY p(Ly, 17,

a

For the norm of the third term, we get

Ly 2

a t -
W13, = / ( / dtp(a(t—ff),ff)e_c(t_“)da) dr
i 0 0

+00 ' ) 2
+ dipla(t —0),0)e = do | dt,
Ly L

a

and using the Cauchy-Schwarz inequality, we obtain

Ly
1 - t +oo pt
nn1ﬁ2<r(/‘ /(@pﬁma—oxonwdr+ﬁ /, wmﬁwa—axdeM)
i c\Jo Jo L Ji-h

1 +o0 Ly

2 Jo

IA

1
d p)*(x,ndxdr < —|pl?, . 37
2C Hx,r

which finally leads to the estimate

c o 1
100,917, < = <||p(o, Mgz +e @ lp(La. )l + %npn;gt) :

02

Since ¢ > —, we get

v

.2<2<0.2 28202 2)
10(0, )l = Cv (1P, )2 +e Il p(La, )||L12+VIIPIIH;J
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on the enlarged time interval (0, +00). Using that the extension is vanishing for ¢ >
T + € gives the estimate (36) for k = 0 for any €, and thus on (0, T'). Applying (36)
to 8tkv gives then the general result. O

Theorem 6 Assume thata > 0, and let By = || f||ilk +||h||§{k+||g1||§{k. Then there
X,t X t

exist positive constants C and v such that, for any data h € C5(821), f € Co(82 x
(0,T]), g1 € C;°((0, T]) and g2 = 0, and for any initial guess g(a)d € C5°10, T])
and any v < v, the approximation from the new algorithm (6) satisfies the error
bounds

—u! : <C|(B+|g° ? u—ul 2 <Cv (Bs+|g° ? (38)
u a L%,, = 2 8ad le ’ ad L%_, — 5 8ad H,3
2 2 2 2
2 2 2 0 2 8 0
Hu—ua 2, < Cv (Bs—f-v 8ad Hﬁ)’ Hu_u”d 2, <Cv (Bg—i—v 8ad HF)'

(39

Proof We start with the proof for the first iteration of the new algorithm (6), with the
initial guess g2, which gives e?, = g%, — (0, -) in the algorithm (25) satisfied by

the errors:
Advection: The error e}l is solution of an advection equation in 2, with right hand
side —v8§u. Since the initial conditions vanish as described in (26), the hyperbolic

estimate in Theorem 2 gives
‘2
i)

We bound ||e2d||H[k by ||g2d||Htk + [[u(0, ) . From (35), for small v,
|9k u (0, .)||2L)2” (by the trace theorem) and ”3533“”%;, are bounded by C By,

‘2
Hf

2
‘m+&ﬂ>(m)

2 2
k1 ka2 0
az‘ €, 12 + at axu + €ad
Xt

2
Lx.t

2
shebita|), <c(r?
t

which gives

2

k1 0
8[ ea th + ead

X,

k1 2 2
Bt e, (Lz’ ) HLZ < C <V Bk+2 +
t

sCG%HH—ﬁd

This equation gives for k = 0 and small v the first estimate in (38).
Modified advection: Let p}(0,-) := (3; + ¢)%¢}(0, ) = (3; + ¢)?€?,. We estimate

E)tke,lna at x = 0 using Theorem 5,

2 2 aL 2 2
ko1 2 ko1 —2%2 |k 1 ko1
0 ema0,)] , = Cv ( 0 pa(0, )| 5+ |3 paLa, )| L +v | pa )
t 1 t Xt
2 _saly 2 2
< Cvz( el e |0 paLa. )| L v [0f Pl ) @1
H{ Lt HX,!
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For the last term on the right, we obtain
2

ko1 _ K+, 1
at Pa Hlet - 8),‘ pa L2 tpa L2 8 L2
1 2 1 2
< C ‘ 9
- Pal g o.r:12) *Pall yeo,7.12)
2 2
<C||e! Ha 1 ]
HK3(0,T5L3) HK+2(0,T;L2)

Since Lqel = —vd2u, we get drel = —1(du + (3 + c)el), and hence
||axe;||Hk+2(O,T;L§) < C(v||83u||Hk+2(O,T;L§) + [le 430, 7:22))- Using (40), we
finally obtain
< C 2
Hx.t -

We use now (35) which gives ||82u||

2
+v

H Hk+2(0,T; L2))
< CBg44 and return to (41).

81 pa €ad Ht1<+3

Hk+2(0 T: LZ) —

From the hyperbolic estimate (40), we see that ||8t a(Lz, -)||iz and ||8, ea 112 7
t

x,t
are bounded by the same quantity, and hence we can also use the same bound for

19 (L2, )7, and vIIdF gl

2
2§C(\1

Advection-diffusion: e}l 4 18 solution of the advection-diffusion equation with non-
zero data only on the right. Therefore, applying Lemma 2 in £2; with g =
el (0, ), we obtain

0

k1
H o e Cud

tma

2 5
\kﬁ+vBHQ. “2)

2
1 3
ead <Cv

< €V ep,

2
Ly,

Using (42) with k = 0 for the last term, we obtain

2
< Ccv’
L3,

This equation gives the second estimate in (38), but we will also need to estimate
the value of e; 4 atx = 0. Using (29) we get

1

0
€ad

€ad 8ad

‘ + szs) <Cv (Bs +

0 ‘;) . 43

2 2
ake! L= v kel 0, .))LZ,
which gives by (42) again
; 2
t (ld < €ad Hk+3> . (44)
t
In particular, we have
2 2
HRe;d(o, ')HLz < vt <v3B7 n Hegd HS) . 45)
t t

We now prove the error estimates for the second iteration:

@ Springer



Numer Algor

Advection: We again use the hyperbolic estimates for eg. Since the initial values are
also vanishing, we obtain as in (40) the estimate

2
ok e?

k2
all . » d,e; (Lo, -
Lx,t

< C( 2Biia + e

eha.] ) (46)
Inserting (44) we get

2 2
k 2 2 4 3 0
o/ e, 2 = C (v Biio+v ( e,q ‘Hk”))
X, t

&0 ’2 ) 47)
ad || pet3

d

A

ke (L, -

IA

Ccv? (Bk+5 +?

IA

Cv? ( Biys + ’ ’B
k+5 v gad k+;+v k+5 ] -

The last estimate with k = O gives the first result in (39).
Modified advection: Defining pg =R eg = (0; + c)zeg, we obtain using (47)

2, 5Cv2(

€ eStlmate ema atx = 0 by Theorem 57
>
“,\!,t .

0o, = e +ofp
(49)

As in the first step, the term at the boundary x = L is absorbed in the volume
term, and pg(O, J)=R e}l 4(0, -), which can be estimated by (45). To estimate the
term || 1%2; [l 1 e proceed as in the first iteration, to obtain

X,

t pa(Lz’ 8t pa

&0 ’2 > (48)
ad HI*S :

aly
252 v

2

P2 pi(La, -

2 2 2
|Pill, = e ([ ot
H!, H3(0,T;L2) H2(0.T;L2)
2
<c|(|e V2B
- ( a H3(0,T;L§)+ 4)
2
< (Bg+v2 % HG). (50)
t

Inserting (45) and (50) into (49) we get

CU2 <l)4 ( 3

cv’ <Bg+v

0
a

2
e
d ‘Hf’

IA

|ena

2

eod +3 Bg + 2
Hy

&0 \2

ad Hz6

IA
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Advection-diffusion: eg 4 18 solution of the advection-diffusion equation with data
only on the right. Therefore, applying Lemma 2 in £2; with g, = e,zn 20, ), we

obtain
2 0 ‘ 2
HS

2

3
ead <Cv

€ha(0.)]

2
L2 < cv8 <Bg +vile
t

2
L:(,t

4 Properties of the factorization algorithm for negative advection

We consider now the advection-diffusion equation fora < 0in £2 = (—L1, L,) with
Dirichlet boundary conditions on both sides,

Logu := 0u — voyxu +adyu+cu = f in 2 x (0, 7T),
u(_Ll9 ) = g1 in (09 T),
u(La, ) = g2 in (0, 7),
u(-,0) = h in £2.
We suppose again that f and (g1, g2) are compactly supported in (0, '], but now

that & is compactly supported in £2o = (0, Ly). We also assume that for each ¢ the
function f(-, t) is compactly supported in §2.

(51

4.1 Well-posedness of the factorization algorithm

For u!, suppose that f € H31(22 x (0, T)), g2 € H3*3(0, T), h € H3*i(£2), and
that the compatibility conditions (15) are satisfied. Then we have a unique solution
ué in H3+%(.Qz x (0, T)). For ug, using the previous result, we have f — Ru}Z €
H”%(Qz x (0,T)), and Emau; € H2+%(.(22 x (0, T)). Therefore the traces at
x = Lyandt = Qare in H I+3 and compatible. Thus (7) defines a unique uﬁ in
HH'% (£22 x (0, T)). Furthermore u% ©,) € H% (0, T). For uyq, Theorem 3 applies
with y = %, and (7) defines a unique u,4 in H%% (£21 x (0, T')). Finally for u, using
11

the regularity assumptions above, u € H>YTDv+1(Q x (0, T)) withy = §.

4.2 Error estimates for the factorization algorithm

We need a further lemma in order to obtain our asymptotic estimates.

Lemma 3 Suppose a < 0, and let g € L*(0, T). Then there exists a constant C > 0,
such that for all v > 0 the solution v of

Lagv =0 in21 x(0,7),
U(_L13 ) = 0 on (07 T)»
uZ
(at —ad + (7 +c)) v(0,) = g on(0,T),
v(-,0) =0 in £y,

(52)

@ Springer



Numer Algor

satisfies the a priori estimate

2 20112
v <Cv .
lol}; < Cvlgll,

Proof Multiplying the equation by v, integrating on (—L1, 0) and using the boundary
condition at x = —L yields

lal

—v
2

Inserting the boundary condition at x = 0 we obtain

1d 2 Vo, lal  ve\ 5
EE ”U(,t)”L%"‘_U (07t) +|—=—+—)v (Oat)

1d 2 2 2 2
P TAAE DIz~ O, ) +vlldxv (-, DI72 —vdxv(0, HV(0, HtellvC, D, = 0.

la| 2 Jal
v
8 0C DI +ellvC Dl7: = @ EOvO.0.
Using the inequality v|g(¢#)v(0, 1)|/|a| < %gz(t) + %v%o, t) and integrating on

the time interval (0, T') gives forallt € (0, T)

2 v [ 2
vz, <2 / (0)dr.
o= jap o

We can now prove our main theorem for negative advection.

Theorem 7 Suppose a < 0. Then there are positive constants C and v such that for
any h € C3°(522), f € C3°(2 x (0, T)), g1, &2 € C3°((0, T), and for any v < v,
the solution obtained by the new factorization algorithm (7) satisfies the estimates

1 2
‘u—ua 2, < Cv | 0d;u 2, (53)
lu — all 2 < Cvz(uunﬂft 1S C Oz + Al + |92u(La. ) L2>’
(54)
which implies that
Hu—u}l ) S, ||u_uad||L§_t 5”2-

Xt

Proof We define the errors e}l = u; — U, eyq ‘= Ugqg — U, and eg = u?l — Loqu.

Since Lyqu(-,0) = f(-,0) —2adh +a*h /v + vd%h, the equations for the error are

Ladeaq = 01n 27,

Eaeé = —Uafu in §2;, Eaeﬁ = 'R,e; in £,

eqda(—L1,-) =0,
ey(La,) =0, 3La,) = Lngel(La) | 100 e )-> = ¢2(0,)
el(-,0)=0, ea(,0) = —vdlh, earZ?aO) = 0. -

We now analyze each of the three solves separately:
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First advection equation in £2,: With Theorem 2, we find that the error ecll satisfies
for k = 0, 1 and2 the estimate

2
L, Flal

Xt

+

2 k1 2
s Btea(-,O)HL% . (55)

k1
0y eq

8k 92u ’

2
k1 2
akel (0, -)HLZ2 <C <v
The case k = 0 yields the first result of the theorem. We further compute

del(,0) = —vd?h, 8%el(-,0) = v(ad, + c)d*h — vd*d,u(-, 0),

a

with d;u(-,0) = f(-,0) — (adyh + ch — vd2h), so that

2
07eb 0| = v2 (176 0%, + 112,)

1 2 2
. <
8t€a( s O)HLE =V ||h||Hg,
We thus obtain for R el = (c + 8;)%¢,. the estimate

2
1 2 2 2 2
[Reil,, = v (i +17c00 FinE,). 66

Second advection equation in £2;: Using again Theorem 2, we obtain the estimate

2
2]’

To evaluate Cmae; (Ly, -), we observe that u(Ly, -) = u,(L>, -), so that we have
Liael(Ly, ) = —adyel(La, ) = vd2u(L,, -). Therefore, using (56), we get

e2(0, -)

2 2 2 1
2 VIR + | Cnaeia, |

2 1
L? =¢ HRe“

2 2
ex (0, -)\Lz < Cv2<||u||§,2 F 1L C O + IR, + a%u(Lz,o\Lz).
1 X,t X X h
(57)
Advection-diffusion equation in £2;: With Lemma 3 we obtain
leatl?y < Cv? |20,
ad L)th = a 3 Ltz .

We can thus conclude using (57).

It remains to estimates [|d2u(Lz, )|l 1> and 102ull 12(2,x 0.7y If the data is
compactly supported, there is only one boundary layer, at x = —L1, and (see [30])

u(t,x) = Ut x) + DU @, 0) + O®), (notea < 0).

Here, U is the solution of the advection equation in §2 with data g at x = L. The
norm of 9, u, though not bounded in the entire interval 2, is bounded in §2;, since
2 |a]? la|?
Hd2ea(x+L|)/v _ (eZaLl/v _ eZa(L2+L|)/v) - G2aLi/v
X 3 3 ’
L2(2y)  2v 2v°

which tends to zero as v goes to zero, because a < 0. Similarly the value at L; is
bounded. O
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O mlmim mim i ]

05 1
Fig. 1 Left: contour plot for the right hand side in space and time. Right: initial condition a > 0

5 Numerical experiments

We start with numerical experiments in one spatial dimension. We use a Crank-
Nicolson scheme for the advection-diffusion equation and an implicit upwind scheme
for the advection equation. We discretize §2 := (—1,1) with N = 64000 points,
which leads to a spatial step Ax = 3.125 x 107> and the time step Ar = Ax. We
choose c = 1, g1 = g0 = 0, T = 1 and the right hand side, shown in Fig. 1 on the
left, is

fx, 0 = fi@) falx, 1),
fi(t)y = in*(@dw(t — 1)) + sin* Q@ (t — 10))/2) xy>1» 10 = 0.1,
f, 1) = 67100x2/4+87100(x7t/470,4)2 +67100(x+t/2+0.4)2'

For the case of positive advection, we choose a = 1, with the initial condition,
shown in Fig. 1 on the right,

uo(x) = e_loo(x_x())z, with xg = —0.6.

Figure 2 shows first snapshots in time of the right hand side, and then of the viscous
solution (23) and the solution obtained by the factorization algorithm (6) after one
and two iterations when v = 1073, We see that in the first iteration the solution u; 418
very close to the viscous solution. This solution is improved with the second iteration
when 1, is also improved.

Figure 3 shows the L? space-time error as a function of the viscosity becoming
small for the factorization algorithm (6) and gives a comparison to algorithms from
the literature. These algorithms solve an advection-diffusion equation Lygusg = f
in £2] and an advection equation L,u, = f in £2;, and use for a > 0 either non-
variational transmission conditions 0y #44(0, -) = 0yu4(0, ) and u,4(0, -) = u,(0, -),
see [12, 22], or variational transmission conditions vo,u,q(0, -) = 0 and u,4(0, -) =
uq(0, ), see [22, 23]. We see that the variational transmission conditions do not need
an iteration in this case, one can first solve advection-diffusion, and then advection.

The error is however O(v2) in the viscous region 2. With only one iteration of
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Fig. 2 From left to right: snapshots at time r = 0.25, 0.5 and 0.75. First line: right hand side. Second line:
solution of Algorithm (6) at iteration k = 1. Third line: solution of Algorithm (6) at iteration k = 2

the factorization algorithm, the error is already O(v%), and with two iterations we
get O(v*), both corresponding to our theoretical results in Theorem 6. The non-
variational transmission conditions also give an error O(V%), as good as with one
iteration of the factorization algorithm, but one needs to iterate and choosing a good
relaxation parameter to ensure convergence is not easy; we chose heuristically 6 =
Wﬁ in our computations. In the inviscid subregion £2,, the error of all methods is
O(v), only the initialization step in the factorization algorithm has an error of O(1),
as predicted by Theorem 6.
We now consider a negative advection example, a = —1, with initial condition

2
—100G=x0)" " \yith x = 0.5.

up(x) =e

Figure 4 shows the L? space-time error between the viscous solution and the solu-
tion of the factorization algorithm (7), and also a comparison to the errors of the
other coupling algorithms from the literature; the variational coupling conditions for
a < 0are —vo,uyq(0, -) + augq(0, -) = auy(0, -), and the non-variational ones are
uaq(0, ) = uy(0, ). Once again the error in £2; is O(v) for each algorithm, since
each algorithm solves the same advection equation in §2;. However the factorization
algorithm solves then a second advection equation which provides a better boundary
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Fig. 3 Errors for a > 0 as the viscosity becomes small for our factorization algorithm compared to other
coupling algorithms from the literature. Left: ||u — ugqll;2 - Right: ||u — uq| ;2
x,t X,

value for the advection-diffusion problem in §2; and thus can provide an error O(v?),
whereas the other algorithms only give an approximation O(v) in £2;.

We finally consider a 2-dimensional problem on the domain 2 = (—1, 1) x (0, 1).
We choosea = (2,1),c=1,v=10.02, g1 =0, g2 =0and T = 0.5, and impose
periodic boundary conditions in the y-direction. We use as right hand side

fe,y, ) = fi@®) foalx,t) f3(y, 1),

fi) = Gin*@n@ —10) +sin* @t = 10))xe=r0,  fo = 0.05,
frlx,r) = 67100x2/4 + e*lOO(X*I/4*O.4)2 + 671()0()5%/2“).4)27
B, 1) = e 100—1/4=0H7 4 ,—100(y+1/4+0.4)7

and the initial condition is ug(x, y) = o~ 100((x+0.5)*+(y=0.5)%)

Figure 5 shows the solution at several snapshots in time: on the left the fully vis-
cous solution, in the middle the solution of the factorization algorithm after the first
iteration, and on the right after the second iteration. We see that already after the first

10° ‘ 10°
——Fact. ——Fact.
——Var . —*—Var
10" ——Non Var, BT _4|[——NonVar
-y 107"y
- - b -
2
_2 -tV
1072}
107
107
5] _4
10 : 10 :
107 107° 107 107 107° 107

Fig. 4 Errors for a < 0 as the viscosity becomes small for the factorization algorithm compared to other
coupling algorithms from the literature. Left: ||u — ugqll;2 - Right: ||u — uq| ;2
X, X1
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Fig. 5 From fop to bottom: snapshots at several time steps. From left to right: viscous solution, solution
of Algorithm (6) at iteration k = 1, and at iteration k = 2

iteration the approximation obtained from the factorization algorithm in the viscous
region is of excellent quality, while u }1 is not at all close to the viscous solution. This
is as expected, since we solve the advection equation with zero as Dirichlet bound-
ary condition, but solving the modified advection equation allows u}z 4 to be already
very close to the viscous solution. At the second iteration, the global coupled solution
gives now an overall better approximation, with even higher accuracy in the viscous
region one is interested in: when Ax = Ar = 0.01, the error in L* between the vis-
cous solution and the solution in £21 goes from 2.59 1073 to 5.8 10~* between the
first and second iteration.

6 Conclusions
We introduced a new algorithm to solve time dependent advection reaction diffu-
sion problems with advection reaction approximation in a subregion. We call this

algorithm factorization algorithm, because it is based on a factorization of the under-
lying operator. We proved rigorous error estimates in one spatial dimension that
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show that our new algorithm gives solutions that are closer to the fully viscous
solution of interest than other coupling algorithms in the literature. Our numerical
experiments indicate that our estimates are sharp, an issue we are currently investi-
gating using multiscale expansions, and that our new algorithm also works in higher
spatial dimensions.
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