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Abstract

We present in this paper the Dirichlet to Neumann operator for the wave equation on a straight wedge in R2, using Fourier integral
operators. As a consequence, we recover the classical approximate boundary conditions of orders 1 and 2.
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1. Statement of the problem

We consider the wave equation in R2:{�t tU − �U = 0 in (0, T ) × R2,

U(0, ·) = u0, �tU(0, ·) = u1,
(1)

with initial data u0 and u1 compactly supported in a bounded domain B (we could as well consider a diffraction problem).
We want to compute the unique solution of (1) in some domain �I ⊃ B. Therefore, we introduce a computational
domain � ⊃ �I , and search for absorbing boundary conditions on the boundary � = ��, i.e., operators B such that a
function u satisfying⎧⎪⎨⎪⎩

�t t u − �u = 0 in (0, T ) × �,

u(0, ·) = u0, �t u(0, ·) = u1 in �,

Bu = 0 on (0, T ) × �,

(2)

be as close as possible to U in �I . To this end, the theory of absorbing boundary conditions has been developed by
Engquist and Majda in [5], where the strategy, extended in [9] to parabolic problems, consists of writing the Dirichlet
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Fig. 1. Geometric notations for the corner.

to Neumann map for �̃ = R2\�, then expanding the symbol of this pseudo-differential operator, truncating the series,
and making approximations for incidence on the boundary close to normal. Other strategies have been developed for
constant coefficient problems, in order to compute U exactly in �, such as PML [3] or fast solvers [1]. Higher order
absorbing boundary conditions can be obtained as well, and Kreiss theory [12] or energy estimates [8] show that the
boundary value problem in � is well-posed. For example, the second order boundary condition for the half-space
{x < 0} is

�t t u + �txu − 1
2 �yyu = 0. (3)

An open and puzzling question remains the case of a corner. Obviously, the pseudo-differential approach cannot be
used, since it relies on smooth functions.

However, it is tempting to try and use the absorbing boundary conditions (3) on each side of the wedge. With the
notation in Fig. 1, this gives{

�t t u − �tY u − 1
2 �XXu = 0 on (0, T ) × �−,

�t t u + �tyu − 1
2 �xxu = 0 on (0, T ) × �+.

(4)

In [5], it was pointed out that in a right wedge (i.e., with �=�/2), a “corner condition” was missing, in order to determine
the discrete solution. The authors of [5] suggested to use a discretization of the first order absorbing boundary condition,
transparent for the angle �/4. Later on, in [10], it was proved that the smoothest solution (i.e., in H 3−�((0, T ) × �))
to the wave equation in the right wedge with boundary conditions (4) satisfies the following equation at the corner:

( 3
2 �t u − �xu + �yu)(0, 0, t) = 0. (5)

The proof relies on the isotropy of the Laplace operator in the usual coordinates (the tangential derivative on one face
is the normal derivative on the other), supplemented with energy estimates and regularity considerations (see [2,4]).
Therefore, it does not extend to angles different from �/2. This corner condition coupled with (4) corresponds to
imposing u|� in H 2(�) where � is the full boundary.

This remark, together with results proved in [6], Sections 2 and 5, is the starting point of our strategy for the corner.
We use the Helmholtz equation, and construct the explicit form of the Dirichlet to Neumann map. It will be treated as an
operator on the Dirichlet datum, which is the trace of u on the whole boundary. We adopt the formalism introduced in
[6] for the diffraction problem with a vanishing Dirichlet boundary condition, and generalized in [11] for the diffraction
by an impedance boundary condition.

In Section 2, we first summarize some well-known results for the regular case. In Section 3, we compute analytically
the solution in the exterior wedge, from which we deduce the Dirichlet to Neumann operator in Section 4. The main
result is Theorem 6. Finally we establish in Section 5 a more tractable form for the Dirichlet to Neumann map (Theorem
9), from which we deduce the classical approximate boundary conditions of orders 1 and 2.
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2. The Dirichlet to Neumann map: The regular case

The Dirichlet to Neumann map is defined as follows. Let � be a regular closed curve in R2 enclosing a domain �.
We denote by �̃ the complement set of �̄ in R2. Let h in D(R × �) be such that h ≡ 0 for t �0, and let w be the
solution of the problem⎧⎪⎨⎪⎩

�t tw − �w = 0 in (0, T ) × �̃,

w(0, ·) = 0, �tw(0, ·) = 0 in �̃,

w = h on (0, T ) × �.

(6)

We call the Dirichlet to Neumann map for �̃ the map

N�̃ : h �→ �n�̃
w, (7)

and introduce the initial boundary value problem in �:⎧⎪⎨⎪⎩
�t t u − �u = 0 in (0, T ) × �,

u(0, ·) = u0, �t u(0, ·) = u1 in �,

�n�
u + N�̃u = 0 on (0, T ) × �.

(8)

Proposition 1. For any u0 in H 1(R2) and u1 in L2(R2), problem (8) has a unique solution u ∈ H 1
loc(Rt × R2) ∩

H 2
loc(Rt , L

2(R2)), equal to the solution U of (1).

Proof. For U a regular solution to (1), we have [U ]= [�n�
U ]= 0 on �, and therefore �n�

U =−�n�̃
U =−N�̃U . Thus

U is a solution to problem (8), which therefore has at least one solution, namely U. For the uniqueness, suppose that
the initial values be zero. Defining h = u|�, and w the solution of (6), we construct energy estimates for u and w: first,
we multiply the first equation in (8) by �t u an integrate in �. Second, we multiply the first equation in (6) by �tw and
integrate in �̃. By using Green’s formula, we get

1

2

d

dt
[‖�t u‖2

� + ‖∇u‖2
�] −

∫
�

�n�
u�t u ds = 0,

1

2

d

dt
[‖�tw‖2

�̃
+ ‖∇w‖2

�̃
] −

∫
�

�n�̃
w�tw ds = 0. (9)

We add the two equations, taking into account that u = w and �n�
u = −N�̃u = −�n�̃

w, and get

d

dt
[‖�t u‖2

� + ‖∇u‖2
� + ‖�tw‖2

�̃
+ ‖∇w‖2

�̃
] = 0.

Since the initial conditions vanish, u vanishes on (0, T ). �

In [5,9], the symbol of N�̃ is obtained by a high frequency expansion. Here, we use a Laplace transform to compute
the solution w of (6). We extend Eq. (6) for t ∈ R. By the causality principle, N�̃h is the restriction to (0, T ) of the
solution of (6) on R. After a Laplace transform in time, we obtain a Helmholtz equation{�W + k2W = 0 in �̃,

W = H on �,
(10)

with W(x, k) = ∫
R w(x, t)e−ikt dt , H(x, k) = ∫

R h(x, t)e−ikt dt , where k is a complex number, with Re k �= 0 and
Imk < 0, according to the Paley–Wiener–Schwartz theorem. Throughout this paper, we make this assumption on k.
Furthermore, we assume that W is a distribution with traces on �.

Coupling the exterior problem to 0 in �, by the jump formula we can write for any � in D(R2)

〈(	 + k2)W, �〉 =
∫
�

W�n�̃
� dS −

∫
�

�n�̃
W� dS.
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Defining the distributions 
� and 
′
� by their action on � in D(R2),

〈
�, �〉 =
∫
�

� dS,

〈
′
�, �〉 = −〈
�, ∇�.n�̃〉 = −

∫
�

�n�̃
� dS, (11)

we obtain, for W |� ∈ D′(�) and �n�̃
W ∈ D′(�),

W = −(	 + k2)−1(�n�̃
W ⊗ 
� + W ⊗ 
′

�). (12)

Taking the limit on � in (12) whenever it is possible, gives the Neumann to Dirichlet map, while taking the normal
derivative yields the Dirichlet to Neumann map, as we describe now in the more difficult case of a wedge.

3. Computation of the solution of the Helmholtz equation in the exterior wedge

We are back to the situation depicted in Fig. 1. Let T be the linear operator from L2(�) to (L2(R+))2 defined as
follows: for each � in L2(�),

�+(s) = �(s, 0), �−(s) = �(s cos �, −s sin �), T� = (�+, �−). (13)

The Dirac distributions on the faces of the corner are defined for a � ∈ D(R2) as

〈
+, �〉 =
∫ +∞

0
�(s, 0) ds,

〈
′+, �〉 = −〈
+, �′〉 =
∫ +∞

0
�y�(s, 0) ds,

〈
−, �〉 =
∫ 0

−∞
�

(
− y

tan �
, y

)
dy

sin �
=
∫ +∞

0
�(s cos �, −s sin �) ds,

〈
′−, �〉 = − 〈
−, ∇� · n−〉 = −
∫ 0

−∞
�

(
− y

tan �
, y

)
dy

sin �

= −
∫ +∞

0
∇� · n−(s cos �, −s sin �) ds. (14)

Lemma 2. Let W be the solution of problem (10). Then we have

W = −(	 + k2)−1(f+ ⊗ 
�+ + f− ⊗ 
�− + h+ ⊗ 
′
�+ + h− ⊗ 
′

�−), (15)

with

h+(s) = W(s, 0),

h−(s) = W(s cos �, −s sin �),

f+(s) = (�n�̃
W)+(s) = −�yu(s, 0),

f−(s) = (�n�̃
W)−(s) = ∇W · n�−(s cos �, −s sin �). (16)

Proof. If W is the solution of problem (10), the distribution S = W + (	 + k2)−1(�n�̃
W ⊗ 
� + W ⊗ 
′

�) which

exists, see [7] is a solution of the homogeneous Helmholtz equation in R2. Therefore, it is a sum of Hankel and Bessel
functions, and its singularity on the corner is at most given by the Hankel function, which is equivalent on the corner to
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(1/2�) ln(1/
√

x2 + y2), and ∇ ln r /∈ L2 at the corner. By the jump formula, S is supported on the corner (0, 0), and
thus is a Dirac distribution. Assuming that W |� is in H 1(�) and �n�̃

W is in L2(�), (	+k2)−1(�n�̃
W ⊗
�+W ⊗
′

�) ∈
is in H(1/2)−�(R2), hence necessarily S = 0. �

We start with a representation of W . The following calculation has been performed for a curved corner in [11]. Define
the function

g(�, �) = � cos � − � sin �. (17)

For � ∈ R, denote by �0 the principal part of the square root of k2 − �2 such that Im �0 > 0. For h in L2(R+), we
define by extension the Fourier transform

ĥ(�) =
∫ +∞

0
h(s)e−is� d�. (18)

Theorem 3. We use the notation of Lemma 2. Let W be the solution of problem (10). Then, for |y| > 0 and |Y | > 0, the
equality W = W+ + W− holds, with

W+(x, y) = i

4�

∫
R

1

�0

(
f̂+(�) − i�0

y

|y| ĝ+(�)

)
eix�+i|y|�0 d�,

W−(x, y) = i

4�

∫
R

1

�0

(
f̂−(�) + i�0

Y

|Y | ĝ−(�)

)
eiX�+i|Y |�0 d�, (19)

where X = x cos � − y sin �, Y = x sin � + y cos �.

Remark 4. The above integrals are defined as absolutely convergent integrals for Im k < 0 and non vanishing y and Y,
whereas for y = 0 or for Y = 0, they are defined only as oscillatory integrals.

Proof. Define the fundamental solution of the Helmholtz equation as E = (	+ k2)−1
. Then we have W =W+ +W−,
with W+ = −E ∗ (f+ ⊗ 
�+ + h+ ⊗ 
′

�+) and W− = −E ∗ (f− ⊗ 
�− + h− ⊗ 
′
�−). Denoting by Ex,y the associated

Green’s function, i.e., Ex,y(s, u) = E(x − s, y − u), we have

W+(x, y) = −
∫ +∞

0
f+(s)Ex,y(s, 0) ds −

∫ +∞

0
h+(s)�uEx,y(s, 0) ds.

The Fourier transform of E being Ê(�, �) = (k2 − �2 − �2)−1, we obtain

W+(x, y) = − 1

(2�)2

∫ +∞

0

∫
R2

f+(s) − i�h+(s)

k2 − �2 − �2
ei(x−s)�+i�y d� d� ds.

As Imk2 �= 0, we may use the Cauchy formula for the integral in the � variable, using the pole �0 which verifies
Re i�0y < 0, i.e., �0 = (y/|y|)�0:

W+(x, y) = − i

(2�)

∫ +∞

0

∫
R

f+(s) − i�0(y/|y|)h+(s)

−2�0
ei(x−s)�+i�0|y| d� ds.

We finally use the Fourier transforms of f+ and h+ to obtain the formula for W+ in Theorem 3. For the second formula,
we write in the same fashion

W−(x, y) = − 1

(2�)2

∫ +∞

0

∫
R2

f−(s) + i(� sin � + � cos �)h−(s)

k2 − �2 − �2
ei(x−s cos �)�+i�(y+t sin �) d� d� ds.
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In the double integral, we perform the change of variables

�̃ = � cos � − � sin �, �̃ = � sin � + � cos �.

With the notation in Theorem 3, we get

W−(x, y) = − 1

(2�)2

∫ +∞

0

∫
R2

f−(s) + i�̃h−(s)

k2 − �̃2 − �̃2
ei(X−s)�̃−i�̃Y d�̃ d�̃ ds.

Applying again the Cauchy formula, we have

W−(x, y) = − i

(2�)

∫ +∞

0

∫
R

f−(s) + i�0(y/|y|)h−(s)

−2�0
ei(X−s)�+i�0|Y | d� ds,

where we replaced �̃ by �, which leads to expression (19). �

4. Computation of the Dirichlet to Neumann map for the Helmholtz equation in a wedge

We define the operators S, R0, R1, T0, T1 for h ∈ L2
comp(R+) (compactly supported functions of L2(R+)) by

Sh(s) = 1

2�
1s �0

∫
R

g(�0, �)

�0
eisg(�,−�0)ĥ(�) d�,

R0h(s) = ik2

2�
1s>0

∫
R

1

�0
eis�ĥ(�) d�,

R1h(s) = − 1

2�
1s>0

∫
R

�

�0
eis�ĥ(�) d�,

T0h(s) = ik2 cos �

2�
1s>0

∫
R

1

�0
eisg(�,−�0)ĥ(�) d�,

T1h(s) = − 1

2�
1s>0

∫
R

g(�, −�0)

�0
eisg(�,�0)ĥ(�) d�. (20)

These operators map L2
comp(R+) into itself. This is a consequence of Img(�, −�0) > 0 and of the boundedness of

�/�0 and g(�, −�0)/�0 for Imk2 �= 0.

Remark 5. The functions we consider have to be compactly supported because a L∞ kernel (as it is the case of �/�0)
behaves properly when acting on a Fourier series. Whenever one chooses a time T, the finite speed of propagation of
waves imposes that the solution of (21) is compactly supported, hence its traces are also compactly supported.

Theorem 6. The Dirichlet to Neumann operator N�̃ for the wedge in Fig. 1 is the operator from H 1(�) to L2(�)

defined by(
f+
f−

)
=
(

I −S

−S I

)−1

M

(
h+
h−

)
, (21)

with Th= (h+, h−), and TN�̃h= (f+, f−). The operators in (21) are given by M=
(

R
−T

−T
R

)
and for h ∈ L2(R+),

Rh = R0h + R1h
′, T h = T0h + T1h

′.

Proof. We compute the normal derivatives of W± on �±, using Theorem 3. Note that in a neighborhood of �+ in
�̃, we have y�0 and Y �0, whereas in a neighborhood of �− in �̃, we have y�0 and Y �0. We start with �+,
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and differentiate W+ and W− with respect to y.

�n+.∇W+(x, y) = − �yW+(x, y)

= 1

4�

∫
R
(f̂+(�) − i�0ĥ+(�))eix�+iy�0 d�,

�n+.∇W−(x, y) = 1

4�

∫
R

g(�0, �)

�0
(f̂−(�) + i�0ĥ−(�))eiX�+iY�0 d�. (22)

Since the Fourier transform of an element h+ in H 1(R+) is merely in L2(R) in general and in particular does not
verify (1 +�2)1/2ĥ+ ∈ L2(R) (more regularity occurs in the case h+(0)= 0), the distribution �0ĥ+(�) is not in L2(R),
which is the fundamental difference with the regular boundary case, and makes the problem significantly harder. We
introduce the operators

R̃h = lim
y→0+

1

2�

∫
R

i�0ĥ(�)eix�+iy�0 d�,

T̃ h = lim
y→0+

1

2�

∫
R

1

�0
ig(�0, �)ĥ(�)eiX�+iY�0 d�. � (23)

Lemma 7. For h in S(R), and h+ =h1x �0, h′+ =h′1x �0, the operators R̃ and T̃ introduced in (23) are well defined
and equal to

R̃h+(x) = R0h+(x) + R1h
′+(x) − h(0)

1

2�

∫
R

�

�0
eix� d�,

T̃ h+(x) = T0h+(x) + T1h
′+(x) − h(0)

1

2�

∫
R

g(�, −�0)

�0
eisg(�,−�0) d�. (24)

Proof. For h in S(R), since the kernels of the integrals are in L2(R), we can take limits in (23) as y → 0+, which
proves the existence of R̃ and T̃ as maps from S(R) into S′(R). We now transform the right-hand side in the definition
of R̃h+. We first use the relation i�0 = i(k2/�0) − (�/�0)i� to obtain

i�0ĥ+(�) = i
k2

�0
ĥ+(�) − �

�0
(i�ĥ+(�)),

and next we use the identity (in which ĥ′± denotes the Fourier transform of the restriction to R+ of the derivative h′±)

i�ĥ±(�) = ĥ′±(�) + h±(0). (25)

We then split the integral

1

2�

∫
R

i�0ĥ+(�)eix�+iy�0 d� = − 1

4�
h(0)

∫
R

�

�0
eix�+iy�0 d�

+ 1

4�

∫
R

(
i
k2

�0
ĥ+(�) − �

�0
ĥ′+(�)

)
eix�+iy�0 d�. (26)

By the Lebesgue’s dominated convergence Theorem in L1(R), we can take the limit of each term on the right-
hand side, with the particular case of the function

∫
R(�/�0) eix�+iy�0 d�, whose limit is the derivative of the inverse

Fourier transform of 1/�0 which is a distribution in L2(R). With the operators defined in (20), we obtain the first
equation in (24).

We treat T̃ the same way, using (25) and the identity

g(�0, �) = cos ��0 − sin �� = cos �
k2

�0
− �

g(�, −�0)

�0
,
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and we obtain

T̃ h+(s) = T0h+(s) + T1h
′+(s) − h(0)

1

2�

∫
R

g(�, −�0)

�0
eisg(�,−�0) d�. (27)

Now for � �= �/2, we have by a contour transform∫
R

g(�, −�0)

�0
eisg(�,−�0) d� =

∫
R

�

�0
eis� d�, (28)

which proves the second equality in (24), and concludes the proof of the lemma. �

Taking the limit in (22) as y tends to 0, we obtain

f+(x) = 1

2
f+(x) + 1

4�

∫
R

g(�0, �)

�0
f̂−(�)eixg(�,−�0) d�

− 1

4�

∫
R

i�0ĥ+(�)eix� d� + 1

4�

∫
R

ig(�0, �)ĥ−(�)eixg(�,−�0) d�,

which can be rewritten as

f+ − Sf− = −R̃h+ + T̃ h−.

We can perform the same calculation on �−, using the symmetry of the problem, and write

f−(x) = 1

2
f−(x) + 1

4�

∫
R

g(�0, �)

�0
f̂+(�)eixg(�,−�0) d�

− 1

4�

∫
R

i�0ĥ−(�)eix� d� + 1

4�

∫
R

ig(�0, �)ĥ+(�)eixg(�,−�0) d�,

and we obtain altogether

f+ − Sf− = −R̃h+ + T̃ h−, f− − Sf+ = −R̃h− + T̃ h+. (29)

We can now express the right-hand side in (29) in the form

− R̃h+ + T̃ h− = −Rh+ + Th− − (h+(0) − h−(0))

∫
R

�

�0
eis� d�,

− R̃h− + T̃ h+ = −Rh− + Th+ + (h+(0) − h−(0))

∫
R

�

�0
eis� d�.

Since h is in H 1(�), it is continuous at the corner, and h+(0) − h−(0) = 0. We finally have

f+ − Sf− = −Rh+ + Th−, f− − Sf+ = −Rh− + Th+, (30)

which is formally (21). The last step of the proof is to use a Neumann expansion, using the following property of the
singular operator S: it maps a function whose Fourier transform is holomorphic in the half-plane Im � < 0 to a function
whose Fourier transform is holomorphic in the half-plane Im(�e−i�
) < 0. The Neumann expansion is then computed

until n� > � (see [6]). This gives a sense to the operator
(

I
−S

−S
I

)−1
from (L2(R+))2 to (L2(R+))2, hence the result

in the theorem.

Remark 8. In the particular case � = � we recover the usual Dirichlet to Neumann map for a straight boundary, using
the splitting of a function in H 1(R) into its part on R+ and its part on R−, with g(�, �0) = −� in the phase function
(taking into account the symmetry).
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5. Another formulation of the Dirichlet to Neumann map

In this section we use the following notation:

• The operator K is given by

Kf(s) = 1

2�

∫
R

f̂

�0 − k
eis� d�,

(
F(Kf ) = f̂

�0 − k

)
.

• The distributions DR,0, DT,0, DR,1, DT,1 are defined by

DR,1 = i

2�

∫
eis�

�0 − k
d�, DT,1 =

∫
R

g(�0, �)

�0(�0 − k)
eisg(�,−�0) d�,

DR,0 = 1

2�

∫
R

k�

�0(�0 − k)
eis� d�, DT,0 = sin �

2�

∫
R

k

�0
eis� d� + cos �

2�

∫
R

k�

�0(�0 − k)
eisg(�,−�0) d�.

We present now another formulation of the Dirichlet to Neumann operator, which is useful to make the link with the
case of the half space.

Theorem 9. The DtN operator given in Theorem 6 can be written in the form(
I −S

−S I

)−1

M

(
h+
h−

)
= −ik

(
h+
h−

)
+ i

(
K(h′′+)

K(h′′−)

)
+ R

(
h+
h−

)
, (31)

where(
I −S

−S I

)
R

(
h+
h−

)
= h(0)

(
DR,0 DT,0

DT,0 DR,0

)(1

1

)
+
(

DR,1 DT,1

DT,1 DR,1

)(
h′+(0)

h′−(0)

)
.

Proof. This is a consequence of the identity

�0 = �0 + k − k = −�2

�0 − k
− k

and of relation (25) applied to the functions h± and their derivatives. We obtain

�0ĥ+(�) = −kĥ+(�) + 1

�0 − k
(ĥ′′+ + h′+(0) + i�h+(0)),

g(�0, �)

�0
(i�0ĥ−(�)) = −k

g(�0, �)

�0
ĥ−(�) + g(�0, �)

�0

ĥ′′−(�) + h′−(0) + i�h−(0)

�0 − k
,

which can be rewritten in the form

�0ĥ+(�) = F(−kh+ + Kh′′+) + h′+(0) + i�h+(0)

�0 − k
,

g(�0, �)

�0
(i�0ĥ−(�)) = g(�0, �)

�0
(F(−kh− + Kh′′−)) + g(�0, �)

�0(�0 − k)
(h′−(0) + i�h−(0)).

Hence the result follows, using

1

2�

∫
g(�0, �)

�0
F(−kh− + K(h′′−))eisg(�,−�0) d� = S(−kh− + K(h′′−)). �

Remark 10. The usual first order absorbing boundary condition can be recovered from (31) by replacing K and DR,j by
0 for j =0, 1. Moreover, the second order absorbing boundary condition (4) can be derived by using the approximation
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�0 � −k for � � 0 in the symbol of K, leading to the approximation of K given by Kf � −(1/2k)f . On the other
hand, numerical computations using the full operator K seem tractable.

For the first order approximation of the DtN in the wedge, we have a well-posedness result:

Proposition 11. Assume the operator B in (2) to be �t + �n on each face of the wedge. Then problem (2) has a unique
solution u in C([0, T ], H s(R2)) ∩ H 1(]0, T [, H s−1(R2)) with s > 3/2. This solution satisfies u|� ∈ H 1(�).

The proof of this proposition is given in [11] as a particular case of the impedance boundary condition with the
impedance coefficient equal to 1 on each face after Fourier transform in time.

6. Conclusion

We have given here an explicit form of the Dirichlet to Neumann map, regardless of the regularity of the solution
and the angle at the corner, except that the trace of u on the whole boundary � be in H 1(�). We derived, for u|� in
H 2(�), an approximate boundary condition

B = �tn + �2
t2 − 1

2 �2
�2 (32)

(where �� is the tangential derivative along the boundary defined in H 2(�)). For further use, we propose, for any
angle, to use either the exact Dirichlet to Neumann map in the form (31), or the boundary operator (32) with the
regularity condition u|� ∈ H 2(�) as “corner condition” (it is equivalent to the continuity of ∇u|� at the corner). The
well-posedness for the problem with second order approximate boundary conditions is still work in progress.
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