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Abstract Optimized Schwarz Waveform Relaxation methods have been devel-
oped over the last decade for the parallel solution of evolution problems. They are
based on a decomposition in space and an iteration, where only subproblems in
space-time need to be solved. Each subproblem can be simulated using an adapted
numerical method, for example with local time stepping, or one can even use a
different model in different subdomains, which makes these methods very suitable
also from a modeling point of view. For rapid convergence however, it is important
to use effective transmission conditions between the space-time subdomains, and
for best performance, these transmission conditions need to take the physics of
the underlying evolution problem into account. The optimization of these trans-
mission conditions leads to mathematically hard best approximation problems of
homographic functions. We study in this paper in detail the best approximation
problem for the case of linear advection reaction diffusion equations in two spatial
dimensions. We prove comprehensively best approximation results for transmis-
sion conditions of Robin and Ventcel (higher order) type, which can also be used
in the various limits for example for the heat equation, since we include in our
analysis a positive low frequency limiter both in space and time. We give for each
case closed form asymptotic values for the parameters which can directly be used
in implementations of these algorithms, and which guarantee asymptotically best
performance of the iterative methods. We finally show extensive numerical exper-
iments, including cases not covered by our analysis, for example decompositions
with cross points. We use Q1 finite element discretizations in space and Forward
and Backward Euler discretizations in time (other discretization could also have
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been considered, since all our analysis is at the continuous level), and in all cases,
we measure performance corresponding to our analysis.

Keywords Domain decomposition, Time parallelization, Schwarz waveform
relaxation, best approximation.
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1 Introduction

Schwarz waveform relaxation algorithms are parallel algorithms to solve evolution
problems in space time. They were invented independently in [20] and [24], see
also [21], based on the earlier work in [4], and are a combination of the classical
waveform relaxation algorithm from [32] for the solution of large scale systems
of ordinary differential equations, and Schwarz methods invented in [39]. Modern
Schwarz methods are among the best parallel solvers for steady partial differential
equations, see the books [40],[38],[41] and references therein. Waveform relaxation
methods have been analyzed for many different classes of problems recently: for
fractional differential equations see [30], for singular perturbation problems see
[47], for differential algebraic equations see [2], for population dynamics see [23],
for functional differential equations see [48], and especially for partial differential
equations, see [28],[29],[43] and the references therein. For the particular form of
Schwarz waveform relaxation methods, see [6],[18],[8],[7],[31],[46],[22],[35],[5],[45],
[33],[34]. These algorithms have also become of interest in the moving mesh R-
refinement strategy, see [27],[26],[17], and references therein.

Schwarz waveform relaxation methods however exhibit only fast convergence,
when optimized transmission conditions are used, as first shown in [16], and then
treated in detail in [36],[15],[3],[42] for diffusive problems, and [10],[9] for the wave
equation, see also [19],[14] for circuit problems, and [1] for the primitive equations.
With optimized transmission conditions, the algorithms can be used without over-
lap, and optimized transmission conditions turned out to be important also for
Schwarz algorithms applied to steady problems, for an overview, see [11] and ref-
erences therein. In order to make such algorithms useful in practice, one needs
simply to use formulas for the optimized parameters, which can then be put into
implementations and lead to fast convergent algorithms, without having to think
about optimizing transmission conditions ever again.

For advection reaction diffusion problems in one spatial dimension, such for-
mulas have been developed in [15] for Robin transmission conditions and in [3] for
Ventcel transmission conditions. The formulas obtained are however not valid for
higher dimensional problems, and they are not robust in the parameters of the
problem, in the sense that for example the optimized parameters in the limiting
case of the heat equations can not be obtained. The purpose of this paper is to
provide robust formulas for a general evolution problem of advection reaction dif-
fusion type in two spatial dimensions. The analysis required to solve the associated
optimization problems is substantially more involved in higher spatial dimensions,
in particular also because we want to obtain robust formulas in the parameters
of the problem. We use and extend in our analysis more general, abstract results
for best approximation problems, which appeared in [3]. In particular, we remove
a compactness condition which remained in [3] in the case of overlap. We obtain
with our analysis the best choice of Robin transmission conditions, and also higher
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order transmission conditions called Ventcel conditions (after the Russian math-
ematician A. D. Ventcel, also spelled Venttsel, Ventsel or Wentzell [44]), both for
the case of overlapping and non-overlapping algorithms. We give complete proofs
of optimality, and illustrate our results with numerical experiments.

2 Model Problem and Main Results

We are interested in studying analytically and numerically the optimized Schwarz
waveform relaxation algorithm for the time dependent advection reaction diffusion
equation in Ω ⊂ R

2,

Lu := ∂tu+ a · ∇u− ν∆u+ bu = f, in Ω × (0, T ), (2.1)

where ν > 0 is the diffusivity, b > 0 is the reaction strengh coefficient, and a =
(a, c)T represents the advection field of the two dimensional flow, and suitable
boundary conditions need to be prescribed on the boundary of Ω, which will
however not play an important role, and we will not mention this further. In order
to describe the Schwarz waveform relaxation algorithm, we decompose the domain
into J non-overlapping subdomains Uj , and then enlarge them, if desired, in order
to obtain an overlapping decomposition given by subdomains Ωj . The interfaces
between subdomain Ωi and Ωj are then defined by Γij = ∂Ωi ∩Uj . The algorithm
for such a decomposition calculates then for n = 1, 2, . . . the iterates (unj ) defined
by

Luni = f in Ωi × (0, T )
uni (·, ·, 0) = u0 in Ωi,

Biju
n
i = Biju

n−1
j on Γij × (0, T ),

(2.2)

where the Bij
1 are linear differential operators in space and time, and initial guesses

Biju
0
j on Γij × (0, T ) need to be provided.
There are many different choices for the operators Bij . Choosing for Bij the

identity leads to the classical Schwarz waveform relaxation method, which needs
overlap for convergence. Zeroth or higher order differential conditions lead to op-
timized variants, which also converge without overlap, see for example [15] and
[3], where a complete analysis in one dimension was performed. We study here in
detail the case where the transmission operators are of the form

Bij = (ν∇− a

2
) · ni +

s

2
, s = p+ q(∂t + c∂y − ν∆y), (2.3)

where ni is the unit outer normal on the interface Γij of Ωi with Ωj , and p and
q are the two real parameters that we will determine to obtain fast convergence
of the method. If q = 0, the transmission conditions obtained are called Robin
transmission conditions, whereas for q 6= 0, they are called Ventcel transmission
conditions. In (2.3) the definition does not depend on the index j of the neighbor-
ing subdomain, since we choose to apply the same transmission operator for all
neighbors, and thus Bij really depends on its own subdomain Ωi only. One could
also consider the case where Bij 6= Bji, which would lead to so called two sided

1 At the continuous level the transmission operator on the left and right is indeed the same,
but the discretization leads in general to a small difference, see for example [10].
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Method No overlap Overlap L

Dirichlet 1 1− ∝(L)

Robin 1− ∝(
√
h) 1− ∝( 3

√
L)

Ventcel 1− ∝(
4
√
h) 1− ∝(

5
√
L)

Table 1: The asymptotically optimized convergence factors δ∗(L) defined in (2.5)
for L small in the case with overlap L > 0, and for mesh parameter h small if the
overlap L = 0.

transmission conditions, see for example [11], but we focus on the simplest case
first.

To optimize the parameters p and q in the transmission operators (2.3) for
fast convergence of the Schwarz waveform relaxation algorithm (2.2), one studies
in general an idealized model problem on Ω = R

2 having only two subdomains,
namely the two half spaces Ω1 = (−∞, L) × R and Ω2 = (0,∞) × R with overlap
size L between the subdomains. One can then compute explicitly the error in each
subdomain at step n as a function of the initial error. We use Fourier transforms
in time and in the direction y of the interfaces x = 0 and x = L, with ω the Fourier
variable in time, and k the Fourier variable in the y direction. The convergence
factor ρ(ω, k, p, q, L) of algorithm (2.2) describing precisely the error reduction of
each Fourier component in the time frequency ω and spatial frequency k for a
given choice of the free parameters p and q in the transmission operator (2.3) and
overlap L, can in this case be computed in closed form (see for example [15,3]),

ρ(ω, k, p, q, L) =
p+q(νk2+i(ω+ck))−

√
x2
0+4ν(νk2+i(ω+ck))

p+q(νk2+i(ω+ck))+
√

x2
0+4ν(νk2+i(ω+ck))

e−
L
√

x2
0+4ν(νk2+i(ω+ck))

2ν ,

(2.4)
where we denote by √ the standard branch of the square root with positive real

part, x20 := a2+4νb and i =
√
−1. Computing on a (uniform) grid, we assume that

the maximum frequency in space is kM = π
h where h is the local mesh size in x

and y, and the maximum frequency in time is ωM = π
∆t , and that we also have

estimates for the lowest frequencies km and ωm from the geometry, see for example
[11] for estimates, or for a more precise analysis see [13]. We also assume that the
mesh sizes in time and space are related either by ∆t = Chh, or ∆t = Chh

2,
corresponding to a typical implicit or explicit time discretization of the problem.

Defining D := {(ω, k), ωm 6 |ω| 6 ωM , km 6 |k| 6 kM}, the parameters (p∗, q∗)
which give the best convergence factor are solution of the best approximation
problem

inf
(p,q)∈C2

sup
(ω,k)∈D

|ρ(ω, k, p, q, L)| = sup
(ω,k)∈D

|ρ(ω, k, p∗, q∗, L)| =: δ∗(L). (2.5)

To motivate the reader, we outline in Table 1 the asymptotic behavior of the con-
vergence factors, which can be achieved by optimization. We use here the notation
Q ⋍ h or Q =∝(h) if there exists C 6= 0 such that Q ∼ Ch.

In what follows, we will often use the quantity

k̄ = |c|
√

(c2 + x20)
2 + 16ν2ω2

m − (c2 + x20)

8ν2ωm
.
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By a direct calculation, we see that 0 6 k̄|c| 6 ωm, and we define the function

ϕ(k, ξ) := 2
√
2
√√

(x20 + 4ν2k2)2 + 16ν2ξ2 + x20 + 4ν2k2, (2.6)

and the constant

A =





ϕ(k̄,−ωm + |c|k̄) if km 6 k̄,
ϕ(km,−ωm + |c|km) if k̄ 6 km 6 1

|c|ωm,

ϕ(km, 0) if km > 1
|c|ωm.

(2.7)

We state in the following two subsections the main theorems which we will prove
in this paper, for both overlapping and non-overlapping variants of the algorithm.

2.1 Robin Transmission Conditions

Theorem 1 (Robin Conditions without Overlap) For small h and small ∆t,

the best approximation problem (2.5) with L = 0 has a unique solution (p∗0(0), δ
∗
0(0)),

which is given asymptotically by

p∗0(0) ∼
√

A

Bh
, δ∗0(0) ∼ 1− 1

2

√
ABh, (2.8)

where A is defined in (2.7), and

B =





2
νπ if ∆t = Chh,

C
√
2d

νπ if ∆t = Chh
2, d := νπCh, C =

{
1 if d < d0,√

d+
√
1+d2

1+d2 if d > d0,

(2.9)

where d0 ≈ 1.543679 is the unique real root of the polynomial d3 − 2d2 + 2d− 2.

Partial results in the spirit of this theorem were already obtained earlier:

1. If km = ωm = 0, all three cases in (2.7) coincide, since k̄ = 0, and the constant
A simplifies to A = 4x0, and we find the case analyzed in [25].

2. If km and ωm do not both vanish simultaneously, and we are in the case of
the heat equation, a = 0, b = 0, c = 0, ν = 1, we also obtain k̄ = 0, and

A = 4

√
2
(√

k4m + ω2
m + k2m

)
, the case analyzed in [42]. Note that the stability

constraint for the heat equation discretized with a finite difference scheme is
4ν∆t 6 h2, which with our notation implies that d 6 π/4 ∼ 0.7854, a value
smaller than d0, and hence the constant C in (2.9) is equal to 1.

For the algorithm with overlap, L > 0, we treat two asymptotic cases: the
continuous case deals with the small overlap parameter L only, while the discrete
case involves also the grid parameters. In the continuous case, we consider the
parameters ωM and kM to be equal to +∞.
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Theorem 2 (Robin Conditions with Overlap, Continuous) For small over-

lap L > 0, the best approximation problem (2.5) on D∞ := {(ω, k), ωm 6 |ω| 6

+∞, km 6 |k| 6 +∞} has a unique solution

p∗0,∞(L) ∼ 1

2
3

√
νA2

L
, δ∗0,∞(L) ∼ 1− A

2p∗0,∞(L)
, (2.10)

where A is defined in (2.7).

If the overlap is fixed, the above analysis gives the behavior of the best param-
eter when h and ∆t tend to zero. However, the overlap contains in general a few
grid points only, and then the discretization also needs to be taken into account:

Theorem 3 (Robin Conditions with Overlap, Discrete) For small ∆t and h,

for L ⋍ h, the best approximation problem (2.5) on D has a unique solution

for ∆t ⋍ h2 : p∗0(L) ∼ p∗0,∞(L),

for ∆t ⋍ h : p∗0(L) ∼
p∗0,∞(L)

3
√
2

,
δ∗0(L) ∼ 1− A

2p∗0(L)
. (2.11)

2.2 Ventcel Transmission Conditions

In order to present the theorems, we need to define two auxiliary functions: first

g(t) =
2t−

√
t2 + 1

t2 + 1
,

and we denote for Q < g0 ≈ 0.3690 by t2(Q) the only root of the equation g(t) = Q

larger than t0 =
√
54 + 6

√
33/6 ≈ 1.567618292. Next we also define

P (Q) =

{√
1 +

√
t2(Q)2 + 1( 1√

t2(Q)2+1
+Q) if Q < g1 ≈ 0.3148,

1 +Q if Q > g1.
(2.12)

Theorem 4 (Ventcel Conditions without Overlap) The best approximation prob-

lem has for L = 0 a unique solution (p∗1(0), q
∗
1(0), δ

∗
1(0)), given by

for ∆t = Chh and ACh

8 < 1 : p∗1(0) ∼ 1
2

4

√
νπA3

4h , q∗1(0) ∼ 8ph
πA ,

for ∆t = Chh and ACh

8 > 1 : p∗1(0) ∼ 4

√
νπA2

2Ch(P ( 8
ChA

))2h
, q∗1(0) ∼ 8ph

πA ,

for ∆t = Chh
2 : p∗1(0) ∼ 1

2
4

√
νπA3

4Ch

√
2
d , q∗1(0) ∼ 8Cph

πA

√
d
2 ,

δ∗1(0) ∼ 1− A

2p∗1(0)
.

(2.13)

Here again A is the constant defined in (2.7), d and C are the constants defined in

(2.9).
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Fig. 1: How the change of variables to simplify the convergence factor transforms
the frequency domains

Theorem 5 (Ventcel Conditions with Overlap, Continuous) For small overlap

L > 0, the best approximation problem (2.5) on D∞ has the unique solution

p∗1,∞(L) ∼ 1

2
5

√
νA4

8L
, q∗1,∞(L) ∼ 4

5

√
ν2L3

2A2
, δ∗1,∞(L) ∼ 1− A

2p∗1,∞(L)
, (2.14)

where A is defined in (2.7).

Theorem 6 (Ventcel Conditions with Overlap, Discrete) For small ∆t and h,

for L ⋍ h, the best approximation problem (2.5) on D has a unique solution

for ∆t ⋍ h2 : p∗1(L) ∼ p∗1,∞(L), q∗1(L) ∼ q∗1,∞(L),

for ∆t ⋍ h : p∗1(L) ∼ 2−
1
5 p∗1,∞(L), q∗1(L) ∼ 2

3
5 q∗1,∞(L),

δ∗1(L) ∼ 1− A

2p∗1(L)
.

(2.15)

3 Abstract Results

We now recall the abstract results on the best approximation problem (2.5) from
[3], and present an important extension, which allows us to remove a compactness
assumption in the overlapping case. We start by rewriting the convergence factor
(2.4) in the form

ρ(z, s, L) =
s− z

s+ z
e−

Lz
2ν , z :=

√
x20 + 4ν(νk2 + i(ω + ck)), s = p+q(νk2+i(ω+ck)).

(3.1)
In order to separate real and imaginary parts of the square root, we introduce the
change of variables T : (k, ω) 7→ z = x + iy, which transforms the domain D into

D̃ = D̃+ ∪ D̃+, with D̃+ ⊂ R+ × R+, as illustrated in Figure 1. The domain D̃+

is compact, and lies below the line x = y, as one can see from the coordinates
(x, y) = (ReT (k, ω), Im T (k, ω)), which satisfy

x2 − y2 = x20 + 4ν2k2, (3.2a)

2xy = 4ν(ω+ ck). (3.2b)
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We further assume that the coefficients and parameters satisfy

either x20 + 4ν2k2m 6= 0, or ωm 6= 0, (3.3)

which implies that there exists an α > 0 such that

∀z ∈ D̃, Re z > α > 0.

We also use the notation ρ0(z, p, q) := s−z
s+z , ρ(z, p, q, L) := ρ0(z, p, q)e

−Lz/2ν.
The min-max problem (2.5) in the new (x, y)-coordinates takes now the simple
form

inf
(p,q)∈C2

sup
z∈D̃

|ρ(z, p, q, L)| = sup
z∈D̃

|ρ(z, p∗, q∗, L)| =: δ∗(L). (3.4)

For convenience of the presentation, we will also use the notation R0(ω, k, p, q) or
R0(z, p, q) for |ρ0(z, p, q)|2, and R(ω, k, p, q, L) = R(z, p, q, L) = R0(z, p, q)e

−Lx/ν .

3.1 Robin Transmission Conditions

In this case, we set q = 0, and we will simply use the above notation without the
parameter q in the arguments, writing for instance ρ(z, p, L), ρ0(z, p), etc.. We also
call the minimum in the Robin case δ∗0(L).

We start with the non-overlapping case, L = 0, where there is a nice geometric
interpretation of the min-max problem (3.4): for a given point zo ∈ C and a
parameter δ ∈ R, we introduce the sets

C(z0, δ) = {z ∈ C;

∣∣∣∣
z − z0
z + z0

∣∣∣∣ = δ}, D̄(z0, δ) = {z ∈ C;

∣∣∣∣
z − z0
z + z0

∣∣∣∣ 6 δ}. (3.5)

Note that C(z0, δ) is a circle centered at 1+δ2

1−δ2 z0, cutting the x−axis at the points
1−δ
1+δ z0 and 1+δ

1−δ z0, and D̄(z0, δ) is the associated disk. Now because of the form

of the convergence factor ρ0(z, p, q) = s−z
s+z , (p

∗, δ∗) is a solution of the min-max

problem (3.4) if and only if for any z in D̃, z is in D̄(p∗, δ∗). This means geometri-
cally that the solution of the min-max problem (3.4) is represented by the smallest
circle centered on the real axis which contains D̃. We will use this interpretation
as a guideline in the analysis, also for the overlapping case.

Theorem 7 For any set of coefficients such that (3.3) is satisfied, and kM and ωM
being finite, the min-max problem (3.4) with L = 0 has a unique solution (δ∗0(0), p

∗
0(0))

with δ∗0(0) < 1. The optimized parameter p∗0(0) is real and positive, and any strict local

minimum on R of the real function

F0(p) = sup
z∈D̃+

|ρ0(z, p)| (3.6)

is the global minimum.

Proof Since D̃ is compact, and with the assumption (3.3) we have Re z > α > 0
with α =

√
x20 + 4ν2k2m in the first case of (3.3) or α =

√
2νωm in the second

case, we can use directly the analysis in [3] for polynomials of degree zero to
get existence and uniqueness. The fact that the optimized parameter must be
real follows directly from the symmetry of D̃ with respect to the x-axis and the
geometric interpretation, and finally that any strict local minimum is the global
minimum follows as in [3].
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In [3] one can also find a proof of the existence of a solution to the min-max
problem (3.4) in the overlapping case, and uniqueness is shown for L small enough,
such that

δ∗(L)e
L
2ν

sup
z∈D̃

Re z < 1.

This constraint imposes that D̃ is bounded in the x direction. We show now that
this constraint is not necessary, using the fact that in D̃ the real part of z is strictly
larger than the absolute value of its imaginary part.

Theorem 8 For any L, for kM and ωM finite or not, and with the assumption (3.3),

the min-max problem (3.4) has a unique solution (δ∗0(L), p
∗
0(L)). The optimized pa-

rameter p∗0(L) is real, positive, and any strict local minimum on R of the real function

FL(p) = sup
z∈D̃+

|ρ(z, p,L)| (3.7)

is the global minimum.

Proof By Theorem 2.8 in [3], we know that a (possibly complex) solution p∗ =
p∗1+ ip

∗
2 of (3.4) exists. We now compute explicitly the modulus of the convergence

factor,

|ρ0(z, p)|2 =
(x− p1)

2 + (y − p2)
2

(x+ p1)2 + (y + p2)2
.

We first note that for any z, and any (p1, p2) with p1 > 0, we have |ρ0(z,−p1 +
ip2)| > |ρ0(z, p1 + ip2)|, and therefore we must have p∗1 > 0. Next, in order to show
that |p∗2| 6 p∗1, we assume the contrary, |p∗2| > p∗1, to reach a contradiction (in
particular this means that p∗2 6= 0). We calculate the gradient,

∂p1 |ρ0(z, p)|2 = −4
x(x2 + y2 + p22 − p21)− 2yp1p2

((x+ p1)2 + (y + p2)2)2
,

∂p2 |ρ0(z, p)|2 = −4
y(x2 + y2 + p21 − p22)− 2xp1p2

((x+ p1)2 + (y + p2)2)2
,

which gives, with ε = sign(p∗2),

(∂p1 − ε∂p2)|ρ0(z, p∗)|2 = −4
(x− εy)(x2 + y2 + 2εp1p2) + (x+ εy)(p22 − p21)

((x+ p1)2 + (y + p2)2)2
< 0,

where we used the fact that x > |y| as we noted earlier (see Figure 1). This shows
that |ρ0(z, p)|e−Lx/2ν decays in the neighborhood of p∗, in the direction (1,−ε),
if |p∗2| > p∗1, which is in contradiction with the fact that the minimum is reached,
and hence we must have |p∗2| 6 p∗1.

Now for any z in D̃, since x > |y| and |p∗2| 6 p∗1, we have

Re
p

z
=
xp∗1 + yp∗2

|z|2 > 0.

This allows us to prove that the set of best approximations is convex: consider
the disk defined in (3.5). We have seen that (p∗(L), δ∗(L)) is a solution of the
best approximation problem (3.4), if and only if for any z in D̃, z is also in
D̄(p∗(L), δ∗(L)eLx/2ν), which is equivalent by dividing numerator and denomi-
nator by z to saying that p∗/z belongs to D̄(1, δ∗(L)eLx/2ν). For any z in D̃, either
δ∗(L)eLx/2ν < 1 and thus p∗/z is on the inside of the disk D̄(1, δ∗(L)eLx/2ν) which
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is convex, or δ∗(L)eLx/2ν > 1 and thus p∗/z is outside of the disk D̄(δ∗(L)eLx/2ν, 1).
Now since the circle with z0 = 1 cuts the x-axis only on the negative half line, see
the explicit calculation after (3.5), the outside of the disk contains the half-plane
x > 0, which is also convex.

Using the convexity, we can now show uniqueness: let p∗ and p̃∗ be two solutions
of the best approximation problem with associated δ∗. For a given z in D̃, in
the first case, p∗/z and p̃∗/z are both inside the disk, which is convex. In the
second case, they both belong to the half-plane x > 0, which is also convex,
because by assumption (3.3) the real part of z, and hence with the properties on
p∗ = p∗1+ip

∗
2 also the real parts of p∗/z and p̃∗/z are strictly positive. In both cases

therefore, any point p/z in the segment joining p∗/z and p̃∗/z is also in the disk

D̄(1, δ∗(L)eLx/2ν), which means that sup
z∈D̃

∣∣∣ z−p
z+pe

−Lz/2ν
∣∣∣ 6 δ∗(L). Since δ∗(L) is

the minimum, p is also a minimizer. To conclude the proof of uniqueness, we can
use now Theorem 2.11 and the proof of Theorem 2.12 from [3], using a classical
equioscillation argument.

To see that the minimizer is real, we use again the symmetry of D̃ with respect
to the real axis, and the results on the strict local minimum implying the global
minimum follows as in the non-overlapping case.

3.2 Ventcel Transmission Conditions

For the case of Ventcel conditions, q 6= 0, we use the abstract results from [3].

Theorem 9 For any set of coefficients such that the assumption (3.3) is satisfied, and
with kM and ωM finite, the min-max problem (3.4) with L = 0 has a unique solution

(δ∗1(0), p
∗
1(0), q

∗
1(0)) with δ

∗
1(0) < 1. The coefficients p∗1(0)and q

∗
1(0)) are real, and any

strict local minimum in R+ × R+ of the real function

F0(p, q) = sup
z∈D̃+

|ρ0(z, p, q)| (3.8)

is the global minimum.

Theorem 10 For any L > 0, for kM and ωM finite or not, and with the assumption

(3.3) the min-max problem (5.2) has a solution.

– If D̃ is compact and L sufficiently small, the solution is unique and any strict local

minimum of the real function

FL(p, q) = sup
z∈D̃+

|ρ(z, p, q, L)| (3.9)

is the global minimum.

– If D̃ is not compact, but L sufficiently small, if FL has a strict local minimum in

R+ × R+, it is the unique global minimum.
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3.3 Outline of the Analysis

The abstract theorems in the previous subsections provide a guideline for the proof
of the main results in section 2:

1. The existence and uniqueness is guaranteed by the abstract results.
2. The convergence factor being analytic on the compact D, its maximum is

reached on the boundary. We thus study the variations of R for fixed p and q,
on the exterior boundaries of D̃+. Due to the complexity of the problem, this
study must be asymptotic, assuming asymptotic properties of p and q.

3. There are two local maxima in the Robin case, and three local maxima in
the Ventcel case. We prove that there exists a value p̄ (resp. (p̄, q̄)) such that
these two (resp. three) values coincide. The corresponding points z are called
equioscillation points.

4. We give the asymptotic values of these points and p̄ (resp. (p̄, q̄)).
5. We prove that p̄ (resp. (p̄, q̄)) is a strict local minimizer for the function F .
6. We again invoke the abstract results to show that the strict local minimizer is

in fact the global minimizer.

Note that point 3 is not at all easy, since many cases have to be analyzed. We
will treat the cases ∆t = Chh and ∆t = Chh

2 in the same paragraphs. But for the
clarity of the paper, we treat the Robin and Ventcel cases separately.

3.4 Study of the Boundaries of the Frequency Domain

The boundaries of D̃+ are all branches of the same function (ω, k) 7→ z = x+ iy.
Combining the equations (3.2), we see that x, y also satisfy the equation

x2 + y2 =
√

(x20 + 4ν2k2)2 + 16ν2(ω + ck)2, (3.10)

which, together with the constraints x > 0, y > 0, gives us a closed form parametric
representation for D̃+:




x =

√
1
2

√
(x20 + 4ν2k2)2 + 16ν2(ω + ck)2 + 1

2 (x
2
0 + 4ν2k2),

y =
√

1
2

√
(x20 + 4ν2k2)2 + 16ν2(ω + ck)2 − 1

2 (x
2
0 + 4ν2k2).

(3.11)

The boundary curves ω 7→ (x(ω,k), y(ω, k)) for k = km or k = kM are hyperbolas,
as one can see directly from (3.2a). They are shown in Figure 2, and defined below,
with the same color code as in the figure. Using s(c) to denote the sign of c, the
boundary on the left (west) is given by

Cw = z([ωm, ωM ], s(c)km) ∪ z([max(ωm, |c|km), ωM ],−s(c)km) (3.12)

and the boundary on the right (east) is given by

Ce = z([−min(|c|kM , ωM ),−ωm], s(c)kM ) ∪ z([ωm, ωM ], s(c)kM )
∪z([|c|kM , ωM ],−s(c)kM ),

(3.13)
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Fig. 2: Illustration of the domain D̃+ in the (x, y) plane

with the convention that [a, b] = ∅ whenever a > b. The corner points of D̃+ are

z1 = z(max(ωm, |c|km),−s(c)km),
z2 = z(−min(ωM , |c|kM ), s(c)km),
z3 = z(ωM , s(c)kM ),
z4 = z(ωM , s(c)km).

In order to complete the boundary of D̃+, we analyze now the curves at constant
ω. The northern curve joins z3 and z4,

Cn = z(ωM , s(c)[km, kM ]). (3.14)

The southern curve can have two components, which are

Csw = z(ωm,−s(c)[km,
ωm
|c| ]), Cse = z(−ωM , s(c)[

ωM
|c| , kM ]). (3.15)

Theorem 11 The curve k 7→ (x(ω,k), y(ω,k)) has a vertical tangent in the first quad-

rant if and only if ω > 0. It is reached for

k̃1(ω) =
c

8ν2ω

(
x20 + c2 −

√
(x20 + c2)2 + 16ν2ω2

)
. (3.16)

It has a horizontal tangent in the first quadrant if and only if ω > 0. It is reached for

k̃2(ω) =
c

8ν2ω

(
x20 + c2 +

√
(x20 + c2)2 + 16ν2ω2

)
. (3.17)
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For ωc = 0, the curve is monotone.

Proof We fix ω and differentiate (3.2) in k to obtain

(
x −y
y x

)(
∂kx

∂ky

)
= 2ν

(
2νk
c

)
, (3.18)

or equivalently (
∂kx

∂ky

)
=

2ν

x2 + y2

(
2νkx+ cy

−2νky + cx

)
. (3.19)

We first search vertical tangent lines. From (3.19), we see that ∂kx = 0 if and only
if

2νkx+ cy = 0. (3.20)

Multiplying (3.20) successively by x and y and substituting xy from (3.2b) gives
the system

x2 = − c

k
(ω + kc),

y2 = −4ν2
k

c
(ω + kc).

(3.21)

Replacing into the expression (3.2a) for x2 − y2 gives the equation for kc (we keep
kc since kc has a sign)

Qω(kc) := 4
ν2

c2
ω(kc)2 − (c2 + x20)(kc)− ωc2 = 0. (3.22)

The polynomial Qω has one negative solution ck̃1(ω), and one positive solution
ck̃2(ω), given in (3.16,3.17). For k to yield a solution of (3.21) in x > 0, y > 0, we

must have ω + kc > 0 and kc < 0. We compute Qω(−ω) = ω(x20 + 4 ν2ω2

c2 ), which
has the sign of the leading coefficient in Qω. This proves that −ω is outside the
interval defined by the roots, i.e.

{
−ω < ck̃1(ω) < 0 < ck̃2(ω) if ω > 0,

ck̃1(ω) < 0 < ck̃2(ω) < −ω if ω < 0.

Therefore, ω + ck̃1(ω) > 0 ⇐⇒ ω > 0, and there is a unique point where the
tangent is vertical, and this point is given by k = k̃1(ω).

We now search for horizontal tangent lines. By (3.19), we see that ∂ky = 0 if
and only if

−2νky + cx = 0. (3.23)

Proceeding as before when we obtained (3.21), we get the system

x2 = 4ν2
k

c
(ω + kc),

y2 =
c

k
(ω + kc),

(3.24)

and kc, together with ω+kc, must be positive, which is the case if kc is the positive
root of Qω, yielding k̃2. Therefore, there is a unique point where the tangent is
horizontal, which is given by k = k̃2(ω).



14 Daniel Bennequin et al.

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z1

z2

z3

z4

Cw Cn

Csw

Cez̃1

z̃2

Fig. 3: Illustration of the domain D̃+ in the (x, y) plane with the two special points
z̃1 and z̃2 defined in Corollary 1

If ω = 0 and c 6= 0, a direct computation shows that

∂kx =
4ν2k(x2 + c2)

x(x2 + y2)
> 0, ∂ky =

2νc(x20 + y2)

x(x2 + y2)
> 0,

which implies that sign(∂kx) = sign(k) and sign(∂ky) = sign(c). Since with ω = 0
we have from (3.2b) that k and c have the same sign, and hence dy

dx = ∂ky
∂kx

> 0, we
obtain that the curve is monotone.

Suppose now c = 0, ω 6= 0. Using (3.19), we obtain directly dy
dx = ∂ky

∂kx
= − y

x < 0,
and again the curve is monotone.

Finally, if c = ω = 0, we obtain from (3.2b) that y(x) = 0, going from x = x0
to infinity, which is also monotone.

Corollary 1 The northern curve Cn has a horizontal tangent, at z̃2 = z(ωM , k̃2(ωM )),
if and only if |k̃2(ωM )| ∈ [km, kM ].

For km 6 ωm/|c| the southern curve Csw has a vertical tangent at z̃1=z(ωm, k̃1(ωm)),
if and only if |k̃1(ωm)| ∈ [km, ωm/|c|].

Proof The results follow directly from Theorem 11.

We show in Figure 3 an example where the two points k̃1 and k̃2 are part of
D̃+.

Note that for ωM large, we have from (3.17) that

k̃2(ωM ) =
c

2ν
(1 +

x20 + c2

4νωM
) +O(ω−2

M ).

Therefore a sufficient condition for z̃2 to belong to the northern curve for ωM large

is km <
|c|
2ν .

The next lemma gives the asymptotic expansions for the corner points of D̃+,
z1 := z(ωm,−s(c)km) if |c|km < ωm and z1 := z(ωm,−ωm/c) if |c|km > ωm, z3 :=
z(ωM , s(c)kM ), and z4 := z(ωM , s(c)km), and also for other important points on
the boundary of D̃+.
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Lemma 1 The corner points zj of D̃+ have for kM and ωM large the asymptotic

expansions

z1 =
√
x20 + 4ν2k2m + 4iνmax(ωm − |c|km, 0)),

z3 ∼
{
2νkM + i(|c|+ ωM

kM
) if ωM ⋍ kM ,

2νkM
√

1 + i ωM

νk2
M

if ωM ⋍ k2M ,

z4 ∼ √
2νωM(1 + i).

(3.25)

We furthermore have the expansions for the horizontal tangent point

k̃2(ωM ) ∼ c

2ν
, z̃2(ωM ) ∼

√
2νωM (1 + i).

Proof All expansions are obtained by direct calculations.

We now define the south-western point and the northern point as

zsw=

{
z1 if |ckm|<ωm or if (|ckm|>ωm and |k̃1(ωm)| 6∈ [km,

ωm

c ]),

z̃1=z(ωm, k̃1(ωm)) if |ckm|>ωm and |k̃1(ωm)| ∈ [km,
ωm

c ].

zn=

{
z4 if |k̃2(ωM )| 6∈ [km, kM ],

z̃2=z(ωM , k̃2(ωM )) if |k̃2(ωM )| ∈ [km, kM ].

(3.26)

4 Optimization of Robin Transmission Conditions

This section is devoted to the proofs of Theorems 1, 2 and 3. The existence and
uniqueness of the minimizers are guaranteed by the abstract Theorems 7 and 8;
we therefore focus in each case on the characterization of a strict local minimum,
which will also provide the asymptotic results.

4.1 The Nonoverlapping Case

Proof of Theorem 1 (Robin Conditions Without Overlap): by Theorem 7, the best
approximation problem (3.4) on D̃ has a unique solution (p∗0(0), δ

∗
0(0)), which is

the minimum of the real function F0 in (3.6). To characterize this minimum, we
are guided by the geometric interpretation of the min-max problem: we search for
a circle containing D̃+, centered on the real positive half line, and tangent in at
least two points. From numerical insight, we make the ansatz that p∗0(0) ⋍

√
2νkM ,

which we will validate a posteriori by the uniqueness result from Theorem 7.
Local Maxima of the Convergence Factor: We start by analyzing the vari-

ation of R0(ω, k, p) = |ρ0(ω, k, p)|2 on the boundary curves Ce (k = km) and Cw
(k = kM ).

Lemma 2 For kM large, and p ⋍
√
2νkM , we have

1. the maximum of R0 on Ce is attained for z = z3.

2. the maximum of R0 on Cw is attained for z = z4 or z = z1.
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Proof Computing the partial derivative of R0 with respect to ω using the chain
rule, we obtain

∂ωR0(ω, k, p) = 8νpy
3x2 − y2 − p2

|z(z + p)2|2 ,

which we rewrite, using the definitions of x and y in (3.11), as

∂ωR0(ω, k, p)=
8pνy

|z|2 |z+p|4
(√

(x20+4ν2k2)2+16ν2(ω+ck)2+2(x20+4ν2k2)−p2
)
.

(4.1)
We look now at the two boundary curves separately:

– |k| = kM : with the asymptotic assumptions, p2 ≪ 2(x20 + 4ν2k2M ), and the
factor on the right is therefore positive. Since y is non-negative, ∂ωR0(·, kM , p)
does not change sign, and the convergence factor R0 is thus increasing in ω.
Its maximum is attained at z3.

– |k| = km: the right hand side of (4.1) vanishes if y = 0, which leads to a first
root

ω1(k) := −ck,
and also if the factor on the right in (4.1) vanishes, which happens if and only
if √

(x20 + 4ν2k2)2 + 16ν2(ω + ck)2 = p2 − 2(x20 + 4ν2k2),

where the right hand side is positive, since |k| = km and we have the asymptotic
assumption on p. By squaring, this equality is equivalent to

16ν2(ω + ck)2 = (p2 − 2(x20 + 4ν2k2))2 − (x20 + 4ν2k2)2

= (p2 − 3(x20 + 4ν2k2))(p2 − (x20 + 4ν2k2)).

Under the asymptotic assumption on p, the right hand side is positive, and we
can therefore obtain two further real roots

ω2(k) := −ck + 1

4ν

√
(p2 − 2(x20 + 4ν2k2))(p2 − 3(x20 + 4ν2k2)),

ω3(k) := −ck − 1

4ν

√
(p2 − 2(x20 + 4ν2k2))(p2 − 3(x20 + 4ν2k2)).

The three values ωj(km), j = 1, 2,3, which lead to a vanishing derivative, can be
ordered, ω3(km) < ω1(km) < ω2(km). Looking at the behavior of the derivative
of R in (4.1) for ω large, we see that ω1(km) must be a maximum, whereas
ω2(km) and ω3(km) represent minima. For k = −s(c)km, ω1(k) = |c|km belongs
to the western curve only if ωm 6 |c|km, see (3.12), and it is precisely on the
boundary. The maximum of R0 is therefore always attained on the boundary
of the western curve.

We next analyze the variation of R0 on the exterior boundary curves of D̃+

when ω is fixed. We start with the case ω = ωm:

Lemma 3 For km 6 ωm/|c|, and large p, the derivative of k 7→ R(ωm, k, p) vanishes

at a single point k̃3(p) ∼ k̃1(ωm), yielding a maximum at z̃3(p) = z(ωm, k̃3(p)), and

sup
z∈Csw

R0(z, p) =

{
R0(z1, p) if |k̃3(p)| 6 km,

R0(z̃3(p), p) if |k̃3(p)| 6 km.



Optimized Schwarz Waveform Relaxation for Advection Reaction Diffusion 17

Proof As in the previous proof, we start by computing the partial derivative

∂kR(ωm, k, p) = 4p
(x2 − y2 − p2)∂kx+ 2xy∂ky

|z + p|4 = 8pν
Nω(k)

|z|2 |z + p|4 ,

Nω(k) = (x2 − y2 − p2)(2ν k x+ cy) + 2x y(−2ν k y + cx).

(4.2)

For k in −s(c)[km,
ωm

|c| ], Nωm(k) ∼ −p2∂kx if ∂kx 6= 0. If |k̃1(ωm)| 6 km, ∂kx has a

constant sign in the interval, and R0(ωm, k, p) is a decreasing function of x, reaching
therefore its maximum at z1. If |k̃1(ωm)| > km, ∂kx changes sign in the interval,
and so does Nωm(k): there is a value k̃3(p) ∼ k̃1(ωm) such that Nωm(k̃3(p)) = 0.
At that point R0 is maximal.

It finally remains to study the case were ω = ωM .

Lemma 4 Suppose that ωM and kM are large, with ωM ⋍ kαM , α = 1 or 2, and

p ⋍
√
kM . If p <

√
4νωM , k 7→ R(ωM , k, p) has a single maximum point at z̃4 =

z(ωM , k̃4(ωM , p), p). It is given asymptotically by

k̃4(ωM , p) ∼





c

2ν

4νωM − p2

4νωM + p2
if α = 1,

c

2ν
if α = 2.

(4.3)

We then have the following two results:

1. If p >
√
4νωM or if p <

√
4νωM and |km| > |k̃4(ωM , p)|, then

sup
z∈Cn

R0(z, p) = max(R0(z3, p),R0(z4, p)).

2. If p <
√
4νωM and |km| 6 |k̃4(ωM , p)|, then

sup
z∈Cn

R0(z, p) = max(R0(z3, p),R0(z̃4(ωM , p), p)).

Proof We study the variations of NωM defined in (4.2), for s(c)k ∈ [km, kM ]. Since
we are on Cn, k has the sign of c, see (3.14), which implies that ∂kx has the sign
of c, as seen from (3.19). We now study separately the two cases ωM ⋍ kM and
ωM ⋍ k2M :

• Case ωM ⋍ kM : we need to study the three cases k ⋍ kαM for α < 1
2 , α = 1

2 and
1
2 < α < 1:
X k ⋍ kαM , α < 1

2 : we obtain from (3.11) that x ∼ y ∼ √
2νωM , and (3.2a)

shows that x2 − y2 ∼ x20 + 4ν2k2 ≪ p2, which gives

NωM (k) ∼
√

2νωM(−p2(2νk+ c) + 4νωM (−2νk+ c))

∼
√

2νωM(−2νk(p2 + 4νωM )− c(p2 − 4νωM )).

Since k has the same sign as c, this last quantity has the sign of −c if
p >

√
4νωM . |ρ| is therefore a decreasing function of x. If p <

√
4νωM , the

right hand side vanishes for

k0 =
c

2ν

4νωM − p2

4νωM + p2
= O(1).

Therefore it has the sign of c if |k| 6 |k0|, and the opposite sign otherwise.
By the intermediate values theorem, NωM vanishes for k̃4 ∼ k0, where a
local maximum occurs.
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X k ⋍ k
1
2

M : in this case,

NωM (k)∼2νkωMx(x2−3y2−p2)=2νkωMx(2(2νk)2−
√

(2νk)4+(4νωM )2−p2).

The right hand side vanishes for

k′0 =
s(c)

2
√
3ν

√
2p2 +

√
p4 + 3(4νωM)2 ⋍ k

1
2

M ,

and changes sign. Therefore, NωM vanishes for k̃′4 ∼ k′0, where a local min-
imum occurs.

X k ⋍ kαM , 1
2 < α 6 1: In this case we see from (3.2a) that x2 − y2 ≫ p2,

z ∼
√

4ν2k2 + 4iνωM ∼ 2ν|k|+ i
ωM
|k| ,

and the leading order term in NωM is

NωM (k) ∼ 4ν2k2(2νkx) + 4νωM (−2νωM + 2νck) ∼ (2νk)4s(c).

In conclusion, if p2 > 4νωM , |ρ| has a single extremum, which is a minimum,
and supk∈s(c)[km,kM ] R0(ωM , k, p) = max(R0(ωM , s(c)kM , p), R0(ωm, s(c)kM , p)).

If p2 6 4νωM , there is a maximum at k̃4 ∼ c
2ν

4νωM−p2

4νωM+p2 . If it is inside the seg-

ment, then supk∈s(c)[km,kM ]R0(ωM , ·, p) = max(R0(ωM , s(c)kM , p),R0(ωM , k̃4, p)).

• Case ωM ⋍ k2M : we study the cases k ⋍ kαM for α = 0, 0 < α < 1 and α = 1
separately:
X k ⋍ 1: we have x ∼ y ∼ √

2νωM , and inNωM the dominant term is 2xy(−2νky+
cx), which vanishes at k̃2(ωM ), from which we conclude that for |k| <
|k̃2(ωM )|, s(c)NωM (k) is positive, and negative for |k| > |k̃2(ωM )|. Therefore
a local maximum is reached in the neighbourhood of k̃2(ωM ).

X k ⋍ kαM , 0 < α < 1: we have again x ∼ y ∼ √
2νωM , and the dominant term

in NωM is 2xy(−2νky), and

NωM ∼ −8νωMkx.

X k ⋍ kM : we have now x ∼ 2ν|k|, y ∼ ωM

|k| ⋍ kM , and the dominant term in

NωM is

NωM ∼ 2ν
x

k
(x2 − 3y2) ∼ 2νkx(4ν2k4 − 3ω2

M ).

Hence s(c)NωM is negative for small k, and becomes positive for k >√√
3

2ν ωM . R0(ωM , ·, p) therefore reaches a minimum in the neighborhood

of

√√
3

2ν ωM .

In conclusion, there is a maximum at k̃4 ∼ k̃2(ωM ) ∼ c
2ν . If this lies in the seg-

ment, then supk∈s(c)[km,kM ]R0(ωM , ·, p)=max(R0(ωM , s(c)kM , p), R0(ωM , k̃4, p)).
Otherwise sups(c)[km,kM ]R0(ωM , ·, p)=max(R0(ωM , s(c)km, p),R0(ωM , s(c)kM , p)).

The conclusion of the Lemma now follows directly from the conclusion of the two
cases.
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From the above analysis, we see that there are three local maxima of R0(ω, k, p):

southwest z̃sw =





z1 if |ckm| < ωm,

z1 if |ckm| > ωm and |k̃3(p)| 6∈ [km,
ωm

|c| ],

z̃3(p) if |ckm| > ωm and |k̃3(p)| ∈ [km, ωm

|c| ],

northwest z̃n =





z4 if p >
√
4νωM ,

z4 if p <
√
4νωM and |k̃4(ωM , p)| 6∈ [km, kM ],

z̃4(ωM , p) if p <
√
4νωM and |k̃4(ωM , p)| ∈ [km, kM ],

northeast z3,

(4.4)

where z̃3 comes from Lemma 3 and z̃4 comes from Lemma 4.

We investigate now the asymptotic behavior of the convergence factor for large
kM , in order to see which of the candidates of local maxima z̃sw, z̃n and z3 will
be important. Since z̃sw ⋍ 1, for p ⋍

√
kM , the convergence factor at z̃sw behaves

asymptotically like

ρ0(z̃sw, p) =
z̃sw − p

z̃sw + p
∼ −1 + 2

z̃sw
p
, |ρ(z̃sw, p)| ∼ 1− 2

xsw
p
.

For z̃n, we have k ⋍ 1 and ω = ωM . Therefore z̃n ∼ √
2νωM(1 + i) and the

convergence factor at z̃n behaves asymptotically like

ρ0(z̃n, p) ∼
1 + i− p√

2νωM

1 + i+ p√
2νωM

.

We thus need to distinguish two cases for ρ0(z̃n, p):

1. If ωM ⋍ kM , |ρ(z̃n, p)| is asymptotically a constant smaller than 1, which
shows that the modulus is smaller than 1 independently of ωM , and thus also
independent of kM . Therefore, for kM large enough, the convergence factor at
z̃n is smaller than the convergence factor at z̃sw, where it tends to 1, and we
do not need to take it into account in the min-max problem.

2. If ωM ⋍ k2M , then p√
2νωM

= O(1), and the convergence factor at z̃n is asymp-

totically

|ρ0(z̃n, p)| ∼ 1− p√
2νωM

,

which means it could be important in the min-max problem.

We finally study the convergence factor at the last point z3, and again have to
distinguish two cases:

1. If ωM ⋍ kM , z3 ∼ 2νkM + i
ωM+|c|kM

kM
and the convergence factor at z3 behaves

asymptotically like

|ρ0(z3, p)| ∼
x3 − p

x3 + p
∼ 1− p

νkM
,

which means it needs to be taken into account.
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2. If ωM =
νk2

M

d then z3 ∼ 2νkM

√
1 + i

d and the convergence factor behaves

asymptotically like

|ρ0(z3, p)| ∼ 1−

√
d(d+

√
1 + d2)

2(1 + d2)

p

νkM
,

again possibly important for the min-max problem.

Determination of the Global Minimizer by Equioscillation: We now com-
pare the various points where the convergence factor can attain a maximum, in
order to minimize the overall convergence factor by an equilibration process. We
need to consider again the two basic cases of an implicit or explicit time integration
scheme:

1. If ωM ⋍ kM , for large ωM , large kM and p ⋍
√
kM , the maximum of |ρ0| is

reached at either z̃sw or z3. We therefore consider the difference |ρ0(z̃sw, p)| −
|ρ0(z3, p)|, which is asymptotically equal to 2( p

2νkM
− xsw

p ). Depending on the

relative values of p2

2νkM
and xsw, this difference can be positive or negative.

Therefore, as a function of p, we can make it vanishes in the region p ⋍
√
kM .

2. If ωM =
νk2

M

d , then the point z̃n comes into play: we compute asymptotically
the difference

|ρ0(z3, p)| − |ρ0(z̃n, p)| ∼
p

νkM

√
d

2


1−

√
d+

√
1 + d2

1 + d2


 .

The sign of this quantity is governed by the value of d with respect to d0:

{
If d > d0, |ρ0(z3, p)| > |ρ0(z̃n, p)|,
If d < d0, |ρ0(z3, p)| < |ρ0(z̃n, p)|.

Hence there is again a value of p such that |ρ0(z̃sw, p)| = max(|ρ0(z3, p)|, |ρ0(z̃n, p)|).

In order to obtain an explicit formula to equilibrate the convergence factor at two
maxima, we get after a short calculation that |ρ0| equioscillates at the generic
points Z1 and Z2 (i.e. |ρ0(Z1, p)| = |ρ0(Z2, p)|) if and only if

p =

√
ReZ1|Z2|2 −ReZ2|Z1|2

ReZ2 −ReZ1
.

Therefore we can define a unique p̄∗0 for both asymptotic regimes by the equioscil-
lation equations





ωM ⋍ kM |ρ0(z̃sw, p̄∗0) = |ρ0(z3, p̄∗0)|,

ωM =
νk2

M

d

{
d > d0 |ρ0(z̃sw, p̄∗0)| = |ρ0(z3, p̄∗0)|,
d < d0 |ρ0(z̃sw, p̄∗0)| = |ρ0(z̃n, p̄∗0)|.

(4.5)

In the first two cases, we get p̄∗0 =
√

x̃sw|z3|2−x3|z̃sw|2
x3−x̃sw

and in the third case we

obtain p̄∗0 =
√

x̃sw|zN |2−xN |z̃sw|2
xN−x̃sw

. Since z̃sw is bounded, we obtain the asymptotic
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results 



ωM ⋍ kM p̄∗0 ∼
√

xsw|z3|2
x3

,

ωM =
νk2

M

d




d > d0 p̄∗0 ∼

√
sx̃sw|z3|2

x3
,

d < d0 p̄∗0 ∼
√

x̃sw|z̃n|2
x̃n

,

which imply




ωM ⋍ kM p̄∗0 ∼ √
2νkMxsw,

ωM =
νk2

M

d





d > d0 p̄∗0 ∼
√

2νkMxsw
√

2(1+d2)

d(d+
√
1+d2)

,

d < d0 p̄∗0 ∼
√

2νkMxsw

√
2
d .

(4.6)

We now need to prove that the values of the Robin parameter p̄∗0 we obtained by
equioscillation are indeed local minima:

Lemma 5 For δp sufficiently small and p = p̄∗0 + δp

F0(p)− F0(p̄
∗
0) = max(δp∂p|ρ0(z̃sw(p̄∗0), p̄∗0)|, δp∂p|ρ0(z̃n(ωM , p̄∗0), p̄

∗
0))|+ O(δp).

Proof Consider for example the last case in (4.5), when z̃sw = z̃3(p) and z̃n =
z̃4(ωM , p). By continuity,

F0(p) = max(|ρ0(z̃3(p), p)|, |ρ0(z̃4(ωM , p), p)|).
By the Taylor formula,

|ρ0(z̃3(p), p)| = |ρ0(z̃3(p̄∗0), p̄∗0)|+ δp(∂pz̃3(p̄
∗
0)∂k|ρ0(z̃3(p̄∗0), p̄∗0))|

+∂p|ρ0(z̃3(p̄∗0), p̄∗0))|+ O(δp)
= |ρ0(z̃3(p̄∗0), p̄∗0)|+ δp∂p|ρ0(z̃3(p̄∗0), p̄∗0)|+ O(δp),

since ∂k|ρ0(z̃3(p̄∗0), p̄∗0))| = 0. In the same way,

|ρ0(z̃4(ωM , p), p)| = |ρ0(z̃4(ωM , p̄∗0), p̄
∗
0)|+ δp∂p|ρ0(z̃4(ωM , p̄∗0), p̄

∗
0)|+ O(δp).

Therefore

F0(p)− F0(p̄
∗
0) = max(δp∂p|ρ0(z̃3(p̄∗0), p̄∗0)|, δp∂p|ρ0(z̃4(ωM , p̄∗0), p̄

∗
0))|+ O(δp),

which gives the lemma in this particular case. For the case where the extremum
is reached at a corner of the domain, the argument is even simpler, since then no
derivative in k occurs.

The derivative of R0 in p is given by

∂pR0(z, p) =
−4x(|z|2 − p2)

|z + p|4 .

For p = p̄∗0, z = z̃sw , the numerator is equivalent to 4xp2, whereas for z = z̃n, it is
equivalent to −4x|z|2. Therefore ∂p|ρ0(z̃sw(p̄∗0), p̄∗0)| × ∂p|ρ0(z̃sw(ωM , p̄∗0), p̄

∗
0))| < 0,

and F0(p)− F0(p̄
∗
0) < 0: p̄∗0 is a strict local minimizer of F0.

By Theorem 7, p̄∗0 is the global minimizer, and therefore coincides with p∗0(0).
In order to conclude the proof of Theorem 1, we can replace in (4.6) the term xsw
by the notation A/4 from the theorem, to obtain

δ∗0(L) =

∣∣∣∣
z̃sw − p

z̃sw + p

∣∣∣∣ ∼ 1− 2
xsw
p

= 1− A

2p
.

The proof of Theorem 1 is now complete.
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Fig. 4: Illustration of the domain D̃∞
+ in the (x, y) plane

4.2 The Overlapping Case

We address now the two overlapping cases, and prove Theorem 2 for the conti-
nous algorithm, and Theorem 3 for the discretized algorithm. By Theorem 8, we
know already that there is a unique minimizer in both cases, which we now again
characterize by equioscillation.

Proof of Theorem 2 (Robin Conditions with Overlap, Continuous): we denote the
unique minimizer of FL by p∗0,∞(L). As in the non-overlapping case, the maximum

over the whole domain is reached on the boundary C = C∞w ∪ Csw of D̃∞
+ , which is

represented in Figure 4 for the three possible configurations of the boundary. In
order to simplify the notation, we use l := L

2ν . We start with the variations of the
convergence factor

R(ω, k, p, ℓ) = R0(ω, k, p)e
−2ℓx (4.7)

on the west boundary C∞w . Calculating the partial derivative of R with respect to
ω leads to

∂ωR(ω, k, p, ℓ) = (∂ωR0(ω, k, p)− 2ℓR0(ω, k, p)∂ωx(ω,k))e
−2ℓx

=
4νy

|z|2|z + p|4Sk(x, y, p, ℓ),
(4.8)

where we introduced the function

Sk(x, y, p, ℓ) = 2p(3x2−y2−p2)−ℓ |z2−p2|2 = 2p(3x2−y2−p2)−ℓ [(x2−y2−p2)2+4x2y2].

The root y = 0 of ∂ωR(ωm, k, p, ℓ) corresponds to ω = −ckm, which is possible only
if |ωm| 6 |ckm|.

We study now Skm
(x, y, p, ℓ). Replacing y2 = x2 − α2 = x2 − x20 − 4ν2k2m from

(3.2a), we get

S̃km
(x, p, ℓ) := 2p(2x2 + α2 − p2)− ℓ ((α2 − p2)2 + 4x2(x2 − α2)),

which is now a second order polynomial in x2,

S̃km
(x, p, ℓ) = −4ℓx4 + 4(α2ℓ+ p)x2 − (p2 − α2)(2p+ ℓ(p2 − α2)). (4.9)

The following lemma gives the asymptotic behavior of the roots of this polynomial:
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Lemma 6 For small ℓ, large p with ℓp small, S̃km
(x, p, ℓ) has two distinct real roots,

x̃′1(p, ℓ) ∼
p√
2
, x̃′2(p, ℓ) ∼

√
p

ℓ
.

The first root is the real part of a minimum of the convergence factor, and the second

root is the real part of a maximum of the convergence factor, say at z̃′2. We thus obtain

that

sup
z∈C∞

w

|ρ(z, p, ℓ)| = max(|ρ(z1, p, ℓ)|, |ρ(z̃′2(p, ℓ), p, ℓ)|).

Proof The discriminant of the second degree polynomial S̃km
and its leading asymp-

totic part under the conditions of Theorem 2 are

∆ = 4(∆a + 2α2ℓp (2 + ℓp)); ∆a = 4p2(1− 2ℓp− ℓ2p2).

Since ∆ ∼ ∆a, S̃km
has two roots with asymptotic behavior

x̃′1 ∼ p√
2
, x̃′2 ∼

√
p

ℓ
.

For z̃′j = x̃′j + i
√

(x̃′j)
2 − (x20 + 4ν2k2m), which we obtain from (3.2a), we compute

|ρ(z̃′1, p, ℓ)| ∼

√
1−

√
2

1 +
√
2
, |ρ(z̃′2, p, ℓ)| ∼ 1− 2

√
pℓ,

and |ρ(z̃′1, p, ℓ)| < |ρ(z̃′2, p, ℓ)| for small ℓp.

We analyze now the cases in Figure 4 in detail:

– Figure 4c, |ωm| < |ckm|: As ω runs throughR, z runs through the full hyperbola,
and supz∈D̃∞

+
|ρ(z, p, ℓ)| = max(|ρ(z1, p, ℓ)|, |ρ(z̃2, p, ℓ)|).

– Figure 4a and 4b, |ωm| > |ckm|: here we need to study the variation of R on
Csw = z(ωm,−s(c)[km, ωm

|c| ]), and compute

∂kR(ω,k, p, ℓ) =
4ν

|z|2|z + p|4 Sω(x, y, p, ℓ),
Sω(x, y, p, ℓ) := 2p{(2νkx+ cy)(x2 − y2 − p2) + 2xy(−2νky+ cx)}

−ℓ (2νkx+ cy)|z2 − p2|2.
(4.10)

With the same assumptions as in the previous lemma, for any z in Csw,

Sωm(x, y, p, ℓ) ∼ −2p3(1 + ℓp2)(2νkx+ cy) = −2p3(1 + ℓp2)∂kx.

In case of Figure 4b, where |k̃1(ωm)| 6 km, ∂kx has a constant sign on the
curve Csw, see the second case in Corollary 1, and hence the maximum of R is
reached at z1. In case of Figure 4a, where km 6 |k̃1(ωm)|, s(c)SωM is positive
for km 6 |k| < k̃1(ωm), and negative for |k| > k̃1(ωm). It must therefore vanish
in a neighborhood of k̃1(ωm), where R has a maximum on Csw, at a point we
call z̃′3(p, ℓ) := z(ωm, k̃

′
3(p, ℓ)), which is asymptotically equivalent to z̃1 where

the vertical tangent occurs.
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We now define the point z̃′sw(p, ℓ) by

z̃′sw(p, ℓ) =

{
z1 if ωm < |c|km or |k̃′3(p, ℓ)| 6 km 6 ωm

|c| ,

z̃′3(p, ℓ) if km 6 |k̃′3(p, ℓ)| 6 ωm

|c| ,

in order to write in compact form

sup
z∈D̃∞

+

|ρ(z, p, ℓ)| = max(|ρ(z̃′sw(p, ℓ), p, ℓ)|, |ρ(z̃′2(p, ℓ), p, ℓ)|).

Using the asymptotic expansions of |ρ(z̃′2, p, ℓ)| above, and |ρ(z̃′sw, p, ℓ)| ∼ 1−2xsw

p ,
we see that for small ℓ,

|ρ(z̃′2, p, ℓ)| − |ρ(z̃′sw, p, ℓ)| ∼ 2(
xsw
p

−
√
pℓ).

This quantity is positive for p smaller than 3
√

xsw

ℓ , and negative otherwise. There-
fore it vanishes for one single value of p, and we have asymtotically

p̄∗∞ ∼ 3

√
x2sw
ℓ
, FL(p̄

∗
∞) ∼ 1− 2 3

√
ℓxsw. (4.11)

We verify that ℓp̄∗∞ tends to zero with ℓ, thus justifying all previous computations.
The proof can now be completed like for the previous theorem, showing that

p̄∗∞ is a strict local minimizer and therefore coincides with the global minimizer
p∗∞ according to the abstract result.

Proof of Theorem 3 (Robin Conditions with Overlap, Discrete): In order to prove the
results for the discretized algorithm, suppose ℓ ⋍ k−1

M , p large , with ℓp small as in

Lemma 6. The maximum at z̃′2 on C+
w is on the curve Cw if x̃′2 ∼

√
p
ℓ < x4 ∼ √

2νωM .
We see that

x̃′2
x4

∼
√

p

2νℓωM
⋍

{√
p ≫ 1 if ωM ⋍ kM ,√
p

kM
≪ 1 if ωM ⋍ k2M ,

which indicates that the continuous analysis will only be important in the second
case. We study now both cases in detail:

– ωM ⋍ k2M : Let p ⋍ p∗0,∞(L). An asymptotic study shows that the derivative in
ω on the eastern curve |k| = kM satisfies

SkM
(z, p, ℓ) ∼ −ℓ(4ν2k2M + 16ν2ω4) < 0.

Therefore the maximum of |ρ| on the east is reached at z3 = z(ωM , s(c)kM ).
The same study on the north gives

SωM (z, p, ℓ) ∼ −ℓ∂kx((4ν2k2)2 + 16ν2ω4
M ).

The sign of SωM (z, p, ℓ) is the opposite of the sign of x, the maximum of |ρ|
on Cn is therefore reached at z4. From this we conclude that all values of |ρ|
on Cn and Ce are smaller than the value at z4. We now study the variations of
R on the other boundaries. Since p ⋍ p∗0,∞(L), the conclusions from Lemma 6

and after are all valid, there is a unique value p̄∗(ℓ) of p such that |ρ(z̃′2, p, ℓ)| =
|ρ(z̃′sw, p, ℓ)|. It is for ℓ = L

2ν small asymptotically equivalent to p∗0,∞(L).
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– ωM ⋍ kM : We perform the asymptotic analysis in kM , assuming p ≪ √
ωM ,

and study the behavior of the convergence factor on all four boundary curves
Cw, Ce, Csw and Cn:
Behavior of R on Cw: x̃′2 ≫ x4, and R has no local maximum on Cw. Therefore

maxCw
R = max(R(z1), R(z̃

′
2)).

Behavior of R on Ce: Since p≪ kM , using that x ∼ 2νkM , we obtain

SkM
(x, y, p, ℓ) ∼ −ℓ(2νkM)4.

The maximum of R on the eastern side is therefore reached for z = z3.
Behavior of R on Csw: The behavior of R on the southern part remains un-

changed: for km 6 ωm/|c|, p = O(
√
2νkM ), the maximum of R(ωm, ·, p) on

−s(c)(km, ωm/|c|) is reached at the single point z̃′′3 (p, ℓ) = z(ωm, k̃
′′
3 (p, ℓ)),

whose asymptotic behavior is given by k̃′′3 (p, ℓ) ∼ k̃1(ωm). The proof is sim-
ilar to that of Lemma 3.

Behavior of R on Cn: We extend the analysis in the proof of Lemma 4 to SωM

in (4.10). The variations of R are determined by the sign of

SωM (k) = (NωM (k)− ℓ

2p
|z2 − p2|2) (2νkx+ cy)

= 2p

[(
x20+4ν2k2−p2− ℓ

2p
((x20+4ν2k2−p2)2+16ν2(ωM+ck)2)

)
(2νkx+cy)

+4ν(ωM + ck)(−2νky+ cx)

]
.

Again we have to distinguish three cases for k ⋍ kαM : α 6 1
2 ,

1
2 < α < 1 and

α = 1:
X k = O(k

1
2

M ): in this case SωM (k) ∼ 2pNωM (k), and therefore on the

curve Cn, SωM vanishes for k̃′4 ∼ k̃4 under the conditions of case 2
in Lemma 4, and R has a maximum there. For k′′0 ⋍

√
kM , R has a

minimum.
X For k ⋍ kαM with 1

2 < α < 1, the overlap comes into play. We have

SωM (k) ∼ 2p(2νk)4s(c)(1− ℓ

2p
(2νk)2).

The right hand side vanishes for 2νk =
√

2p
ℓ , and SωM (k) vanishes

therefore in a neighbourhood of that point,

k̃′′4 ∼ 1

2ν

√
2p

ℓ
,

which corresponds to a maximum of R again.
X For k ⋍ kM , the overlap dominates, and SωM (k) ∼ −ℓ(2νk)4s(c).
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Therefore, there are two local maxima on the curve Cn, and we must com-
pare |ρ| at z̃n defined in (4.4),

|ρ(z̃n, p)| ∼
∣∣∣∣
(1 + i)

√
2νωM − p

(1 + i)
√
2νωM − p

e−ℓ(1+i)
√
2νωM

∣∣∣∣ ∼ 1− p√
2νωM

,

and |ρ| at z̃′′4 = z(k̃′′4 , ωM ),

z̃′′4 ∼ 2ν|k̃′′4 |
(
1 + i

ωM

ν(k̃′′4 )
2

)
∼

√
2p

ℓ
(1 + i

νℓωM
p

) ∼
√

2p

ℓ
,

which gives for |ρ| at z̃′′4

|ρ(z̃′′4 , p)| ∼

√
2p
ℓ − p

√
2p
ℓ − p

e−
√
2pℓ ∼

1−
√

pℓ
2

1 +
√

pℓ
2

(1−
√

2pℓ) ∼ 1− 2
√
2pℓ.

Since p√
2νωM

≫ √
2pℓ, we find

sup
Cn

|ρ(z, p)| = |ρ(z̃′′4 , p)| ∼ 1− 2
√
2pℓ.

The rest of the proof is now similar to the proof of the nonoverlapping case,
except that now the best p equilibrates the values of |ρ| at the points z̃′′4 and
z̃′w, which is equivalent to zsw. Asymptotically we have

|ρ(z̃′′w)| ∼ 1− 2
xsw
p
,

which gives for p and the optimized contraction factor the asymptotic values

p̄∗(L) =
3

√
x2sw
2ℓ

, δ∗(L) ∼ 1− 2
xsw
p̄∗(L)

.

The full justification that p̄∗(L) is indeed a strict local, and hence the global
optimum is analogous to the nonoverlapping case and we omit it, and the proof is
complete.

5 Optimization of Ventcel Transmission Conditions

This section is devoted to the proof of Theorems 4, 5 and 6. We start with a change
of variables,

s = p+ q(z2 − x20)/4ν = p̃+ q̃z2, p̃ = p− x20/4ν, q̃ = q/4ν,

with which we can further simplify the convergence factor,

ρ(z, p, q, L) =
p̃+ q̃ z2 − z

p̃+ q̃ z2 + z
e−

Lz
2ν . (5.1)

Note that we will still write the arguments in terms of p and q, which are now
simply functions of p̃ and q̃, and the min-max problem is still

inf
(p,q)∈C2

sup
z∈D̃

|ρ(z, p, q, L)| = sup
z∈D̃

|ρ(z, p∗, q∗, L)| =: δ∗1(L). (5.2)
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5.1 The Nonoverlapping Case

Proof of Theorem 4 (Ventcel Conditions Without Overlap): by the abstract Theorem
9, the best approximation problem has a unique solution (p∗1(0), q

∗
1(0)). We search

now for a strict local minimum for the function F0(p, q). We first analyze the
variations of R on the boundaries, and identify three local maxima. Then we show
that there exists (p̄∗1, q̄

∗
1) such that these three values coincide, and we compute

their asymptotic behavior, showing that they satisfy the assumptions. We finally
show that (p̄∗1, q̄

∗
1) constitutes a strict local minimum for the function F0 on R+ ×

R+, from which it follows that the local minimizer (p̄∗1, q̄
∗
1) = (p∗1(0), q

∗
1(0)), the

global minimizer.
Local Maxima of the Convergence Factor: The following Lemma gives the lo-

cal maxima of the convergence factor for the two asymptotic regimes of an explicit
and implicit time integration we are interested in:

Lemma 7 Suppose the parameters in the Ventcel transmission condition satisfy

p ⋍ kαM , q ⋍ kβM , 0 < α <
1

2
< β < 1, α+ β 6 1. (5.3)

Then, we have for the two asymptotic regimes of interest

1. in the implicit case, when kM = ChωM , the supremum of the convergence factor

is given by

sup
D̃+

|ρ0(z, p, q)|=
{
max(|ρ0(z̆sw(p, q), p, q)|, |ρ0(z̆1(p, q), p, q)|, |ρ0(z3, p, q)|) if p

q <ωM ,

max(|ρ0(z̆sw(p, q), p, q)|, |ρ0(z̆n(p, q), p, q)|, |ρ0(z3, p, q)|) if p
q >ωM ,

where z̆n ∈ Cn is defined in (5.13), and the asymptotic behavior is

|ρ0(z̆sw, p, q)| ∼ 1− 2
xsw
p
, |ρ0(z3, p, q)| ∼ 1− 4

qkM
,

|ρ0(z̆1, p, q)| ∼ 1− 2

√
pq

2ν
, |ρ0(z̆n, p, q)| ∼ 1− p√

2νωM
P (

qωM
p

),
(5.4)

where P (Q) is defined in (2.12).
2. in the explicit case, when ωM = 1

πCh
k2M , the supremum of the convergence factor

is given by

sup
D̃+

|ρ0(z, p, q)| = max(|ρ0(z̆sw(p, q), p, q)|, |ρ0(z̆1(p, q), p, q)|, |ρ0(z̆′n(p, q), p, q)|),

where z̆n(p, q) is defined in (5.15), and

z̆′n(p, q) =

{
z3 if d > d0,

z̆n(p, q) if d < d0,
(5.5)

and we have asymptotically

|ρ(z̆sw, p, q)| ∼ 1−2
xsw
p
, |ρ(z̆1, p, q)| ∼ 1−2

√
pq

2ν
, |ρ0(z̆′n, p, q)| ∼ 1− 4C

qkM

√
d

2
,

(5.6)
with C defined in (2.8).



28 Daniel Bennequin et al.

Proof The proof of this lemma is rather long and technical, but follows along the
same lines as in the Robin case: we first compute the derivatives of R0(ω, k, p, q)
in ω and k, using the formulation (5.1), to obtain

∂zρ0 = 2 (q̃z2−p̃)
(p̃+q̃z2+z)2 ,

∂ω,kR0(ω, k, p, q) = 4Re (∂zρ0 ρ̄0 ∂ω,kz)

= 4
Re((q̃z2−p)((p̃+q̃z2)2−z2) ∂ω,kz)

|p̃+q̃z2+z|4

= 4
Re(N(z,z̄) ∂ω,kz)

|p̃+q̃z2+z|4 ,

N(z, z̄) = (q̃z2 − p̃)((p̃+ q̃z̄2)2 − z̄2).

We now expand the numerator N(z, z̄), using X := x20+4ν2k2 and Y := 4ν(ω+ck),
so that

z2 = X + iY, z = x+ iy, x2 − y2 = X, 2xy = Y.

Using this notation, we obtain

ReN(z, z̄) = (q̃X − p)(q̃2X2 + (2p̃q̃ − 1)X + p̃2) + q̃(q̃2X + 3p̃q̃ − 1)Y 2,

ImN(z, z̄) = Y (−q̃3X2 + 2p̃q̃2X + p̃(3p̃q̃ − 1)− q̃3Y 2).

With the assumption on the coefficients p̃ and q̃, p̃q̃ ≪ 1, we have

ReN(z, z̄) ∼ q̃3X(X2 + Y 2)− q̃(X2 + Y 2) + p̃X − p̃3,

ImN(z, z̄) ∼ Y (−q̃3(X2 + Y 2) + 2p̃q̃2X − p̃).
(5.7)

We present now the remining three major steps in the proof:

1. We begin by studying, for fixed k, the variations of ω 7→ R0(ω, k, p, q). Since
∂ωz = 2ν(y+ ix)/|z|2,

∂ωR0(ω, k, p, q) = 8νRe (N(z,z̄) (y+ix))
|p̃+q̃z2+z|4|z|2 = 8ν Φω

|p̃+q̃z2+z|4|z|2
Φω = yReN − xImN

∼ y(q̃3X(X2 + Y 2)− q̃(X2 + Y 2) + p̃X − p̃3

−2x2(−q̃3(X2 + Y 2) + 2p̃q̃2X − p̃).

(a) We study first the left boundary Cw with k = km, where X = O(1) is fixed.
We define ξ = 2x2 − X, and replace 2x2 = ξ + X, X2 + Y 2 = ξ2 in the
previous expression. This yields a third order polynomial in the ξ variable,

Φω ∼ yQ3(ξ) :=y
(
q̃3ξ3+q̃(2q̃2X−1)ξ2+p̃(1−2q̃2X)ξ+p̃(2X−2q̃2X2−p̃2)

)
.

(5.8)
The principal part of Q3 is

Q3(ξ) ∼ q̃3ξ3 − q̃ξ2 + p̃ξ − p̃3. (5.9)

Since y is always positive or vanishes for ω = −ckm if |c|km ∈ (ωm, ωM ) (see
Figure 2), the sign of ∂ωR0(z, p, q) is the sign of Q3(ξ). Q3 has asymptoti-
cally three positive roots

1 ≪ ξ0 ∼ p̃2 ≪ ξ1 =
p̃

q̃
≪ ξ2 ∼ 1

q̃2
.

With the assumptions on p̃ and q̃, the roots are separated. Therefore, by
continuity, Q3 has three roots ξ′0, ξ

′
1, ξ

′
2 which are equivalent to ξ0, ξ1, ξ2,
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and ∂ωR0(ω, k, p, q) has, in addition to −ckm, three zeros ω̆j ∼ ξj/4ν, j =
0, 1,2. ω̆0 and ω̆2 correspond to minima of R0. Note that z(ω̆j(k), k) =
z(ω̆j(−k),−k), so that we can consider the part corresponding to k = s(c)km
only: there exists a unique maximum at z̆1(p, q) = z(ω̆1(s(c)km), s(c)km),
and two minima at z(ω̆0(s(c)km), s(c)km) and z(ω̆2(s(c)km), s(c)km), and
we have the ordering

ωm ≪ ω̆0 ∼ p̃2

4ν
≪ ω̆1 ∼ p̃

4νq̃
≪ ω̆2 ∼ 1

4νq̃2
. (5.10)

If ωM ⋍ kM , then ω̆2 ≫ ωM , and

sup
Cw

|ρ0(z, p, q)| =
{
max(|ρ0(z1, p, q)|, |ρ0(z̆1(p, q), p, q)|) if ω̆1 ∼ p̃

4νq̃ < ωM ,

max(|ρ0(z1, p, q)|, |ρ0(z4, p, q)|) if ω̆1 ∼ p̃
4νq̃ > ωM ,

with

|ρ0(z1, p, q)| ∼ 1−2
x1
p̃
, |ρ0(z4, p, q)| ∼ 1− p̃+ 4νq̃ωM√

2νωM
, |ρ0(z̆1, p, q)| ∼ 1−2

√
2p̃q̃.

If ωM ⋍ k2M , then ω̆2 ≪ ωM , and

sup
Cw

|ρ0(z, p, q)| = max(|ρ0(z1, p, q)|, |ρ0(z̆1, p, q)|, |ρ0(z4, p, q)|),

with

|ρ0(z1, p, q)| ∼ 1−2
x1
p̃
, |ρ0(z4, p, q)| ∼ 1−2

√
2νωM q̃, |ρ0(z̆1, p, q)| ∼ 1−2

√
2p̃q̃.

(b) We now examine the behavior of Q3 for |k| = kM . In that case, X = O(k2M ),
and the asymptotics of the coefficients in Φω are different. We use the fact
that q̃2X ≫ 1, and q̃X

p̃ ≫ 1, to obtain

ReN(z, z̄) ∼ q̃3X(X2 + Y 2), ImN(z, z̄) ∼ −q̃3Y (X2 + Y 2), (5.11)

so that

Φω = q̃3y(X2 + Y 2)(yX + xY ) > 0,

and we obtain for the convergence factor

sup
Ce

|ρ0(z, p, q)| = |ρ0(z3, p, q)| ∼ 1− 2
x3

q̃|z3|2
.

2. Let us compute now the variations in k:

∂kR0(ω, k, p, q) = 4Re(N(z,z̄) (∂kx+i∂ky))
|p̃+q̃z2+z|4 = 8ν Φk

|p̃+q̃z2+z|4|z|2 ,

Φk = |z|2
2ν (∂kxReN(z, z̄)− ∂kyImN(z, z̄))

= (2νkx+ cy)ReN(z, z̄)− (−2νky+ cx)ImN(z, z̄).
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(a) We begin with the southwest curve Csw, defined by ω = ωm. Then k, X and
Y are O(1), and the asymptotics for the coefficients are given by

ReN(z, z̄) ∼ −p̃3, ImN(z, z̄) ∼ −p̃,
Φk ∼ − |z|2

2ν p̃
3∂kx if ∂kx 6= 0.

By Corollary 1, if |k̃1(ωm)| 6 km, ∂kx does not change sign in the interval,
and |ρ0| is a decreasing function of x. If |k̃1(ωm)| ∈ (km, ωm/|c|), ∂kx changes
sign at k = k̃1, and therefore ∂kR0(ω, k, p, q) changes sign for a point k̆3
in the neighbourhood of k̃1(ωm), which produces a maximum for |ρ0| at
z̆3 = z(ωm, k̆3). We define

z̆sw =

{
z1 if |ckm| < ωm or if |ckm| > ωm and |k̆3| 6∈ [km,

ωm

|c| ],

z̆3 ∼ z̃1(ωm) if |ckm| > ωm and |k̆3| ∈ [km,
ωm

|c| ],

and then obtain for the convergence factor

sup
Csw

|ρ0(z, p, q)| = |ρ0(z̆sw, p, q)| ∼ 1− 2
xsw
p
.

(b) We study next the northern curve Cn, i.e. ω = ωM , s(c)k ∈ (km, kM ).
– For ωM ⋍ km, we define Y0 = 4νωM , and perform the asymptotic

analysis in terms of Y0. We analyze the sign of Φk in the five asymptotic

cases k = O(1), k ⋍ Y θ
0 with 0 < θ < 1

2 , k ⋍ Y
1
2
0 , k ⋍ Y θ

0 with 1
2 < θ < 1,

and k ⋍ Y0.

X If k = O(1), then X = O(1) and Y ∼ Y0. The asymptotics for the
coefficients are given by

ReN(z, z̄)∼−(p̃3+q̃Y 2
0 ), ImN(z, z̄)∼−Y0(p̃+q̃3Y 2

0 ), x∼y∼
√

Y0
2 ,

Φk ∼ x
(
−(p̃3 + q̃Y 2

0 )(2νk+ c) + Y0(p̃+ q̃3Y 2
0 )(−2νk+ c)

)
.

With the assumptions on the coefficients, p̃2 ≪ Y0 and q̃2Y0 ≪ 1,
so that

Φk ∼ xY0 (−2νk(p̃+ q̃Y0) + c(p̃− q̃Y0)) .

The quantity on the left changes sign for one value of k, therefore
Φk changes sign for

k̆4(p, q) ∼
c

2ν

p̃− q̃Y0
p̃+ q̃Y0

, z̆4(p, q) = z(ωM , k̆4(p, q)).

The point z̆4 corresponds to a maximum, and is on Cn if and only
if the sign of k̆4 is the sign of c, and its modulus is larger than km.
If α+ β < 1, k̆4(p, q) ∼ − c

2ν and has the wrong sign. Therefore z̆4
belongs to Cn if and only if α+ β = 1, and q̃Y0

p̃ < 1. At that point,

p̃+ q̃z2 ∼ p̃+ iY0q̃ ⋍ Y α
0 ≪ z̆4 ∼

√
Y0
2 , and therefore

ρ0(z̆4(p, q), p, q)∼−(1−2
p̃+ q̃z̃24
z̆4

), |ρ0(z̆4(p, q), p, q)|∼1−
√

2

Y0
(p̃+q̃Y0).
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Fig. 5: Graph of the fonction g

X If k ⋍ Y θ
0 with 0 < θ < 1

2 ], then

Φk ∼ 2νkx (ReN(z, z̄) + ImN(z, z̄))
∼ −2νkx

(
q̃3Y 3

0 + q̃Y 2
0 + p̃Y0)

)
.

This quantity has a constant sign equal to the sign of k, or equiva-
lently to the sign of ∂kx. Therefore in this area, |ρ0| is an increasing
function of x.

X If k ⋍ Y
1
2
0 ], then X ⋍ Y0, Y ∼ Y0, and inserting t = X/Y0, we have

ReN(z, z̄) ∼ p̃X − q̃(X2+Y 2
0 ), ImN(z, z̄) ∼ −Y0(p̃+ q̃3(X2+Y 2

0 )),

x ⋍ y ⋍

√
Y0
2 ,

Φk ∼ 2νk (xReN(z, z̄) + yImN(z, z̄))
∼ 2νk

(
x(p̃X − q̃(X2 + Y 2

0 ))− yY0(p̃+ q̃3(X2 + Y 2
0 ))

)

∼ 2νkxY0
(
p̃t−q̃Y0(t2+1)−(

√
t2+1−t)(p̃+q̃3Y 2

0 (t
2+1))

)
.

Since q̃3Y 2
0 ≪ q̃Y0, asymptotically the only remaining terms are

Φk ∼ 2νkxY0(p̃(2t−
√
t2 + 1)− q̃Y0(t

2 + 1)).

If α+ β < 1, Φk ∼ −2νkxq̃Y 2
0 (t

2 + 1)) and does not vanish; |ρ0| is
still a decreasing function of x in this zone. If α+ β = 1, we define

the function g(t) = 2t−
√
t2+1

t2+1
, drawn in Figure 5, and rewrite Φk as

Φk ∼ 2νkxY0p̃(t
2 + 1)(g(t)− q̃Y0

p̃
). (5.12)

The function g has a maximum at t0 =
√

54 + 6
√
33/6 ≈ 1.5676,

with g0 := g(t0) ≈ 0.3690. Therefore, if Y0q̃
p̃ > g0, kΦk is negative

for all t, and |ρ0| is a decreasing function of x. Otherwise, the right
hand side in (5.12) changes sign twice: the first time at t1(

Y q̃
p̃ ) < t0

corresponds to a local minimum, and the second time at t2(
Y q̃
p̃ ) >

t0 corresponds to a local maximum,

k̆5(p, q) ∼
s(c)

2ν

√
Y0t2(

Y0q̃

p̃
), z̆5(p, q) = z(ωM , k̆5(p̃, q̃)).
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X If k ⋍ Y θ
0 with 1

2 < θ < 1, then X ≫ Y0, Y ∼ Y0, and

ReN(z, z̄) ∼ X(q̃3X2 − q̃X + p̃), ImN(z, z̄) ∼ −Y0(p̃+ q̃3X2),

x ∼
√
X, y ∼ Y0

2
√
X
,

Φk ∼ νkX− 1
2 (2XReN(z, z̄) + Y0ImN(z, z̄))

Φk ∼ 2νkX
3
2 (q̃3X2 − q̃X + p̃).

The right hand side, as a function of X, has only one root for
1
2 < θ < 1, 1

q̃2 , corresponding to a local minimum.

X If k ⋍ Y0, then X ⋍ Y 2
0 , Y ⋍ Y0, and

ReN(z, z̄) ∼ q̃3X3, ImN(z, z̄) ∼ −q̃3Y X2), x ∼
√
X, y ∼ Y

2
√
X
,

Φk ∼ νkX− 1
2 (2XReN(z, z̄) + Y ImN(z, z̄))

∼ 2νkq̃3X
3
2 (2X2 − Y 2) ∼ 4νkq̃3X

7
2 .

To summarize we have :
– if α + β < 1, k 7→ |ρ0(ωM , k, p, q)| has no local maximum on the

curve Cn.
– if α+β = 1, k 7→ |ρ0(ωM , k, p, q)| has two local maxima on the curve

Cn, z̆4(p, q) and z̆5(p, q).
To compare them, we define Q = q̃Y0

p̃ , and get

k̆5(p, q) ∼ s(c)
2ν

√
Y0t2(Q), z̆5(p, q) = z(ωM , k̆5(p, q)),

|ρ0(z̆5, p, q)| ∼ 1− 2( p̃
|z̆5|2 + q̃)Re z̆5.

The convergence factors |ρ0(z̆4, p, q)| and |ρ0(z̆5, p, q)| are both 1− ∝

(ω
1
4

M ). In order to compare the two, we compute

|ρ0(z̆4, p, q)| ∼ 1− p̃
√

2
Y (1 +Q),

|ρ0(z̆5, p, q)| ∼ 1− p̃
√

2
Y

√
1 +

√
t2(Q)2 + 1( 1√

t2(Q)2+1
+Q).

It is easier to compare

h2(t) = 1 + g(t) and h1(t) =

√
1 +

√
t2 + 1(

1√
t2 + 1

+ g(t)),

for t > t0. A direct computation shows that

{
for t < t̄ ≈ 2.5484 h1(t) > h2(t),

for t > t̄ ≈ 2.5484 h1(t) < h2(t),

which implies

{
for q̃Y0

p̃ > g1 ≈ 0.3148 |ρ0(z̆5, p, q)| < |ρ0(z̆4, p, q)|,
for q̃Y0

p̃ < g1 ≈ 0.3148 |ρ0(z̆5, p, q)| > |ρ0(z̆4, p, q)|.
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We can now conclude the northern study for the case where ωM ⋍ km.
We define

z̆n(p̃, q̃) =





z̆5(p̃, q̃) if
q̃Y0

p̃ < g1 ≈ .1735,

z̆4(p̃, q̃) if g1 <
q̃Y0

p̃ < 1 and km 6 |k̆4|,
z4 if g1 <

q̃Y0

p̃ < 1 and km > |k̆4|,
z4 if q̃Y0

p̃ > 1.

(5.13)

Then we obtain for the convergence factor

sup
Cn

|ρ0(z, p, q)| = max(|ρ0(z3, p, q)|, |ρ(zn(p̃, q̃), p, q)|).

with the asymptotic behavior (P (Q) is defined in (2.12))

|ρ0(z̆n(p, q), p, q)| ∼ 1−
√

2

Y0
p̃P (Q), |ρ0(z3, p, q)| ∼ 1− 1

νkM q̃
. (5.14)

– If ωM ⋍ k2M , then Y0 = O(k2M ), X ≪ Y , and we obtain that
X for k ≪ kM , the dominant part of Φk is given by

Φk ∼ xq̃Y 2((2νk+ c)(q̃2X − 1) + (−2νk+ c)q̃2Y )
∼ xq̃Y 2(2νk(q̃2(X − Y )− 1) + c(q̃2(X + Y )− 1))
∼ xq̃3Y 3(−2νk+ c).

Remember that k̃2(ωM ) is the point where ∂ky vanishes. If |k̃2(ωM )| 6
km, ∂ky does not vanish on the curve Cn, and |ρ0| is a decreasing
function of x. If |k̃2(ωM )| > km, ∂ky does vanish on Cn, at

k̆4(p, q) ∼ k̃2(ωM ) ∼ c
2ν , z̆4(p, q) = z(k̆4(p, q), p, q) ∼

√
Y0
2 (1 + i),

ρ0(z̆4(p, q), p, q) ∼ 1− 2 1
q̃z̆4

,

which implies for the modulus of the convergence factor

|ρ0(z̆4(p, q), p, q)| ∼ 1− 2Re
1

q̃z̆4
∼ 1− 1

q̃

√
2

Y0
.

X for k ⋍ kM

ReN(z, z̄) ∼ q̃3X(X2 + Y 2), ImN(z, z̄) ∼ −q̃3Y (X2 + Y 2),
x ⋍ y ⋍

√
Y0, ,

Φk ∼ 2νkq̃3(X2 + Y 2)(xX − yY )
∼ 2νkxq̃3(X2 + Y 2)(2X −

√
X2 + Y 2).

The right hand side changes sign for X = Y/
√
3 corresponding to

a minimum. Since x is an increasing function of X,

z(k) ∈ Cn ⇐⇒ Y0/
√
3 6 4ν2k2M .

Note as in the first part, ωM = ν
dk

2
M , and thus

z(k) ∈ Cn ⇐⇒ 1

d
√
3
6 1 ⇐⇒ d >

1√
3
.
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We define

z̆n(p, q) =

{
z̆4(p, q) if km 6 |k̆4| ∼ |c|

2ν ,

z4 if km > |k̆4|,
(5.15)

and obtain

|ρ0(z̆n(p̃, q̃), p, q)| ∼ 1− 1

q̃

√
2

Y0
.

The maximum of |ρ0| on Cn is therefore reached at z̆n or z3, with

|ρ0(z3, p, q)| ∼ 1− 1

νq̃kM

√
d

2

(
d+

√
d2 + 1

d2 + 1

)
.

A short computation shows that |ρ0(z3, p, q)| and |ρ0(z̆n, p, q)| are asymp-
totically of the same order, and that

sup
Cn

|ρ0(z, p, q)| =
{
|ρ0(z3, p, q)| if d > d0
|ρ(z̆n, p, q)| if d < d0

∼ 1− 1

νq̃kM
C

√
d

2
,

in the notation of Theorem 1.
3. We can now finish with the southern part on the east, i.e. ω = −ωM , s(c)k ∈

(ωM/|c|, kM ). For this part to exist, ωM/|c| has to be smaller than kM , thus
ωM = O(kM ), which implies that X = O(k2M ) ≫ Y , and

Φk ∼ q̃3X2(X−iY )(∂kx+i∂ky) ∼ q̃3X2s(c)
2ν

|z|2 (X
2+Y (|c|

√
X−Y

2
) ∼ q̃3X4 2νs(c)

|z|2 .

Therefore |ρ0| is an increasing function of x, and

sup
Cse

|ρ0(z, p, q)| = |ρ0(z3, p, q)|.

We can now simply collect all the previous results, and returning to the variables
p and q concludes the proof of this long lemma.

Determination of the Global Minimizer by Equioscillation: The following
lemma gives asymptotically the local minimizers for both the implicit and explicit
time integration schemes:

Lemma 8 In the implicit case, when kM = ChωM , there exist p̄∗1 ⋍ k
1
4

M , q̄∗1 ⋍ k
− 3

4

M
such that

{
|ρ0(z̆sw(p, q), p, q)| = |ρ0(z̆1(p, q), p, q)| = |ρ0(z3, p, q)|) if p

q < ωM ,

|ρ0(z̆sw(p, q), p, q)| = |ρ0(z̆n(p, q), p, q)| = |ρ0(z3, p, q)|) if p
q > ωM .

Defining Q0 = 2
Chxsw

, the coefficients are given asymptotically by

q̄∗1 ∼ 2p

xswkM
, p̄∗1 ∼

{
4
√
x3swνkM if Q0 > 1,

4

√
8νxswωM

P (Q0)2
. if Q0 < 1.

In the explicit case, when ωM = 1
πCh

k2M , there exist p̄∗1 ⋍ k
1
4

M , q̄∗1 ⋍ k
− 3

4

M such that

|ρ0(z̆sw(p, q), p, q)| = |ρ0(z̆1(p, q), p, q)| = |ρ0(z̆′n, p, q)|).
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The coefficients are given by

q̄∗1 ∼ 2Cp

xswkM
, p̄∗1 ∼ 4

√
νx3swkM

C
.

Proof In each asymptotic regime for kM and ωM , we proceed in two steps:

– In the implicit case, ωM = 1
Ch
kM :

1. For p such that p ⋍ kαM , α < 1
2 , consider the equation

|ρ0(z̆sw, p, q)| − |ρ0(z3, p, q)| = 0,

with the unknown q. By the expansions (5.6), we see that for any q ⋍ k−β
M ,

1
2 < β < 1,

|ρ0(z̆sw, p, q)| − |ρ0(z3, p, q)| ∼
4

qkM
− 2

xsw
p
,

which can take positive or negative values according to the sign of the right
hand side. Therefore it vanishes for q = q̂(p), with

q̂(p) ∼ 2p

xswkM
. (5.16)

We verify that q̂(p) ⋍ k−β
M , 1

2 < β < 1.
2. Consider now for large kM and Q0 > 1 the equation in the p-variable,

|ρ0(z̆sw, p, q̂(p))| − |ρ0(z̆1, p, q̂(p))| = 0.

By the asymptotic expansions above, for q = q̂(p),

|ρ0(z̆sw, p, q)| − |ρ0(z̆1, p, q)| ∼ 2

(√
pq

2ν
− xsw

p

)
∼ 2

(
p

√
1

xswkM
− xsw

p

)
.

This quantity takes positive or negative values, and vanishes for a p̄∗1 with

p̄∗1 ∼ 4
√
x3swνkM .

Consider alternatively for Q0 < 1 the equation in the p-variable,

|ρ0(z̆sw, p, q̂(p))| − |ρ0(z̆n, p, q̂(p))| = 0.

By the asymptotic expansions above, for q = q̂(p),

|ρ0(z̆sw, p, q)| − |ρ0(z̆n, p, q)| ∼
p√

2νωM
P (Q0)− 2

xsw
p
.

Again, this quantity vanishes for a p̄∗1 with

p̄∗1 ∼ 4

√
8νx2swωM
P (Q0)2

.

– In the explicit case, ωM = 1
πCh

k2M :
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1. We first solve, for fixed p, the equation in q,

|ρ(z̆sw(p, q), p, q)| − |ρ(z̆′n(p, q), p, q)| = 0.

By the expansions in (5.6),

|ρ(z̆sw(p, q), p, q)| − |ρ(z̆′n(p, q), p, q)| ∼
4C

qkM

√
d

2
− 2

xsw
p
,

and |ρ(z̆sw(p, q), p, q)| − |ρ(z̆′n(p, q), p, q)| vanishes for

q = q̂(p) ∼ 2Cp

xswkM

√
d

2
.

2. We solve now for q = q̂(p), the equation

|ρ(z̆sw(p, q), p, q)| − |ρ(z̆1(p, q), p, q)| = 0,

whose asymptotic behavior is

|ρ(z̆sw(p, q), p, q)|−|ρ(z̆1(p, q), p, q)| ∼ 2

√
pq

2ν
−2

x̆sw
p

∼ 2p

√
C

νxswkM

√
d

2
−2

xsw
p
.

By the same arguments as before, |ρ(z̆sw(p, q), p, q)| − |ρ(z̆1(p, q), p, q)| van-
ishes for

p̄∗1 ∼ 4

√
νx3swkM

C

√
2

d
.

We have now proved that there exist in all cases coefficients p and q satifying

the relations in the lemma. They satisfy p̄∗1 ⋍ k
1
4

M , q̄∗1 ⋍ k
− 3

4

M , and are therefore
conforming to the previous study with α+ β = 1.

It remains to show that this is indeed a strict local minimum for the function
F0. By the same argument as in the Robin case, we can prove that for δp and δq

sufficiently small and p = p̄∗1 + δp, q = q̄∗1 + δq,

F0(p, q)− F0(p̄
∗
1, q̄

∗
1) = maxµ((δp∂p̃ + δq ∂q̃)|ρ0(z̆µ, p̄∗1, q̄∗1)|) + O(δp, δq),

where the points z̆µ are those involved in the maximum: if ωM ⋍ kM , z̆sw and z3
in any case, and either z̆n or z̆1, and if ωM ⋍ k2M , z̆sw, z̆′n and z̆1.

Therefore, (p̄∗1, q̄
∗
1) is a strict local minimum of F0(p, q) if and only if for any

(δp, δq), there exists a z̆µ such that (δp ∂p̃+δq ∂q̃)R0(z̆µ, p̄
∗
1, q̄

∗
1) > 0. To analyze this

quantity, we rewrite the convergence factor in the form

R0 =
φ− ψ

φ+ ψ
, with

{
φ = q̃2|Z|2 + 2p̃q̃X + p̃2 + |z|2,
ψ = 2x(p̃+ q̃|z|2).

This allows us to write the derivatives in the more elegant form

R′
0 =

ψφ′ − ψ′φ
(φ+ ψ)2

,
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and at an extremum, R0 = δ∗1
2 implies that ψ/φ = ζ :=

1−(δ∗1 )
2

1+(δ∗1 )
2 , and

R′
0 =

ζφ′ − ψ′

(1 + ζ)2φ
.

We therefore obtain

(δp ∂p̃ + δq ∂q̃)R0(z̆µ, p̄
∗
1, q̄

∗
1) =

ζ∂p̃φ− ∂p̃ψ

(1 + ζ)2φ
δp+

ζ∂q̃φ− ∂q̃ψ

(1 + ζ)2φ
δq

=
2(ζ(p̃+ q̃X)− x)

(1 + ζ)2φ
δp+

2(ζ(p̃X + q̃|Z|2)− x|z|2)
(1 + ζ)2φ

δq

=:
2Φ(z̆µ, δp, δq)

(1 + ζ)2φ
.

We now study the asymptotic behavior of Φ for the two cases of interest:

– If ωM ⋍ kM , then

Φ(z̆1, δp, δq) ∼ −x̆1(δp+ p̃
q̃ δq),

Φ(z̆n, δp, δq) ∼ −x̆n(δp+MY0 δq),
Φ(z̆sw, δp, δq) ∼ xsw(δp+ (x2sw − 3y2sw)δq),
Φ(z3, δp, δq) ∼ 2νkM(δp+ (2νkM)2δq).

where M is given by

M =

{
1 if Q0 = 2

Chxsw
> g1,√

1 + (t2(Q0))
2 if Q0 < g1.

Therefore, (p̄∗1, q̄
∗
1) is a strict local minimum of F0(p, q) if and only if the union

of the following set equals R2:

E1 = {(δp, δq),−(δp+MkM δq) > 0},
E2 = {(δp, δq), δp+ (2νkM )2δq > 0},

E3 = {(δp, δq), δp+ (x2sw − 3y2sw)δq > 0}.

The domains are shown in Figure 6: for large kM , the slopes of D1, δp +
MkMδq = 0 and D2, δp+ (2νkM)2δq = 0 are such that E1 ∪ E2 is R2 excluding
a small angle Ĕ = {δq < 0, −MkM δp < δq < (2νkM )2δq}. If x2sw − 3y2sw < 0, E3
contains the whole quadrant δp > 0, δq < 0. If x2sw −3y2sw > 0, the slope of D3,
δp+ (x2sw − 3y2sw)δq = 0, is O(1), so that E3 contains Ĕ.

– If ωM =
νk2

M

d , then the asymptotics for z̆sw and z̆1 remain unchanged. The
asymptotics for z̆′n become

Φ(z̆′n, δp, δq) ∼
{√

2νωM (−δp+ 4νωMδq) if d < d0
2νCkM√

2d
((2d−

√
d2 + 1)δp+ 4 d2+1

d (νkM )2δq) if d > d0.

If d < d0, the situation is the same as in Figure 6. If d > d0, we obtain the
conclusion as indicated in Figure 6.
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δp

δq

D1

D2

D3

(a) x2
sw − 3y2sw < 0

δp

δq

D1

D2

D3

(b) x2
sw − 3y2sw > 0

Fig. 6: Description of the analysis for ωM ⋍ kM

δp

δq

D1

D2

D3

(a) x2
sw − 3y2sw < 0

δp

δq

D1

D2

D3

(b) x2
sw − 3y2sw > 0

Fig. 7: Description of the analysis in the case ωM =
νk2

M

d with d > d0

5.2 The Overlapping Case

We follow along the same lines as in the Robin case, starting with the infinite case
where only L is involved. Denoting by ℓ := L/2ν as before to simplify the notation,
we obtain for the derivatives of the convergence factor

R(ω, k, p, q, L) = R0(ω, k, p, q)e
−2ℓx,

∂ω,kR(ω, k, p, q, L) = ∂ω,kR0(ω, k, p, q)− 2ℓ∂ωxR0(ω, k, p, q)

=
4Re (N(z,z̄) (∂ω,kx+i∂ω,ky))−2ℓ∂ωx|(p̃+q̃z2)2−z2|2

|p̃+q̃z2+z|4

= 4
(ReN(z,z̄)− ℓ

2
M) ∂ω,kx−ImN(z,z̄)∂ω,ky

|p̃+q̃z2+z|4 ,

with M = |(p̃+ q̃z2)2 − z2|2.

Proof of Theorem 5 (Ventcel Conditions with Overlap, Continuous): we solve the
min-max problem on the infinite domain D̃∞

+ . By the abstract Theorem 10, for
sufficiently small L, the problem has a solution. We need to prove that FL has a
strict local minimum, which will again be achieved by equioscillation. The proof
consists of two steps, shown in the following lemmas:
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Lemma 9 (Local Extrema) Suppose p ⋍ kαM , q ⋍ kβM , 0 < α < 1
2 < β < 1,

α+ β < 1. Then,

sup
D̃∞

|ρ(z, p, q, L)| = max(|ρ(z̆′sw(p, q), p, q, L)|, |ρ(z̆′1(p, q), p, q, L)|, |ρ(z̆”1(p, q), p, q, L)|),

where z̆′sw ∼ zsw. The two other points belong to C∞w , with

ω̆′
1 ∼ p̃

4νq̃ , |ρ(z̆′1, p, q, L)| ∼ 1− 2
√
2p̃q̃,

ω̆”
1 ∼ 2

ℓq̃ , |ρ(z̆”1 , p, q, L)| ∼ 1− 2
√

ℓ
q̃ .

Proof We make the assumptions on the coefficients p and q in (5.3). We start with
the variations of R on the west boundary, i.e. as a function of ω for k = km:

∂ωR(ω, k, p, q, L) = 8ν
Φℓ
ω

|z|2|p̃+ q̃z2 + z|4 ,

Φℓ
ω = Φω − ℓ

2
My.

We rewrite M in terms of ξ as in (5.8), using Y ∼ ξ,

M = |(p̃+ q̃X + iq̃Y )2 −X − iY |2 ∼ |(p̃2 − q̃2Y 2 −X) + iY (2(p̃+ q̃X)q̃ − 1)|2
∼ tp4 + q̃4Y 4 + Y 2 ∼ q̃4ξ4 + ξ2 + p̃4,

and we obtain

Φℓ
ω ∼ yQ4 := y(− ℓ

2
q̃4ξ4 +Q3).

The fourth-order polynomial Q4 is a singular perturbation of Q3 defined in (5.8).
The roots are therefore perturbations of those already defined, with in addition
ξ”1 , whose principal part solves

q̃3ξ3 − ℓ

2
q̃4ξ4 = 0.

By the same argument as before, Q4 has four roots,

1 ≪ ξ′0 ∼ p̃2 ≪ ξ′1 ∼ p̃

q̃
≪ ξ′2 ∼ 1

q̃2
≪ ξ”1 ∼ 2

ℓq̃
,

and ∂ωR(ω,k, p, q) has, in addition to ω = −ckm, four zeros ω′
0, ω

′
1, ω

′
2 and ω1”,

equivalent to the corresponding ξ/4ν. ξ′0 and ξ′2 correspond to minima of R, while
z̆′1 = z(ω̆′

1, s(c)km) and z̆”1 = z(ω̆”
1, s(c)km) correspond to maxima. At the maxima

we have Y ∼ ξ, X = O(1), and z ∼ √
ξ(1 + i), which implies for the convergence

factor

|ρ(z̆′1, p, q, L)| ∼ 1− 2
√
2p̃q̃, |ρ(z̆”1 , p, q, L)| ∼ 1− 2

√
ℓ

q̃
.

If |c|km > ωm, the local extrema are z1, z̆
′
1 and z̆”1 . If |c|km < ωm, we must take

Csw into account. We use the results derived in the nonoverlapping case to obtain

∂kR(ω, k, p, q, L) = 8ν
Φℓ

k

|p̃+q̃z2+z|4|z|2 ,

Φℓ
k = Φk − ℓ

2∂ωx|(p̃+ q̃z2)2 − z2|2
= (ReN(z, z̄)− ℓ

2M)∂kx− ImN(z, z̄)∂ky.
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By the results in the previous section, since M = O(1),

Φℓ
k ∼ −|z|2

2ν
∂kx(p̃

3 + 4
ℓ

2
M) ∼ −|z|2

2ν
∂kx,

if ∂kx 6= 0. By Corollary 1, if |k̃1(ωm)| 6 km, ∂kx does not change sign in the
interval, and thus |ρ| is a decreasing function of x. If |k̃1(ωm)| ∈ (km, ωm/|c|), ∂kx
changes sign at k = k̃1, and therefore ∂k|ρ|2 changes sign for a point k̆′3 in the
neighbourhood of k̃1(ωm), which produces a maximum at z̆′3 = z(ωm, k̆

′
3). We thus

define

z̆′sw =





z1 if |ckm| < ωm,

z1 if |ckm| > ωm and |k̆′3| 6∈ [km,
ωm

|c| ],

z̆′3 ∼ z̃1(ωm) if |ckm| > ωm and |k̆′3| ∈ [km, ωm

|c| ],

and obtain for the convergence factor

sup
Csw

|ρ(z, p, q, L)| = |ρ(z̆′sw, p, q, L)| ∼ 1− 2
x̆′sw
p̃

∼ 1− 2
xsw
p̃
.

We can therefore conclude that

sup
z∈D̃+

|ρ(z, p, q, L)| = max(|ρ(z̆′sw, p, q, L)|, |ρ(z̆′1, p, q, L)|, |ρ(z̆”1, p, q, L)|).

Lemma 10 (Local Minimum for FL(p, q)) There exist p̄∗∞ ⋍ k
1
5

M , q̄∗∞ ⋍ k
− 3

5

M such

that

|ρ(z̆”sw, p, q, L)| = |ρ(z̆′1, p, q, L)| = |ρ(z̆”1, p, q, L)|.

The coefficients are given asymptotically by

p̄∗∞ ∼ 5

√
x4sw
2ℓ

, q̄∗∞ ∼ 4ν
x2sw
2p̃3

∼ 4ν 5

√
ℓ3

4x2sw
, δ∼1− 2 5

√
2ℓxsw.

Proof We skip the arguments which are similar to those of the previous section,
and show only the computation of the parameters. Since

|ρ(z̆”sw, p, q, L)| − |ρ(z̆′1, p, q, L)| ∼ 2(
√
2p̃q̃ − xsw

p̃ ),

|ρ(z̆”sw, p, q, L)| − |ρ(z̆”1, p, q, L)| ∼ 2
(√

ℓ
q̃ − xsw

p̃

)
,

we must have asymptotically

2p̃3q̃ ∼ x2sw, ℓ
p̃2

q̃
∼ x2sw.

which gives the formulas in the lemma. Notice that they have the announced
asymptotic behavior p̄∗∞ = O(L− 1

5 ), q̄∗∞ = O(L
3
5 ), validating the computations

made above. We finally recover the results in the Lemma by returning to the
original variables p and q.

The proof that p̄∗∞, q̄∗∞ is a strict local minimum of FL is analogous to that in
the nonoverlapping case and therefore we omitted it. Then by the abstract Theo-
rem 10, we found the global minimum, and the proof of Theorem 5 is complete.
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Proof of Theorem 6 (Ventcel Conditions with Overlap, Discrete): the existence and
uniqueness for the min-max problem is again covered by the abstract theorem. We
thus only need to show the local maxima in the convergence factor, and the strict
local minimizer for FL(p, q), which is done in the following two lemmas:

Lemma 11 (Local Maxima of R on D̃) Suppose p ⋍ kαM , q ⋍ kβM , 0 < α < 1
2 <

β < 1, α+ β < 1. Then, if ωM ⋍ k2M , we have

sup
z∈D̃

|ρ(z, p, q, L)| = max(|ρ(z̆′sw(p, q), p, q, L)|, |ρ(z̆′1(p, q), p, q, L)|, |ρ(z̆”1(p, q), p, q, L)|).

If ωM ⋍ kM , then

sup
z∈D̃

|ρ(z, p, q, L)| = max(|ρ(z̆′sw(p, q), p, q, L)|, |ρ(z̆′1(p, q), p, q, L)|, |ρ(z̆′4(p, q), p, q, L)|),

where z̆′4(p, q) ∈ Cn is such that

|ρ(z̆′4(p, q), p, q) ∼ 1− 2

√
2

ℓq̃
.

Proof We have already computed the extrema on Csw and C∞w . For the west
boundary Cw, we need to check if the computed values are indeed inside the
bounded domain. With the assumptions on p and q, the first maximum on C∞w
is at ω′

1 ∼ p̃
q̃ ≪ ωM . The second maximum is at ω”

1 ∼ 1
4νℓq̃ ⋍ k1+β

M . It belongs to

Cw, if ωM ⋍ k2M . In the other case, the minimum at ξ′2 does not belong either to
Cw, and

sup
Cw

|ρ(z, p, q, L)| = max(|ρ(z1, p, q, L)|, |ρ(z̆′1, p, q, L)|).

We compute now the local extrema on the curve Cn, treating again the two cases
of interest:

– If ωM ⋍ k2M , the term −ℓM dominates in the derivative, so that

Φℓ
k ∼ − ℓ

2
M∂kx,

and R is a decreasing function of x on Cn.
– If ωM ⋍ kM , then we have the cases

X If k = O(kM ), l
2M ⋍ Y0, ReN(z, z̄) ∼ −p̃3 − q̃2Y 2

0 ≫ Y0. Therefore the
computations from the nonoverlapping case are valid. According to (5.13),
since q̃Y0

p̃ ≫ 1, there is no maximum for k = O(kM ).

X If k ⋍ kθM , 1
2 < θ < 1, M ∼ X2(q̃2X − 1)2, and

Φℓ
k ∼ 2νk

√
X(ReN(z, z̄)− l

2X
2(q̃2X − 1)2)

∼ 2νkX
3
2 (− ℓ

2 q̃
4X3 + q̃3X2 − q̃X + p̃).

The polynomial on the right hand side is a singular perturbation of the
polynomial in Φk, q̃

3X2 − q̃X + p̃, and it has asymptotically the following
two roots:

1

q̃2
≪ 2

ℓq̃
.
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The first one corresponds to a minimum, the second one to a maximum.

Therefore the overlap creates a new local maximum, k̆′4 ∼ s(c)
2ν

√
2
ℓq̃ . The

convergence factor is in this case

|ρ(k̆′4, ωM , p, q) ∼ 1− 2

√
2

ℓq̃

Hence we found all the possible maxima, and

sup
z∈D̃+

|ρ(z, p, q, L)| = max(|ρ(z̆′sw, p, q, L)|, |ρ(z̆′1, p, q, L)|, |ρ(z̆′4, p, q, L)|).

Lemma 12 (local minimum for FL(p, q)) There exist p̄∗L ⋍ k
1
5

M , q̄∗L ⋍ k
− 3

5

M such

that the three values in Lemma 11 coincide. The coefficients and associated convergence

factor are given asymptotically by

p̄∗L ∼





5

√
x4
sw

2ℓ , if ωM ⋍ k2M ,

5

√
x4
sw

4ℓ , if ωM ⋍ kM

, q̄∗L ∼ 4ν
x2sw
2p̃3

, sup
z∈D̃

|ρ(z, p̄∗L, q̄∗L, L)| ∼ 1−2 5
√
4ℓxsw.

Proof We skip the arguments which are similar to those previously, and retain only
the conclusion. The case ωM ⋍ k2M is like in the previous analysis. In the other
case, we prove as before that there exist p̄∗L and q̄∗L which solve the two equations

|ρ(z̆”sw, p, q, L)| − |ρ(z̆′1, p, q, L)| = 0, |ρ(z̆”sw, p, q, L)| − |ρ(z̆′4, p, q, L)| = 0.

The first one is the same as in the infinite case, providing the relation

2p̃3q̃ ∼ x2sw,

and the second one becomes

|ρ(z̆”sw, p, q, L)| − |ρ(z̆”1, p, q, L)| ∼ 2

(√
2ℓ

q̃
− xsw

p̃

)
,

which provides the relation

2ℓ
p̃2

q̃
∼ x2sw,

and the solution

p̃L ∼ 2−
1
5 p̃∞, q̃ ∼ 2

3
5 q̃∞. sup

z∈D̃+

|ρ(z, p, q, L)| ∼ 1− 2 5
√
4ℓxsw.

We can conclude now the proof of Theorem 6 as in the other cases.
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Iterative GMRES
h 0.04 0.02 0.01 0.005 0.0025 0.04 0.02 0.01 0.005 0.0025

Robin

2x1 49 71 97 144 198 23 29 36 45 55
2x2 53 74 101 145 202 30 38 48 59 73
4x1 52 72 101 140 204 30 40 50 63 78
4x4 81 116 160 219 303 47 64 84 107 133

Ventcell

2x1 13 15 18 21 24 10 12 14 16 18
2x2 23 29 39 48 63 16 19 22 25 29
4x1 18 21 25 29 35 14 17 20 24 27
4x4 30 37 44 54 65 22 28 34 40 46

Table 2: Number of iterations for an implicit time discretization setting ∆t = h
4 ,

algorithms without overlap

6 Numerical experiments

We now present a substantial set of numerical experiments in order to illustrate
the performance of the optimized Schwarz waveform relaxation algorithm, both
for cases where our analysis is valid, and for more general decompositions. We
work on the domain Ω = (0,1.2) × (0,1.2) and chose for the coefficients in (2.1)
ν = 1, a = (1,1) and b = 0, and the time interval length T = 1. We discretized the
problem using Q1 finite elements and simulate directly the error equations, f = 0,
and start with a random initial error, to make sure all frequencies are present, see
[12] for a discussion of the importance of this. We use as the stopping criterion
the relative residual reduction to 10−6. We start with the case of an implicit
time integration method (Backward Euler), where one can choose ∆t = h

4 . We
show in Table 2 the number of iterations needed by the various Schwarz waveform
relaxation algorithms for the case of non-overlapping decompositions. We first
note that the algorithms work also very well for decompositions into more than
two subdomains, and the optimized parameters we derived are also very effective
in that case. For example for a decomposition into 4 × 4 subdomains and a high
mesh resolution, the Ventcell conditions need about 5 times less iterations than
the Robin conditions for convergence, and the cost per iteration is virtually the
same.

In Table 3, we show the corresponding results for the overlapping algorithms,
using an overlap of 2h. We see that overlap greatly enhances the convergence of the
algorithms, as predicted by our analysis. At a high mesh resolution, the number
of iterations on the 4× 4 example can be reduced by a factor of 6 using overlap in
the case of Robin conditions, and by a further factor of 2 when optimized Ventcell
conditions are used.

We illustrate our asymptotic results now in Figure 8 by plotting in dashed lines
the iteration numbers from Table 2 and 3 in log-log scale, and we add the theo-
retically predicted growth of the iteration numbers. We see that our asymptotic
analysis for the two subdomain case also predicts quite well the behavior of the
algorithms in the case of many subdomains.

Next, we investigate the setting of an explicit method (Forward Euler with mass
lumping), where ∆t = h2/4. We show in Table 4 and 5 the number of iterations
needed to reduce the relative residual again by a factor of 10−6, and show in Figure
9 the corresponding asymptotic results, with the theoretically predicted growth
of the iteration numbers. As in the implicit case shown earlier, the asymptotic
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Iterative GMRES
h 0.04 0.02 0.01 0.005 0.0025 0.04 0.02 0.01 0.005 0.0025

Robin

2x1 12 14 16 19 23 8 10 12 14 17
2x2 14 17 21 27 33 11 14 17 20 24
4x1 14 15 18 23 29 11 13 16 20 24
4x4 19 24 32 41 52 14 20 26 32 40

Ventcell

2x1 9 10 11 12 13 6 7 8 9 10
2x2 12 14 17 20 23 8 10 11 13 16
4x1 12 11 11 14 16 10 9 9 11 13
4x4 16 17 19 24 29 13 13 14 18 22

Classical

2x1 54 106 189 360 733 27 40 58 83 117
2x2 84 159 303 570 1058 37 56 82 118 166
4x1 73 145 282 553 969 38 60 89 127 179
4x4 127 258 487 912 1706 54 94 143 209 296

Table 3: Number of iterations for an implicit time discretization setting ∆t = h
4 ,

algorithms with overlap 2h
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Fig. 8: Plots of the iteration numbers from Table 2 and 3 when the methods are
used iteratively, and theoretically predicted rates. Top left 2× 1 subdomains, Top
right 2 × 2 subdomain, bottom left 4 × 1 subdomains and bottom right 4 × 4
subdomains
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Iterative GMRES
h 0.04 0.02 0.01 0.005 0.04 0.02 0.01 0.005

Robin

2x1 57 85 117 176 24 31 36 44
2x2 59 87 117 174 25 32 39 48
4x1 63 86 121 170 26 30 37 44
4x4 62 84 123 166 26 31 40 48

Ventcell

2x1 20 22 25 28 12 13 15 16
2x2 22 25 26 30 13 14 16 18
4x1 21 22 25 29 12 14 15 16
4x4 23 27 26 34 15 16 18 19

Table 4: Number of iterations for an explicit time discretization setting ∆t = h2

4 ,
without overlap

Iterative GMRES
h 0.04 0.02 0.01 0.005 0.04 0.02 0.01 0.005

Robin

2x1 13 16 20 24 8 9 10 10
2x2 13 16 19 23 9 10 11 12
4x1 14 18 20 24 9 10 12 12
4x4 14 18 20 23 10 13 15 16

Ventcell

2x1 9 10 11 13 6 8 9 10
2x2 9 10 11 13 7 8 9 10
4x1 9 10 11 14 7 8 9 10
4x4 11 11 12 14 8 9 10 11

Classical

2x1 25 46 88 169 17 27 43 66
2x2 33 63 122 235 21 34 54 83
4x1 25 48 91 176 17 27 43 66
4x4 36 70 136 263 22 36 58 89

Table 5: Number of iterations for an explicit time discretization setting ∆t = h2

4 ,
with overlap 2h

behavior we observe follows our analysis of the two subdomain case, also in the
experiments with many subdomains.

7 Conclusion

We provide in this paper the complete asymptotically optimized closed form trans-
mission conditions for optimized Schwarz waveform relaxation algorithms applied
to advection reaction diffusion problems in higher dimensions. We showed the re-
sults for the case of two spatial dimensions, but the extension to higher dimensions
d > 2 from there is trivial, it suffices to replace the Fourier variable contributions
k2 by ||k||2, and ck by c · k, which implies to replace in the asymptotic analy-

sis the highest frequency estimate kM = π
h by kM =

√
d−1π
h , or replacing π by√

d− 1π in the final asymptotically optimized closed form formulas. The formulas
for Robin and Vencel conditions are derived such that limits to pure diffusion can
be taken, and therefore also the associated time dependent heat equation opti-
mization problems are solved by our formulas. The formulas are equally good for
advection dominated problems, although one has to pay attention there to have
fine enough mesh sizes to resolve boundary layers, in order for the asymptotically
optimized formulas to be valid. We extensively tested our algorithms numerically,
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Fig. 9: Plots of the iteration numbers from Table 4 and 5 when the explicitly
discretized methods are used iteratively, and theoretically predicted rates. Top
left 2× 1 subdomains, Top right 2 × 2 subdomain, bottom left 4 × 1 subdomains
and bottom right 4× 4 subdomains

see also [37] for more scaling experiments, and these tests indicate that our the-
oretical asymtptotic formulas derived for two subdomain decompositions are also
very effective for more general decompositions into many subdomains.
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