On the resolution of linear systems

Laurence HALPERN

LAGA - Université Paris 13
Hanoi, February 2013
(1) Direct methods
(2) Stationary iterative methods
(3) Non-Stationary iterative methods

4 Preconditioning

Purpose

Solve $A X=b$.

- A is a squared matrix,
- b is a given righthand side, or a family of given righthand sides

Description

$$
\underbrace{\left(\begin{array}{ccc}
1 & 3 & 1 \\
1 & 1 & -1 \\
3 & 11 & 6
\end{array}\right)}_{A} \underbrace{\left(\begin{array}{c}
\\
1 \\
36
\end{array}\right)}_{X}
$$

$$
\left(\begin{array}{ccc|c}
1 & 3 & 1 & 9 \\
1 & 1 & -1 & 1 \\
3 & 11 & 6 & 36
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 3 & 1 & 9 \\
0 & -2 & -2 & -8 \\
0 & 2 & 3 & 9
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 3 & 1 & 9 \\
0 & -2 & -2 & -8 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

$$
\underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right)}_{M} \underbrace{\left(\begin{array}{ccc|c}
1 & 3 & 1 & 9 \\
1 & 1 & -1 & 1 \\
3 & 11 & 6 & 36
\end{array}\right)}_{(A \mid b)}=\underbrace{\left(\begin{array}{ccc|c}
1 & 3 & 1 & 9 \\
0 & -2 & -2 & -8 \\
0 & 0 & 1 & 1
\end{array}\right)}_{(U \mid M b)}
$$

$$
\begin{gathered}
A x=b \Longleftrightarrow U x: M A x=M b \\
M \text { is a preconditioner } \\
M=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right) \longrightarrow L:=M^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
3 & -1 & 1
\end{array}\right) \\
U=M A \Longleftrightarrow A=L U, A x=b \Longleftrightarrow L U x=b
\end{gathered}
$$

(1) $L U$ decomposition $\mathcal{O}\left(\frac{2 n^{3}}{3}\right)$ elementary operations.
(2) Solve $L y=b \quad \mathcal{O}\left(n^{2}\right)$ elementary operations.
(3) Solve $U x=y \quad \mathcal{O}\left(n^{2}\right)$ elementary operations.

For P values of the righthand side, $N_{o p} \sim \frac{2 n^{3}}{3}+P \times 2 n^{2}$.

Theorem 1 Let A be an invertible matrix, with principal minors $\neq 0$. Then there exists a unique matrix L lower triangular with $l_{i i}=1$ for all i, and a unique matrix U upper triangular, such that $A=L U$. Furthermore $\operatorname{det}(A)=\prod_{i=1}^{n} u_{i i}$.

Theorem 2 Let A be an invertible matrix. There exist a permutation matrix P, a matrix L lower triangular with $l_{i i}=1$ for all i, and a matrix U upper triangular, such that

$$
P A=L U
$$

Sparse and banded matrices

$\mathrm{p}=3$

A banded matrix, upper bandwidth $p=3$ and lower bandwidth $q=2$, in total $p+q+1$ nonzero diagonals.

Sparse and banded matrices

$$
\begin{aligned}
& U=\left(\begin{array}{ccccccc}
2 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 4 & 3 & -2 & 0 & 0 & 0 \\
0 & 0 & 12 & -5 & 2 & 0 & 0 \\
0 & 0 & 0 & -6 & -3 & 0 & 0 \\
0 & 0 & 0 & 0 & 20 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 9 & -11 \\
0 & 0 & 0 & 0 & 0 & 0 & -102.7
\end{array}\right) \\
& L=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -3 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & -3.3 & 2.81 & 0 & 0 & \\
0 & 0 & 0 & 0 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -9.3 & 1
\end{array}\right)
\end{aligned}
$$

L lowerbanded $q=2$, and U upperbanded $p=3$.

Sparse and banded matrices with pivoting

$$
L=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.6 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-0.5 & -0.17 & -0.05 & -0.21 & 0.025 & 0.0027 & 1
\end{array}\right)
$$

$$
U=\left(\begin{array}{ccccccc}
-4 & 2 & 3 & 0 & 0 & 0 & 0 \\
0 & -12 & 3 & 1 & 2 & 0 & 0 \\
0 & 0 & -40 & 0 & 5 & 1 & 4 \\
0 & 0 & 0 & 4 & -10 & -0.6 & -2.4 \\
0 & 0 & 0 & 0 & -60 & 6 & -23 \\
0 & 0 & 0 & 0 & 0 & -84 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.275
\end{array}\right)
$$

The permutation matrix

$$
P=\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Stationary iterative methods

$$
\begin{aligned}
& A X=b ; A=M-N ; \\
& M X=N X+b \\
& M X^{m+1}=N X^{m}+b
\end{aligned}
$$

$$
\text { Use } A=D-E-F \text {. }
$$

(1) Jacobi : $M=D$ diagonal part of A.
(2) Gauss-Seidel : $M=D-E$ lower part of A.
(3) Relaxation: \hat{U}^{m+1} obtained by Gauss-Seidel,

$$
\begin{gathered}
X^{m+1}=\omega \hat{U}^{m+1}+(1-\omega) X^{m} . \\
M=\frac{1}{\omega} D-E, N=F+\frac{1-\omega}{\omega} D-E
\end{gathered}
$$

(4) Richardson algorithm

$$
\begin{gathered}
X^{m+1}=X^{m}-\rho r^{m}=X^{m}-\rho\left(A X^{m}-b\right) \\
M=\frac{1}{\rho} I \quad \rho_{o p t}=\frac{2}{\lambda_{1}+\lambda_{n}}
\end{gathered}
$$

Stationary methods, continue

$$
\begin{aligned}
M X^{m+1}=N X^{m}+b & \Longleftrightarrow M X^{m+1}=(M-A) X^{m}+b \\
& \Longleftrightarrow X^{m+1}=\left(I-M^{-1} A\right) X^{m}+M^{-1} b \\
& \Longleftrightarrow \text { fixed point algorithm to solve } M^{-1} A X=M^{-1} b
\end{aligned}
$$

Preconditioning

$$
\begin{aligned}
A X=b & \Longleftrightarrow M^{-1} A X=M^{-1} b \\
& \Longleftrightarrow X=\left(I-M^{-1} A\right) X+M^{-1} b
\end{aligned}
$$

Stationary methods, continue

$$
\begin{gathered}
\text { Error } e^{m}:=X-X^{m} \\
\text { Residual } r^{m}:=b-A X^{m}=A X-A X^{m}=A e^{m} . \\
M X^{m+1}=N X^{m}+b \\
M X=N X+b \\
M e^{m+1}=N e^{m} \\
e^{m+1}=M^{-1} N e^{m}
\end{gathered}
$$

Useful alternative formula $R=I-M^{-1} A$.

Fundamentals tools

$$
X^{m+1}=R X^{m}+\tilde{b}, \quad e^{m+1}=R e^{m}, R=M^{-1} N .
$$

Theorem The sequence is convergent for any initial guess X^{0} if and only if $\rho(R)<1$.
$\rho(R)=\max \{|\lambda|, \lambda$ eigenvalue of $A\}$: convergence factor. To reduce the initial error by a factor ϵ, we need

$$
\frac{\left\|e^{m}\right\|}{\left\|e^{0}\right\|} \leq \sim(\rho(R))^{m} \sim \epsilon
$$

So we have $M \sim \frac{\ln \epsilon}{\ln \rho(R)}$.
Convergence rate $=-\ln \rho(R)$ digits per iteration.

Symmetric positive definite matrices

Householder-John theorem : Suppose A is positive. If $M+M^{T}-A$ is positive definite, then $\rho(R)<1$.

Corollary

(1) If $D+E+F$ is positive definite, then Jacobi converges.
(2) If $\omega \in(0,2)$, then SOR converges.

Tridiagonale matrices

(1) $\rho\left(\mathcal{L}_{1}\right)=(\rho(J))^{2}$: Jacobi Gauss-Seidel converge or diverge simultaneously. If convergent, Gauss-Seidel is twice as fast.
(2) Suppose the eigenvalues of J are real. Then Jacobi and SOR convergent ou converge or diverge simultaneously for $\omega \in] 0,2[$.
(3) Same assumptions, SOR has an optimal parameter

$$
\omega^{*}=\frac{2}{1+\sqrt{1-(\rho(J))^{2}}}, \quad \rho\left(\mathcal{L}_{\omega^{*}}\right)=\omega^{*}-1
$$

Descent methods

The descent directions p_{m} are given. Define
$X^{m+1}=X^{m}+\alpha_{m} p^{m}, \quad e^{m+1}=e^{m}-\alpha_{m} p^{m}, \quad r^{m+1}=r^{m}-\alpha_{m} A p^{m}$.
Theorem X is the solution of $A X=b \Longleftrightarrow$ it minimizes over \mathbb{R}^{N} the functional $J(y)=\frac{1}{2}(A y, y)-(b, y)$.
This is equivalent to minimizing $G(y)=\frac{1}{2}(A(y-X), y-X)$
At each step minimize J in the direction of p_{m}

$$
\alpha_{m}=\frac{\left(p^{m}, r^{m}\right)}{\left(A p^{m}, p^{m}\right)}, \quad\left(p^{m}, r^{m+1}\right)=0
$$

$$
G\left(x^{m+1}\right)=G\left(x^{m}\right)\left(1-\mu_{m}\right), \quad \mu_{m}=\frac{\left(r^{m}, p^{m}\right)^{2}}{\left(A p^{m}, p^{m}\right)\left(A^{-1} r^{m}, r^{m}\right)}
$$

Steepest descent

$$
\begin{aligned}
& p^{m}=r^{m} \\
& X^{m+1}=X^{m}+\alpha_{m} r^{m}, \quad e^{m+1}=e^{m}-\alpha_{m} r^{m}, \quad r^{m+1}=\left(I-\alpha_{m} A\right) p^{m} .
\end{aligned}
$$

$$
\alpha_{m}=\frac{\left\|r^{m}\right\|^{2}}{\left(A r^{m}, r^{m}\right)}, \quad\left(r^{m}, r^{m+1}\right)=0
$$

$$
G\left(x^{m+1}\right)=G\left(x^{m}\right)\left(1-\frac{\left\|r^{m}\right\|^{4}}{\left(A r^{m}, r^{m}\right)\left(A^{-1} r^{m}, r^{m}\right)}\right) \leq\left(\frac{\kappa(A)-1}{\kappa(A)+1}\right)^{2} G\left(x^{m}\right)
$$

Conjugate gradient

$$
X^{m+1}=X^{m}+\alpha_{m} p^{m}, \quad\left(r^{m}, p^{m-1}\right)=0 .
$$

Search p^{m} as $p^{m}=r^{m}+\beta_{m} p^{m-1}$

$$
\begin{gathered}
G\left(x^{m+1}\right)=G\left(x^{m}\right)\left(1-\mu_{m}\right) \\
\mu_{m}=\frac{\left(r^{m}, p^{m}\right)^{2}}{\left(A p^{m}, p^{m}\right)\left(A^{-1} r^{m}, r^{m}\right)}=\frac{\left\|r^{m}\right\|^{4}}{\left(A p^{m}, p^{m}\right)\left(A^{-1} r^{m}, r^{m}\right)}
\end{gathered}
$$

Maximize μ_{m}, or minimize

$$
\begin{gathered}
\left(A p^{m}, p^{m}\right)=\beta_{m}^{2}\left(A p^{m-1}, p^{m-1}\right)+2 \beta_{m}\left(A p^{m-1}, r^{m}\right)+\left(A r^{m}, r^{m}\right) \\
\beta_{m}=-\frac{\left(A p^{m-1}, r^{m}\right)}{\left.A p^{m-1}, p^{m-1}\right)} \Rightarrow\left(A p^{m-1}, p^{m}\right)=0 \\
\left(r^{m}, r^{m+1}\right)=0, \quad \beta_{m}=\frac{\left\|r^{m}\right\|^{2}}{\left\|r^{m-1}\right\|^{2}}
\end{gathered}
$$

Other properties

Choose $p^{0}=r^{0}$. Then $\forall m \geq 1$, if $r^{i} \neq 0$ for $i<m$.
(1) $\left(r^{m}, p^{i}\right)=0$ for $i \leq m-1$.
(2) $\operatorname{vec}\left(r^{0}, \ldots, r^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.
(3) $\operatorname{vec}\left(p^{0}, \ldots, p^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.
(4) $\left(p^{m}, A p^{i}\right)=0$ for $i \leq m-1$.
(3) $\left(r^{m}, r^{i}\right)=0$ for $i \leq m-1$.

Definition Krylov space $\mathcal{K}_{m}=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m-1} r^{0}\right)$.
Theorem $G\left(x^{m}\right)=\inf _{y \in x^{0}+\mathcal{K}_{m}} G(y)$.

Final properties

Theorem Convergence in at most N steps (size of the matrix)
Theorem $G\left(x^{m}\right) \leq 4\left(\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right)^{2} G\left(x^{m}\right)$

$$
X^{0} \text { chosen, } \quad p^{0}=r^{0}=b-A X^{0}
$$

While $m<$ Niter or $\left\|r^{m}\right\| \geq$ tol, do

$$
\begin{aligned}
\alpha_{m} & =\frac{\left\|r^{m}\right\|^{2}}{\left(A p^{m}, p^{m}\right)} \\
X^{m+1} & =X^{m}+\alpha_{m} p^{m} \\
r^{m+1} & =r^{m}-\alpha_{m} A p^{m} \\
\beta_{m+1} & =\frac{\left\|r^{m+1}\right\|^{2}}{\left\|r^{m}\right\|^{2}} \\
p^{m+1} & =r^{m+1}-\beta_{m+1} p^{m}
\end{aligned}
$$

1-D Poisson problem

Poisson equation $-u^{\prime \prime}=f$ on $(0,1)$,
Dirichlet boundary conditions $u(0)=g_{g}, u(1)=g_{d}$.
Second order finite difference stencil.

$$
\begin{gathered}
(0,1)=\cup\left(x_{j}, x_{j+1}\right), \quad x_{j+1}-x_{j}=h=\frac{1}{n+1}, \quad j=0, \ldots, n . \\
-\frac{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)}{h^{2}} \sim f\left(x_{i}\right), \quad i=1, \ldots n \\
u_{0}=g_{g}, \quad u_{n+1}=g_{d} . \\
\left|u_{i}-u\left(x_{i}\right)\right| \leq h^{2} \frac{\sup _{x \in[a, b]}\left|u^{(4)}(x)\right|}{12}
\end{gathered}
$$

1-D Poisson problem

Discrete unknowns $U={ }^{t}\left(u_{1}, \ldots, u_{n}\right)$.
$A=\frac{1}{h^{2}}\left(\begin{array}{ccccc}2 & -1 & & & \\ -1 & 2 & -1 & & 0 \\ & \ddots & \ddots & \ddots & \\ & 0 & & -1 & 2 \\ & & & -1 & -1\end{array}\right) \quad b=\left(\begin{array}{c}f_{1}-\frac{g_{g}}{h^{2}} \\ f_{2} \\ \vdots \\ f_{n-1} \\ f_{n}-\frac{g_{d}}{h^{2}}\end{array}\right)$
The matrix A is symmetric definite positive.
Discrete problem to be solved is

$$
A X=b
$$

Condition number and error

$$
A X=b, \quad A \hat{X}=\hat{b}
$$

Define $\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$. If A is symmetric $>0, \kappa(A)=\frac{\max \lambda_{i}}{\min \lambda_{i}}$.

Theorem

$$
\frac{\|\hat{X}-X\|_{2}}{\|X\|_{2}} \leq \kappa(A) \frac{\|\hat{b}-b\|_{2}}{\|b\|_{2}}
$$

and there is a b such that it is equal.
Eigenvalues of $A(h \times(n+1)=1)$.

$$
\begin{gathered}
\lambda_{k}=\frac{2}{h^{2}}\left(1-\cos \frac{k \pi}{n+1}\right)=\frac{4}{h^{2}} \sin ^{2} \frac{k \pi h}{2}, \quad V_{k}=\left(\sin \frac{j k \pi}{n+1}\right)_{1 \leq i \leq n} \\
\kappa(A)=\frac{\sin ^{2} \frac{n \pi h}{2}}{\sin ^{2} \frac{\pi h}{2}}=\frac{\cos ^{2} \frac{\pi h}{2}}{\sin ^{2} \frac{\pi h}{2}} \sim \frac{4}{\pi^{2} h^{2}}
\end{gathered}
$$

Comparison of the iterative methods

Algorithm		spectral radius $\rho(R)$		$n=5$	$n=30$		
Jacobi Gauss-Seidel SOR steepest descent conjugate gradient		$\begin{gathered} \cos \pi h \\ (\rho(J))^{2}=\cos ^{2} \pi h \\ \frac{1-\sin \pi h}{1+\sin \pi h} \\ \frac{K(A)-1}{K(A)+1} \\ \frac{\sqrt{K(A)}-1}{\sqrt{K(A)}+1} \\ \hline \end{gathered}$		0.81	0.99		
		0.65	0.98				
		0.26	0.74				
		0.81	0.99				
		0.51	0.86				
Reduction factor for one digit $M \sim-\frac{1}{\log _{10} \rho(R)}$. For $n=30$							
n	Jacobi			Gauss-Seidel	SOR	St Des	CG
10	56			28	4	56	8
100	4759			2380	37	4759	74

Asymptotic behavior

Algorithm	spectral radius
Jacobi	$1-\frac{\pi^{2}}{2} h^{2}$,
Gauss-Seidel	$1-\pi^{2} h^{2}$,
SOR	$1-2 \pi h$
gradient	$1-\pi h$,
conjugate gradient	$1-\frac{\pi h}{2}$.

Convergence history

Number of elementary operations

Gauss elimination	n^{2}
optimal overrelaxation	$n^{3 / 2}$
FFT	$n \ln _{2}(n)$
conjugate gradient	$n^{5 / 4}$
multigrid	n

Asymptotic order of the number of elementary operations needed to solve the $1-D$ problem as a function of the number of grid points

Take the system $A X=b$, with A symmetric definite positive, and the conjugate gradient algorithm. The speed of convergence of the algorithm deteriorates when $\kappa(A)$. The purpose is to replace the problem by another system, better conditioned. Let M be a symmetric regular matrix. Multiply the system on the left by M^{-1}.

$$
A X=b \Longleftrightarrow M^{-1} A X=M^{-1} b \Longleftrightarrow\left(M^{-1} A M^{-1}\right) M X=M^{-1} b
$$

Define

$$
\tilde{A}=M^{-1} A M^{-1}, \quad \tilde{X}=M X, \quad \tilde{b}=M^{-1} b
$$

and the new problem to solve $\tilde{A} \tilde{X}=\tilde{b}$. Since M is symmetric, \tilde{A} is symmetric definite positive. Write the conjugate gradient algorithm for this "tilde" problem.

$$
\tilde{X}^{0} \text { given, } \quad \tilde{p}^{0}=\tilde{r}^{0}=\tilde{b}-\tilde{A} \tilde{X}^{0}
$$

While $m<$ Niter or $\left\|\tilde{r}^{m}\right\| \geq$ tol, do

$$
\begin{aligned}
\alpha_{m} & =\frac{\left\|\tilde{r}^{m}\right\|^{2}}{\left(\tilde{A} \tilde{p}^{m}, \tilde{p}^{m}\right)}, \\
\tilde{X}^{m+1} & =\tilde{X}^{m}+\alpha_{m} \tilde{p}^{m}, \\
\tilde{r}^{m+1} & =\tilde{r}^{m}-\alpha_{m} \tilde{A} \tilde{p}^{m}, \\
\beta_{m+1} & =\frac{\left\|\tilde{r}^{m+1}\right\|^{2}}{\left\|\tilde{r}^{m}\right\|^{2}}, \\
\tilde{p}^{m+1} & =\tilde{r}^{m+1}-\beta_{m+1} \tilde{p}^{m} .
\end{aligned}
$$

Now define

$$
p^{m}=M^{-1} \tilde{p}^{m}, \quad X^{m}=M^{-1} \tilde{X}^{m}, \quad r^{m}=M \tilde{r}^{m},
$$

and replace in the algorithme above.

The algorithm for A

$$
\begin{gathered}
M p^{0}=M^{-1} r^{0}=M^{-1} b-M^{-1} A M^{-1} M X^{0} \Longleftrightarrow\left\{\begin{array}{l}
p^{0}=M^{-2} r^{0} \\
r^{0}=b-A X^{0}
\end{array}\right. \\
\left\|\tilde{r}^{m}\right\|^{2}=\left(M^{-1} r^{m}, M^{-1} r^{m}\right)=\left(M^{-2} r^{m}, r^{m}\right)
\end{gathered}
$$

Define $z^{m}=M^{-2} r^{m}$. Then $\beta_{m+1}=\frac{\left(z^{m+1}, r^{m+1}\right)}{\left(z^{m}, r^{m}\right)}$.

$$
\begin{aligned}
\left(\tilde{A} \tilde{p}^{m}, \tilde{p}^{m}\right)= & \left(M^{-1} A M^{-1} M p^{m}, M p^{m}\right)=\left(A p^{m}, p^{m}\right) \\
& \Rightarrow \alpha_{m}=\frac{\left(z^{m}, r^{m}\right)}{\left(A p^{m}, p^{m}\right)} .
\end{aligned}
$$

$$
\begin{gathered}
M X^{m+1}=M X^{m}+\alpha_{m} M p^{m} \Longleftrightarrow X^{m+1}=X^{m}+\alpha_{m} p^{m} . \\
M^{-1} r^{m+1}=M^{-1} r^{m}-\alpha_{m} M^{-1} A M^{-1} M p^{m} \Longleftrightarrow r^{m+1}=r^{m}-\alpha_{m} A p^{m} .
\end{gathered}
$$

$$
M p^{m+1}=M^{-1} r^{m+1}-\beta_{m+1} M p^{m} \Longleftrightarrow p^{m+1}=z^{m+1}-\beta_{m+1} p^{m} .
$$

Define $C=M^{2}$.

$$
X^{0} \text { given, } \quad r^{0}=b-A X^{0}, \quad \text { solve } C z^{0}=r^{0}, \quad p^{0}=z^{0}
$$

While $m<$ Niter or $\left\|r^{m}\right\| \geq$ tol, do

$$
\begin{aligned}
\alpha_{m} & =\frac{\left(z^{m}, r^{m}\right)}{\left(A p^{m}, p^{m}\right)}, \\
X^{m+1} & =X^{m}+\alpha_{m} p^{m}, \\
r^{m+1} & =r^{m}-\alpha_{m} A p^{m}, \\
\beta_{m+1} & =\frac{\left(z^{m+1}, r^{m+1}\right)}{\left(z^{m}, r^{m}\right)}, \\
\text { solve } C z^{m+1} & =r^{m+1}, \\
p^{m+1} & =z^{m+1}-\beta_{m+1} p^{m} .
\end{aligned}
$$

How to choose C

C must be chosen such that
(1) \tilde{A} is better conditioned than A,
(2) C is easy to invert.

Use an iterative method such that $A=C-N$ with symmetric C.
For instance it can be a symmetrized version of SOR, named
SSOR, defined for $\omega \in(0,2)$ by

$$
C=\frac{1}{\omega(2-\omega)}(D-\omega E) D^{-1}(D-\omega F) .
$$

Notice that if A is symmetric definite positive, so is D and its coefficients are positive, then its square root \sqrt{D} is defined naturally as the diagonal matrix of the square roots of the coefficients. Then C can be rewritten as

$$
C=S S^{T}, \quad \text { with } S=\frac{1}{\sqrt{\omega(2-\omega)}}(D-\omega E) D^{-1 / 2}
$$

yielding a natural Cholewski decomposition of C.

How to choose C, continue

Define furthermore M as the square root of C (M will never been use), i.e. diagonalize C as $P \wedge P^{T}$, with $\Lambda_{i i}>0$ the eigenvalues of C, then define the symmetric square root of C as $M=P \sqrt{\Lambda} P^{T}$. Notice that $\tilde{\lambda}$ is an eigenvalue of \tilde{A} associated to the eigenvector \tilde{z} if and only if

$$
M^{-1} A M^{-1} \tilde{z}=\tilde{\lambda} \tilde{z} \Longleftrightarrow M^{-2} A M^{-1} \tilde{z}=\tilde{\lambda} M^{-1} \tilde{z}
$$

if and only if $\tilde{\lambda}$ is an eigenvalue of $C^{-1} A$ associated to the eigenvector $M^{-1} \tilde{z}$. The speed of convergence of the iterative method is measured by the spectral radius of $C^{-1} N$, $\rho\left(C^{-1} N\right)<1$. Note μ_{i} the eigenvalues of $C^{-1} N$. Since
$C^{-1} N=I-C^{-1} A$, the eigenvalues of $C^{-1} A$ are equal to $1-\mu_{i} \in\left[1-\rho\left(C^{-1} N\right), 1+\rho\left(C^{-1} N\right)\right]$.
Therefore $\kappa(\tilde{A}) \leq \frac{1+\rho\left(C^{-1} N\right)}{1-\rho\left(C^{-1} N\right)}$, and the smallest $\rho\left(C^{-1} N\right)$, the smallest the condition number of \tilde{A}.

Comparison

For the 1-D finite differences matrix and $n=100$, we compare the convergence of the conjugate gradient and the preconditioning by SSOR with $\omega=1$ and with the optimal parameter. The gain even with $\omega=1$ is striking.

