An interpretation of Leibniz homology as functor homology

Eric Hoffbeck (Université Paris 13) joint work with Christine Vespa (Université de Strasbourg)

E. Hoffbeck (Univ. Paris 13)

Leibniz homology as functor homology

12/9/2014 1 / 33

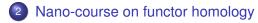
Explain

Theorem (Hoffbeck and Vespa)

$$H^{Leib}_{*}(A, M) = \mathit{Tor}^{\Gamma^{Lie}_{sh}}_{*}(t, \mathcal{L}^{Lie}_{sh}(A, M))$$

where

- A a Lie algebra
- M an A-module
- *H*^{*Leib*}_{*} Leibniz homology
- Γ_{sh}^{Lie} a category (enriched over *Vect*)
- t and $\mathcal{L}_{sh}^{Lie}(A, M)$ functors.



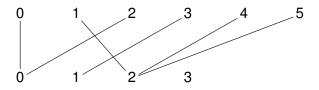
3 The two main objects of the theorem

Idea of the proof

The category **F**

Objects: $[n] = \{0, ..., n\}$ for $n \ge 0$ (with basepoint 0) Morphisms: $\Gamma([n], [m])$ maps of pointed sets.

Example (n=5, m=3):



The category **F**

Objects: $[n] = \{0, ..., n\}$ for $n \ge 0$ (with basepoint 0) Morphisms: $\Gamma([n], [m])$ maps of pointed sets.

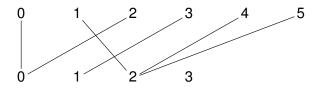
The Loday functor

For A unitary commutative algebra and M a A-module, $\mathcal{L}(A, M): \Gamma \to \Bbbk$ -Mod $[n] \mapsto M \otimes A^{\otimes n}$ $f: [n] \to [m] \mapsto f_*: M \otimes A^{\otimes n} \to M \otimes A^{\otimes m}$

・ロト ・ 同ト ・ ヨト ・ ヨ

Recollections

Example for the morphism $f \in \Gamma([5], [3])$ depicted by



 $f_*(a_0 \otimes a_1 \otimes a_2 \otimes a_3 \otimes a_4 \otimes a_5) = b_0 \otimes b_1 \otimes b_2 \otimes b_3$

where

- $b_0 = a_0.a_2$
- $b_1 = a_3$
- $b_2 = a_1 a_4 a_5$
- *b*₃ = 1

 $b_i = || a_i$

 $i \in f^{-1}(i)$

- 3 →

Theorem (Pirashvili, Richter, Robinson, Whitehouse)

For A unitary commutative algebra and M a A-module,

 $H^{Harr}_{*}(A, M) = Tor^{\Gamma}_{*}(t, \mathcal{L}(A, M))$ for a field k of char 0

 $H^{E_{\infty}}_{*}(A,M) = Tor^{\Gamma}_{*}(t,\mathcal{L}(A,M))$ in the general case

Similar results for E_n -homology (Livernet, Richter) of E_n -algebras and Hochschild homology of associative algebras.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question

Is there a similar theorem in other contexts? For instance for algebras over an operad?

First case to try: Lie algebras.

One main problem is that the operad Lie is not a set operad, unlike the operads As and Com.

-∢ ∃ ▶

Last recollection

A Lie algebra A is a k-vector space equipped with an anti-symmetric bracket [-, -] satisfying [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

The Leibniz homology of a Lie algebra with coefficients in a A-module M is given by the homology of the complex

$$(C_n^{Leib}(A,M)=M\otimes A^{\otimes n},d)$$

where the differential is given by

$$d(x \otimes a_1 \otimes \ldots \otimes a_n) = \sum_{1 \le i < j \le n} \pm x \otimes a_1 \otimes \ldots \otimes a_{i-1} \otimes [a_i, a_j] \otimes \ldots \otimes \widehat{a_j} \otimes \ldots \otimes a_n$$

$$+\sum_{1\leq j\leq n}\pm[x,a_j]\otimes a_1\otimes\ldots\otimes\widehat{a}_j\otimes\ldots\otimes a_n.$$

Recollections and motivations

2 Nano-course on functor homology

3) The two main objects of the theorem

Idea of the proof

< 🗇 🕨 < 🖃 🕨

Given \mathcal{C} a category F a functor $\mathcal{C}^{op} \to \Bbbk$ -Mod (called right \mathcal{C} -module) G a functor $\mathcal{C} \to \Bbbk$ -Mod (called left \mathcal{C} -module)

Definition

 $F \otimes_{\mathfrak{C}} G$ is the \Bbbk -module defined by

$${\sf F}\otimes_{{\mathbb C}} {\sf G} = igoplus_{{\sf c}\in{\mathbb C}} {\sf F}({\sf c})\otimes_{{\mathbb K}} {\sf G}({\sf c})/\sim$$

where $x \otimes_{\Bbbk} G(f)(y) \sim F(f)(x) \otimes_{\Bbbk} y$ for all $f : c \to c', x \in F(c')$ and $y \in G(c)$.

Proposition

The tensor product of functors is right exact in both variables.

E. Hoffbeck (Univ. Paris 13)

Leibniz homology as functor homology

12/9/2014 11 / 33

• • • • • • • • • • • • • •

There is a notion of projective resolutions for $\ensuremath{\mathbb{C}}\xspace$ -modules.

Definition

$$Tor^{\mathbb{C}}_{*}(F,G) = H_{*}(P_{\bullet} \otimes_{\mathbb{C}} G)$$

where P_{\bullet} is a projective resolution of F in the category of right C-modules.

Moreover, the previous definitions of the tensor product of functors and of the Tor functor still hold when C is a category enriched over *Vect*.

A D b 4 A b

Recollections and motivations

2 Nano-course on functor homology

3 The two main objects of the theorem

Idea of the proof

< 🗇 🕨 < 🖃 >

Remember our goal:

Theorem (Hoffbeck and Vespa)

$$H^{Leib}_{*}(A, M) = \mathit{Tor}^{\Gamma^{Lie}_{sh}}_{*}(t, \mathcal{L}^{Lie}_{sh}(A, M))$$

Want to define

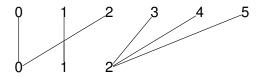
- the category Γ_{sh}^{Lie}
- the functor $\mathcal{L}_{sh}^{Lie}(A, M)$ (from Γ_{sh}^{Lie} to \Bbbk -Mod).

First: define a category Γ_{sh} , similar to Γ but with less symmetries.

Definition: The category Γ_{sh}

Objects: $[n] = \{0, ..., n\}$ for $n \ge 0$ (with basepoint 0) Morphisms: $\Gamma_{sh}([n], [m])$ surjective shuffle maps of pointed sets, that is maps α such that $min(\alpha^{-1}(i)) < min(\alpha^{-1}(j))$ whenever i < j.

Example of a morphism α in $\Gamma_{sh}([5], [2])$:

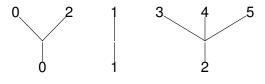


In this case, 0 < 1 < 3.

Definition: The category Γ_{sh}

Objects: $[n] = \{0, ..., n\}$ for $n \ge 0$ (with basepoint 0) Morphisms: $\Gamma_{sh}([n], [m])$ surjective shuffle maps of pointed sets, that is maps α such that $min(\alpha^{-1}(i)) < min(\alpha^{-1}(j))$ whenever i < j.

Example of a morphism α in $\Gamma_{sh}([5], [2])$:



In this case, 0 < 1 < 3.

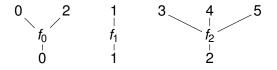
.

The enriched category Γ_{sh}^{P} for a symmetric operad

P symmetric reduced operad in *Vect* (reduced means P(0) = 0)

Definition: The category Γ_{sh}^{P} (Hoffbeck and Vespa) Objects: $[n] = \{0, ..., n\}$ for $n \ge 0$ (with basepoint 0) Morphisms: $\Gamma_{sh}^{P}([n], [m]) = \bigoplus_{\alpha \in \Gamma_{sh}([n], [m])} P(\alpha^{-1}(0)) \otimes ... \otimes P(\alpha^{-1}(m)).$

Example of a morphism *f* in $\Gamma_{sh}^{P}([5], [2])$:

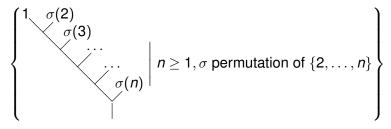


with $f_0 \in P(2), f_1 \in P(1), f_2 \in P(3)$.

The enriched category Γ_{sh}^{Lie}

Goal: make explicit the category Γ_{sh}^{P} for P = Lie.

We know a basis of the operad *Lie*, given in arity *n* by:



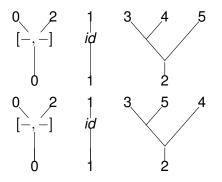
Note: this basis is related to Lie words of the form

$$[\ldots [[x_1, x_{\sigma(2)}], x_{\sigma(3)}], \ldots, x_{\sigma(n)}].$$

The enriched category Γ_{sh}^{Lie}

We obtain a linear basis of $\Gamma_{sh}^{Lie}([n], [m])$ by decorating the forests of $\Gamma_{sh}([n], [m])$ with elements of the basis of Lie.

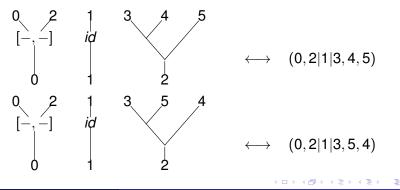
In the previous example, 2 elements in the basis are associated to the shuffle map α .



The enriched category Γ_{sh}^{Lie}

We obtain a linear basis of $\Gamma_{sh}^{Lie}([n], [m])$ by decorating the forests of $\Gamma_{sh}([n], [m])$ with elements of the basis of Lie.

In the previous example, 2 elements in the basis are associated to the shuffle map α .



The functor $\mathcal{L}_{sh}^{Lie}(A, M) : \Gamma_{sh}^{Lie} \to \Bbbk$ -Mod

Given a Lie algebra A and a A-module M

Definition (Hoffbeck and Vespa)

The functor $\mathcal{L}_{sh}^{Lie}(A, M) : \Gamma_{sh}^{Lie} \to \mathbb{k}$ -Mod is defined on objects by

 $\mathcal{L}_{sh}^{Lie}(A,M)([n]) = M \otimes A^{\otimes n}$

and for a morphism $f = (\alpha, f_0, \dots, f_m) \in \Gamma_{sh}^{Lie}([n], [m])$, the induced map $f_* : M \otimes A^{\otimes n} \to M \otimes A^{\otimes m}$ is given by

$$f_*(a_0 \otimes a_1 \otimes \ldots \otimes a_n) = b_0 \otimes \ldots \otimes b_m$$

where $b_i = \theta(f_i \otimes \bigotimes_{j \in \alpha^{-1}(i)} a_j)$ (with θ the evaluation map).

- Recollections and motivations
- 2 Nano-course on functor homology
- 3 The two main objects of the theorem

Idea of the proof

Theorem (Hoffbeck and Vespa)

$$H^{Leib}_{*}(A, M) = Tor_{*}^{\Gamma^{Lie}_{sh}}(t, \mathcal{L}^{Lie}_{sh}(A, M))$$

Definition: Leibniz homology of a functor $\Gamma_{sh}^{Lie} \to \Bbbk$ -Mod

The complex $C^{Leib}_*(T)$ is T([n]) in degree *n* with the differential $d: T([n]) \rightarrow T([n-1])$ defined by $T(\sum_{0 \le i < j \le n} \pm d_{i,j})$.

For $T = \mathcal{L}_{sh}^{Lie}(A, M)$, we recover the definition of $C_*^{Leib}(A, M)$.

We are left to show $H^{Leib}_{*}(\mathcal{L}^{Lie}_{sh}(A, M)) = Tor^{\Gamma^{Lie}_{sh}}_{*}(t, \mathcal{L}^{Lie}_{sh}(A, M))$

How to obtain the theorem

We actually show that for any functor $T: \Gamma_{sh}^{Lie} \to \Bbbk$ -Mod

$$H^{\text{Leib}}_{*}(T) = \textit{Tor}^{\Gamma^{\text{Lie}}_{sh}}_{*}(t,T)$$

The idea is to use

Characterisation of a homological functor

If H_* is a functor from a category \mathbb{C} to \Bbbk -grMod with

- $H_0(F)$ is isomorphic to $G \otimes_{\mathbb{C}} F$ for all $F \in \mathbb{C}$ -mod
- *H*_{*}(-) maps short exact sequences of C-modules to long exact sequences

•
$$H_i(F) = 0$$
 for all projectives F and $i > 0$

then $H_i(F) = Tor_i^{\mathcal{C}}(G, F)$ for all F and all i.

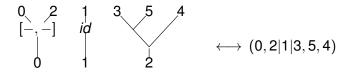
• • • • • • • • • • • • •

The proof of the third point relies on a filtration of the complex $C_*^{\text{Leib}}(\Gamma_{sh}^{\text{Lie}}([n], -))$ (for a fixed n).

Easy to get a filtration as a vector space, indexed by *n*-tuples.

Problem : show that this filtration is compatible with the differential.

Basis of $\Gamma_{sh}^{Lie}([n], [m])$ = forests of m + 1 trees labelled by basis of Lie



Split tuples can be sent to tuples by forgetting the vertical bars

$$proj: (0, 2|1|3, 5, 4) \mapsto (0, 2, 1, 3, 5, 4)$$

The *n*-tuples can be ordered lexicographically \Rightarrow partial order on the basis elements of $\bigoplus_{m} \Gamma_{sh}^{Lie}([n], [m])$

Example: (0, 2|1|3, 5, 4) > (0, 2|1, 3, 4, 5)

Obtain a filtration (as vector space) of the complex $C_*^{\text{Leib}}(\Gamma_{sh}^{\text{Leib}}([n], -))$, indexed by *n*-tuples :

$$F_u = \bigoplus_{proj(b) \ge u} \mathbb{K}.b$$

where *b* basis element of $\bigoplus_{m} \Gamma_{sh}^{Lie}([n], [m])$.

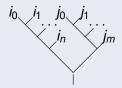
Problem

Compatibility with the differential?

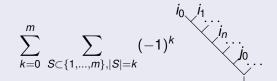
Recall : d = postcomposition with $\Sigma \pm d_{i,j}$.

• • • • • • • • • • • • •

Proposition



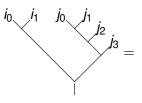
decomposes in the basis as the following sum:

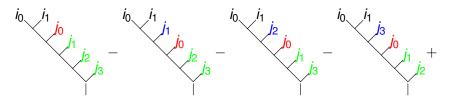


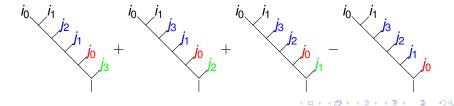
where everything is explicit.

4 A N

- **→ → →**

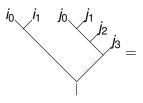


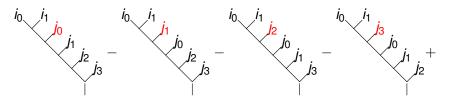


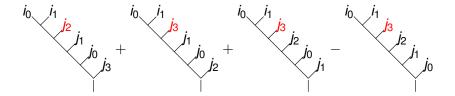


Leibniz homology as functor homology

12/9/2014 29 / 33







Leibniz homology as functor homology

▲ ■ ▶ ■ 少へで 12/9/2014 30 / 33

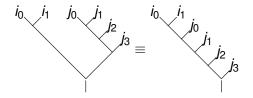
・ロト ・ 四ト ・ ヨト ・ ヨト

Corollary

The differential is compatible with the filtration:

 $d(F_u) \subset F_u$.

We obtain in the associated graded complex



This means $(d_{0,1})_*(i_0, i_1|j_0, j_1, j_2, j_3) \equiv (i_0, i_1, j_0, j_1, j_2, j_3).$

Proposition

In the associated graded complex, the differential $d = \sum \pm (d_{i,j})_*$ removes vertical bars.

$$d(0,2|1|3,5,4) = (0,2,1|3,5,4) \pm (0,2|1,3,5,4)$$

Proposition

The associated graded complex splits as a sum of known acyclic complexes.

Corollary

The complex $C^{Leib}_*(\Gamma^{Lie}_{sh}([n], -))$ is acyclic.

This concludes the proof of the theorem.

E. Hoffbeck (Univ. Paris 13)

Leibniz homology as functor homology

12/9/2014 32 / 33

< ロ > < 同 > < 回 > < 回 >

Thank you for your attention.

イロト イヨト イヨト イヨ