An interpretation of Leibniz homology as functor homology

Eric Hoffbeck (Université Paris 13)
joint work with Christine Vespa (Université de Strasbourg)

Goal of the talk

Explain

Theorem (Hoffbeck and Vespa)

$$
H_{*}^{L e i b}(A, M)=\operatorname{Tor}_{*}^{\text {rish }^{L i e}}\left(t, \mathcal{L}_{s h}^{L i e}(A, M)\right)
$$

where

- A a Lie algebra
- M an A-module
- $H_{*}^{\text {Leib }}$ Leibniz homology
- $\Gamma_{s h}^{L i e}$ a category (enriched over Vect)
- t and $\mathcal{L}_{s h}^{L i e}(A, M)$ functors.

Index

(1) Recollections and motivations
(2) Nano-course on functor homology
(3) The two main objects of the theorem
(4) Idea of the proof

Recollections

The category Γ

Objects: $[n]=\{0, \ldots, n\}$ for $n \geq 0$ (with basepoint 0) Morphisms: $\Gamma([n],[m])$ maps of pointed sets.

Example ($\mathrm{n}=5, \mathrm{~m}=3$):

Recollections

The category Γ

Objects: $[n]=\{0, \ldots, n\}$ for $n \geq 0$ (with basepoint 0) Morphisms: $\Gamma([n],[m])$ maps of pointed sets.

The Loday functor

For A unitary commutative algebra and M a A-module, $\mathcal{L}(A, M): \quad \Gamma \rightarrow \mathbb{k}-M o d$
$[n] \mapsto M \otimes A^{\otimes n}$
$f:[n] \rightarrow[m] \mapsto f_{*}: M \otimes A^{\otimes n} \rightarrow M \otimes A^{\otimes m}$

Recollections

Example for the morphism $f \in \Gamma([5],[3])$ depicted by

$f_{*}\left(a_{0} \otimes a_{1} \otimes a_{2} \otimes a_{3} \otimes a_{4} \otimes a_{5}\right)=b_{0} \otimes b_{1} \otimes b_{2} \otimes b_{3}$
where

- $b_{0}=a_{0} \cdot a_{2}$
- $b_{1}=a_{3}$
- $b_{2}=a_{1} a_{4} a_{5}$

$$
b_{i}=\prod_{j \in f^{-1}(i)} a_{j}
$$

- $b_{3}=1$

Recollections

Theorem (Pirashvili, Richter, Robinson, Whitehouse)

For A unitary commutative algebra and M a A-module,

$$
\begin{array}{cl}
H_{*}^{\text {Harr }}(A, M)=\operatorname{Tor}_{*}^{\ulcorner }(t, \mathcal{L}(A, M)) & \text { for a field } \mathbb{k} \text { of char } 0 \\
H_{*}^{E_{\infty}}(A, M)=\operatorname{Tor}_{*}^{\ulcorner }(t, \mathcal{L}(A, M)) & \text { in the general case }
\end{array}
$$

Similar results for E_{n}-homology (Livernet, Richter) of E_{n}-algebras and Hochschild homology of associative algebras.

Motivations

Question

Is there a similar theorem in other contexts?
For instance for algebras over an operad?

First case to try: Lie algebras.
One main problem is that the operad Lie is not a set operad, unlike the operads As and Com.

Last recollection

A Lie algebra A is a \mathbb{k}-vector space equipped with an anti-symmetric bracket $[-,-]$ satisfying $[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0$.

The Leibniz homology of a Lie algebra with coefficients in a A-module M is given by the homology of the complex

$$
\left(C_{n}^{L e i b}(A, M)=M \otimes A^{\otimes n}, d\right)
$$

where the differential is given by

$$
\begin{aligned}
d\left(x \otimes a_{1} \otimes \ldots \otimes a_{n}\right)= & \sum_{1 \leq i<j \leq n} \pm x \otimes a_{1} \otimes \ldots a_{i-1} \otimes\left[a_{i}, a_{j}\right] \otimes \ldots \otimes \widehat{a}_{j} \otimes \ldots \otimes a_{n} \\
& +\sum_{1 \leq j \leq n} \pm\left[x, a_{j}\right] \otimes a_{1} \otimes \ldots \otimes \widehat{a}_{j} \otimes \ldots \otimes a_{n}
\end{aligned}
$$

(1) Recollections and motivations

(2) Nano-course on functor homology
(3) The two main objects of the theorem
(4) Idea of the proof

Tensor product of functors

Given \mathcal{C} a category
F a functor $\mathcal{C}^{O P} \rightarrow \mathbb{k}-M o d$ (called right \mathcal{C}-module)
G a functor $\mathcal{C} \rightarrow \mathbb{k}$-Mod (called left \mathcal{C}-module)

Definition

$F \otimes_{e} G$ is the \mathbb{k}-module defined by

$$
F \otimes_{\mathfrak{C}} G=\bigoplus_{c \in \mathcal{C}} F(c) \otimes_{\mathbb{k}} G(c) / \sim
$$

where $x \otimes_{\mathfrak{k}} G(f)(y) \sim F(f)(x) \otimes_{\mathbb{k}} y$ for all $f: c \rightarrow c^{\prime}, x \in F\left(c^{\prime}\right)$ and $y \in G(c)$.

Proposition

The tensor product of functors is right exact in both variables.

Tor functor of functors

There is a notion of projective resolutions for \mathcal{C}-modules.

Definition

$$
\operatorname{Tor}_{*}^{\mathrm{e}}(F, G)=H_{*}\left(P_{\bullet} \otimes_{e} G\right)
$$

where P_{\bullet} is a projective resolution of F in the category of right C-modules.

Moreover, the previous definitions of the tensor product of functors and of the Tor functor still hold when \mathcal{C} is a category enriched over Vect.

(1) Recollections and motivations

(2) Nano-course on functor homology

(3) The two main objects of the theorem

4. Idea of the proof

Where are we?

Remember our goal:

Theorem (Hoffbeck and Vespa)

$$
H_{*}^{L e i b}(A, M)=\operatorname{Tor}_{*}^{\Gamma_{*}^{L i e}}\left(t, \mathcal{L}_{s h}^{L i e}(A, M)\right)
$$

Want to define

- the category $\Gamma_{s h}^{\text {Lie }}$
- the functor $\mathcal{L}_{s h}^{L i e}(A, M)$ (from $\Gamma_{s h}^{L i e}$ to \mathbb{k}-Mod).

First: define a category $\Gamma_{\text {sh }}$, similar to Γ but with less symmetries.

The category $\Gamma_{\text {sh }}$

Definition: The category $\Gamma_{\text {sh }}$

Objects: $[n]=\{0, \ldots, n\}$ for $n \geq 0$ (with basepoint 0) Morphisms: $\Gamma_{s h}([n],[m])$ surjective shuffle maps of pointed sets, that is maps α such that $\min \left(\alpha^{-1}(i)\right)<\min \left(\alpha^{-1}(j)\right)$ whenever $i<j$.

Example of a morphism α in $\Gamma_{s h}([5],[2])$:

In this case, $0<1<3$.

The category $\Gamma_{\text {sh }}$

Definition: The category $\Gamma_{\text {sh }}$

Objects: $[n]=\{0, \ldots, n\}$ for $n \geq 0$ (with basepoint 0) Morphisms: $\Gamma_{s h}([n],[m])$ surjective shuffle maps of pointed sets, that is maps α such that $\min \left(\alpha^{-1}(i)\right)<\min \left(\alpha^{-1}(j)\right)$ whenever $i<j$.

Example of a morphism α in $\Gamma_{s h}([5],[2])$:

In this case, $0<1<3$.

The enriched category $\Gamma_{s h}^{P}$ for a symmetric operad

P symmetric reduced operad in Vect (reduced means $P(0)=0$)

Definition: The category $\Gamma_{s h}^{P}$ (Hoffbeck and Vespa)

Objects: $[n]=\{0, \ldots, n\}$ for $n \geq 0$ (with basepoint 0)
Morphisms: $\Gamma_{s h}^{P}([n],[m])=\bigoplus_{\alpha \in \Gamma_{s h}([n],[m])} \mathrm{P}\left(\alpha^{-1}(0)\right) \otimes \ldots \otimes \mathrm{P}\left(\alpha^{-1}(m)\right)$.
Example of a morphism f in $\Gamma_{s h}^{P}([5],[2])$:

with $f_{0} \in P(2), f_{1} \in P(1), f_{2} \in P(3)$.

The enriched category $\Gamma_{s h}^{L i e}$

Goal: make explicit the category $\Gamma_{\text {sh }}^{P}$ for $P=L i e$.
We know a basis of the operad Lie, given in arity n by:

Note: this basis is related to Lie words of the form

$$
\left[\ldots\left[\left[x_{1}, x_{\sigma(2)}\right], x_{\sigma(3)}\right], \ldots, x_{\sigma(n)}\right] .
$$

The enriched category $\Gamma_{s h}^{L i e}$

We obtain a linear basis of $\Gamma_{s h}^{L i e}([n],[m])$ by decorating the forests of $\Gamma_{s h}([n],[m])$ with elements of the basis of Lie.

In the previous example, 2 elements in the basis are associated to the shuffle map α.

The enriched category $\Gamma_{s h}^{L i e}$

We obtain a linear basis of $\Gamma_{s h}^{L i e}([n],[m])$ by decorating the forests of $\Gamma_{s h}([n],[m])$ with elements of the basis of Lie.

In the previous example, 2 elements in the basis are associated to the shuffle map α.

The functor $\mathcal{L}_{s h}^{L i e}(A, M): \Gamma_{s h}^{L i e} \rightarrow \mathbb{k}$-Mod

Given a Lie algebra A and a A-module M

Definition (Hoffbeck and Vespa)

The functor $\mathcal{L}_{s h}^{L i e}(A, M): \Gamma_{s h}^{L i e} \rightarrow \mathbb{k}$-Mod is defined on objects by

$$
\mathcal{L}_{s h}^{L i e}(A, M)([n])=M \otimes A^{\otimes n}
$$

and for a morphism $f=\left(\alpha, f_{0}, \ldots, f_{m}\right) \in \Gamma_{s h}^{L i e}([n],[m])$, the induced map $f_{*}: M \otimes A^{\otimes n} \rightarrow M \otimes A^{\otimes m}$ is given by

$$
f_{*}\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right)=b_{0} \otimes \ldots \otimes b_{m}
$$

where $b_{i}=\theta\left(f_{i} \otimes \bigotimes_{j \in \alpha^{-1}(i)} a_{j}\right) \quad$ (with θ the evaluation map).

Index

(1) Recollections and motivations

(2) Nano-course on functor homology

(3) The two main objects of the theorem

4. Idea of the proof

How to obtain the theorem

Theorem (Hoffbeck and Vespa)

$$
H_{*}^{L e i b}(A, M)=\operatorname{Tor}_{*}^{\Gamma_{s h}^{L i e}}\left(t, \mathcal{L}_{s h}^{L i e}(A, M)\right)
$$

Definition: Leibniz homology of a functor $\Gamma_{s h}^{L i e} \rightarrow \mathbb{k}$-Mod

The complex $C_{*}^{\text {Leib }}(T)$ is $T([n])$ in degree n with the differential $d: T([n]) \rightarrow T([n-1])$ defined by $T\left(\sum_{0 \leq i<j \leq n} \pm d_{i, j}\right)$.

For $T=\mathcal{L}_{s h}^{L i e}(A, M)$, we recover the definition of $C_{*}^{L \text { eib }}(A, M)$.
We are left to show $H_{*}^{L e i b}\left(\mathcal{L}_{s h}^{L i e}(A, M)\right)=\operatorname{Tor}_{*}^{\text {LLie }}\left(t, \mathcal{L}_{s h}^{L i e}(A, M)\right)$

How to obtain the theorem

We actually show that for any functor $T: \Gamma_{s h}^{L i e} \rightarrow \mathbb{k}-M o d$

$$
H_{*}^{L e i b}(T)=\operatorname{Tor}_{*}^{\Gamma_{*}^{L h e}}(t, T)
$$

The idea is to use

Characterisation of a homological functor

If H_{*} is a functor from a category \mathcal{C} to \mathbb{k}-grMod with

- $H_{0}(F)$ is isomorphic to $G \otimes_{e} F$ for all $F \in \mathcal{C}$-mod
- $H_{*}(-)$ maps short exact sequences of C-modules to long exact sequences
- $H_{i}(F)=0$ for all projectives F and $i>0$ then $H_{i}(F)=\operatorname{Tor}_{i}^{e}(G, F)$ for all F and all i.

Idea of the rest of the proof

The proof of the third point relies on a filtration of the complex $C_{*}^{L e i b}\left(\Gamma_{s h}^{L i e}([n],-)\right)($ for a fixed $n)$.

Easy to get a filtration as a vector space, indexed by n-tuples.

Problem : show that this filtration is compatible with the differential.

Basis of $\Gamma_{s h}^{L i e}([n],[m])=$ forests of $m+1$ trees labelled by basis of Lie

$\longleftrightarrow(0,2|1| 3,5,4)$

Split tuples can be sent to tuples by forgetting the vertical bars

$$
\text { proj : }(0,2|1| 3,5,4) \mapsto(0,2,1,3,5,4)
$$

The n-tuples can be ordered lexicographically
\Rightarrow partial order on the basis elements of $\bigoplus_{m} \Gamma_{s h}^{L i e}([n],[m])$
Example: $(0,2|1| 3,5,4)>(0,2 \mid 1,3,4,5)$

Filtration

Obtain a filtration (as vector space) of the complex $C_{*}^{L e i b}\left(\Gamma_{s h}^{L i e}([n],-)\right)$, indexed by n-tuples :

$$
F_{u}=\bigoplus_{\operatorname{proj}(b) \geq u} \mathbb{K} . b
$$

where b basis element of

$$
\bigoplus_{m} \Gamma_{s h}^{L i e}([n],[m]) .
$$

Problem

Compatibility with the differential?
Recall : $d=$ postcomposition with $\Sigma \pm d_{i, j}$.

Proposition

decomposes in the basis as the following sum:
where everything is explicit.

0

Corollary

The differential is compatible with the filtration:

$$
d\left(F_{u}\right) \subset F_{u} .
$$

We obtain in the associated graded complex

This means $\left(d_{0,1}\right)_{*}\left(i_{0}, i_{1} \mid j_{0}, j_{1}, j_{2}, j_{3}\right) \equiv\left(i_{0}, i_{1}, j_{0}, j_{1}, j_{2}, j_{3}\right)$.

Proposition

In the associated graded complex, the differential $d=\sum \pm\left(d_{i, j}\right)_{*}$ removes vertical bars.

$$
d(0,2|1| 3,5,4)=(0,2,1 \mid 3,5,4) \pm(0,2 \mid 1,3,5,4)
$$

Proposition

The associated graded complex splits as a sum of known acyclic complexes.

Corollary

The complex $C_{*}^{\text {Leib }}\left(\Gamma_{s h}^{L i e}([n],-)\right)$ is acyclic.

This concludes the proof of the theorem.

Thank you for your attention.

