Une interprétation de l'homologie de Leibniz comme homologie de foncteurs

Eric Hoffbeck (Université Paris 13) travail commun avec Christine Vespa (Université de Strasbourg)

But de l'exposé

Expliquer

Théorème (Hoffbeck et Vespa)

$$H^{Leib}_*(A,M) = \mathit{Tor}^{\Gamma^{Lie}_*sh}_*(t,\mathcal{L}^{Lie}_{sh}(A,M))$$

 H^{Leib} = homologie de foncteurs

οù

- A algèbre de Lie
- M A-module
- H^{Leib} homologie de Leibniz
- Γ^{Lie}_{sh} catégorie (enrichie linéairement)
- t et \mathcal{L}_{sh}^{Lie} foncteurs.

Index

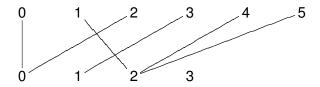
- Rappels et motivations
- Nano-cours sur l'homologie de foncteurs
- Les deux objets principaux du théorème
- Idée de la preuve

La catégorie Γ

Objets : $[n] = \{0, ..., n\}$ où $n \ge 0$ (avec 0 comme point base)

Morphismes : $\Gamma([n], [m])$ applications pointées.

Exemple:



H^{Leib} = homologie de foncteurs

La catégorie Γ

Objets : $[n] = \{0, ..., n\}$ où $n \ge 0$ (avec 0 comme point base)

Morphismes : $\Gamma([n], [m])$ applications pointées.

Le foncteur de Loday

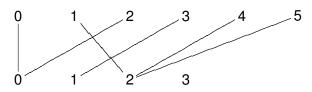
Pour A une algèbre commutative unitaire et M un A-module,

 H^{Leib} = homologie de foncteurs

$$\begin{array}{ccc} \mathcal{L}(A,M): & \Gamma \rightarrow \mathbb{k}\text{-Mod} \\ & [n] \mapsto M \otimes A^{\otimes n} \\ f: [n] \rightarrow [m] \mapsto f_*: M \otimes A^{\otimes n} \rightarrow M \otimes A^{\otimes m} \end{array}$$

5/30

Exemple pour le morphisme $f \in \Gamma([5], [3])$ décrit par



$$f_*(a_0 \otimes a_1 \otimes a_2 \otimes a_3 \otimes a_4 \otimes a_5) = b_0 \otimes b_1 \otimes b_2 \otimes b_3$$

οù

•
$$b_0 = a_0.a_2$$

•
$$b_1 = a_3$$

•
$$b_2 = a_1 a_4 a_5$$

•
$$b_3 = 1$$

$$b_i = \prod_{j \in f^{-1}(i)} a_j$$

Théorème (Pirashvili, Richter, Robinson, Whitehouse)

Pour A une algèbre unitaire commutative et M un A-module,

$$H_*^{Harr}(A,M) = Tor_*^{\Gamma}(t,\mathcal{L}(A,M))$$
 sur un corps k de carac. 0

$$H^{\mathsf{E}_{\infty}}_*(A,M) = \mathit{Tor}^\Gamma_*(t,\mathcal{L}(A,M))$$
 dans le cas général.

Résultats similaires pour la E_n -homologie (Livernet, Richter) d'algèbres commutatives et l'homologie de Hochschild d'algèbres associatives.

 H^{Leib} = homologie de foncteurs

Motivations

Question naturelle

Peut-on trouver un théorème similaire dans d'autre contextes ? Par exemple pour les algèbres sur une opérade?

Premier cas à essayer : les algèbres de Lie. Une différence est que l'opérade Lie n'est pas ensembliste, contrairement aux opérades As et Com.

H^{Leib} = homologie de foncteurs

8 / 30

Dernier rappel

Une algèbre de Lie A est un k-module muni d'un crochet [-,-] antisymétrique vérifiant [a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0.

L'homologie de Leibniz d'une algèbre de Lie A à coefficients dans un A-module M est donnée par l'homologie du complexe

$$(C_n^{Leib}(A,M)=M\otimes A^{\otimes n},d)$$

où la différentielle est donnée par

$$d(a_0 \otimes a_1 \otimes \ldots \otimes a_n) = \sum_{1 \leq i < j \leq n} \pm a_0 \otimes a_1 \otimes \ldots a_{i-1} \otimes [a_i, a_j] \otimes \ldots \otimes \widehat{a_j} \otimes \ldots \otimes a_n$$
$$+ \sum_{1 \leq i < j \leq n} \pm [a_0, a_j] \otimes a_1 \otimes \ldots \otimes \widehat{a_j} \otimes \ldots \otimes a_n.$$

Index

- Rappels et motivations
- Nano-cours sur l'homologie de foncteurs
- Les deux objets principaux du théorème
- Idée de la preuve

Produit tensoriel de foncteurs

Pour C une catégorie

F un foncteur $\mathbb{C}^{op} \to \mathbb{k}$ -Mod (appelé \mathbb{C} -module à droite) G un foncteur $\mathbb{C} \to \mathbb{k}$ -Mod (appelé \mathbb{C} -module à gauche)

Définition

 $F \otimes_{\mathcal{C}} G$ est le \mathbb{k} -module défini par

$$F\otimes_{\mathfrak{C}}G=igoplus_{c\in\mathfrak{C}}F(c)\otimes_{\Bbbk}G(c)/\sim$$

où $x \otimes_{\Bbbk} G(f)(y) \sim F(f)(x) \otimes_{\Bbbk} y$ pour tout $f : c \to c', x \in F(c')$ et $y \in G(c)$.

Proposition

Le produit tensoriel de foncteurs est exact à droite en les deux variables.

Foncteur Tor entre foncteurs

Il existe une notion de résolutions projectives pour les C-modules.

Définition

$$\mathit{Tor}^{\mathcal{C}}_*(F,G) = H_*(P_{\bullet} \otimes_{\mathcal{C}} G)$$

où P_{\bullet} est une résolution projective de F dans la catégorie des \mathbb{C} -modules à droite.

De plus, ces définitions se prolongent au cas où ${\mathbb C}$ est une catégorie enrichie linéairement.

Index

- Rappels et motivations
- Nano-cours sur l'homologie de foncteurs
- 3 Les deux objets principaux du théorème
- Idée de la preuve

Où en est-on?

Rappel de l'objectif:

Théorème (Hoffbeck et Vespa)

$$H_*^{Leib}(A, M) = Tor_*^{\Gamma_{sh}^{Lie}}(t, \mathcal{L}_{sh}^{Lie}(A, M))$$

On veut définir

- la catégorie Γ^{Lie}_{sh}
- le foncteur $\mathcal{L}_{sh}^{Lie}(A,M)$ (de Γ_{sh}^{Lie} vers \Bbbk -Mod).

D'abord : définir une catégorie Γ_{sh} , similaire à Γ mais avec moins de symétries.

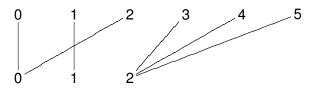
La catégorie Γ_{sh}

Définition: La catégorie Γ_{sh}

Objets : $[n] = \{0, ..., n\}$ pour $n \ge 0$ (pointés en 0)

Morphismes : $\Gamma_{sh}([n], [m])$ applications pointées surjectives shuffle, *ie.* α telles que $min(\alpha^{-1}(i)) < min(\alpha^{-1}(j))$ pour i < j.

Exemple d'un morphisme α dans $\Gamma_{sh}([5],[2])$:



Dans ce cas, 0 < 1 < 3.

La catégorie enrichie Γ_{sh}^{P} pour une opérade symétrique

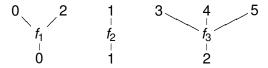
P opérade symétrique réduite dans \Bbbk -Mod (réduite signifie P(0) = 0)

Définition: la catégorie Γ^P_{sh} (Hoffbeck et Vespa)

Objets : $[n] = \{0, ..., n\}$ pour $n \ge 0$ (pointés en 0)

Morphismes :
$$\Gamma^{\mathsf{P}}_{sh}([n],[m]) = \bigoplus_{\alpha \in \Gamma_{sh}([n],[m])} \mathsf{P}(\alpha^{-1}(0)) \otimes \ldots \otimes \mathsf{P}(\alpha^{-1}(m)).$$

Exemple de morphisme dans $\Gamma_{sh}^{P}([5],[2])$:



où $f_1 \in P(2), f_2 \in P(1), f_3 \in P(3)$.

La catégorie enrichie Γ_{sh}^{Lie}

But : expliciter la catégorie Γ^P_{sh} pour P = Lie.

Une base de l'opérade *Lie*, en arité *n*, est donnée par :

$$\left\{
\begin{array}{c|c}
1 & \sigma(2) \\
 & \sigma(3) \\
 & \cdots \\
 & \sigma(n)
\end{array} \middle| n \ge 1, \sigma \text{ permutation de } \{2, \dots, n\}\right\}$$

Note: Cette base correspond aux mots de Lie de la forme

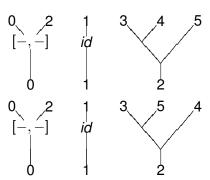
$$[\ldots[[X_1,X_{\sigma(2)}],X_{\sigma(3)}],\ldots,X_{\sigma(n)}].$$

La catégorie enrichie Γ_{sh}^{Lie}

On obtient une base de $\Gamma_{sh}^{Lie}([n],[m])$ en décorant les forêts $\Gamma_{sh}([n],[m])$ par des éléments de la base de Lie.

Dans l'exemple précédent, 2 éléments de la base sont associés à l'application shuffle α .

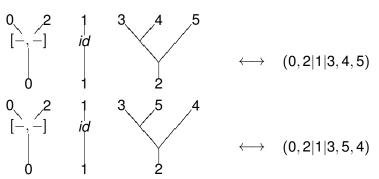
H^{Leib} = homologie de foncteurs



La catégorie enrichie Γ_{sh}^{Lie}

On obtient une base de $\Gamma_{sh}^{Lie}([n],[m])$ en décorant les forêts $\Gamma_{sh}([n],[m])$ par des éléments de la base de Lie.

Dans l'exemple précédent, 2 éléments de la base sont associés à l'application shuffle α .



Le foncteur $\mathcal{L}_{sh}^{Lie}(A,M):\Gamma_{sh}^{Lie}\to \mathbb{k} ext{-Mod}$

Pour une algèbre de Lie A et un A-module M

Définition (Hoffbeck et Vespa)

Le foncteur $\mathcal{L}^{Lie}_{sh}(A,M):\Gamma^{Lie}_{sh}\to \mathbb{k}$ -Mod est défini sur les objets par

$$\mathcal{L}_{sh}^{Lie}(A, M)([n]) = M \otimes A^{\otimes n}$$

et pour un morphisme $f = (\alpha, f_0, \dots, f_m) \in \Gamma^{Lie}_{sh}([n], [m])$, la flèche induite $f_* : M \otimes A^{\otimes n} \to M \otimes A^{\otimes m}$ est donnée par

$$f_*(a_0 \otimes a_1 \otimes \ldots \otimes a_n) = b_0 \otimes \ldots \otimes b_m$$

où $b_i = \theta(f_i \otimes \bigotimes_{j \in \alpha^{-1}(i)} a_j)$ (θ est l'évaluation).

Index

- Rappels et motivations
- Nano-cours sur l'homologie de foncteurs
- 3 Les deux objets principaux du théorème
- 4 Idée de la preuve

Comment obtenir le théorème

Théorème (Hoffbeck et Vespa)

$$H_*^{Leib}(A, M) = \mathit{Tor}_*^{\Gamma_{sh}^{Lie}}(t, \mathcal{L}_{sh}^{Lie}(A, M))$$

Définition : Homologie de Leibniz d'un foncteur $\Gamma_{sh}^{Lie} \to \mathbb{k}$ -Mod

Le complexe $C_*^{Leib}(T)$ est T([n]) en degré n avec la différentielle $d: T([n]) \to T([n-1])$ définie par $T(\sum_{0 \le i \le n} \pm d_{i,j})$.

Pour $T = \mathcal{L}_{sh}^{Lie}(A, M)$, on retrouve la définition de $C_*^{Leib}(A, M)$.

Il reste à prouver $H_*^{Leib}(\mathcal{L}_{sh}^{Lie}(A, M)) = Tor_*^{\Gamma_{sh}^{Lie}}(t, \mathcal{L}_{sh}^{Lie}(A, M))$

Comment obtenir le théorème

On montre pour tout foncteur $T: \Gamma^{Lie}_{sh} \to \mathbb{k}$ -Mod

$$H_*^{Leib}(T) = Tor_*^{\Gamma_{sh}^{Lie}}(t,T)$$

L'idée est d'utiliser

Caractérisation d'un foncteur homologique

Si H_* est un foncteur d'une catégorie $\mathbb C$ vers \Bbbk -grMod tel que

- $H_0(F)$ est isomorphe à $G \otimes_{\mathbb{C}} F$ pour tout $F \in \mathbb{C}$ -mod
- $H_*(-)$ envoie les suites exactes courtes de ${\mathfrak C}$ -modules sur des suites exactes longues
- $H_i(F) = 0$ pour tout projectif F et i > 0

alors $H_i(F) = Tor_i^{\mathbb{C}}(G, F)$ pour tout F et tout i.

La preuve du 3e point se base sur une filtration du complexe $C_*^{Leib}(\Gamma_{sh}^{Lie}([n], -))$ (à n fixé).

Facile d'obtenir une filtration comme k-module, indexée par des *n*-uplets.

Problème : montrer que cette filtration est compatible à la différentielle.

Base de $\Gamma^{Lie}_{sh}([n],[m])$ = forêts de m+1 arbres décorés par une base de Lie

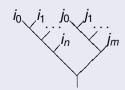
Un uplet découpé s'envoie sur un uplet en oubliant les barres

$$(0,2|1|3,5,4) \mapsto (0,2,1,3,5,4)$$

Les *n*-uplets peuvent être ordonnés lexicographiquement.

- \Rightarrow ordre partiel sur la base de $\bigoplus \Gamma^{Lie}_{sh}([n],[m])$
- \Rightarrow une filtration (comme &-module) indexé par des n-uplets du complexe $C_*^{Leib}(\Gamma_{ch}^{Lie}([n], -))$.

Proposition



se décompose dans la base comme :

$$\sum_{k=0}^{m} \sum_{S \subset \{1,...,m\}, |S|=k} (-1)^{k} \underbrace{j_{0} j_{1} \dots j_{n}}_{j_{0} \dots j_{0}} \dots$$

où:

- les entrées de i₀ à i_n sont dans le même ordre qu'avant,
- j_0 est en (n+2+k)-ème position,
- les entrées entre i_n et j_0 sont les j_ℓ où $\ell \in S$
- les entrées sous j_0 sont les j_ℓ où $\ell \notin S$.

$$j_0$$
 j_1 j_2 j_3 =

$$i_0$$
 j_1
 j_2
 j_3
 j_3
 j_4
 j_5
 j_5

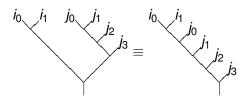
$$\frac{i_0}{j_1}$$
 $\frac{i_1}{j_2}$ $\frac{i_0}{j_3}$ $+$ $\frac{i_0}{j_2}$ $+$ $\frac{i_0}{j_2}$ $+$ $\frac{i_1}{j_3}$ $\frac{i_2}{j_1}$ $\frac{i_0}{j_1}$ $\frac{i_1}{j_3}$ $\frac{i_2}{j_2}$ $\frac{i_1}{j_3}$ $\frac{i_2}{j_1}$ $\frac{i_2}{j_2}$ $\frac{i_1}{j_3}$ $\frac{i_2}{j_2}$ $\frac{i_1}{j_3}$ $\frac{i_2}{j_3}$ $\frac{i_2}{j_3}$ $\frac{i_2}{j_3}$ $\frac{i_2}{j_3}$ $\frac{i_2}{j_3}$ $\frac{i_2}{j_3}$ $\frac{i_3}{j_2}$ $\frac{i_3}{j_3}$ $\frac{i_2}{j_3}$ $\frac{i_3}{j_3}$ $\frac{i_2}{j_3}$ $\frac{i_3}{j_3}$ $\frac{i_3}{j_3}$

$$j_0$$
 j_1 j_2 j_3 j_3

$$i_0$$
 j_1
 j_2
 j_3
 j_3
 j_3
 j_4
 j_5
 j_5

$$j_0$$
 j_1 j_0 j_3 j_2 j_0 j_1 j_2 j_0 j_1 j_2 j_0 j_1 j_2 j_0 j_1 j_2 j_1 j_0

On obtient dans le complexe gradué associé



C'est-à-dire $(d_{0,1})_*(i_0,i_1|j_0,j_1,j_2,j_3) \equiv (i_0,i_1,j_0,j_1,j_2,j_3).$

Proposition

Dans le complexe gradué associé, la différentielle $d = \sum \pm (d_{i,j})_*$ enlève les barres verticales.

$$d(0,2|1|3,5,4) = (0,2,1|3,5,4) \pm (0,2|1,3,5,4)$$

Proposition

Le complexe gradué associé se scinde en une somme de complexes acycliques standards.

Corollaire

Le complexe $C^{Leib}_*(\Gamma^{Lie}_{sh}([n], -))$ est acyclique.

Ceci conclut la preuve de

Théorème (Hoffbeck et Vespa)

$$H^{Leib}_*(A,M) = \mathit{Tor}^{\Gamma^{Lie}_{*}}_*(t,\mathcal{L}^{Lie}_{sh}(A,M))$$