
On the ranked excursion heights of a Kiefer process

by
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1 Introduction

Let {B(t), t ≥ 0} be a standard one-dimensional Brownian motion, i.e. a continuous centered
Gaussian process with covariance

E
(
B(t1)B(t2)

)
= t1 ∧ t2, t1, t2 ≥ 0.

We consider also standard Brownian bridge {p(s), 0 ≤ s ≤ 1}, i.e. a centered Gaussian
process with covariance

E (p(s1)p(s2)) = s1 ∧ s2 − s1s2, 0 ≤ s1, s2 ≤ 1.

It is well-known that almost all sample paths of B consists of countable many zero-free
intervals called excursions. Let (a, b) an excursion interval, i.e. B(a) = B(b) = 0 and either
B(s) > 0, a < s < b called positive excursion, or B(s) < 0, a < s < b called negative
excursion. The height of excursion is defined by either

H
def
= max

a≤s≤b
B(s)

or
H∗ def

= max
a≤s≤b

|B(s)|.

Clearly, H > 0 holds only for positive excursions. Pitman and Yor [11] introduced the ranked
heights of excursions up to time t: let

H1(t) ≥ H2(t) ≥ . . . Hj(t) ≥ . . .

and
H∗

1 (t) ≥ H∗
2 (t) ≥ . . . H∗

j (t) ≥ . . .

be the heights of positive and all excursions respectively, of {B(s), 0 ≤ s ≤ t}, including
the meander heights supgt≤s≤t B(s) and supgt≤s≤t |B(s)|, where gt denotes the last zero of B
before t. The ranked heights of excursions of p can be defined similarly.

Let furthermore {K(s, t), 0 ≤ s ≤ 1, t ≥ 0} be a Kiefer process, i.e. a continuous two-
parameter centered Gaussian process indexed by [0, 1] × R+ whose covariance function is
given by

E
(
K(s1, t1)K(s2, t2)

)
= (s1 ∧ s2 − s1s2) t1 ∧ t2, 0 ≤ s1, s2 ≤ 1, t1, t2 ≥ 0.

Kiefer [7] introduced this process K to approximate the empirical process. See Csörgő and
Révész [4] for detailed studies and related references on Kiefer process and on the invariance
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principle between empirical process and Kiefer process. Note that for fixed t > 0, the process
s ∈ [0, 1] → K(s,t)√

t
is a standard Brownian bridge. Denote by

M1(t) ≥ M2(t) ≥ ... ≥ Mj(t) ≥ ...

the ranked heights of the positive excursions of the Brownian bridge K(·, t) over the whole
time interval [0, 1]. Denote by

M∗
1 (t) ≥ M∗

2 (t) ≥ ... ≥ M∗
j (t) ≥ ...

the ranked heights of the excursions of |K(·, t)|. By scaling properties, the distributions of

(
Mj(t)√

t
, j ≥ 1) and (

M∗
j (t)√

t
, j ≥ 1) are the same as that of the ranked excursion heights of a

standard Brownian bridge. See Pitman and Yor [12] for studies on these distribution.

We are interested in the path properties of the processes t → Mj(t) and t → M∗
j (t). In

particular, we aim at the asymptotic behaviors of Mj(t) and M∗
j (t) as t →∞.

Observe that M1(t) = sup0≤s≤1 K(s, t) and M∗
1 (t) = sup0≤s≤1 |K(s, t)|. The following

laws of the iterated logarithm are known, see respectively Csörgő and Révész ([4], pp. 81),
Mogul’skii [8] and Csáki and Shi [3]:

Theorem A ([4], [8], [3]). We have

lim sup
t→∞

M∗
1 (t)√

t log log t
=

1√
2
, a.s. (1.1)

lim inf
t→∞

√
log log t

t
M∗

1 (t) =
π√
8
, a.s. (1.2)

lim inf
t→∞

(log t)χ

√
t

M1(t) =





0 if χ ≤ 1
2

∞ if χ > 1
2

a.s. (1.3)

In (1.1) we may replace M∗
1 (t) by M1(t).

The almost sure behavior of H∗
j (t) was studied in Csáki and Hu [2]:

Theorem B ([2]). We have

lim sup
t→∞

H∗
j (t)√

t log log t
=

√
2

2j − 1
, a.s. j ≥ 1 (1.4)

lim inf
t→∞

(log t)χ

√
t

H∗
j (t) =

{
0 if χ ≤ 1
∞ if χ > 1

a.s. j ≥ 2. (1.5)

A natural question is to ask what happens with (M∗
j (t), t ≥ 0) for j ≥ 2. As a process

indexed by t, the j-highest heights M∗
j (t) may share some unusual properties different from

M∗
1 (t). For instance, t → M∗

j (t) is not continuous for j ≥ 2 in contrast with the continuity
of M∗

1 (·).
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Theorem 1.1 Fix j ≥ 1. We have

lim sup
t→∞

M∗
j (t)√

t log log t
=

1

j
√

2
, a.s.

The same result remains true when M∗
j (t) is replaced by Mj(t).

It is also of interest to find the liminf behavior of Mj(·):

Theorem 1.2 Fix j ≥ 2. We have

lim inf
t→∞

(log t)χ

√
t

M∗
j (t) =





0 if χ ≤ 1
2

∞ if χ > 1
2

a.s.

The same result remains true when we replace M∗
j (t) by Mj(t).

Comparing (1.2) with Theorem 1.2, we can see that the liminf behaviors of M∗
1 and M∗

j

(j > 1) are completely different.

The proof of Theorem 1.1 is based on an estimate on the downcrossings of a Brownian
bridge, this estimate will be given in Section 2. To show Theorem 1.2, a usual way would
be to estimate P( inf1≤t≤2 Mj(t) < ε) as ε goes to 0. This problem remains open to our
best knowledge. To overcome this difficulty, we shall adopt the method of Csáki and Shi
[3], which consists of reducing the problem for the Kiefer process to that for an Ornstein-
Uhlenbeck process. Section 2 also contains several preliminary results to complete the proofs
of Theorems 1.1 and 1.2, which will be presented respectively in Sections 3 and 4.

Throughout this paper, (Ck, 1 ≤ k ≤ 6) denote some positive constants whose exact
values are unimportant.

2 Downcrossings

Consider a continuous function f : I = [a, b] → R with a, b ∈ R. For two real numbers
x < y, we define inductively

α1 = α1(y)
def
= inf{v ≥ a : f(v) ≥ y}, (2.1)

βk = βk(x)
def
= inf{v ≥ αk : f(v) ≤ x}, k ≥ 1, (2.2)

αk = αk(y)
def
= inf{v ≥ βk−1 : f(v) ≥ y}, k ≥ 2, (2.3)

with the convention inf ∅ = ∞. Define the number of downcrossings of (x, y) by f during
the time interval I as

Df (x, y; I) = sup{k : αk(y) ≤ b}. (2.4)
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We adopt the above definition of downcrossings, which is slightly different from the usual
one, to keep the following equivalence:

sup
v∈I

f(v) ≥ y ⇐⇒ Df (x, y; I) ≥ 1.

Remark that the condition {Df (x, y; I) ≥ 1} does not depend on x. In the following two sub-
sections, we shall discuss respectively the numbers of downcrossings by a standard Brownian
motion, a Brownian bridge and by an Ornstein-Uhlenbeck process.

2.1 Brownian motion and Brownian bridge

Let {B(s), s ≥ 0} be a standard Brownian motion and let {p(s), 0 ≤ s ≤ 1} be a standard
Brownian bridge from 0 to 0. First, we present a preliminary result based on the reflection
principle.

Lemma 2.1 Fix j ≥ 1 and max(x, 0) < y. We have

P
(
DB(x, y; [0, 1]) ≥ j, B(1) ∈ dz

)
=





ϕ(2jy − 2(j − 1)x− z)dz if z ≤ y,

ϕ(2(j − 1)y − 2(j − 1)x + z)dz if z > y,
(2.5)

where ϕ is the standard normal density function.

Proof: We use the reflection principle formulated by (cf., e.g. [5])

Fact 2.2 Let {B(s), s ≥ 0} be a standard Brownian motion and let τ be a stopping time for
B. Then

B(τ)(s)
def
=





B(s) if 0 ≤ s ≤ τ

2B(τ)−B(s) if τ ≤ s

is also a standard Brownian motion.

Let us make use of the stopping times αk = αk(y) and βk = βk(x) introduced in (2.1)–
(2.3), corresponding to f(t) = B(t), I = [0, 1].

Our Lemma 2.1 is well-known for j = 1.

We illustrate the proof in the simple case j = 2, using the reflection principle subsequently
for our stopping times. Let {B(s), 0 ≤ s ≤ 1} be a Brownian motion such that α2 < 1 and

B(1) = z ≤ y. Then by Fact 2.2, B1(s)
def
= B(α1)(s), 0 ≤ s ≤ 1 is a Brownian motion with

B1(1) = 2y − z, β1 is its first hitting time of 2y − x and α2 is its first hitting time of y after
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β1. In the next step consider B2(s)
def
= B

(β1)
1 (s), 0 ≤ s ≤ 1. Then B2(1) = 2y − 2x + z, and

α2 is its first hitting time of 3y− 2x. Finally, consider B3(s) = B
(α2)
2 (s), 0 ≤ s ≤ 1 for which

we have B3(1) = 4y− 2x− z. By reversing this procedure, starting from a Brownian motion
with endpoints 4y − 2x− z at s = 1, we get a Brownian motion with α1 < 1 and B(1) = z.
This proves the first equality of (2.5) in the case j = 2. The procedure is similar for z > y,
except that we stop with B2, so the last reflection (at α2) is not performed. Using this idea
in obvious manner for the general case j > 2, yields our lemma.

Since a Brownian bridge {p(s), 0 ≤ s ≤ 1} is a Brownian motion conditioned to B(1) = 0,
we have the following

Corollary 2.3 For j ≥ 1 and max(x, 0) < y, we have

P
(
Dp(x, y; [0, 1]) ≥ j

)
= exp

(
− 2(jy − (j − 1)x)2

)
.

Proof: Putting z = 0 in (2.5) we get

P
(
Dp(x, y; [0, 1]) ≥ j

)
=

ϕ(2jy − 2(j − 1)x)

ϕ(0)
= exp

(
− 2(jy − (j − 1)x)2

)
.

Taking x = 0, we recover Pitman and Yor [12]’s formula for the distribution of Mj(1):

P
(
Mj(1) > y

)
= P

(
Dp(0, y; [0, 1]) ≥ j

)
= exp

(
− 2j2y2

)
. (2.6)

Another corollary can be obtained by taking x = 0 and integrating with respect to z:

Corollary 2.4 For j ≥ 1, y > 0 we have

P
(
Hj(1) > y

)
= 2 (1− Φ((2j − 1)y)) ,

where Φ is the standard normal distribution function, and Hj(1) denotes the height of the
j-th highest positive Brownian excursion up to time 1.

Now we present an estimate on sup0≤t≤T M∗
j (t).

Proposition 2.5 Fix j ≥ 2. There exists some constant C1 > 1 such that for all u > 0 and
λ ≥ √

u, we have

P
(

sup
0≤t≤u

M∗
j (t) > λ

)
≤ C1 exp

(
− 2

(
jλ√
u
− 2j − 1

2

)2 )
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In the proof of Proposition 2.5, we need the following lemma:

Lemma 2.6 For 0 ≤ x < y, j ≥ 1, we have

P
(
D|p|(x, y; [0, 1]) ≥ j

)
≤ 2jP

(
Dp(x, y; [0, 1]) ≥ j

)
.

Proof of Lemma 2.6: Again, we present the proof for j = 2. Upcrossings from x to y by
|p| are either upcrossings by p from x to y or downcrossings by p from −x to −y. Define the
following events:

A++ def
= {There are at least two upcrossings by p from x to y}

A+− def
= {There is at least one downcrossing by p from −x to −y

after an upcrossing by p from x to y}
A−+ def

= {There is at least one upcrossing by p from x to y

after a downcrossing by p from −x to −y}
A−− def

= {There are at least two downcrossings by p from −x to −y}.

Obviously

P
(
D|p|(x, y; [0, 1]) ≥ 2

)
≤ P (

A++
)

+ P
(
A+−)

+ P
(
A−+

)
+ P

(
A−−)

and by symmetry, P(A++) = P(A−−), P(A+−) = P(A−+). Moreover, P(A+−) ≤ P(A++),
since by Corollary 2.3 we have

P
(
A++

)
= exp

(−2(2y − x)2
)

and an argument, similar to the proof of Lemma 2.1 shows that

P
(
A+−)

= exp
(−8y2

)
.

Hence,

P
(
D|p|(x, y; [0, 1]) ≥ 2

)
≤ 4P

(
A++

)
= 22 exp

(−2(2y − x)2
)
,

proving Lemma 2.6 for j = 2. Extension of the above argument in an obvious manner for
j > 2, proves our Lemma 2.6.

Now we proceed with the proof of Proposition 2.5.

Proof of Proposition 2.5: For t > 0, we define σ
(t)
0 (0) = 0 and for i ≥ 1,

τ
(t)
i (x)

def
= inf{s ≥ σ

(t)
i−1(0) : |K(s, t)| = x},

σ
(t)
i (0)

def
= inf{s ≥ τ

(t)
i (x) : K(s, t) = 0},
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(write τ
(t)
i (x) = 1 if such s does not exist). Therefore,

P
(

sup
0≤t≤u

M∗
j (t) > λ

)
= P

(
∃t ∈ [0, u] : τ

(t)
j (λ) < 1

)
= P

(
Θ ≤ u

)
,

where we define Θ
def
= inf{t ≥ 0 : M∗

j (t) > λ}. Let Ft
def
= σ{K(s, u), 0 ≤ s ≤ 1, 0 ≤ u ≤ t},

the sigma-algebra generated by {K(s, u), 0 ≤ s ≤ 1, 0 ≤ u ≤ t}. Then Θ is a stopping time
with respect to (Ft). Notice that the process t → (K(·, Θ + t) − K(·, Θ)) is independent
of FΘ and has the same law as (K(·, t), t ≥ 0). Using the self similarity: K(·, v + Θ) −
K(·, Θ)

law
=
√

vK(·, 1) for any fixed v > 0, we get

P
(

sup
0≤s≤1

∣∣∣K(s, u)−K(s, Θ)
∣∣∣ <

√
u

2

∣∣∣ Θ ≤ u
)
≥ P

(
sup

0≤s≤1
|K(s, 1)| < 1

2

)
def
=

2j

C1

> 0.

Denote by

E1
def
=

{
sup

0≤s≤1

∣∣∣K(s, u)−K(s, Θ)
∣∣∣ <

√
u

2

}
∩

{
Θ ≤ u

}
,

we have shown that
P
(
Θ ≤ u

)
≤ 2−jC1 P

(
E1

)
.

On E1, we can decompose K(s, u) = K(s, Θ) + K̂(s) with sup0≤s≤1 |K̂(s)| ≤
√

u
2

. Since

|K(τ
(Θ)
i (λ), Θ)| = λ and K(σ

(Θ)
i (0), Θ) = 0 for 1 ≤ i ≤ j, it follows that for such random

times 0 < s1
def
= τ

(Θ)
1 (λ) < v1

def
= σ

(Θ)
1 (0) < ... < sj

def
= τ

(Θ)
j (λ) < 1, we have respectively,

|K(s1, u)| ≥ λ−
√

u

2
, |K(v1, u)| ≤

√
u

2
, ..., |K(sj, u)| ≥ λ−

√
u

2
.

Namely, we have

E1 ⊂
{

D|K(·,u)|

(√
u

2
, λ−

√
u

2
; [0, 1]

)
≥ j

}
.

It follows from scaling, Corollary 2.3 and Lemma 2.6 that

P
(
E1

)
≤ P

(
D|K(·,u)|

(√
u

2
, λ−

√
u

2
; [0, 1]

)
≥ j

)

= P
(

D|p|

(
1

2
,

λ√
u
− 1

2
; [0, 1]

)
≥ j

)
≤ 2j exp

(
− 2

(jλ− (2j − 1)
√

u
2

)2

u

)
,

proving the result.
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2.2 Ornstein-Uhlenbeck process

Let us consider a stationary Ornstein-Uhlenbeck process (U(t), t ≥ 0) with parameter 1
2
,

which is a stationary centered Gaussian process with covariance E
(
U(t)U(s)

)
= e−

|t−s|
2 . We

mention a paper by Pitman and Yor [10] for the study of distributions of excursion lengths
of U .

Recall some known facts on the hitting times of U . Fix −∞ ≤ z1 < z2 ≤ ∞ and define

σ(z1, z2) = inf{s ≥ 0 : U(s) 6∈ [z1, z2]}

to be the first exit time from the interval [z1, z2]. Consider the Sturm-Liouville equation:

1

2
φ′′(x)− x

2
φ′(x) = −λφ(x), x ∈ (z1, z2); φ(zi) = 0 if |zi| < ∞, i = 1, 2.

Fact 2.7 ([14], [6], [9]) Assume that min(|z1|, |z2|) < ∞. There is a sequence of sim-
ple eigenvalues 0 < λ1(z1, z2) < ... < λn(z1, z2) < ... whose corresponding eigenfunc-
tions ψ1(z1, z2; x), ..., ψn(z1, z2; x), ... form a complete orthonormal system with respect to
m(dx) = e−x2/2dx. The function (z1, z2) → λ1(z1, z2) is strictly positive and jointly con-
tinuous on Ξ = {(z1, z2) ∈ [−∞,∞]2 : z1 < z2, min(|z1|, |z2|) < ∞}, strictly increasing in
z1 ∈ (−∞, z2] for z2 ≤ ∞ and strictly decreasing in z2 ∈ [z1,∞) for z1 ≥ −∞:

λ1(−∞, 0) = λ1(0,∞) =
1

2
, lim

(z1,z2)→0
λ1(z1, z2) = ∞, lim

(z1,z2)→(−∞,∞)
λ1(z1, z2) = 0.

Fact 2.8 ([14], [6], [9], [1], [3]) Assume that min(|z1|, |z2|) < ∞. There exists some
constant C2 > 0 such that uniformly on x ∈ R,

P
(
σ(z1, z2) > t |U(0) = x

)
= e−λ1(z1,z2) t

(
θ(z1, z2)ψ1(z1, z2; x) + r(t, x)

)
,

where θ(z1, z2) =
∫ z2

z1
ψ1(z1, z2; x)m(dx) and

|r(t, x)| ≤ C2 exp
(x2

9
− t

2

)
.

When z1 = −z2 = −z with z > 0, we get

lim
t→∞

1

t
logP

(
sup

0≤s≤t
|U(s)| < z

)
= −λ1(−z, z). (2.7)

Moreover, limz→∞ λ1(−z, z) = 0.
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We shall need the probability that the process U downcrosses a given interval (z1, z2)
only a few times during [−t, t]. This is stated in the following lemma:

Lemma 2.9 Fix −∞ < z1 < z2 < ∞ and k ≥ 1; We have

lim
t→∞

1

t
logP

(
DU(z1, z2; [−t, t]) ≤ k

)
= lim

t→∞
1

t
logP

(
DU(z1, z2; [0, 2t]) ≤ k

)
= −2µ(z1, z2),

where µ(z1, z2)
def
= min(λ1(−∞, z2), λ1(z1,∞)) > 0. Moreover, we have

lim
z1,z2→0

µ(z1, z2) =
1

2
.

Note that the constant k, arbitrary but fixed, does not influence the rate of exponential
decay of the two probability terms in the above lemma.

Proof: The above first equality is due to the stationarity of the Ornstein-Uhlenbeck process.
Using again the stopping times αj and βj defined in (2.1)–(2.3) associated with a = 0, b = 2t,

x = z1, y = z2, I = [0, 2t] and f(v) = U(v), we have P
(
DU(z1, z2; [0, 2t]) ≤ k

)
= P

(
αk+1 >

2t
)
.

Remark that α1 = inf{s ≥ 0 : U(s) ≥ z2} = σ(−∞, z2). The strong Markov property
implies that the random variables of the family {α1, βj − αj, αj+1 − βj, j ≥ 1} are mutually
independent. Furthermore, β1−α1 = σ(z1,∞)◦θα1 where θ is the usual shift operator. And
for j ≥ 2, βj − αj (resp: αj − βj−1) has the same law as Tz2→z1 (resp: Tz1→z2), where Tx→y

denotes the hitting time of y by an Ornstein-Uhlenbeck process starting from x. Based on
Fact 2.8, simple convolution computation yields that

lim
t→∞

1

t
logP

(
αk+1 > t

)
= −µ(z1, z2),

and the desired conclusion follows.

2.3 A technical lemma

Recall that {p(s), 0 ≤ s ≤ 1} denotes a standard Brownian bridge. Let 0 ≤ y < z/4 and
consider the event

Gy,z =
{
∃ 0 < a1 < c1 < b1 < a2 < c2 < b2 < 1 :

|p(ai)| ≤ y, |p(bi)| ≤ y, |p(ci)| ≥ z, i = 1, 2
}

(2.8)

Remark that Gy,z ⊃ G0,z and that G0,z is in fact the event that the height of the second
highest excursion of |p(·)| is larger than z. We shall need to bound P(Gy,z) in the proof of
the upper bound of Theorem 1.2.
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Lemma 2.10 There exists an absolute constant C3 > 0 such that for all 0 ≤ y < z
4

and
0 < z < 1

2
,

P
(
Gy,z

)
≤ 1− C3 z2.

We note that this estimate is nearly sharp, since we can also obtain a lower bound from
(2.6) as follows:

P
(
Gy,z

)
≥ P

(
G0,z

)
= P

(
M∗

2 (1) ≥ z
)
≥ P

(
M2(1) ≥ z

)
≥ 1− C4z

2, 0 < z <
1

2
.

Proof of Lemma 2.10: Fix (y, z) such that 0 ≤ y < z
4

and 0 < z < 1
2
. Define two stopping

times for any continuous process X(·):

T ∗
z (X)

def
= inf{t ≥ 0 : |X(t)| ≥ z}

Υ(X)
def
= inf{t > T ∗

z (X) : |X(t)| ≤ y},
with inf ∅ = ∞. Observe that

Gc
y,z ⊃

{
T ∗

z (p) < z2; 1− 2z2 ≤ Υ(p) ≤ 1− z2; sup
Υ(p)≤t≤1

|p(t)| ≤ z

2

}
.

Applying the strong Markov property at Υ(p), we deduce from the symmetry that

P
(
Gc

y,z

)
≥ E

(
1(T ∗z (p)<z2; 1−2z2≤Υ(p)≤1−z2) f(y, 1−Υ(p); z)

)
,

because p(Υ(p)) = ±y on the event {Υ(p) < 1}, and where the function f is given by

f(y, s; z)
def
= P

(
The Brownian bridge from y to 0 of length s always lives in

[
−z

2
,
z

2

] )
.

It follows from the scaling property that for all z2 ≤ s ≤ 2z2,

f(y, s; z) = f

(
y√
s
, 1;

z√
s

)
≥ inf

0≤a≤ 1
4

f

(
a, 1,

1√
2

)
def
= C5 > 0,

because a = y√
s
≤ 1

4
and z√

s
≥ 1√

2
. Hence we have shown that

P
(
Gc

y,z

)
≥ C5 P

(
T ∗

z (p) < z2; 1− 2z2 ≤ Υ(p) ≤ 1− z2
)
.

Recall the following absolute continuity between the law of a standard Brownian bridge
and that of a standard Brownian motion: Denote by P0,0 the law of p(·) and by P0 that of
B(·), on the canonical space (C([0, 1] → R), (X(t), 0 ≤ t ≤ 1), (Xt)0≤t≤1), we have

dP0,0 |Xt
=

1√
1− t

exp
(
− X2(t)

2(1− t)

)
dP0 |Xt

, t < 1.

11



Applying the above formula to the stopping time Υ(X), we have

P
(
T ∗

z (p) < z2; 1− 2z2 ≤ Υ(p) ≤ 1− z2
)

= E0

(
1(T ∗z (X)<z2;1−2z2≤Υ(X)≤1−z2)

1√
1−Υ(X)

exp
(
− y2

2(1−Υ(X))

))

≥ e−1/32

√
2

1

z
P0

(
T ∗

z (X) < z2; 1− 2z2 ≤ Υ(X) ≤ 1− z2
)

≥ e−1/32

√
2

1

z
P0

(
T ∗

z (X) <
z2

2

)
Pz

(
1− 2z2 ≤ Ty(X) ≤ 1− 3z2

2

)
,

where Pz means that the Brownian motion X(·) starts from z and Ty(X) denotes the first
hitting time at y of X. Thanks to the scaling property, the first probability in the above

inequality P0

(
T ∗

z (X) < z2

2

)
is bounded below by some numerical constant. Using the well-

known distribution of the Brownian hitting time: Pz(Ty(X) ∈ dt) = z−y√
2πt3

e−(z−y)2/(2t)dt, we
obtain that

Pz

(
1− 2z2 ≤ Ty(X) ≤ 1− 3z2

2

)
≥ C6 z3.

Assembling these estimates, we get

P
(
Gc

y,z

)
≥ C3z

2,

for some universal constant C3 > 0, as desired.

3 Proof of Theorem 1.1

We begin with the proof of the upper bound:

lim sup
t→∞

M∗
j (t)√

t log log t
≤ 1

j
√

2
, a.s. (3.1)

This follows from Proposition 2.5: Fix an arbitrary constant a > 1
j
√

2
. Let n ≥ 3 and

tn = en/ log n. We have from Proposition 2.5 that

P
(

sup
0≤t≤tn+1

M∗
j (t) > a

√
tn log log tn

)
≤ C1 exp

(
− (2j2a2 + o(1)) log log tn

)
,

whose sum over n converges; this in view of a simple application of Borel-Cantelli lemma
yields (3.1).

Now, fix an arbitrary constant a < 1
j
√

2
. It suffices to prove that

lim sup
t→∞

Mj(t)√
t log log t

≥ a, a.s. (3.2)

12



To this end, let tn = nn and λn = a
√

tn log log tn, we consider the event

En
def
=

{
Mj(tn) > λn

}
,

which is Ftn
def
= σ{K(s, u), 0 ≤ s ≤ 1, 0 ≤ u ≤ tn}-measurable. If we can show that

∑
n

P
(
En | Ftn−1

)
= ∞, a.s. (3.3)

then according to Lévy’s version of Borel-Cantelli lemma (cf. [13]), we get P
(
En, i.o.

)
= 1

hence (3.2).

Consider the process K̃(s, u)
def
= K(s, u+ tn−1)−K(s, tn−1) for 0 ≤ s ≤ 1 and u ≥ 0. The

independent increment property says that K̃(·, ·) is independent of Ftn−1 and has the same
law as K(·, ·). Fix a small ε > 0 such that 2j2a2(1 + 2ε) ≤ (1− 2ε).

Recall the notation DK̃(·,tn−tn−1) in Section 2 for the downcrossings by the process K̃(·, tn−
tn−1). Observe that

{
DK̃(·,tn−tn−1)(−ελn, (1 + ε)λn; [0, 1]) ≥ j

}
∩

{
M̃∗

1 (tn−1) < ελn

}
⊂ En,

where M̃∗
1 (tn−1)

def
= sup0≤s≤1,0≤u≤tn−1

|K̃(s, u)|. Therefore, we apply Corollary 2.3 and obtain
that for all large n,

P
(
En | Ftn−1

)
≥ 1(fM∗

1 (tn−1)<ελn) P
(
DK̃(·,tn−tn−1)(−ελn, (1 + ε)λn; [0, 1]) ≥ j

)

= 1(fM∗
1 (tn−1)<ελn) P

(
Dp

(
−ε

λn√
tn − tn−1

, (1 + ε)
λn√

tn − tn−1

; [0, 1]

)
≥ j

)

≥ 1(fM∗
1 (tn−1)<ελn) exp

(
− 2j2a2(1 + 2ε) log log tn

)

≥ 1(fM∗
1 (tn−1)<ελn) n−(1−ε), (3.4)

where the above equality is due to the self-similarity: K̃(·, v)
law
=
√

v p(·) for any fixed v > 0,
and p(·) is a standard Brownian bridge. Now, applying (1.1), we obtain that almost surely,

M̃∗
1 (tn−1) < ελn for all large n. This together with (3.4) implies (3.3), completing the proof

of Theorem 1.1.

4 Proof of Theorem 1.2

4.1 Upper bound

It suffices to show that

lim inf
t→∞

√
log t√

t
M∗

2 (t) = 0, a.s.
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According to Lévy’s version of Borel-Cantelli’s lemma (cf. [13]), the above result follows if
we can prove that for any constant ε > 0 and for some sequence (tn ↑ ∞),

∑
n

P
(
M∗

2 (tn) < ε

√
tn

log tn
| Ftn−1

)
= ∞, a.s. (4.1)

where Ft = σ{K(s, u), 0 ≤ s ≤ 1, 0 ≤ u ≤ t}. Let us consider tn = n3n. By means of (1.1),
we have almost surely for all large n,

sup
0≤s≤1

|K(s, tn−1)| ≤
√

tn−1 log n
def
= λn. (4.2)

Consider large n. Observe that λn ≤ 1
4
ε
√

tn
log tn

def
= xn

4
. By the independent increment

property,
K(·, tn) = K(·, tn−1) + K̃(·, tn − tn−1),

with K̃ a Kiefer process independent of Ftn−1 . The key observation is that

{
M∗

2 (tn) ≥ xn} ∩
{

sup
0≤s≤1

|K(s, tn−1)| ≤ λn

}

⊂
{
∃0 < a1 < c1 < b1 < a2 < c2 < b2 < 1 : |K̃(ai, tn − tn−1)| ≤ λn,

|K̃(bi, tn − tn−1)| ≤ λn, |K̃(ci, tn − tn−1)| ≥ xn − λn, i = 1, 2
}

def
= F̃n,

which implies that

F̃ c
n ∩

{
sup

0≤s≤1
|K(s, tn−1)| ≤ λn

}
⊂

{
M∗

2 (tn) < xn}.

It follows from the independence of F̃ c
n and Ftn−1 that

P
(
M∗

2 (tn) < xn | Ftn−1

)
≥ 1(sup0≤s≤1 |K(s,tn−1)|≤λn) P

(
F̃ c

n

)

= 1(sup0≤s≤1 |K(s,tn−1)|≤λn) P
(
Gc

y,z

)

≥ C31(sup0≤s≤1 |K(s,tn−1)|≤λn) z2

≥ C3
ε2

4
1(sup0≤s≤1 |K(s,tn−1)|≤λn)

1

n log n
,

where the above equality is due to scaling with y = λn√
tn−tn−1

, z = xn−λn√
tn−tn−1

, Gc
y,z is the

complement event of Gy,z which was defined in (2.8), and the second inequality follows from
Lemma 2.10. The above lower bound together with (4.2) implies (4.1).
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4.2 Lower bound

Fix j ≥ 2 and χ > 1
2
. We want to show that almost surely for all large t:

Mj(t) >
√

t (log t)−χ.

Consider the two-parameter Ornstein-Uhlenbeck process (U(v, t), v ∈ R, t ≥ 0) defined
by

U
(

log

(
s

1− s

)
, t

)
=

K(s, t)√
s(1− s)

, 0 < s < 1, t ≥ 0.

Namely, {U(v, t), v ∈ R, t ≥ 0} is a centered Gaussian process with covariance

E
(
U(v1, t1)U(v2, t2)

)
= e−

|v1−v2|
2 t1 ∧ t2, v1, v2 ∈ R, t1, t2 ≥ 0.

Let 0 < δ < 1 be small. First,if there exist some (random) times δ ≤ u1 < v1 < ... <

uj−1 < vj−1 < uj ≤ 1−δ such that U
(

log( ui

1−ui
), t

)
≥ x for i = 1, ..., j and U

(
log( vi

1−vi
), t

)
=

0 for i = 1, ..., j− 1, then K(ui, t) ≥ x
√

δ(1− δ) and K(vi, t) = 0. This implies in particular

that Mj(t) ≥ x
√

δ(1− δ).

Recall (2.4). If we denote by DU(·,t)(x, y; [− log(1−δ
δ

), log(1−δ
δ

)]) the number of downcross-
ings of (x, y) by U(·, t) during the time interval [− log(1−δ

δ
), log(1−δ

δ
)], then

{
DU(·,t)

(
0, x;

[
− log

(
1− δ

δ

)
, log

(
1− δ

δ

)])
≥ j

}
⊂

{
Mj(t) ≥ x

√
δ(1− δ)

}
.

Fix a small constant c = c(χ) > 0 whose value will be determined later. Define nk =
exp( k

log k
) and let δk = (log nk)

−2χ, Ik = [− log(1−δk

δk
), log(1−δk

δk
)], xk = c

√
nk+1 for k ≥ 3.

Consider the event

Fk
def
=

{
∃t ∈ [nk, nk+1) : DU(·,t)(0, xk; Ik) ≤ j − 1

}
.

If we can show that ∑

k

P
(
Fk

)
< ∞, (4.3)

then the Borel-Cantelli lemma implies that almost surely for all large k, F c
k realizes; hence

for all large t, we have that nk ≤ t < nk+1, and DU(·,t)(0, xk; Ik) ≥ j, which implies that

Mj(t) ≥ xk

√
δk(1− δk) ≥ c

2

√
t (log t)−χ. This yields the convergence part of Theorem 1.2,

since χ > 1
2

is arbitrary.

To estimate P
(
Fk

)
, we consider the following stopping time ζ with respect to FU

t =

σ{U(x, s), x ∈ R, s ≤ t}:
ζ = inf{t ≥ nk : DU(·,t)(0, xk; Ik) ≤ j − 1}.
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We want to estimate P
(
Fk

)
= P

(
ζ < nk+1

)
. Define Ũ(v, t)

def
= U(v, t + ζ) − U(v, ζ) for

v ∈ R and t ≥ 0. The independent increments property says that Ũ is independent of FU
ζ

and has the same law as U . On {ζ < nk+1}, we have DU(·,ζ)(0, xk; Ik) ≤ j − 1; Fix a small
constant ε > 0. Consider the event

Gk
def
=

{
sup

δk≤s≤1−δk

∣∣∣Ũ
(

log

(
1− s

s

)
, nk+1 − ζ

)∣∣∣ < εxk; ζ < nk+1

}
⊂ Fk.

Using the scaling property: Ũ(·, t) law
=
√

tŨ(·, 1) for any fixed t > 0, we obtain:

P
(
Gk

)
=

∫

[nk,nk+1)

P(ζ ∈ dv)P
(

sup
δk≤s≤1−δk

∣∣∣Ũ
(

log

(
1− s

s

)
, nk+1 − v

)∣∣∣ < εxk

)

=

∫

[nk,nk+1)

P(ζ ∈ dv)P
(

sup
δk≤s≤1−δk

∣∣∣Ũ
(

log

(
1− s

s

)
, 1

)∣∣∣ <
εxk√

nk+1 − v

)

≥ P
(
ζ < nk+1

)
P
(

sup
δk≤s≤1−δk

∣∣∣Ũ
(

log

(
1− s

s

)
, 1

)∣∣∣ <
εxk√

nk+1 − nk

)
. (4.4)

Observe that on Gk, the number of downcrossings of (−εxk, (1 + ε)xk) by U(·, nk+1)
during Ik = [− log(1−δk

δk
), log(1−δk

δk
)] can not be larger or equal to j; otherwise, we would get

DU(·,ζ)(0, xk; Ik) ≥ j. In view of this remark, we get

P
(
Fk

)
≤

P
(
DU(·,nk+1)(−εxk, (1 + ε)xk; Ik) ≤ j − 1

)

P
(

supδk≤s≤1−δk

∣∣∣Ũ
(

log(1−s
s

), 1
)∣∣∣ < εxk√

nk+1−nk

)

=
P
(
DU(·,1)(−εc, (1 + ε)c; Ik) ≤ j − 1

)

P
(

supδk≤s≤1−δk

∣∣∣U
(

log(1−s
s

), 1
)∣∣∣ < εxk√

nk+1−nk

) , (4.5)

by using the scaling property. We shall bound below the denominator and bound above the
numerator in (4.5): the denominator equals

P
(

sup
− log((1−δk)/δk)≤v≤log((1−δk)/δk)

|U(v, 1)| < εxk√
nk+1 − nk

)

= P
(

sup
0≤v≤2 log((1−δk)/δk)

|U(v, 1)| < εxk√
nk+1 − nk

)

≥ δ
o(1)
k , k →∞, (4.6)

where the above equality follows from the stationarity and the above inequality follows from
(2.7) in Fact 2.8 with z = εxk√

nk+1−nk
→∞. On the other hand, we have from Lemma 2.9 that

P
(
DU(·,1)(−εc, (1 + ε)c; Ik) ≤ j − 1

)
≤ δ

(2µ(−εc,(1+ε)c)+o(1))
k
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=

(
k

log k

)−(4χ µ(−εc,(1+ε)c)+o(1))
. (4.7)

Recall that χ > 1
2
. Since µ(−εc, (1 + ε)c) → 1

2
as c → 0, we can choose a sufficiently

small constant c = c(χ) > 0 such that 4χµ(−εc, (1 + ε)c) > 1. Putting (4.6) and (4.7) into
(4.5), we obtain some constant a > 1 such that for all large k,

P
(
Fk

)
≤ k−a

proving (4.3), as desired.
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[1] Csáki, E.: Strong limit theorems for empirical processes. Recent Adv. in Stat. and
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