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1 Introduction

Let {B(t), t > 0} be astandard one-dimensional Brownian motion, i.e. a continuous centered
Gaussian process with covariance

E(B(t1>B<t2)) - tl A tg, tl, t2 Z 0

We consider also standard Brownian bridge {p(s), 0 < s < 1}, i.e. a centered Gaussian
process with covariance

E (p(s1)p(s2)) = s1 A S3 — $189, 0 <sq, 8 <1.

It is well-known that almost all sample paths of B consists of countable many zero-free
intervals called excursions. Let (a,b) an excursion interval, i.e. B(a) = B(b) = 0 and either
B(s) > 0,a < s < b called positive excursion, or B(s) < 0,a < s < b called negative
excursion. The height of excursion is defined by either

HY max B(s)

a<s<b

or
H* % max |B(s)].
a<s<b
Clearly, H > 0 holds only for positive excursions. Pitman and Yor [11] introduced the ranked
heights of excursions up to time ¢: let
Hi(t) > Ho(t) > ... H;(t) > ...

and
Hi(t) > Hy(t) > H]*(t) > L.

be the heights of positive and all excursions respectively, of {B(s),0 < s < t}, including
the meander heights sup,, ., B(s) and sup,, .., |B(s)|, where g, denotes the last zero of B
before t. The ranked heights of excursions of p can be defined similarly.

Let furthermore {K(s,t),0 < s < 1,¢t > 0} be a Kiefer process, i.e. a continuous two-
parameter centered Gaussian process indexed by [0,1] x R, whose covariance function is
given by

E(K(Sl,tl)K(SQ,t2)> = (81 A So — 8182) tl A tg, 0 S S1, 59 S 1, tl,tg Z 0.

Kiefer [7] introduced this process K to approximate the empirical process. See Csérgd and
Révész [4] for detailed studies and related references on Kiefer process and on the invariance



principle between empirical process and Kiefer process. Note that for fixed ¢t > 0, the process
se0,1] — % is a standard Brownian bridge. Denote by

My(t) > Ma(t) > ... > M;(t) > ...

the ranked heights of the positive excursions of the Brownian bridge K(-,t) over the whole
time interval [0, 1]. Denote by

M;(t) = M3(t) > ... > M7 (t) > ...

the ranked heights of the excursions of |K(+,t)|. By scaling properties, the distributions of

(M%f), j>1) and (M\J;gt), j > 1) are the same as that of the ranked excursion heights of a

standard Brownian bridge. See Pitman and Yor [12] for studies on these distribution.

We are interested in the path properties of the processes t — M;(t) and t — M (). In
particular, we aim at the asymptotic behaviors of M;(t) and M (t) as t — oo.
Observe that Mi(t) = supg<,<; K(s,t) and My(t) = supgc,<; |[K(s,t)[. The following

laws of the iterated logarithm are known, see respectively Csérgé and Révész ([4], pp. 81),
Mogul’skii [8] and Csaki and Shi [3]:

Theorem A ([4], [8], [3]). We have

: M;(t) 1
1 L = .S. 1.1
1?1?)1011) tloglogt V2’ o (1.1)
.. loglogt T
lim inf Mi(t) = —, a.s. 1.2
min 0= (12)
0 ify<s
log t)X =
liminf (280" v = a.5. (1.3)
e Vi oo if x > %

In (1.1) we may replace M;(t) by M;(t).
The almost sure behavior of H () was studied in Csaki and Hu [2]:

Theorem B ([2]). We have
H: (1) V2

limsup ——— = —, a.s. > 1 1.4
t—»oop Vtloglogt 27 —1 )= (14)

1 X
lim inf (log*)

t—o0 ﬂ

0 ifx<1
oo ifxy>1

a.s. Jj>2. (1.5)

m = {

A natural question is to ask what happens with (M;(t),t > 0) for j > 2. As a process
indexed by ¢, the j-highest heights M7 (t) may share some unusual properties different from
M; (t). For instance, t — M7 (t) is not continuous for j > 2 in contrast with the continuity

of My (+).



Theorem 1.1 Fix j > 1. We have

. M (t) 1
lim sup

o0 tloglogt :j\/§7

The same result remains true when M (t) is replaced by M;(t).

a.s.

It is also of interest to find the liminf behavior of M;(-):

Theorem 1.2 Fix j > 2. We have

0 ifx<
1 X -
lim inf (log ) M:(t) = a.s.
t—o0 \/E ] .
oo if x >

DO [

N[ —=

The same result remains true when we replace M (t) by M;(t).

Comparing (1.2) with Theorem 1.2, we can see that the liminf behaviors of M} and M}
(7 > 1) are completely different.

The proof of Theorem 1.1 is based on an estimate on the downcrossings of a Brownian
bridge, this estimate will be given in Section 2. To show Theorem 1.2, a usual way would
be to estimate P(infi<;<o M;(t) < €) as e goes to 0. This problem remains open to our
best knowledge. To overcome this difficulty, we shall adopt the method of Csaki and Shi
3], which consists of reducing the problem for the Kiefer process to that for an Ornstein-
Uhlenbeck process. Section 2 also contains several preliminary results to complete the proofs
of Theorems 1.1 and 1.2, which will be presented respectively in Sections 3 and 4.

Throughout this paper, (Cy, 1 < k < 6) denote some positive constants whose exact
values are unimportant.

2 Downcrossings

Consider a continuous function f : I = [a,b] — R with a,b € R. For two real numbers
x <y, we define inductively

a; = aq(y) o inf{v >a: f(v) >y}, (2.1)
Br = Br(x) o inf{v > ay : f(v) <z}, k>1, 2.2
ap=oaxy) ¥ inflo> By f0) >y, k>2, (2.3)

with the convention inf ) = oo. Define the number of downcrossings of (z,y) by f during
the time interval I as

Dy(z,y; 1) = sup{k : ax(y) < b} (2.4)
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We adopt the above definition of downcrossings, which is slightly different from the usual
one, to keep the following equivalence:

sup f(v) >y <= Dy(z,y;1) > 1.

vel

Remark that the condition {D(z,y; ) > 1} does not depend on z. In the following two sub-
sections, we shall discuss respectively the numbers of downcrossings by a standard Brownian
motion, a Brownian bridge and by an Ornstein-Uhlenbeck process.

2.1 Brownian motion and Brownian bridge

Let {B(s), s > 0} be a standard Brownian motion and let {p(s),0 < s < 1} be a standard
Brownian bridge from 0 to 0. First, we present a preliminary result based on the reflection
principle.

Lemma 2.1 Fiz j > 1 and max(x,0) <y. We have

©(2jy —2(j — )x — 2)dz if 2 <y,
P(Dp(w,y; 10,1]) = j, BO) € dz) = (2:5)
e2(j— 1)y —2(j — Dz +2)dz if z >y,

where ¢ is the standard normal density function.

Proof: We use the reflection principle formulated by (cf., e.g. [5])

Fact 2.2 Let {B(s), s > 0} be a standard Brownian motion and let T be a stopping time for
B. Then

B(s) if0<s<r
2B(t) — B(s) if1<s

15 also a standard Brownian motion.

Let us make use of the stopping times ay, = ai(y) and By = Fi(z) introduced in (2.1)-
(2.3), corresponding to f(t) = B(t), I =[0,1].

Our Lemma 2.1 is well-known for 57 = 1.

We illustrate the proof in the simple case j = 2, using the reflection principle subsequently
for our stopping times. Let {B(s), 0 < s < 1} be a Brownian motion such that ap < 1 and
B(1) = z < y. Then by Fact 2.2, Bl(s)défB(o‘l)(s), 0 < s <1 is a Brownian motion with

Bi(1) =2y — z, (3 is its first hitting time of 2y — z and «s is its first hitting time of y after
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f1. In the next step consider By(s) &of Bfgl)(s), 0 <s<1. Then By(1) = 2y — 2z + z, and

i is its first hitting time of 3y — 2x. Finally, consider Bs(s) = BéaQ)(s), 0 < s <1 for which
we have B3(1) = 4y — 2z — z. By reversing this procedure, starting from a Brownian motion
with endpoints 4y — 2z — z at s = 1, we get a Brownian motion with oy < 1 and B(1) = z.
This proves the first equality of (2.5) in the case j = 2. The procedure is similar for z > y,
except that we stop with By, so the last reflection (at ) is not performed. Using this idea
in obvious manner for the general case j > 2, yields our lemma. [ |

Since a Brownian bridge {p(s), 0 < s < 1} is a Brownian motion conditioned to B(1) = 0,
we have the following

Corollary 2.3 For j > 1 and max(x,0) < y, we have

P(Dylw, 0.1 2 ) = exp (= 20y — (G = D2)?).

Proof: Putting z = 0 in (2.5) we get

) 27y —2(y — 1)z . .
P(Dy(es[0.1]) 2 ) = LB 2V Z VT o (g — (- 1)),
»(0)
|
Taking « = 0, we recover Pitman and Yor [12]’s formula for the distribution of M;(1):
P(M;(1) > y) = B(Dy(0,4:(0,1)) = j) = exp (- 2%%), (2.6

Another corollary can be obtained by taking x = 0 and integrating with respect to z:
Corollary 2.4 For j > 1, y > 0 we have
P(H;(1) > y) =2(1- (2 — 1)y)),

where ® is the standard normal distribution function, and H;(1) denotes the height of the
J-th highest positive Brownian excursion up to time 1.

Now we present an estimate on supg<,< M; ().

Proposition 2.5 Fix j > 2. There exists some constant Cy > 1 such that for all uw > 0 and
A > /u, we have

P M* A\ <O —9 ﬂ_ﬂ ’
(s 850> 2) < ci e (~2(22 -2 ))



In the proof of Proposition 2.5, we need the following lemma:

Lemma 2.6 For0 <z <y, j > 1, we have
P(Dyi(e.9:10,1]) 2 ) < 2P( Dy 500,1)) = ).

Proof of Lemma 2.6: Again, we present the proof for 7 = 2. Upcrossings from x to y by

|p| are either upcrossings by p from z to y or downcrossings by p from —x to —y. Define the
following events:

At {There are at least two upcrossings by p from z to y}

At {There is at least one downcrossing by p from —x to —y
after an upcrossing by p from z to y}

A—-i— def

= {There is at least one upcrossing by p from z to y

after a downcrossing by p from —z to —y}

A {There are at least two downcrossings by p from —z to —y}.

Obviously
P(Dyy(,9:10,1]) 2 2) S P(A™) +P(A"7) +P (A7) +P (A7)

and by symmetry, P(AT+) = P(A™7), P(AT") = P(A~"). Moreover, P(A*7) < P(A*H),
since by Corollary 2.3 we have

P (A™F) = exp (—2(2y — 2)?)
and an argument, similar to the proof of Lemma 2.1 shows that
P (AT7) =exp (—8y7).
Hence,
P<D|p\(x,y; [0,1]) = 2) < AP (ATY) =2%exp (—2(2y — 2)?),

proving Lemma 2.6 for 7 = 2. Extension of the above argument in an obvious manner for
7 > 2, proves our Lemma 2.6. [ ]

Now we proceed with the proof of Proposition 2.5.
Proof of Proposition 2.5: For ¢ > 0, we define a(()t)(O) =0 and for ¢ > 1,

$2) € oinf{s > o (0) 1 |K(s,1)| =},
Y0) = int{s > 7 (x) : K(s,t) =0},
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(write 70

)

(z) = 1 if such s does not exist). Therefore,

IP’( sup M (t) > )\> = P(Ht € [0,u] : 7‘}”()\) < 1) = IP’(G) < u),

0<t<u

where we define © % inf{t > 0 : M;(t) > A\}. Let F; défa{K(s,u),O <s<1,0<u<t}
the sigma-algebra generated by {K(s,u),0 < s < 1,0 <wu <t}. Then © is a stopping time
with respect to (F;). Notice that the process t — (K(-,0 +t) — K(-,0)) is independent
of Fe and has the same law as (K (-,t),t > 0). Using the self similarity: K(-,v + ©) —

K(-,0) law VUK (-, 1) for any fixed v > 0, we get

Vu 1\ def 27
_ ~ < > — )| = — .
P<OS§L;21 K(s,u) — K(s, @)‘ < ’@ u) IP’<06;121|K(5,1)| < 2) c >0
Denote by
def \/ﬂ
a — ~ <
El—{osgligl K(s,u) K(s,@)’< 5 }ﬁ{@_u},

we have shown that

IP(@ < u) < 2’jC’11P’<E1>.

On FE,, we can decompose K(s,u) = K(s,0) + I?(s) with supg<,<; |IA((5)| < Y' Since
1

2
|K(Ti(e)()\),@)| = X and K(O'i(e)(()), ©) =0 for 1 <i < j, it follows that for such random
times 0 < s, 7'1(9)(/\) < 0%6)(0) <. <S; déij(e

=

(M) < 1, we have respectively,

K (s )| > A= Y2

Uu
K on ) 2 A= 2 Ko, 0)] < /

oIt

Namely, we have

FE, C {D|K(-,u)\ (\/76, A — g; [0, 1]) > j}

It follows from scaling, Corollary 2.3 and Lemma 2.6 that

P(E1> < P<D|K<-,u>| (4 A= g; [0, 1]) 2 J')

proving the result. [ |




2.2 Ornstein-Uhlenbeck process

Let us consider a stationary Ornstein-Uhlenbeck process (U(t),t > 0) with parameter 3,
which is a stationary centered Gaussian process with covariance E (U (U (s)) =% We

mention a paper by Pitman and Yor [10] for the study of distributions of excursion lengths
of U.

Recall some known facts on the hitting times of U. Fix —oo < z1 < 29 < 00 and define
0(21,22) =inf{s > 0: U(s) & [21, 2] }

to be the first exit time from the interval [z, z5]. Consider the Sturm-Liouville equation:

%gb"(m) — ggb’(a:) = —\¢(x), x € (21, 29); O(z) =01if |z] < o0, 1=1,2.

Fact 2.7 ([14], [6], [9]) Assume that min(|z|,|22]) < oo. There is a sequence of sim-
ple eigenvalues 0 < Ai(z1,22) < ... < Ap(z1,22) < ... whose corresponding eigenfunc-
tions ¥1(z1, 22; %), ..., (21, 20, ), ... form a complete orthonormal system with respect to
m(dz) = e " 2dx. The function (z1,2) — M(21,2) is strictly positive and jointly con-
tinuous on Z = {(z1,22) € [—00,00]* : 21 < z9,min(|z1], |22]|) < oo}, strictly increasing in
21 € (—00, 29] for zo < 0o and strictly decreasing in zy € [z1,00) for z3 > —00:

1
A1(—00,0) = A\(0,00) = Y lm  Ay(z1, 22) = 00, lim Ai(z1,22) = 0.

(21,Z2)*>0 (ZI:ZZ)A’(foozoo)

Fact 2.8 ([14], [6], [9], [1], [3]) Assume that min(|z|,|2z2|) < oo. There exists some
constant Cy > 0 such that uniformly on x € R,

P(a(zl, z9) > t|U(0) = IL’) = e_’\l(zl’ZQ)t<9(zl, 29)11 (21, 225 ) + (8, x)),

where 0(z1, z2) = f;f U1(21, 22; x)m(dx) and

2t
o) < Crexp (5 - 3).
When z1 = —2z9 = —z with z > 0, we get
1
lim —logIP’( sup |U(s)| < z) =—-Ai(—2,2). (2.7)
t—o0 t OSSSt

Moreover, im,_, o, A\ (—2,2) = 0.



We shall need the probability that the process U downcrosses a given interval (zy, 22)
only a few times during [—t,¢]. This is stated in the following lemma:

Lemma 2.9 Fizx —0c0 < 21 < 29 < 00 and k > 1; We have

1 1
lim - 1ogP<DU(z1,z2; —t,1]) < k) — lim - logP<DU(z1,z2; [0,2¢]) < k) = 2u(z, 2),

t—oo t t—oo §

where p(z1, z2) o min(A;(—00, 22), A1(21,00)) > 0. Moreover, we have

1

I S
zl,lgrLOM<Zl’ Z2) 2

Note that the constant k, arbitrary but fixed, does not influence the rate of exponential
decay of the two probability terms in the above lemma.

Proof: The above first equality is due to the stationarity of the Ornstein-Uhlenbeck process.
Using again the stopping times a; and ; defined in (2.1)—(2.3) associated with a = 0, b = 2t,

r=2z,y=2z,I=][02tand f(v) =U(v), we have P(.DU(Zl,ZQ; 0,2t]) < l{;) = P(ak+1 >

2t) .

Remark that a; = inf{s > 0 : U(s) > 22} = o(—00, 23). The strong Markov property
implies that the random variables of the family {a1, 8; — oj, aj 11 — 55,7 > 1} are mutually
independent. Furthermore, 5; — a3 = 0(z1,00) 00, where 0 is the usual shift operator. And
for j > 2, 5; — a; (resp: a; — Bj_1) has the same law as T, .., (resp: T%,_.,), where T,_,,
denotes the hitting time of y by an Ornstein-Uhlenbeck process starting from z. Based on
Fact 2.8, simple convolution computation yields that

1
lim n log]P’(OzkH > t) = —u(z1, 22),

t—o0

and the desired conclusion follows. [ |

2.3 A technical lemma

Recall that {p(s),0 < s < 1} denotes a standard Brownian bridge. Let 0 < y < z/4 and
consider the event

Gy. = {30<a1<01<b1<a2<02<b2<1:
[plad] <y, Ip(b)| <y, Ipe)| > 2,0 = 1,2} (2.8)

Remark that G, . D Gy, and that Gy . is in fact the event that the height of the second
highest excursion of |p(-)| is larger than z. We shall need to bound P(G, ,) in the proof of
the upper bound of Theorem 1.2.
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Lemma 2.10 There erists an absolute constant C3 > 0 such that for all 0 < y < % and
0<z<3g,
P(Gy7z> < 1-— 03 22.

We note that this estimate is nearly sharp, since we can also obtain a lower bound from
(2.6) as follows:

IP’(GW) > P(GO,Z> - IP’(M;‘(l) > z> > P<M2(1) > z) >1-0% 0<2< %

Proof of Lemma 2.10: Fix (y,2) such that 0 <y < 2 and 0 < z < % Define two stopping
times for any continuous process X (-):

THX) € inf{t>0:|X(t)] > 2}
T(X) = inf{t>T7(X): X)) <y},
with inf ) = co. Observe that

* z
Gy 2 {Tz (p) <2%1-222<T(p) <1—-2% sup [p(t)] < 5}-
T(p)<t<1

Applying the strong Markov property at Y(p), we deduce from the symmetry that

P<G§,z) > E(l(T;(p)<z2;172z2§T(p)§1722> fly,1—="(p); Z)>7
because p(Y(p)) = +y on the event {Y(p) < 1}, and where the function f is given by

f(y,s;2) d:efIP’<The Brownian bridge from y to 0 of length s always lives in [—g, a )

It follows from the scaling property that for all 22 < s < 222,

fly,s;2) = f( > inf f <a,1,i> difC'g, >0,

Yy z
—L—=] =
Vs \/5> 0<a<t V2

because a = \/ig < = and > \/LQ Hence we have shown that

=
e

IP’(G;)Z> > Cs IP’(TZ*(p) <25 1-22<T(p) <1~ 22>.

Recall the following absolute continuity between the law of a standard Brownian bridge
and that of a standard Brownian motion: Denote by Py the law of p(-) and by Py that of
B(-), on the canonical space (C([0,1] — R),(X(t),0 <t < 1), (X)o<t<1), we have

X2(1)

dP =
00|, 2(1—1t)

e — dP , t < 1.
1—tXp< ) 0l

11



Applying the above formula to the stopping time Y(X), we have

P(Tz*(p) <25 1-22<7T(p)<1- z2)

1 2
= ]Eo(1(T;(X)<z2;1—2z2§T(X)§1—z2) —F———=¢Xp ( - y_))
1—T(X) 2(1-7(X))
—1/32 1
> 6\/5 —IP0<T;(X) <2122 <T(X) < 1 —22)
z
A S 2 T (X 32°
- - VP (1-222 < <1- —)
S L < D) 12 e <1

where [P, means that the Brownian motion X (-) starts from z and 7},(X) denotes the first
hitting time at y of X. Thanks to the scaling property, the first probability in the above

P

inequality P (T (X)) < 7) is bounded below by some numerical constant. Using the well-

known distribution of the Brownian hitting time: P,(T,(X) € dt) = %e‘”‘wz/ ) dt, we

obtain that 5.2
IP’Z<1 92 < T (X)<1— %) > (g 2.

Assembling these estimates, we get
P(Gs.) > Caz?,

for some universal constant C3 > 0, as desired. [ |

3 Proof of Theorem 1.1

We begin with the proof of the upper bound:

M (t 1
lim sup i) <

t—00 tloglogt — j\/ﬁ’

This follows from Proposition 2.5: Fix an arbitrary constant a > #5 Let n > 3 and
t, = e™/1°8" We have from Proposition 2.5 that

]P’( sup  M:(t) > a/t, loglogtn> < C} exp ( — (27%a® + o(1)) log logtn>,

0<t<tni1

a.s. (3.1)

whose sum over n converges; this in view of a simple application of Borel-Cantelli lemma
yields (3.1).

Now, fix an arbitrary constant a < #5 It suffices to prove that

M (t
lim sup i)

B ACVRERES
t—oo  +/tloglogt — “
12

a.s. (3.2)



To this end, let t, = n"™ and \,, = a+/t, loglogt,, we consider the event
B, S {My(t) > 2}
which is F;, dﬁfJ{K(s, u),0 <s<1,0 <wu<t,}-measurable. If we can show that

ZP(Enmn,l) — 00, as. (3.3)

then according to Lévy’s version of Borel-Cantelli lemma (cf. [13]), we get P(En, i.o. ) =1
hence (3.2).
Consider the process I?(s,u) dﬁfK(s,uijn_l) — K(s,t,—1) for 0 < s <1landu>0. The

independent increment property says that K(-,-) is independent of F; _
law as K (-,-). Fix a small € > 0 such that 2;j%a?(1 + 2¢) < (1 — 2¢).

Recall the notation Dz, _, ) in Section 2 for the downcrossings by the process K(-t,—
tn—1). Observe that

{Dicttrtn (=M, 1+ ONs[0,1)) 2 j} 0 {Mi(tar) <} C B,

. and has the same

def

where M;(t,_1) < SUDg<s<1,0<u<t, ; | K (s, u)|. Therefore, we apply Corollary 2.3 and obtain
that for all large n,

P(EalFos) 2 Ltz syconn P(Piceantn (M (14 23 0,1]) > )

A . |
- 1(Mf(tn71)<e>\n) ]P(DP (_eﬁ, (1 + E)ﬁ, [O, 1]) > ])
1(1\71*(tn_1)<e>\n) exp < —25%a*(1 + 2¢) log log tn)
=1 n (79, (3.4)

v

(M (tn—1)<€An)

where the above equality is due to the self-similarity: K (-, v) aw Vup(+) for any fixed v > 0,
and p(-) is a standard Brownian bridge. Now, applying (1.1), we obtain that almost surely,
Ml*(tn,l) < e\, for all large n. This together with (3.4) implies (3.3), completing the proof
of Theorem 1.1. [

4 Proof of Theorem 1.2

4.1 Upper bound

It suffices to show that

JIogt
liminf Y2U M;(£) =0,  as.

t—oo \/¥
13



According to Lévy’s version of Borel-Cantelli’s lemma (cf. [13]), the above result follows if
we can prove that for any constant € > 0 and for some sequence (¢, T 00),

Z]P’ M*

where F; = o{K(s,u),0 < s <1,0 <u <t}. Let us consider ¢, = n*". By means of (1.1),
we have almost surely for all large n,

sup |K(8,tn-1)] < Vtn1 logn &\, (4.2)

0<s<1

|.7-}n1 = 00, a.s. (4.1)

Consider large n. Observe that A, < %161 / log ™ défT“ By the independent increment
property, _
K('7 tn) = K(, tn—l) + K(, tn — tn—l):

with K a Kiefer process independent of F; ,. The key observation is that

{M;(tn) zxn}ﬂ{ sup [K(5,tn 1) < An }

0<s<1

C {30<CL1 < <bh<a<c<b<l: ]l?(ai,tn—tn_lﬂ < A\,

I}bitn_tn—l SAn l?citn_tn—l an_)\n2212 défﬁn
| ( ? Y ) I ) 9

which implies that

ﬁfﬂ{ sup |K(s,tpn_1)] < )\n} C {M;(tn) < Tpt

0<s<1

It follows from the independence of ﬁf and F;, , that

P<M5 (tn) < @n | F tn—1> > Lsuppe,er 1K (sit-)|<A0) P(Rﬁ)
Lsupocos [K(s:ta-1)<00) ]P’<GZ,Z>
Z Csl(sup0§s§1 ‘K(S,tn71)|§A7l) 22
€ 1

> Gy 7 Lowpozec IKGitn-0)IAn) Ty
where the above equality is due to scaling with y = W = \/f::%, Gy, . is the
complement event of G,,, which was defined in (2.8), and the second inequality follows from
Lemma 2.10. The above lower bound together with (4.2) implies (4.1). [ ]
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4.2 Lower bound

Fix j > 2 and x > % We want to show that almost surely for all large ¢:
M;(t) > vt (log t) ™

Consider the two-parameter Ornstein-Uhlenbeck process (U(v,t),v € R,t > 0) defined

by
U(log( i )t>:M, 0<s<1,t>0.
1—s s(1—s)

Namely, {U(v,t),v € R,t > 0} is a centered Gaussian process with covariance
lvi—vol| 02\

E(U(U1,t1)U(U2,t2)> =e t1 N\ to, v, 09 € R, t1,t9 > 0.

Let 0 < 6 < 1 be small. First,if there exist some (random) times § < u; < v; < ... <
uj—1 < vj_1 < u; < 1—0such that U(log(lf;_),t) >axfori=1,..,jand U(log(ﬁi}_),t) =
0fori=1,...,j—1, then K(u;,t) > z+/6(1 — ) and K (v;,t) = 0. This implies in particular

that M;(t) > z/0(1 —6).

Recall (2.4). If we denote by Dy (2, y; [— log(T‘S) og(152)]) the number of downcross-
ings of (z,y) by U(-,t) during the time interval [—log(*5%), log(152)], then

(o (0 e (152t (S50)]) 25} < {002 ).

Fix a small constant ¢ = ¢(y) > 0 whose value will be determined later. Define n; =

exp(@) and let 6, = (logng)™2Y, I, = [—log(5 5’“) log (5 ‘Sk)], T = cy/Npy1 for k > 3.
Consider the event

I {375 € [, Mit1) : Dy (0,255 1) < j — 1}-

If we can show that

ZP(Fk> < o0, (4.3)

then the Borel-Cantelli lemma implies that almost surely for all large k, F realizes; hence
for all large ¢, we have that n, <t < ngiq, and Dy(4(0,2x; 1) > j, which implies that

) > T/ k(1 — ) > § ¢/t (logt)~X. This yields the convergence part of Theorem 1.2,
since X > % is arbitrary.

To estimate P(Fk>, we consider the following stopping time ¢ with respect to F/ =
o{U(z,s),z € R, s < t}:

= inf{t > ny : Dy (0,2 ) < j — 1}
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We want to estimate ]P’(Fk> = IP’(C < nk+1>. Define U (v, t) défU(v,t + () — U(v, () for
v € R and t > 0. The independent increments property says that U is independent of ]-"CU
and has the same law as U. On {¢ < ng41}, we have Dy (0, 2 I) < j — 1; Fix a small
constant € > 0. Consider the event

Gy, def { sup

5, <s<1—5p,

- 1—
U(log( 5 8) s Mkt 1 —C)’ <erg; ¢ < nk+1} C Fy.

Using the scaling property: U(-,t) faw ﬂU(, 1) for any fixed t > 0, we obtain:

ﬁ(log (1;$> s M1 —v)‘ < exk>
(s () )] < =)

ﬁ(log (?) 1)’ < \/%) (4.4)

Observe that on Gj, the number of downcrossings of (—exy, (1 + €)xx) by U(-, ngy1)

during I}, = [— log(lglf’“), log(%)] can not be larger or equal to j; otherwise, we would get

Dy(.y(0,21; Iy) > j. In view of this remark, we get

P(Gk> :/ IP’(CEdv)IF’( sup
[nksnk41) 0p<s<1—6y

:/ IP(CGdU)IP( sup
[ng,net1) 0 <s<1—6

]P’(C < nk+1> IP’( sup

Jkgsgl—ék

v

]P)<DU(”"k+1)(_€xk’ (1 + E)xk‘; Ik) <Jj- 1)

P(Sup(skgsgl—ék ﬁ(log(%), 1) < J%)

) P(Duay(—ec, (1+ )i ) < j — 1) (4.5)

[

P(SUPakgsg—ak U(IOg(ls;S%l) < m)

by using the scaling property. We shall bound below the denominator and bound above the
numerator in (4.5): the denominator equals

P(F) <

€T}
IP’( sup U(v,1)| < —)
—log((1—4y)/6r) <v<log((1—dx)/dx) VIl — Nk
€T}
= IP( sup Uv,1)| < —)
0<v<2log((1—6y) /%) | ( )| VI+1 — Nk
> &V k- oo, (4.6)
where the above equality follows from the stationarity and the above inequality follows from
(2.7) in Fact 2.8 with z = % — 00. On the other hand, we have from Lemma 2.9 that

P<DU<‘71>(—66, (1+e)c; 1) <j— 1) < 5]§2u<fec,<1+e>c>+o<1))
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k 7(4xp(7ec,(1+e)c)+o(1))
:( ) o

log k

1

Recall that y > Since p(—ec, (1 +€)c) — 5 as ¢ — 0, we can choose a sufficiently

1
5.

small constant ¢ = ¢(x) > 0 such that 4y p(—ec, (1 + €)c) > 1. Putting (4.6) and (4.7) into

(4.5), we obtain some constant a > 1 such that for all large £,

P(Fk> < ke

proving (4.3), as desired. [ ]
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