On the ranked excursion heights of a Kiefer process

by

Endre $CSAKI^1$ and Yueyun HU^2

Abstract: Let $(K(s,t), 0 \le s \le 1, t \ge 1)$ be a Kiefer process, i.e. a continuous twoparameter centered Gaussian process indexed by $[0,1] \times \mathbb{R}_+$ whose covariance function is given by $\mathbb{E}(K(s_1,t_1)K(s_2,t_2)) = (s_1 \wedge s_2 - s_1 s_2) t_1 \wedge t_2, 0 \le s_1, s_2 \le 1, t_1, t_2 \ge 0$. For each t > 0, the process $K(\cdot,t)$ is a Brownian bridge on the scale of \sqrt{t} . Let $M_1^*(t) \ge M_2^*(t) \ge \dots M_j^*(t) \ge \dots 0$ be the ranked excursion heights of $K(\cdot,t)$. In this paper, we study the path properties of the process $t \to M_j^*(t)$. Two laws of the iterated logarithm are established to describe the asymptotic behaviors of $M_j^*(t)$ as t goes to infinity.

Keywords. Kiefer process, excursions, ranked heights.

AMS Classification 2000. 60F15, 60G55.

¹A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13–15, P.O.B. 127, Budapest, H–1364, Hungary. E-mail: csaki@renyi.hu. Research supported by the Hungarian National Foundation for Scientific Research, Grants T 029621 and T 037886

²Laboratoire de Probabilités et Modèles Aléatoires (CNRS UMR-7599), Université Paris VI, 4 Place Jussieu, F-75252 Paris cedex 05, France. E-mail: hu@ccr.jussieu.fr

1 Introduction

Let $\{B(t), t \ge 0\}$ be a standard one-dimensional Brownian motion, i.e. a continuous centered Gaussian process with covariance

$$\mathbb{E}\Big(B(t_1)B(t_2)\Big) = t_1 \wedge t_2, \qquad t_1, t_2 \ge 0.$$

We consider also standard Brownian bridge $\{p(s), 0 \le s \le 1\}$, i.e. a centered Gaussian process with covariance

$$\mathbb{E}(p(s_1)p(s_2)) = s_1 \wedge s_2 - s_1 s_2, \qquad 0 \le s_1, \, s_2 \le 1.$$

It is well-known that almost all sample paths of B consists of countable many zero-free intervals called excursions. Let (a, b) an excursion interval, i.e. B(a) = B(b) = 0 and either B(s) > 0, a < s < b called positive excursion, or B(s) < 0, a < s < b called negative excursion. The height of excursion is defined by either

$$H \stackrel{\text{def}}{=} \max_{a \le s \le b} B(s)$$

or

$$H^* \stackrel{\text{def}}{=} \max_{a \le s \le b} |B(s)|.$$

Clearly, H > 0 holds only for positive excursions. Pitman and Yor [11] introduced the ranked heights of excursions up to time t: let

$$H_1(t) \ge H_2(t) \ge \dots H_j(t) \ge \dots$$

and

$$H_1^*(t) \ge H_2^*(t) \ge \dots H_i^*(t) \ge \dots$$

be the heights of positive and all excursions respectively, of $\{B(s), 0 \leq s \leq t\}$, including the meander heights $\sup_{g_t \leq s \leq t} B(s)$ and $\sup_{g_t \leq s \leq t} |B(s)|$, where g_t denotes the last zero of Bbefore t. The ranked heights of excursions of p can be defined similarly.

Let furthermore $\{K(s,t), 0 \le s \le 1, t \ge 0\}$ be a Kiefer process, i.e. a continuous twoparameter centered Gaussian process indexed by $[0,1] \times \mathbb{R}_+$ whose covariance function is given by

$$\mathbb{E}\Big(K(s_1, t_1)K(s_2, t_2)\Big) = (s_1 \wedge s_2 - s_1 s_2) t_1 \wedge t_2, \qquad 0 \le s_1, s_2 \le 1, t_1, t_2 \ge 0.$$

Kiefer [7] introduced this process K to approximate the empirical process. See Csörgő and Révész [4] for detailed studies and related references on Kiefer process and on the invariance principle between empirical process and Kiefer process. Note that for fixed t > 0, the process $s \in [0, 1] \rightarrow \frac{K(s,t)}{\sqrt{t}}$ is a standard Brownian bridge. Denote by

$$M_1(t) \ge M_2(t) \ge \dots \ge M_j(t) \ge \dots$$

the ranked heights of the positive excursions of the Brownian bridge $K(\cdot, t)$ over the whole time interval [0, 1]. Denote by

$$M_1^*(t) \ge M_2^*(t) \ge \dots \ge M_j^*(t) \ge \dots$$

the ranked heights of the excursions of $|K(\cdot, t)|$. By scaling properties, the distributions of $(\frac{M_j(t)}{\sqrt{t}}, j \ge 1)$ and $(\frac{M_j^*(t)}{\sqrt{t}}, j \ge 1)$ are the same as that of the ranked excursion heights of a standard Brownian bridge. See Pitman and Yor [12] for studies on these distribution.

We are interested in the path properties of the processes $t \to M_j(t)$ and $t \to M_j^*(t)$. In particular, we aim at the asymptotic behaviors of $M_j(t)$ and $M_j^*(t)$ as $t \to \infty$.

Observe that $M_1(t) = \sup_{0 \le s \le 1} K(s, t)$ and $M_1^*(t) = \sup_{0 \le s \le 1} |K(s, t)|$. The following laws of the iterated logarithm are known, see respectively Csörgő and Révész ([4], pp. 81), Mogul'skii [8] and Csáki and Shi [3]:

Theorem A ([4], [8], [3]). We have

$$\limsup_{t \to \infty} \frac{M_1^*(t)}{\sqrt{t \log \log t}} = \frac{1}{\sqrt{2}}, \quad \text{a.s.}$$
(1.1)

$$\liminf_{t \to \infty} \sqrt{\frac{\log \log t}{t}} M_1^*(t) = \frac{\pi}{\sqrt{8}}, \quad \text{a.s.}$$
(1.2)

$$\liminf_{t \to \infty} \frac{(\log t)^{\chi}}{\sqrt{t}} M_1(t) = \begin{cases} 0 & \text{if } \chi \le \frac{1}{2} \\ \infty & \text{if } \chi > \frac{1}{2} \end{cases} \quad \text{a.s.}$$
(1.3)

In (1.1) we may replace $M_1^*(t)$ by $M_1(t)$.

The almost sure behavior of $H_i^*(t)$ was studied in Csáki and Hu [2]:

Theorem B ([2]). We have

$$\limsup_{t \to \infty} \frac{H_j^*(t)}{\sqrt{t \log \log t}} = \frac{\sqrt{2}}{2j-1}, \quad \text{a.s.} \quad j \ge 1$$
(1.4)

$$\liminf_{t \to \infty} \frac{(\log t)^{\chi}}{\sqrt{t}} H_j^*(t) = \begin{cases} 0 & \text{if } \chi \le 1\\ \infty & \text{if } \chi > 1 \end{cases} \quad \text{a.s.} \quad j \ge 2.$$
(1.5)

A natural question is to ask what happens with $(M_j^*(t), t \ge 0)$ for $j \ge 2$. As a process indexed by t, the j-highest heights $M_j^*(t)$ may share some unusual properties different from $M_1^*(t)$. For instance, $t \to M_j^*(t)$ is not continuous for $j \ge 2$ in contrast with the continuity of $M_1^*(\cdot)$. **Theorem 1.1** Fix $j \ge 1$. We have

$$\limsup_{t \to \infty} \frac{M_j^*(t)}{\sqrt{t \log \log t}} = \frac{1}{j\sqrt{2}}, \qquad \text{a.s.}$$

The same result remains true when $M_j^*(t)$ is replaced by $M_j(t)$.

It is also of interest to find the limit behavior of $M_j(\cdot)$:

Theorem 1.2 Fix $j \ge 2$. We have

$$\liminf_{t \to \infty} \frac{(\log t)^{\chi}}{\sqrt{t}} M_j^*(t) = \begin{cases} 0 & \text{if } \chi \le \frac{1}{2} \\ & \\ \infty & \text{if } \chi > \frac{1}{2} \end{cases} \quad \text{a.s.}$$

The same result remains true when we replace $M_j^*(t)$ by $M_j(t)$.

Comparing (1.2) with Theorem 1.2, we can see that the limit behaviors of M_1^* and M_j^* (j > 1) are completely different.

The proof of Theorem 1.1 is based on an estimate on the downcrossings of a Brownian bridge, this estimate will be given in Section 2. To show Theorem 1.2, a usual way would be to estimate $\mathbb{P}(\inf_{1 \le t \le 2} M_j(t) < \epsilon)$ as ϵ goes to 0. This problem remains open to our best knowledge. To overcome this difficulty, we shall adopt the method of Csáki and Shi [3], which consists of reducing the problem for the Kiefer process to that for an Ornstein-Uhlenbeck process. Section 2 also contains several preliminary results to complete the proofs of Theorems 1.1 and 1.2, which will be presented respectively in Sections 3 and 4.

Throughout this paper, $(C_k, 1 \le k \le 6)$ denote some positive constants whose exact values are unimportant.

2 Downcrossings

Consider a continuous function $f : I = [a, b] \to \mathbb{R}$ with $a, b \in \mathbb{R}$. For two real numbers x < y, we define inductively

$$\alpha_1 = \alpha_1(y) \stackrel{\text{def}}{=} \inf\{v \ge a : f(v) \ge y\},\tag{2.1}$$

$$\beta_k = \beta_k(x) \stackrel{\text{def}}{=} \inf\{v \ge \alpha_k : f(v) \le x\}, \qquad k \ge 1,$$
(2.2)

$$\alpha_k = \alpha_k(y) \stackrel{\text{def}}{=} \inf\{v \ge \beta_{k-1} : f(v) \ge y\}, \qquad k \ge 2, \tag{2.3}$$

with the convention $\inf \emptyset = \infty$. Define the number of downcrossings of (x, y) by f during the time interval I as

$$D_f(x, y; I) = \sup\{k : \alpha_k(y) \le b\}.$$
(2.4)

We adopt the above definition of downcrossings, which is slightly different from the usual one, to keep the following equivalence:

$$\sup_{v \in I} f(v) \ge y \qquad \Longleftrightarrow \qquad D_f(x, y; I) \ge 1.$$

Remark that the condition $\{D_f(x, y; I) \ge 1\}$ does not depend on x. In the following two subsections, we shall discuss respectively the numbers of downcrossings by a standard Brownian motion, a Brownian bridge and by an Ornstein-Uhlenbeck process.

2.1 Brownian motion and Brownian bridge

Let $\{B(s), s \ge 0\}$ be a standard Brownian motion and let $\{p(s), 0 \le s \le 1\}$ be a standard Brownian bridge from 0 to 0. First, we present a preliminary result based on the reflection principle.

Lemma 2.1 Fix $j \ge 1$ and $\max(x, 0) < y$. We have

$$\mathbb{P}\Big(D_B(x,y;[0,1]) \ge j, \ B(1) \in dz\Big) = \begin{cases} \varphi(2jy - 2(j-1)x - z)dz & \text{if } z \le y, \\ \varphi(2(j-1)y - 2(j-1)x + z)dz & \text{if } z > y, \end{cases}$$
(2.5)

where φ is the standard normal density function.

Proof: We use the reflection principle formulated by (cf., e.g. [5])

Fact 2.2 Let $\{B(s), s \ge 0\}$ be a standard Brownian motion and let τ be a stopping time for B. Then

$$B^{(\tau)}(s) \stackrel{\text{def}}{=} \begin{cases} B(s) & \text{if } 0 \le s \le \tau \\ 2B(\tau) - B(s) & \text{if } \tau \le s \end{cases}$$

is also a standard Brownian motion.

Let us make use of the stopping times $\alpha_k = \alpha_k(y)$ and $\beta_k = \beta_k(x)$ introduced in (2.1)–(2.3), corresponding to f(t) = B(t), I = [0, 1].

Our Lemma 2.1 is well-known for j = 1.

We illustrate the proof in the simple case j = 2, using the reflection principle subsequently for our stopping times. Let $\{B(s), 0 \le s \le 1\}$ be a Brownian motion such that $\alpha_2 < 1$ and $B(1) = z \le y$. Then by Fact 2.2, $B_1(s) \stackrel{\text{def}}{=} B^{(\alpha_1)}(s), 0 \le s \le 1$ is a Brownian motion with $B_1(1) = 2y - z, \beta_1$ is its first hitting time of 2y - x and α_2 is its first hitting time of y after β_1 . In the next step consider $B_2(s) \stackrel{\text{def}}{=} B_1^{(\beta_1)}(s)$, $0 \le s \le 1$. Then $B_2(1) = 2y - 2x + z$, and α_2 is its first hitting time of 3y - 2x. Finally, consider $B_3(s) = B_2^{(\alpha_2)}(s)$, $0 \le s \le 1$ for which we have $B_3(1) = 4y - 2x - z$. By reversing this procedure, starting from a Brownian motion with endpoints 4y - 2x - z at s = 1, we get a Brownian motion with $\alpha_1 < 1$ and B(1) = z. This proves the first equality of (2.5) in the case j = 2. The procedure is similar for z > y, except that we stop with B_2 , so the last reflection (at α_2) is not performed. Using this idea in obvious manner for the general case j > 2, yields our lemma.

Since a Brownian bridge $\{p(s), 0 \le s \le 1\}$ is a Brownian motion conditioned to B(1) = 0, we have the following

Corollary 2.3 For $j \ge 1$ and $\max(x, 0) < y$, we have

$$\mathbb{P}\Big(D_p(x,y;[0,1]) \ge j\Big) = \exp\Big(-2(jy-(j-1)x)^2\Big).$$

Proof: Putting z = 0 in (2.5) we get

$$\mathbb{P}\Big(D_p(x,y;[0,1]) \ge j\Big) = \frac{\varphi(2jy - 2(j-1)x)}{\varphi(0)} = \exp\Big(-2(jy - (j-1)x)^2\Big).$$

Taking x = 0, we recover Pitman and Yor [12]'s formula for the distribution of $M_i(1)$:

$$\mathbb{P}\Big(M_j(1) > y\Big) = \mathbb{P}\Big(D_p(0, y; [0, 1]) \ge j\Big) = \exp\Big(-2j^2y^2\Big).$$
(2.6)

Another corollary can be obtained by taking x = 0 and integrating with respect to z:

Corollary 2.4 For $j \ge 1$, y > 0 we have

$$\mathbb{P}\Big(H_j(1) > y\Big) = 2\left(1 - \Phi((2j-1)y)\right),\,$$

where Φ is the standard normal distribution function, and $H_j(1)$ denotes the height of the *j*-th highest positive Brownian excursion up to time 1.

Now we present an estimate on $\sup_{0 \le t \le T} M_i^*(t)$.

Proposition 2.5 Fix $j \ge 2$. There exists some constant $C_1 > 1$ such that for all u > 0 and $\lambda \ge \sqrt{u}$, we have

$$\mathbb{P}\Big(\sup_{0 \le t \le u} M_j^*(t) > \lambda\Big) \le C_1 \exp\left(-2\left(\frac{j\lambda}{\sqrt{u}} - \frac{2j-1}{2}\right)^2\right)$$

In the proof of Proposition 2.5, we need the following lemma:

Lemma 2.6 For $0 \le x < y, j \ge 1$, we have

$$\mathbb{P}\Big(D_{|p|}(x,y;[0,1]) \ge j\Big) \le 2^j \mathbb{P}\Big(D_p(x,y;[0,1]) \ge j\Big).$$

Proof of Lemma 2.6: Again, we present the proof for j = 2. Upcrossings from x to y by |p| are either upcrossings by p from x to y or downcrossings by p from -x to -y. Define the following events:

$$\begin{array}{lll} A^{++} & \stackrel{\mathrm{def}}{=} & \{ \text{There are at least two upcrossings by } p \text{ from } x \text{ to } y \} \\ A^{+-} & \stackrel{\mathrm{def}}{=} & \{ \text{There is at least one downcrossing by } p \text{ from } -x \text{ to } -y \\ & & \text{after an upcrossing by } p \text{ from } x \text{ to } y \} \\ A^{-+} & \stackrel{\mathrm{def}}{=} & \{ \text{There is at least one upcrossing by } p \text{ from } x \text{ to } y \\ & & \text{after a downcrossing by } p \text{ from } -x \text{ to } -y \} \end{array}$$

$$A^{--} \stackrel{\text{def}}{=} \{\text{There are at least two downcrossings by } p \text{ from } -x \text{ to } -y\}.$$

Obviously

$$\mathbb{P}\Big(D_{|p|}(x,y;[0,1]) \ge 2\Big) \le \mathbb{P}\left(A^{++}\right) + \mathbb{P}\left(A^{+-}\right) + \mathbb{P}\left(A^{-+}\right) + \mathbb{P}\left(A^{--}\right)$$

and by symmetry, $\mathbb{P}(A^{++}) = \mathbb{P}(A^{--})$, $\mathbb{P}(A^{+-}) = \mathbb{P}(A^{-+})$. Moreover, $\mathbb{P}(A^{+-}) \leq \mathbb{P}(A^{++})$, since by Corollary 2.3 we have

$$\mathbb{P}(A^{++}) = \exp\left(-2(2y-x)^2\right)$$

and an argument, similar to the proof of Lemma 2.1 shows that

$$\mathbb{P}\left(A^{+-}\right) = \exp\left(-8y^2\right).$$

Hence,

$$\mathbb{P}\Big(D_{|p|}(x,y;[0,1]) \ge 2\Big) \le 4\mathbb{P}\left(A^{++}\right) = 2^2 \exp\left(-2(2y-x)^2\right)$$

proving Lemma 2.6 for j = 2. Extension of the above argument in an obvious manner for j > 2, proves our Lemma 2.6.

Now we proceed with the proof of Proposition 2.5. **Proof of Proposition 2.5:** For t > 0, we define $\sigma_0^{(t)}(0) = 0$ and for $i \ge 1$,

$$\begin{split} \tau_i^{(t)}(x) &\stackrel{\text{def}}{=} &\inf\{s \ge \sigma_{i-1}^{(t)}(0) : |K(s,t)| = x\},\\ \sigma_i^{(t)}(0) &\stackrel{\text{def}}{=} &\inf\{s \ge \tau_i^{(t)}(x) : K(s,t) = 0\}, \end{split}$$

(write $\tau_i^{(t)}(x) = 1$ if such s does not exist). Therefore,

$$\mathbb{P}\Big(\sup_{0 \le t \le u} M_j^*(t) > \lambda\Big) = \mathbb{P}\Big(\exists t \in [0, u] : \tau_j^{(t)}(\lambda) < 1\Big) = \mathbb{P}\Big(\Theta \le u\Big),$$

where we define $\Theta \stackrel{\text{def}}{=} \inf\{t \ge 0 : M_j^*(t) > \lambda\}$. Let $\mathcal{F}_t \stackrel{\text{def}}{=} \sigma\{K(s, u), 0 \le s \le 1, 0 \le u \le t\}$, the sigma-algebra generated by $\{K(s, u), 0 \le s \le 1, 0 \le u \le t\}$. Then Θ is a stopping time with respect to (\mathcal{F}_t) . Notice that the process $t \to (K(\cdot, \Theta + t) - K(\cdot, \Theta))$ is independent of \mathcal{F}_{Θ} and has the same law as $(K(\cdot, t), t \ge 0)$. Using the self similarity: $K(\cdot, v + \Theta) - K(\cdot, \Theta) \stackrel{\text{law}}{=} \sqrt{v}K(\cdot, 1)$ for any fixed v > 0, we get

$$\mathbb{P}\Big(\sup_{0\leq s\leq 1}\Big|K(s,u)-K(s,\Theta)\Big|<\frac{\sqrt{u}}{2}\Big|\Theta\leq u\Big)\geq \mathbb{P}\Big(\sup_{0\leq s\leq 1}|K(s,1)|<\frac{1}{2}\Big)\stackrel{\text{def}}{=}\frac{2^{j}}{C_{1}}>0.$$

Denote by

$$E_1 \stackrel{\text{def}}{=} \Big\{ \sup_{0 \le s \le 1} \Big| K(s, u) - K(s, \Theta) \Big| < \frac{\sqrt{u}}{2} \Big\} \cap \Big\{ \Theta \le u \Big\},$$

we have shown that

$$\mathbb{P}\Big(\Theta \le u\Big) \le 2^{-j}C_1 \,\mathbb{P}\Big(E_1\Big).$$

On E_1 , we can decompose $K(s, u) = K(s, \Theta) + \widehat{K}(s)$ with $\sup_{0 \le s \le 1} |\widehat{K}(s)| \le \frac{\sqrt{u}}{2}$. Since $|K(\tau_i^{(\Theta)}(\lambda), \Theta)| = \lambda$ and $K(\sigma_i^{(\Theta)}(0), \Theta) = 0$ for $1 \le i \le j$, it follows that for such random times $0 < s_1 \stackrel{\text{def}}{=} \tau_1^{(\Theta)}(\lambda) < v_1 \stackrel{\text{def}}{=} \sigma_1^{(\Theta)}(0) < \dots < s_j \stackrel{\text{def}}{=} \tau_j^{(\Theta)}(\lambda) < 1$, we have respectively,

$$|K(s_1, u)| \ge \lambda - \frac{\sqrt{u}}{2}, |K(v_1, u)| \le \frac{\sqrt{u}}{2}, ..., |K(s_j, u)| \ge \lambda - \frac{\sqrt{u}}{2}.$$

Namely, we have

$$E_1 \subset \left\{ D_{|K(\cdot,u)|} \left(\frac{\sqrt{u}}{2}, \, \lambda - \frac{\sqrt{u}}{2}; [0,1] \right) \ge j \right\}.$$

It follows from scaling, Corollary 2.3 and Lemma 2.6 that

$$\mathbb{P}\Big(E_1\Big) \le \mathbb{P}\Big(D_{|K(\cdot,u)|}\left(\frac{\sqrt{u}}{2}, \lambda - \frac{\sqrt{u}}{2}; [0,1]\right) \ge j\Big)$$
$$= \mathbb{P}\left(D_{|p|}\left(\frac{1}{2}, \frac{\lambda}{\sqrt{u}} - \frac{1}{2}; [0,1]\right) \ge j\Big) \le 2^j \exp\left(-2\frac{(j\lambda - (2j-1)\frac{\sqrt{u}}{2})^2}{u}\right)$$

proving the result.

2.2 Ornstein-Uhlenbeck process

Let us consider a stationary Ornstein-Uhlenbeck process $(U(t), t \ge 0)$ with parameter $\frac{1}{2}$, which is a stationary centered Gaussian process with covariance $\mathbb{E}(U(t)U(s)) = e^{-\frac{|t-s|}{2}}$. We mention a paper by Pitman and Yor [10] for the study of distributions of excursion lengths of U.

Recall some known facts on the hitting times of U. Fix $-\infty \leq z_1 < z_2 \leq \infty$ and define

$$\sigma(z_1, z_2) = \inf\{s \ge 0 : U(s) \notin [z_1, z_2]\}$$

to be the first exit time from the interval $[z_1, z_2]$. Consider the Sturm-Liouville equation:

$$\frac{1}{2}\phi''(x) - \frac{x}{2}\phi'(x) = -\lambda\phi(x), \qquad x \in (z_1, z_2); \qquad \phi(z_i) = 0 \text{ if } |z_i| < \infty, \ i = 1, 2$$

Fact 2.7 ([14], [6], [9]) Assume that $\min(|z_1|, |z_2|) < \infty$. There is a sequence of simple eigenvalues $0 < \lambda_1(z_1, z_2) < \ldots < \lambda_n(z_1, z_2) < \ldots$ whose corresponding eigenfunctions $\psi_1(z_1, z_2; x), \ldots, \psi_n(z_1, z_2; x), \ldots$ form a complete orthonormal system with respect to $m(dx) = e^{-x^2/2} dx$. The function $(z_1, z_2) \rightarrow \lambda_1(z_1, z_2)$ is strictly positive and jointly continuous on $\Xi = \{(z_1, z_2) \in [-\infty, \infty]^2 : z_1 < z_2, \min(|z_1|, |z_2|) < \infty\}$, strictly increasing in $z_1 \in (-\infty, z_2]$ for $z_2 \leq \infty$ and strictly decreasing in $z_2 \in [z_1, \infty)$ for $z_1 \geq -\infty$:

$$\lambda_1(-\infty,0) = \lambda_1(0,\infty) = \frac{1}{2}, \qquad \lim_{(z_1,z_2)\to 0} \lambda_1(z_1,z_2) = \infty, \qquad \lim_{(z_1,z_2)\to (-\infty,\infty)} \lambda_1(z_1,z_2) = 0.$$

Fact 2.8 ([14], [6], [9], [1], [3]) Assume that $\min(|z_1|, |z_2|) < \infty$. There exists some constant $C_2 > 0$ such that uniformly on $x \in \mathbb{R}$,

$$\mathbb{P}\Big(\sigma(z_1, z_2) > t \,|\, U(0) = x\Big) = e^{-\lambda_1(z_1, z_2)\,t}\Big(\theta(z_1, z_2)\psi_1(z_1, z_2; x) + r(t, x)\Big),$$

where $\theta(z_1, z_2) = \int_{z_1}^{z_2} \psi_1(z_1, z_2; x) m(dx)$ and

$$|r(t,x)| \le C_2 \exp\left(\frac{x^2}{9} - \frac{t}{2}\right)$$

When $z_1 = -z_2 = -z$ with z > 0, we get

$$\lim_{t \to \infty} \frac{1}{t} \log \mathbb{P}\left(\sup_{0 \le s \le t} |U(s)| < z\right) = -\lambda_1(-z, z).$$
(2.7)

Moreover, $\lim_{z\to\infty} \lambda_1(-z, z) = 0.$

We shall need the probability that the process U downcrosses a given interval (z_1, z_2) only a few times during [-t, t]. This is stated in the following lemma:

Lemma 2.9 Fix $-\infty < z_1 < z_2 < \infty$ and $k \ge 1$; We have

$$\lim_{t \to \infty} \frac{1}{t} \log \mathbb{P} \Big(D_U(z_1, z_2; [-t, t]) \le k \Big) = \lim_{t \to \infty} \frac{1}{t} \log \mathbb{P} \Big(D_U(z_1, z_2; [0, 2t]) \le k \Big) = -2\mu(z_1, z_2),$$

where $\mu(z_1, z_2) \stackrel{\text{def}}{=} \min(\lambda_1(-\infty, z_2), \lambda_1(z_1, \infty)) > 0.$ Moreover, we have

$$\lim_{z_1, z_2 \to 0} \mu(z_1, z_2) = \frac{1}{2}.$$

Note that the constant k, arbitrary but fixed, does not influence the rate of exponential decay of the two probability terms in the above lemma.

Proof: The above first equality is due to the stationarity of the Ornstein-Uhlenbeck process. Using again the stopping times α_j and β_j defined in (2.1)–(2.3) associated with a = 0, b = 2t, $x = z_1, y = z_2, I = [0, 2t]$ and f(v) = U(v), we have $\mathbb{P}(D_U(z_1, z_2; [0, 2t]) \leq k) = \mathbb{P}(\alpha_{k+1} > 2t)$.

Remark that $\alpha_1 = \inf\{s \ge 0 : U(s) \ge z_2\} = \sigma(-\infty, z_2)$. The strong Markov property implies that the random variables of the family $\{\alpha_1, \beta_j - \alpha_j, \alpha_{j+1} - \beta_j, j \ge 1\}$ are mutually independent. Furthermore, $\beta_1 - \alpha_1 = \sigma(z_1, \infty) \circ \theta_{\alpha_1}$ where θ is the usual shift operator. And for $j \ge 2$, $\beta_j - \alpha_j$ (resp: $\alpha_j - \beta_{j-1}$) has the same law as $T_{z_2 \to z_1}$ (resp: $T_{z_1 \to z_2}$), where $T_{x \to y}$ denotes the hitting time of y by an Ornstein-Uhlenbeck process starting from x. Based on Fact 2.8, simple convolution computation yields that

$$\lim_{t \to \infty} \frac{1}{t} \log \mathbb{P}\left(\alpha_{k+1} > t\right) = -\mu(z_1, z_2),$$

and the desired conclusion follows.

2.3 A technical lemma

Recall that $\{p(s), 0 \leq s \leq 1\}$ denotes a standard Brownian bridge. Let $0 \leq y < z/4$ and consider the event

$$G_{y,z} = \left\{ \exists 0 < a_1 < c_1 < b_1 < a_2 < c_2 < b_2 < 1 : \\ |p(a_i)| \le y, |p(b_i)| \le y, |p(c_i)| \ge z, i = 1, 2 \right\}$$
(2.8)

Remark that $G_{y,z} \supset G_{0,z}$ and that $G_{0,z}$ is in fact the event that the height of the second highest excursion of $|p(\cdot)|$ is larger than z. We shall need to bound $\mathbb{P}(G_{y,z})$ in the proof of the upper bound of Theorem 1.2.

Lemma 2.10 There exists an absolute constant $C_3 > 0$ such that for all $0 \le y < \frac{z}{4}$ and $0 < z < \frac{1}{2}$,

$$\mathbb{P}\Big(G_{y,z}\Big) \le 1 - C_3 \, z^2.$$

We note that this estimate is nearly sharp, since we can also obtain a lower bound from (2.6) as follows:

$$\mathbb{P}(G_{y,z}) \ge \mathbb{P}(G_{0,z}) = \mathbb{P}(M_2^*(1) \ge z) \ge \mathbb{P}(M_2(1) \ge z) \ge 1 - C_4 z^2, \ 0 < z < \frac{1}{2}.$$

Proof of Lemma 2.10: Fix (y, z) such that $0 \le y < \frac{z}{4}$ and $0 < z < \frac{1}{2}$. Define two stopping times for any continuous process $X(\cdot)$:

$$T_z^*(X) \stackrel{\text{def}}{=} \inf\{t \ge 0 : |X(t)| \ge z\}$$

$$\Upsilon(X) \stackrel{\text{def}}{=} \inf\{t > T_z^*(X) : |X(t)| \le y\},$$

with $\inf \emptyset = \infty$. Observe that

$$G_{y,z}^c \supset \Big\{ T_z^*(p) < z^2; \ 1 - 2z^2 \le \Upsilon(p) \le 1 - z^2; \ \sup_{\Upsilon(p) \le t \le 1} |p(t)| \le \frac{z}{2} \Big\}.$$

Applying the strong Markov property at $\Upsilon(p)$, we deduce from the symmetry that

$$\mathbb{P}\left(G_{y,z}^{c}\right) \geq \mathbb{E}\left(\mathbf{1}_{\left(T_{z}^{*}(p) < z^{2}; 1-2z^{2} \leq \Upsilon(p) \leq 1-z^{2}\right)} f(y, 1-\Upsilon(p); z)\right),$$

because $p(\Upsilon(p)) = \pm y$ on the event $\{\Upsilon(p) < 1\}$, and where the function f is given by

 $f(y,s;z) \stackrel{\text{def}}{=} \mathbb{P}\Big(\text{The Brownian bridge from } y \text{ to } 0 \text{ of length } s \text{ always lives in } \Big[-\frac{z}{2},\frac{z}{2}\Big]\Big).$

It follows from the scaling property that for all $z^2 \leq s \leq 2z^2$,

$$f(y,s;z) = f\left(\frac{y}{\sqrt{s}}, 1; \frac{z}{\sqrt{s}}\right) \ge \inf_{0 \le a \le \frac{1}{4}} f\left(a, 1, \frac{1}{\sqrt{2}}\right) \stackrel{\text{def}}{=} C_5 > 0,$$

because $a = \frac{y}{\sqrt{s}} \le \frac{1}{4}$ and $\frac{z}{\sqrt{s}} \ge \frac{1}{\sqrt{2}}$. Hence we have shown that

$$\mathbb{P}\left(G_{y,z}^{c}\right) \geq C_{5} \mathbb{P}\left(T_{z}^{*}(p) < z^{2}; 1 - 2z^{2} \leq \Upsilon(p) \leq 1 - z^{2}\right).$$

Recall the following absolute continuity between the law of a standard Brownian bridge and that of a standard Brownian motion: Denote by $\mathbb{P}_{0,0}$ the law of $p(\cdot)$ and by \mathbb{P}_0 that of $B(\cdot)$, on the canonical space $(\mathcal{C}([0,1] \to \mathbb{R}), (X(t), 0 \le t \le 1), (\mathcal{X}_t)_{0 \le t \le 1})$, we have

$$d\mathbb{P}_{0,0}|_{\mathcal{X}_t} = \frac{1}{\sqrt{1-t}} \exp\left(-\frac{X^2(t)}{2(1-t)}\right) d\mathbb{P}_0|_{\mathcal{X}_t}, \quad t < 1.$$

Applying the above formula to the stopping time $\Upsilon(X)$, we have

$$\begin{split} & \mathbb{P}\Big(T_z^*(p) < z^2; 1 - 2z^2 \leq \Upsilon(p) \leq 1 - z^2\Big) \\ &= \mathbb{E}_0\Big(\mathbf{1}_{(T_z^*(X) < z^2; 1 - 2z^2 \leq \Upsilon(X) \leq 1 - z^2)} \frac{1}{\sqrt{1 - \Upsilon(X)}} \exp\Big(-\frac{y^2}{2(1 - \Upsilon(X))}\Big)\Big) \\ &\geq \frac{e^{-1/32}}{\sqrt{2}} \frac{1}{z} \mathbb{P}_0\Big(T_z^*(X) < z^2; 1 - 2z^2 \leq \Upsilon(X) \leq 1 - z^2\Big) \\ &\geq \frac{e^{-1/32}}{\sqrt{2}} \frac{1}{z} \mathbb{P}_0\Big(T_z^*(X) < \frac{z^2}{2}\Big) \mathbb{P}_z\Big(1 - 2z^2 \leq T_y(X) \leq 1 - \frac{3z^2}{2}\Big), \end{split}$$

where \mathbb{P}_z means that the Brownian motion $X(\cdot)$ starts from z and $T_y(X)$ denotes the first hitting time at y of X. Thanks to the scaling property, the first probability in the above inequality $\mathbb{P}_0\left(T_z^*(X) < \frac{z^2}{2}\right)$ is bounded below by some numerical constant. Using the wellknown distribution of the Brownian hitting time: $\mathbb{P}_z(T_y(X) \in dt) = \frac{z-y}{\sqrt{2\pi t^3}}e^{-(z-y)^2/(2t)}dt$, we obtain that

$$\mathbb{P}_{z}\left(1 - 2z^{2} \le T_{y}(X) \le 1 - \frac{3z^{2}}{2}\right) \ge C_{6} z^{3}.$$

Assembling these estimates, we get

$$\mathbb{P}\Big(G_{y,z}^c\Big) \ge C_3 z^2,$$

for some universal constant $C_3 > 0$, as desired.

3 Proof of Theorem 1.1

We begin with the proof of the upper bound:

$$\limsup_{t \to \infty} \frac{M_j^*(t)}{\sqrt{t \log \log t}} \le \frac{1}{j\sqrt{2}}, \qquad \text{a.s.}$$
(3.1)

This follows from Proposition 2.5: Fix an arbitrary constant $a > \frac{1}{j\sqrt{2}}$. Let $n \ge 3$ and $t_n = e^{n/\log n}$. We have from Proposition 2.5 that

$$\mathbb{P}\Big(\sup_{0\leq t\leq t_{n+1}}M_j^*(t)>a\sqrt{t_n\log\log t_n}\Big)\leq C_1\exp\Big(-(2j^2a^2+o(1))\log\log t_n\Big),$$

whose sum over n converges; this in view of a simple application of Borel-Cantelli lemma yields (3.1).

Now, fix an arbitrary constant $a < \frac{1}{j\sqrt{2}}$. It suffices to prove that

$$\limsup_{t \to \infty} \frac{M_j(t)}{\sqrt{t \log \log t}} \ge a, \qquad \text{a.s.}$$
(3.2)

To this end, let $t_n = n^n$ and $\lambda_n = a\sqrt{t_n \log \log t_n}$, we consider the event

$$E_n \stackrel{\text{def}}{=} \Big\{ M_j(t_n) > \lambda_n \Big\},\,$$

which is $\mathcal{F}_{t_n} \stackrel{\text{def}}{=} \sigma\{K(s, u), 0 \le s \le 1, 0 \le u \le t_n\}$ -measurable. If we can show that

$$\sum_{n} \mathbb{P}\Big(E_n \,|\, \mathcal{F}_{t_{n-1}}\Big) = \infty, \qquad \text{a.s.}$$
(3.3)

then according to Lévy's version of Borel-Cantelli lemma (cf. [13]), we get $\mathbb{P}(E_n, \text{ i.o. }) = 1$ hence (3.2).

Consider the process $\widetilde{K}(s, u) \stackrel{\text{def}}{=} K(s, u + t_{n-1}) - K(s, t_{n-1})$ for $0 \le s \le 1$ and $u \ge 0$. The independent increment property says that $\widetilde{K}(\cdot, \cdot)$ is independent of $\mathcal{F}_{t_{n-1}}$ and has the same law as $K(\cdot, \cdot)$. Fix a small $\epsilon > 0$ such that $2j^2a^2(1+2\epsilon) \le (1-2\epsilon)$.

Recall the notation $D_{\tilde{K}(\cdot,t_n-t_{n-1})}$ in Section 2 for the downcrossings by the process $\tilde{K}(\cdot,t_n-t_{n-1})$. Observe that

$$\left\{D_{\widetilde{K}(\cdot,t_n-t_{n-1})}(-\epsilon\lambda_n,(1+\epsilon)\lambda_n;[0,1])\geq j\right\}\cap\left\{\widetilde{M}_1^*(t_{n-1})<\epsilon\lambda_n\right\}\subset E_n,$$

where $\widetilde{M}_1^*(t_{n-1}) \stackrel{\text{def}}{=} \sup_{0 \le s \le 1, 0 \le u \le t_{n-1}} |\widetilde{K}(s, u)|$. Therefore, we apply Corollary 2.3 and obtain that for all large n,

$$\mathbb{P}\Big(E_n \,|\, \mathcal{F}_{t_{n-1}}\Big) \geq \mathbf{1}_{(\widetilde{M}_1^*(t_{n-1}) < \epsilon\lambda_n)} \,\mathbb{P}\Big(D_{\widetilde{K}(\cdot, t_n - t_{n-1})}(-\epsilon\lambda_n, (1+\epsilon)\lambda_n; [0,1]) \geq j\Big) \\
= \mathbf{1}_{(\widetilde{M}_1^*(t_{n-1}) < \epsilon\lambda_n)} \,\mathbb{P}\Big(D_p\left(-\epsilon\frac{\lambda_n}{\sqrt{t_n - t_{n-1}}}, (1+\epsilon)\frac{\lambda_n}{\sqrt{t_n - t_{n-1}}}; [0,1]\right) \geq j\Big) \\
\geq \mathbf{1}_{(\widetilde{M}_1^*(t_{n-1}) < \epsilon\lambda_n)} \,\exp\left(-2j^2a^2(1+2\epsilon)\log\log t_n\right) \\
\geq \mathbf{1}_{(\widetilde{M}_1^*(t_{n-1}) < \epsilon\lambda_n)} \,n^{-(1-\epsilon)},$$
(3.4)

where the above equality is due to the self-similarity: $\widetilde{K}(\cdot, v) \stackrel{\text{law}}{=} \sqrt{v} p(\cdot)$ for any fixed v > 0, and $p(\cdot)$ is a standard Brownian bridge. Now, applying (1.1), we obtain that almost surely, $\widetilde{M}_1^*(t_{n-1}) < \epsilon \lambda_n$ for all large n. This together with (3.4) implies (3.3), completing the proof of Theorem 1.1.

4 Proof of Theorem 1.2

4.1 Upper bound

It suffices to show that

$$\liminf_{t \to \infty} \frac{\sqrt{\log t}}{\sqrt{t}} M_2^*(t) = 0, \qquad \text{a.s.}$$

According to Lévy's version of Borel-Cantelli's lemma (cf. [13]), the above result follows if we can prove that for any constant $\epsilon > 0$ and for some sequence $(t_n \uparrow \infty)$,

$$\sum_{n} \mathbb{P}\Big(M_2^*(t_n) < \epsilon \sqrt{\frac{t_n}{\log t_n}} \,|\, \mathcal{F}_{t_{n-1}}\Big) = \infty, \qquad \text{a.s.}$$
(4.1)

where $\mathcal{F}_t = \sigma\{K(s, u), 0 \le s \le 1, 0 \le u \le t\}$. Let us consider $t_n = n^{3n}$. By means of (1.1), we have almost surely for all large n,

$$\sup_{0 \le s \le 1} |K(s, t_{n-1})| \le \sqrt{t_{n-1} \log n} \stackrel{\text{def}}{=} \lambda_n.$$

$$(4.2)$$

Consider large *n*. Observe that $\lambda_n \leq \frac{1}{4} \epsilon \sqrt{\frac{t_n}{\log t_n}} \stackrel{\text{def}}{=} \frac{x_n}{4}$. By the independent increment property, $K(\cdot, t_n) = K(\cdot, t_{n-1}) + \widetilde{K}(\cdot, t_n - t_{n-1}),$

with \widetilde{K} a Kiefer process independent of $\mathcal{F}_{t_{n-1}}$. The key observation is that

$$\begin{cases} M_2^*(t_n) \ge x_n \} \cap \left\{ \sup_{0 \le s \le 1} |K(s, t_{n-1})| \le \lambda_n \right\} \\ \subset \left\{ \exists 0 < a_1 < c_1 < b_1 < a_2 < c_2 < b_2 < 1 : |\widetilde{K}(a_i, t_n - t_{n-1})| \le \lambda_n, \\ |\widetilde{K}(b_i, t_n - t_{n-1})| \le \lambda_n, |\widetilde{K}(c_i, t_n - t_{n-1})| \ge x_n - \lambda_n, i = 1, 2 \right\} \stackrel{\text{def}}{=} \widetilde{F}_n,$$

which implies that

$$\widetilde{F}_n^c \cap \left\{ \sup_{0 \le s \le 1} |K(s, t_{n-1})| \le \lambda_n \right\} \subset \left\{ M_2^*(t_n) < x_n \right\}.$$

It follows from the independence of \widetilde{F}_n^c and $\mathcal{F}_{t_{n-1}}$ that

$$\mathbb{P}\left(M_{2}^{*}(t_{n}) < x_{n} \mid \mathcal{F}_{t_{n-1}}\right) \geq \mathbf{1}_{(\sup_{0 \leq s \leq 1} \mid K(s,t_{n-1}) \mid \leq \lambda_{n})} \mathbb{P}\left(\widetilde{F}_{n}^{c}\right) \\
= \mathbf{1}_{(\sup_{0 \leq s \leq 1} \mid K(s,t_{n-1}) \mid \leq \lambda_{n})} \mathbb{P}\left(G_{y,z}^{c}\right) \\
\geq C_{3}\mathbf{1}_{(\sup_{0 \leq s \leq 1} \mid K(s,t_{n-1}) \mid \leq \lambda_{n})} z^{2} \\
\geq C_{3}\frac{\epsilon^{2}}{4}\mathbf{1}_{(\sup_{0 \leq s \leq 1} \mid K(s,t_{n-1}) \mid \leq \lambda_{n})} \frac{1}{n \log n};$$

where the above equality is due to scaling with $y = \frac{\lambda_n}{\sqrt{t_n - t_{n-1}}}$, $z = \frac{x_n - \lambda_n}{\sqrt{t_n - t_{n-1}}}$, $G_{y,z}^c$ is the complement event of $G_{y,z}$ which was defined in (2.8), and the second inequality follows from Lemma 2.10. The above lower bound together with (4.2) implies (4.1).

4.2 Lower bound

Fix $j \ge 2$ and $\chi > \frac{1}{2}$. We want to show that almost surely for all large t:

$$M_j(t) > \sqrt{t} \, (\log t)^{-\chi}.$$

Consider the two-parameter Ornstein-Uhlenbeck process $(U(v,t), v \in \mathbb{R}, t \ge 0)$ defined by

$$U\left(\log\left(\frac{s}{1-s}\right), t\right) = \frac{K(s,t)}{\sqrt{s(1-s)}}, \qquad 0 < s < 1, t \ge 0.$$

Namely, $\{U(v,t), v \in \mathbb{R}, t \ge 0\}$ is a centered Gaussian process with covariance

$$\mathbb{E}\Big(U(v_1, t_1)U(v_2, t_2)\Big) = e^{-\frac{|v_1 - v_2|}{2}} t_1 \wedge t_2, \qquad v_1, v_2 \in \mathbb{R}, \ t_1, t_2 \ge 0.$$

Let $0 < \delta < 1$ be small. First, if there exist some (random) times $\delta \leq u_1 < v_1 < ... < u_{j-1} < v_{j-1} < u_j \leq 1-\delta$ such that $U\left(\log(\frac{u_i}{1-u_i}), t\right) \geq x$ for i = 1, ..., j and $U\left(\log(\frac{v_i}{1-v_i}), t\right) = 0$ for i = 1, ..., j-1, then $K(u_i, t) \geq x\sqrt{\delta(1-\delta)}$ and $K(v_i, t) = 0$. This implies in particular that $M_j(t) \geq x\sqrt{\delta(1-\delta)}$.

Recall (2.4). If we denote by $D_{U(\cdot,t)}(x,y; [-\log(\frac{1-\delta}{\delta}), \log(\frac{1-\delta}{\delta})])$ the number of downcrossings of (x,y) by $U(\cdot,t)$ during the time interval $[-\log(\frac{1-\delta}{\delta}), \log(\frac{1-\delta}{\delta})]$, then

$$\left\{ D_{U(\cdot,t)}\left(0,x; \left[-\log\left(\frac{1-\delta}{\delta}\right), \log\left(\frac{1-\delta}{\delta}\right)\right] \right) \ge j \right\} \subset \left\{ M_j(t) \ge x\sqrt{\delta(1-\delta)} \right\}.$$

Fix a small constant $c = c(\chi) > 0$ whose value will be determined later. Define $n_k = \exp(\frac{k}{\log k})$ and let $\delta_k = (\log n_k)^{-2\chi}$, $I_k = [-\log(\frac{1-\delta_k}{\delta_k}), \log(\frac{1-\delta_k}{\delta_k})]$, $x_k = c\sqrt{n_{k+1}}$ for $k \ge 3$. Consider the event

$$F_k \stackrel{\text{def}}{=} \Big\{ \exists t \in [n_k, n_{k+1}) : D_{U(\cdot, t)}(0, x_k; I_k) \le j - 1 \Big\}.$$

If we can show that

$$\sum_{k} \mathbb{P}\Big(F_k\Big) < \infty, \tag{4.3}$$

then the Borel-Cantelli lemma implies that almost surely for all large k, F_k^c realizes; hence for all large t, we have that $n_k \leq t < n_{k+1}$, and $D_{U(\cdot,t)}(0, x_k; I_k) \geq j$, which implies that $M_j(t) \geq x_k \sqrt{\delta_k(1-\delta_k)} \geq \frac{c}{2} \sqrt{t} (\log t)^{-\chi}$. This yields the convergence part of Theorem 1.2, since $\chi > \frac{1}{2}$ is arbitrary.

To estimate $\mathbb{P}(F_k)$, we consider the following stopping time ζ with respect to $\mathcal{F}_t^U = \sigma\{U(x,s), x \in \mathbb{R}, s \leq t\}$:

$$\zeta = \inf\{t \ge n_k : D_{U(\cdot,t)}(0, x_k; I_k) \le j - 1\}.$$

We want to estimate $\mathbb{P}(F_k) = \mathbb{P}(\zeta < n_{k+1})$. Define $\tilde{U}(v,t) \stackrel{\text{def}}{=} U(v,t+\zeta) - U(v,\zeta)$ for $v \in \mathbb{R}$ and $t \geq 0$. The independent increments property says that \tilde{U} is independent of \mathcal{F}_{ζ}^U and has the same law as U. On $\{\zeta < n_{k+1}\}$, we have $D_{U(\cdot,\zeta)}(0, x_k; I_k) \leq j - 1$; Fix a small constant $\epsilon > 0$. Consider the event

$$G_k \stackrel{\text{def}}{=} \left\{ \sup_{\delta_k \le s \le 1 - \delta_k} \left| \widetilde{U} \left(\log \left(\frac{1 - s}{s} \right), n_{k+1} - \zeta \right) \right| < \epsilon x_k; \, \zeta < n_{k+1} \right\} \subset F_k.$$

Using the scaling property: $\tilde{U}(\cdot,t) \stackrel{\text{law}}{=} \sqrt{t} \tilde{U}(\cdot,1)$ for any fixed t > 0, we obtain:

$$\mathbb{P}(G_k) = \int_{[n_k, n_{k+1})} \mathbb{P}(\zeta \in dv) \mathbb{P}\left(\sup_{\delta_k \le s \le 1 - \delta_k} \left| \widetilde{U}\left(\log\left(\frac{1-s}{s}\right), n_{k+1} - v\right) \right| < \epsilon x_k\right) \\
= \int_{[n_k, n_{k+1})} \mathbb{P}(\zeta \in dv) \mathbb{P}\left(\sup_{\delta_k \le s \le 1 - \delta_k} \left| \widetilde{U}\left(\log\left(\frac{1-s}{s}\right), 1\right) \right| < \frac{\epsilon x_k}{\sqrt{n_{k+1} - v}}\right) \\
\ge \mathbb{P}\left(\zeta < n_{k+1}\right) \mathbb{P}\left(\sup_{\delta_k \le s \le 1 - \delta_k} \left| \widetilde{U}\left(\log\left(\frac{1-s}{s}\right), 1\right) \right| < \frac{\epsilon x_k}{\sqrt{n_{k+1} - n_k}}\right). \quad (4.4)$$

Observe that on G_k , the number of downcrossings of $(-\epsilon x_k, (1+\epsilon)x_k)$ by $U(\cdot, n_{k+1})$ during $I_k = [-\log(\frac{1-\delta_k}{\delta_k}), \log(\frac{1-\delta_k}{\delta_k})]$ can not be larger or equal to j; otherwise, we would get $D_{U(\cdot,\zeta)}(0, x_k; I_k) \ge j$. In view of this remark, we get

$$\mathbb{P}(F_k) \leq \frac{\mathbb{P}\left(D_{U(\cdot,n_{k+1})}(-\epsilon x_k, (1+\epsilon)x_k; I_k) \leq j-1\right)}{\mathbb{P}\left(\sup_{\delta_k \leq s \leq 1-\delta_k} \left|\widetilde{U}\left(\log(\frac{1-s}{s}), 1\right)\right| < \frac{\epsilon x_k}{\sqrt{n_{k+1}-n_k}}\right)} \\ = \frac{\mathbb{P}\left(D_{U(\cdot,1)}(-\epsilon c, (1+\epsilon)c; I_k) \leq j-1\right)}{\mathbb{P}\left(\sup_{\delta_k \leq s \leq 1-\delta_k} \left|U\left(\log(\frac{1-s}{s}), 1\right)\right| < \frac{\epsilon x_k}{\sqrt{n_{k+1}-n_k}}\right)},$$
(4.5)

by using the scaling property. We shall bound below the denominator and bound above the numerator in (4.5): the denominator equals

$$\mathbb{P}\left(\sup_{-\log((1-\delta_{k})/\delta_{k})\leq v\leq \log((1-\delta_{k})/\delta_{k})} |U(v,1)| < \frac{\epsilon x_{k}}{\sqrt{n_{k+1}-n_{k}}}\right) \\
= \mathbb{P}\left(\sup_{0\leq v\leq 2\log((1-\delta_{k})/\delta_{k})} |U(v,1)| < \frac{\epsilon x_{k}}{\sqrt{n_{k+1}-n_{k}}}\right) \\
\geq \delta_{k}^{o(1)}, \quad k \to \infty,$$
(4.6)

where the above equality follows from the stationarity and the above inequality follows from (2.7) in Fact 2.8 with $z = \frac{\epsilon x_k}{\sqrt{n_{k+1}-n_k}} \to \infty$. On the other hand, we have from Lemma 2.9 that

$$\mathbb{P}\Big(D_{U(\cdot,1)}(-\epsilon c, (1+\epsilon)c; I_k) \le j-1\Big) \le \delta_k^{(2\mu(-\epsilon c, (1+\epsilon)c)+o(1))}$$

$$= \left(\frac{k}{\log k}\right)^{-\left(4\chi\,\mu\left(-\epsilon c,(1+\epsilon)c\right)+o(1)\right)}.\tag{4.7}$$

Recall that $\chi > \frac{1}{2}$. Since $\mu(-\epsilon c, (1+\epsilon)c) \to \frac{1}{2}$ as $c \to 0$, we can choose a sufficiently small constant $c = c(\chi) > 0$ such that $4\chi \mu(-\epsilon c, (1+\epsilon)c) > 1$. Putting (4.6) and (4.7) into (4.5), we obtain some constant a > 1 such that for all large k,

$$\mathbb{P}\Big(F_k\Big) \le k^{-a}$$

proving (4.3), as desired.

Acknowledgements

The authors are grateful to an anonymous referee for her/his suggestions. Cooperation between the authors was supported by the joint French–Hungarian Intergovernmental Grant "Balaton" (grant no. F-39/00).

References

- Csáki, E.: Strong limit theorems for empirical processes. Recent Adv. in Stat. and Prob. (eds: J. Pérez Vilaplana and M.L. Puri) pp. 247–254, VSP 1994.
- [2] Csáki, E. and Hu, Y.: Asymptotic properties of ranked heights in Brownian excursions. J. Theoret. Probab. <u>14</u> (2001) no.1, 77–96.
- [3] Csáki, E. and Shi, Z.: Some liminf results for two-parameter processes. Stoch. Proc. Appl. <u>78</u> (1998) no. 1, 27–46.
- [4] Csörgő, M. and Révész, P.: Strong Approximations in Probability and Statistics. Akadémiai Kiadó, Budapest and Academic Press, New York, 1981.
- [5] Freedman, D.: Brownian Motion and Diffusion. Holden-Day, San Francisco, 1971.
- [6] Greenwood, P. and Perkins, E.: A conditioned limit theorem for random walk and Brownian local time on square root boundaries. Ann. Probab. <u>11</u> (1983), no. 2, 227– 261.
- [7] Kiefer, J.: Skorohod embedding of multivariate rv's, and the sample df. Z. Wahrsch. Verw. Gebiete <u>24</u> (1972) 1–35.
- [8] Mogul'skii, A.A.: Remarks on large deviations of the ω^2 statistic. (Russian) *Teor.* Verojatnost. i Primenen. <u>22</u> (1977), no. 1, 170–175.

-

- [9] Perkins, E.: On the Hausdorff dimension of the Brownian slow points. Z. Wahrsch. Verw. Gebiete <u>64</u> (1983), no. 3, 369–399.
- [10] Pitman, J. and Yor, M.: On the lengths of excursions of some Markov processes. Séminaire de Probabilités, XXXI pp. 272–286, Lecture Notes in Math., <u>1655</u> Springer, Berlin, 1997.
- [11] Pitman, J. and Yor, M.: Ranked functionals of Brownian excursions. C. R. Acad. Sci. Paris Sér. I <u>326</u> (1998), 93–97.
- [12] Pitman, J. and Yor, M.: On the distribution of ranked heights of excursions of a Brownian bridge. Ann. Probab. <u>29</u> (2001) no. 1, 361–384.
- [13] Shiryaev, A.N.: *Probability* (2nd edition), Springer, New York, 1996.
- [14] Uchiyama, K.: Brownian first exit from and sojourn over one-sided moving boundary and application. Z. Wahrsch. Verw. Gebiete <u>54</u> (1980), no. 1, 75–116.