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Summary. The natural filtration of a real Brownian motion and its excursion filtration
are sharing a fundamental property : the property of integral representation. As a con-
sequence, every Brownian variable admits two distinct integral representations. We show
here that there are other integral representations of the Brownian variables. They make
use of a stochastic flow studied by Bass and Burdzy. Our arguments are inspired by Rogers
and Walsh’s results on stochastic integration with respect to the Brownian local times.

Résumé. La filtration naturelle d’un mouvement brownien réel et la filtration de ses excur-
sions ont en commun une propriété fondamentale : la propriété de représentation intégrale.
Toute variable brownienne admet donc deux représentations intégrales distinctes. Nous
montrons ici qu’il existe d’autres représentations intégrales pour les variables browniennes.
La construction de ces représentations utilise un flot stochastique qui a été étudié par Bass
et Burdzy. Nos arguments s’inspirent du calcul stochastique par rapport aux temps locaux
développé par Rogers et Walsh.
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I. Introduction.

Let (Bt, t ≥ 0) be a one-dimensional Brownian motion starting from 0. Denote by
(Bt)t≥0 its natural filtration. One of the most fundamental properties of the Brownian
filtration is that every L2-bounded (Bt)-martingale can be represented as a stochastic
integral with respect to B, and hence is continuous (for a nice application of this represen-
tation result, see for example Karatzas et al. [8]). This representation property is in fact
equivalent to the integral representation of L2(B∞), namely that for every H ∈ L2(B∞),
there exists a unique process (ht) which is predictable with respect to (Bt) such that

(1.1) H = E
(
H

)
+

∫ ∞

0

hs dBs,

and
E

(∫ ∞

0

h2
sds

)
< ∞,

(see e.g. Revuz and Yor [9, Chap. V]). The representation (1.1) corresponds in a natural
way to the “time variable”. Rogers and Walsh [12] have established an analoguous repre-
sentation result with respect to the “space variable”: Let x ∈ R and consider the reflecting
Brownian motion on (−∞, x] defined by

B̂t(x) def= Bρ(t,x),

with ρ(t, x) def= inf{s > 0 :
∫ s

0
du1l(Bu≤x) > t}. Define Ex

def= σ{B̂t(x), t ≥ 0}. It has been
shown that the family {Ex, x ∈ R} forms a filtration, which is called the Brownian excursion
filtration. Williams [17] proved that all (Ex)-martingales are continuous. Rogers and Walsh
[12] have given another proof of this result by showing that for any H ∈ L2(E∞), there
exists a unique “identifiable” process (φ(t, x), t ≥ 0, x ∈ R) such that

(1.2) H = E
(
H

)
+

1
2

∫

t≥0

∫

x∈R
φ(t, x) dLB(t, x),

and
E

( ∫ ∞

0

φ2(s,Bs) ds
)

< ∞,

where LB denotes the local time process related to B. Thanks to Tanaka’s formula, we
note that

(1.3) H = E
(
H

)
+

∫

t≥0

∫

x∈R
φ(t, x) dM(t, x),
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where M(t, x) def=
∫ t

0
1l(Bs≤x) dBs, t ≥ 0, x ∈ R.

Since that L2(E∞) = L2(B∞), this gives another representation for every element in
L2(B∞).

We refer to Williams [17], Walsh [16], McGill [5], Jeulin [6], Rogers and Walsh [10, 11, 12,
13, 14], Yor [18] together with their references for detailed studies of Brownian excursion
filtration (Ex, x ∈ R) and related topics.

The purpose of this paper is to put in evidence other integral representations for the
Brownian variables. These integral representations will be done with respect to processes
involving the local time of the Brownian motion with a generalized drift. More precisely,
for β1 and β2 two real constants, consider the equation

(1.4) Xt(x) = x + Bt + β1

∫ t

0

ds1l(Xs(x)≤0) + β2

∫ t

0

ds1l(Xs(x)>0), t ≥ 0

Bass and Burdzy [1] have shown that the solutions of (1.4) for x ∈ R, form a C1-
diffeomorphism on R. This implies in particular that for any fixed t ≥ 0, Xt(x) is a
strictly increasing function of x . We assume that β1 ≥ 0 ≥ β2. They proved that in
that case the solutions are recurrent (i.e. with probability one for each x, X·(x) visits 0
infinitely often). Define the process (M(t, x), x ∈ R, t ≥ 0) by

M(t, x) =
∫ t

0

1l(Xs(x)>0) dBs, x ∈ R, t ≥ 0

This process is connected, thanks to Tanaka’s formula, to the local times at zero of the
semimartingales (Xt(x), t ≥ 0), x ∈ R, which can be seen as local times of B along
particular random curves.

Under the assumption that β1 ≥ 0 ≥ β2, we will show that for every variable H of
L2(B∞), there exists a unique random process φ such that

(1.5) H = E
(
H

)
+

∫

t≥0

∫

x∈R
φ(t, x) dM(t, x)

That way, we will obtain for the variable H a family of integral representations indexed
by the parameters β1 and β2.

In order to state properly this representation property , we first recall, in Section 2,
some results on the flow X and some notations. In Section 3, we construct a stochastic
integration with respect to (M(x, t), x ∈ R, t ≥ 0). We show that the arguments of Rogers
and Walsh [12] concerning the Brownian local time, can be adjusted to M . But proving
that every Brownian variable satisfies (1.5) requires other arguments. This is done in
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Section 4. Some applications are then presented in Section 5. Indeed (1.5) implies the
predictable representation property of a certain filtration (Hx)x∈R indexed by the starting
points of the solutions of (1.4). As a consequence, all the martingales for this filtration are
continuous. This is used to study the intrinsic local time of the flow X.

Now, a natural question arises : what happens if instead of equation (1.4), we consider the
equation

(1.6) Xt(x) = x + Bt +
∫ t

0

ds b(Xs(x))

with a “smooth” b (for example b in C1); Could we obtain a similar integral representation
for the Brownian variables ? Paradoxically, a “smooth” drift makes the situation much
more complex. Indeed, in the special case of (1.4), the process of the local times at zero
of the semi-martingales X.(x), x ∈ R, actually corresponds to the local time process of
a single process (Yt)t≥0 , and the filtration (Hx)x∈R mentioned above is the excursion
filtration of (Yt)t≥0. In the case of (1.6), this coincidence does not occur, and one has
to deal, in order to answer to the problem of integral representation, with the entire local
time process of each semi-martingale (Xt(x), t ≥ 0) . The main issue, that we could not
solve, is actually to write an analogue of Fact 2.3 (Section 2).

2. Some notation and results on Bass and Burdzy’s flow.

We keep the notation introduced in Section 1 to present the following facts proved by
Hu and Warren in [5]. Some of these facts are extensions of Bass and Burdzy’s results in
[1].

Fact 2.1. With probability one there exists a bicontinuous process (Lx
t ;x ∈ R, t ≥ 0) such

that for every x the process (Lx
t ; t ≥ 0) is the local time at zero for the semimartingale

(Xt(x), t ≥ 0). Moreover

(2.1)
∂Xt

∂x
(x) = exp

(
(β2 − β1)Lx

t

)
.

Consider Yt defined as being the unique x ∈ R such that Xt(x) = 0. Almost surely, for

every bounded Borel function f ,

(2.2)
∫ t

0

f(Ys)ds =
∫ ∞

−∞
dy f(y) κ(Ly

t ),
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where

(2.3) κ(`) def=





e(β2−β1)`−1
β2−β1

, if β1 6= β2,

`, if β1 = β2,

` ≥ 0.

Note that the local times process (Lx
t , t ≥ 0, x ∈ R) is indexed by the starting points

of the flow (Xt(x)). This kind of local times process has been recently studied by Burdzy
and Chen [3] for a flow related to skew Brownian motion. The process (Yt, t ≥ 0) plays an
important part in the next sections.

Notation 2.2.

At(x) def=
∫ t

0

du1l(Xu(x)>0),

αt(x) def= inf{s > 0 : As(x) > t}, x ∈ R, t ≥ 0,

Hx
def= σ{Xαt(x)(x), t ≥ 0}, x ∈ R.

Fact 2.3. The family {Hx, x ∈ R} is an increasing family of σ-fields. Furthermore, for

every x ∈ R and H ∈ L2(Hx), there exists a (Bt, t ≥ 0)-predictable process (ht, t ≥ 0) such

that

(2.4)

H = EH +
∫ ∞

0

hs 1l(Xs(x)>0) dBs = EH +
∫ ∞

0

hs 1l(Ys<x) dBs = EH +
∫ ∞

0

hs dsM(s, x),

and E
∫∞
0

h2
s1l(Ys<x)ds < ∞.

3. Construction of the area integral.

Following Rogers and Walsh [12], we set the two definitions below:

Definition 3.1. A process φ = (φ(t, x), t ≥ 0, x ∈ R) is said to be (H-)identifiable if:

(i) The process (φ(αt(x), x), t ≥ 0)x∈R is predictable with respect to (Hx × B∞)x∈R.

(ii) For all 0 ≤ s < t, x ∈ R such that As(x) = At(x), we have φ(s, x) = φ(t, x).

We denote by I the σ-field generated by all identifiable processes.
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Example. Let T > 0 and Z be two Ha-measurable variables. Let b > a. Then one can
easily check by using the arguments of Rogers and Walsh [12, pp. 461] that the process

φ(t, x) def= Z 1l(αT (a),∞)(t)1l(a,b](x)

is identifiable.

Definition 3.2. A process φ is called elementary identifiable if φ belongs to the linear

span of the family

{
Z1l(αS(a),αT (a)](t)1l(a,b](x) : a < b, Z ∈ L∞(Ha); 0 ≤ S ≤ T ∈ L∞(Ha)

}
.

For φ(t, x) = Z1l(αS(a),αT (a)](t)1l(a,b](x), we define

∫∫
φdM

def= Z
(
M(αT (a), b)−M(αS(a), b)−M(αT (a), a) + M(αS(a), a)

)
.

We extend the above definition to all elementary identifiable processes by linearity.

Thanks to the arguments developed by Rogers and Walsh [12, Proofs of Propositions
2.3 and 2.4], we have the following fact:

Fact 3.1. The σ-field I is generated by the family of elementary identifiable processes.

The construction of the area integral with respect to M is given by the following
theorem:

Theorem 3.1. For any elementary identifiable process φ, we have

(3.1) E
[( ∫∫

φ dM
)2]

= E
[ ∫ ∞

0

φ2(s, Ys) ds
]
.

Hence we can extend the isometry φ → ∫∫
φdM to all φ ∈ L2(I), where

(3.2) L2(I) def=
{

φ identifiable such that ||φ||2 def= E
[ ∫ ∞

0

φ2(s, Ys) ds
]

< ∞
}

.

Moreover, for any φ ∈ L2(I), the process
( ∫∫

φ(t, y)1l(y≤x) dM(t, y), x ∈ R)
is a continuous

square-integrable (Hx)-martingale, with increasing process
( ∫∞

0
φ2(s, Ys)1l(Ys≤x) ds, x ∈

R
)
.

In order to prove Theorem 3.1, we first establish the next lemma:
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Lemma 3.2. Fix a ∈ R and let S and T be two Ha-measurable variables such that

0 ≤ S ≤ T ≤ ∞. The process (Nx, x ≥ a) :=
( ∫ αT (a)

αS(a)
1l(a≤Ys<x) dBs, x ≥ a

)
is a

square-integrable (Hx)-martingale with increasing process
( ∫ αT (a)

αS(a)
1l(a≤Ys<x) ds, x ≥ a

)
.

Proof of Lemma 3.2. We assume β1 > β2, the particular case β1 = β2 = 0 being exactly
the Brownian motion case. Let x > a. It follows from (2.2) and (2.3) that

∫ αT (a)

0

1l(a≤Ys<x)ds =
∫ x

a

dy κ(Ly
αT (a)) ≤

x− a

β1 − β2
,

hence Nx is square-integrable. The measurability of Nx with respect to Hx is immediate.
Indeed, for fixed x, the whole process

( ∫ αt(a)

0
1l(a≤Ys<x) dBs, t ≥ 0

)
is Hx-mesurable.

Consider y > x ≥ a and H ∈ L∞(Hx). We make use of the representation (2.4) for H to
obtain:

E
(
(Ny −Nx)H

)
= E

( ∫ ∞

0

1l(x≤Ys<y)1l(αS(a)<s≤αT (a)) dBs ×
∫ ∞

0

1l(Ys<x) hsdBs

)

= 0,

proving the martingale property. Thanks to the general result of Bouleau [2], we immedi-
ately obtain the formula for the increasing process. tu

Proof of Theorem 3.1. The identity (3.1) follows from Lemma 3.2 once we note the
following fact: let 0 ≤ U ≤ V ≤ S ≤ T be four Ha-measurable variables. The two
martingales

(
M(αT (a), x)−M(αT (a), a)

)− (
M(αS(a), x)−M(αS(a), a)

)

=
∫ αT (a)

αS(a)

1l(a≤Ys<x)dBs, x ≥ a,

and

(
M(αV (a), x)−M(αV (a), a)

)− (
M(αU (a), x)−M(αU (a), a)

)

=
∫ αV (a)

αU (a)

1l(a≤Ys<x)dBs, x ≥ a,

are orthogonal. Using Fact 3.1, the family of elementary identifiable processes is dense in
L2(I). Hence we can extend the definition of area integral to all φ ∈ L2(I).
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To finish the proof of Theorem 3.1, it suffices to verify the last assertion for an elemen-
tary identifiable process φ of the form Z1l(αS(a),αT (a)](t)1l(a,b](x) with Z ∈ L∞(Ha), a <

b, 0 ≤ S ≤ T and S, T ∈ L∞(Ha). Then again by using Lemma 3.2, the process

( ∫∫
φ(t, y)1l(y≤x)dM(t, y), x ∈ R

)
=

(
Z

∫∫
1l(αS(a),αT (a)](t)1l(a,x∧b](y)dM(t, y), x ∈ R

)

is a continuous square-integrable (Hx)-martingale, with increasing process

(
Z2

∫ αT (a)

αS(a)

1l(a≤Ys<x∧b) ds, x ∈ R
)

=
( ∫ ∞

0

φ2(s, Ys)ds, x ∈ R
)

completing the whole proof. tu

In some special cases, the area integral can be explicitly computed.

Proposition 3.3. Let φ be an element of L2(I) such that for every x ∈ R, the process(
φ(αs(x), x), s ≥ 0

)
is predictable with respect to (Bαs(x), s ≥ 0). Moreover, we assume

that almost surely φ(·, ·) is continuous outside of a set of null Lebesgue measure. Then the

process (φ(s, Ys), s ≥ 0) is (Bs)-adapted, and we have

(3.3)
∫∫

s≥0,y∈R
φ(s, y) dM(s, y) =

∫ ∞

0

φ(s, Ys) dBs.

See Eisenbaum [4] for some related results on double integrals with respect to Brownian
local times.

Proof. We can assume that φ has compact support and is bounded. Define the finite sum

φn(s, y) def=
∑

si+1−si=1/n

∑

xj+1−xj=1/n

φ(αsi(xj), xj)1l[xj ,xj+1)(y)1l(αsi
(xj),αsi+1 (xj)](s),

for s ≥ 0, y ∈ R. Since φ(αs(x), x) is Hx-adapted, φn ∈ L2(I).
Moreover, the process (φn(s, Ys), s ≥ 0) is (Bs)-adapted. Indeed, from our assumption,

φ(αsi(xj), xj)1l(αsi
(xj),αsi+1 (xj)](s) is Bs-measurable, since αsi(xj) and αsi+1(xj) are (Bs)-

stopping times.
By definition,

(3.4)
∫∫

s≥0,y∈R
φn(s, y) dM(s, y) =

∫ ∞

0

φn(s, Ys) dBs.
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Thanks to our assumption, almost surely φn(s, Ys) → φ(s, Ys) ds-a.s. It follows that

E
( ∫ ∞

0

(φn − φ)2(s, Ys) ds
)
→ 0 n →∞.

Consequently, the process (φ(s, Ys), s ≥ 0) is (Bs)-adapted. Hence the two integrals in
(3.4) converge in L2 to the corresponding integrals for φ as n → ∞, which completes the
proof. tu

4. Integral representation

Now that stochastic integration with respect to (M(x, t), x ∈ R, t ≥ 0) has been
defined, the following theorem shows that every Brownian variable is an integral with
respect to M .

Theorem 4.1. Let (β1, β2) be a couple of real numbers such that β1 ≥ 0 ≥ β2. For every

H ∈ L2(B∞), there exists a unique (Hx)-identifiable process φ such that

H = E
(
H

)
+

∫

t≥0

∫

x∈R
φ(t, x) dM(t, x),

and

E
( ∫ ∞

0

φ2(t, Yt) dt
)

< ∞,

where Yt denotes the unique x ∈ R such that Xt(x) = 0.

Proof : Define

(4.1) K def=
{

H ∈ L2(B∞) : H = E
(
H

)
+

∫∫
φ(t, y)dM(t, y), for some φ ∈ L2(I)

}
.

The proof of Theorem 4.1 is equivalent to showing that

K = L2(B∞).

The proof of the above equality is constructed as follows. We will define a family (Dn)
of random variables such that:

Step 4.2 For each n ≥ 1, Dn ⊂ K. Furthermore, the algebra generated by Dn is itself
included in K.
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Step 4.3 Let An = σ
(
Dn

)
. We have L2(An) ⊂ K, for all n ≥ 1, and An is increasing

with n.
Step 4.4 Define A∞ def=

∨
n≥1An. We will prove that A∞ = B∞. Consequently, K =

L2(B∞).

In what follows, we exclude the Brownian case (β1 = β2 = 0) which has been already
treated by Rogers and Walsh [12]. We begin with the choice of Dn. Keeping the notation
of Section 2, we define

τr(a) def= inf{t > 0 : La
t > r}, r ≥ 0, a ∈ R,

Dn
def=

{
L

j+1
2n

τt(
j

2n )
; L

j+1
2n

τt(
j

2n )
− L

j+1
2n

τs( j
2n )

: 0 ≤ s < t, j ∈ Z
}

.(4.5)

The main technical result is the following

Lemma 4.2. Fix a < b ∈ R and t > s > 0. For any λ > 0,

(4.6) E exp
(
λLb

τt(a)

)
< ∞.

For any smooth function f : R+ → R such that |f(x)| = o(eε0x) as x →∞ for some ε0 > 0,

we have

f(Lb
τt(a)) ∈ K,(4.7)

f(Lb
τt(a) − Lb

τs(a)) ∈ K.(4.8)

Proof of Lemma 4.2. Let x ≥ a. Applying Tanaka’s formula to the semimartingales
X·(x) and X·(a), we have

(4.9) Lx
τr(a) = r + 2

(
a− − x−

)− 2
∫ τr(a)

0

1l(a≤Ys<x)dBs − 2β1

∫ x

a

κ(Ly
τr(a))dy

Similarly to Lemma 3.2, one can prove that the process (
∫ τr(a)

0
1l(a≤Ys<x)dBs, x ≥ a)

is a square-integrable (Hx)-martingale, with increasing process (
∫ x

a
κ(Ly

τr(a))dy, x ≥ a).
Consequently there exists a

(Hx

)
-Brownian motion W̃ , independent of Ha such that :

(
∫ τr(a)

0

1l(a≤Ys<x)dBs, x ≥ a) = (
∫ x

a

√
κ(Ly

τr(a))dW̃y, x ≥ a)

Hence , we obtain
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(4.10) Lx
τr(a) = r + 2

(
a− − x−

)− 2
∫ x

a

√
κ(Ly

τr(a))dW̃y − 2β1

∫ x

a

κ(Ly
τr(a))dy.

This shows that (L(τr(a), a + t), t ≥ 0) is an inhomogeneous Markov process (this fact has
been already noticed in [5]). Since β1 > β2, κ(x) ≤ 1/(β1 − β2), it follows from (4.10) and
the Dubins-Schwarz representation theorem (see [9] chp.V ) that

(4.11) exp
(
λLb

τt(a)

)
≤ C exp

(
2 λ γ∫ b

a
κ(Ly

τt(a))dy

)
≤ C exp

(
2λ sup

0≤v≤(b−a)/(β1−β2)

|γs|
)
,

where C
def= eλ(t+2a−+2(b−a)|β1|/(β1−β2)) and γ is a one-dimensional Brownian motion. It is

well known that the RHS of the above inequalities is integrable, hence (4.6) follows.
The conclusions (4.7) and (4.8) follow from a martingale projection argument . Let

us first show (4.7). Using the Markov property of (La+x
τt(a), x ≥ 0), we obtain

E
(
f(Lb

τt(a)) |Hx

)
= ub(x, Lx

τt(a)), a < x < b,

where ub(x, l) def= E
(
f(Lb

τt(a))
∣∣ Lx

τt(a) = l
)
. It can be checked that the function ub(·, ·)

belongs to C1,2([a, b)×R+) and ub is continuous on [a, b]×R+ (see Stroock and Varadhan
[15,Theorem 6.3.4]). Applying Itô’s formula to the martingale

(
E

(
f(Lb

τt(a))
∣∣Hx

)
, x ≥ a

)
,

we obtain:

E
(
f(Lb

τt(a))
∣∣Hx

)
= ub(x, Lx

τt(a))

= ub(a, t)− 2
∫ x

a

∂ub

∂l
(y, Ly

τt(a))
√

κ(Ly
τt(a)) dW̃y

= ub(a, t)− 2
∫∫

φb(s, y)1l(y≤x) dM(s, y),

where φb(s, y) def= ∂ub

∂l (y, Ly
τt(a))

√
κ(Ly

τt(a))1l(a,b](y)1l(0,τt(a)](s) is an identifiable process.

Hence for each x < b, E
(
f(Lb

τt(a))
∣∣Hx

)
∈ K. The continuity of the function ub(·, ·)

implies that when x tends to b,

E
(
f(Lb

τt(a))
∣∣Hx

)
≡ ub(x, Lx

τt(a))
a.s.−→ ub(b, Lb

τt(a)) = f(Lb
τt(a)).

This convergence also holds in L2, by the fact that supa≤x≤b E
(
Lx

τt(a)

)2
< ∞ (cf (4.11)).

Hence f(Lb
τt(a)) ∈ K, since K is closed in L2.
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To show (4.8), we consider the stopping time τs(a) and define the new flow

X̂u(x) def= Xu+τs(a)(X−1
τs(a)(x)), u ≥ 0, x ∈ R,

where X−1
τs(a)(x) denotes the unique y ∈ R such that Xτs(a)(y) = x. By using the strong

Markov property, the flow X̂ has the same law as X, and is independent of Bτs(a). Define
L̂x

t and τ̂ relative to X̂ in the same way as L and τ are defined relative to X. We have
τt(a)− τs(a) = τ̂t−s(0) and

La+x
τt(a) − La+x

τs(a) = L̂
Xτs(a)(a+x)

τ̂t−s(0)
, x ∈ R,

and by using Fact 2.1,

Xτs(a)(a + x) =
∫ x

0

dy exp
(
(β2 − β1) La+y

τs(a)

)
.

Since L̂ and τ̂ are independent of L and τ , it follows from (4.10) that the process
(
La+x

τt(a)−
La+x

τs(a), x ≥ 0
)

is an (inhomogeneous) Markov process, and (4.8) follows by the same
method. tu

Step 4.2. The first assertion Dn ⊂ K follows from Lemma 4.2. To show the second
assertion, we first note the following fact: let φ1, φ2 ∈ L2(I) such that the supports of φ1

and φ2 are disjoint. Define

Hi
def=

∫∫
φi(s, y)dM(s, y) ∈ K, i = 1, 2.

We will show that if H1 ∈ L4 and H2 ∈ L4 (so that H1H2 ∈ L2), then

(4.12) H1H2 ∈ K.

To this end, we use the projections (i = 1, 2)

Hi(x) def= E
(
Hi

∣∣Hx

)
= E(Hi) +

∫∫
φi(s, y)1l(y≤x)dM(s, y).

Thanks to Theorem 3.1, we know that (H1(x)) and (H2(x)) are two continuous mar-
tingales. Note that

∫
H1(y)dH2(y) =

∫∫
H1(y)φ2(s, y)dM(s, y) (which can be proven by

approximating φ2 by elementary identifiable processes). Itô’s formula yields to

H1H2 = E(H1H2) +
∫∫ (

H1(y)φ2(s, y) + H2(y)φ1(s, y)
)
dM(s, y) ∈ K,
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because the finite variation term vanishes thanks to the assumption of disjoint supports
of φ1 and φ2. Moreover we note directly from Definition 3.1 that the product Hψ of an
(Hx)x∈R-predictable process (H(x)) and an H-identifiable process (ψ(x, t), x ∈ R, t ≥ 0) is
still H-identifiable. Hence, (4.12) is proved.
Thanks to (4.12) and Lemma 4.2 applied to f(x) = xk for k ≥ 0, Step 4.2 is established.tu

Step 4.3. Using Step 4.2 and (4.6) and applying a result due to Rogers ([10, Lemma 3]),
the inclusion L2(An) ⊂ K follows. Let us show that

(4.13) An ⊂ An+1.

Let x < y ∈ R. Denote by v
def= Ly

τt(x). Since on [τt(x), τv(y)), X−1(0) < y, we have

Lz
τt(x) = Lz

τv(y), ∀ z ≥ y.

Write an
j

def= j2−n for j ∈ Z and n ≥ 1. Applying the above observation to x = an
j = an+1

2j ,
y = an+1

2j+1 and z = an
j+1 = an+1

2j+2, we obtain

L
an

j+1

τt(an
j
) = Lz

τt(x) = Lz
τv(y) = L

an+1
2j+2

τv(an+1
2j+1)

,

with v
def= L

an+1
2j+1

τv(an+1
2j

)
. This shows that L

an
j+1

τt(an
j
) is An+1-measurable, as desired. tu

Step 4.4. For x ∈ R , we will prove that (Ly
τt(x), y ∈ R) is A∞-measurable. In fact,

if y > x, we have that Ly
τt(x) = limn→∞,j2−n→x,(j+k)2−n→y L

(j+k)2−n

τt(j2−n) is A∞-measurable.
Now consider y < x, observe that Ly

τt(x) = inf{u > 0 : Lx
τu(y) > t} is A∞-measurable.

Using Fact 2.1, for all t, x, τt(x) =
∫
R κ(Ly

τt(x)) dy is A∞-measurable. We obtain that
the process L·· is A∞-measurable. Hence the same holds for κ(L··), which implies that
(Yt, t ≥ 0) is A∞-measurable. Applying (1.4) with x = Yt, we have

Bt = −Yt − β1

∫ t

0

1l(Ys≥Yt)ds− β2

∫ t

0

1l(Ys<Yt)ds, t ≥ 0.

Consequently (Bt, t ≥ 0) is A∞-measurable.
Finally, using Steps 4.2 and 4.3, we obtain

L2(A∞) ⊂ K ⊂ L2(B∞) = L2(A∞),

implying the desired result and completing the whole proof of Theorem 4.1. tu

13



5. Applications

Since L2(H∞) = L2(B∞) ( cf. Step 4.4) , by standard arguments, the following corollary
follows immediatly from Theorem 4.1.

Corollary 5.1. Every L2-bounded (Hx)-martingale (Nx, x ∈ R) admits a continuous

version with the following representation

(1.10) Nx = E
(
N0

)
+

∫

t≥0

∫

y∈R
ψ(t, y)1l(y≤x)dM(t, y),

for some identifiable process ψ.

Define now

(5.1) L̂x
t

def= Lx
αt(x), t > 0, x ∈ R,

which is called the intrinsic local time in the Brownian motion case (β1 = β2 = 0). In
the Brownian motion case, McGill [8] showed the important result that for a fixed t > 0,
the process L̂·t is a continuous semimartingale in the excursion filtration, and gave an
explicit decomposition of this semimartingale. With different approaches, Rogers and
Walsh [13] and [12, Theorem 4.1] gave the canonical decomposition of L̂·t and interpreted
the martingale part as an area integral with respect to local times. Here, we ask the same
question for the flow. Note that x → L̂x

t is continuous. Define

(5.2) ψr(t)
def= inf{x ∈ R : Ar(x) > t}, r > t,

and ψr(t)
def= ∞ for r ≤ t. Observe that ψ·(t) is nonincreasing and continuous. Using (1.4)

with x = ψr(t), we obtain that for r > t:

(5.3) Xr(ψr(t)) = ψr(t) + Br + β1r + (β2 − β1)t,

since Ar(ψr(t)) = t. We denote by (λr(t), r > t) the local time at 0 of the continuous
semimartingale (Xr(ψr(t)), r > t).

Theorem 5.1 (β1 ≥ 0 ≥ β2). Fix t > 0 and a ∈ R. The process
(
L̂x

t , x ≥ a
)

is an

(Hx)-continuous semimartingale with the following canonical decomposition:

L̂x
t = Nx + Vx, x ≥ a,

14



where

Nx
def= − 2

∫∫
1l(a<y≤x∧ψs(t)) dM(s, y), x ≥ a,

is an (Hx)-continuous martingale, with increasing process
( ∫∞

0
1l(a<Ys≤x∧ψs(t)) ds, x ≥

a
)
, and

Vx = L̂a
t − 2(x− − a−)− 2β1

∫ αt(a)

αt(x)

1l(Ys≤ψs(t)) ds +
(
λαt(x)(t)− λαt(a)(t)

)
, x ≥ a,

is a bounded variation process adapted to (Hx).

Proof of Theorem 5.1. Notice that 0 ≤ Xαt(x)(x) = Xαt(x)(ψαt(x)(t)). By applying
Tanaka’s formula to the continuous semimartingale X·(ψ·(t)) and to the continuous semi-
martingale X·(x) at times αt(x) and αt(a), we obtain in the same way as Rogers and Walsh
in [13, proof of Theorem 2]:

L̂x
t − L̂a

t = −2(x− − a−)− 2β1

∫ αt(a)

αt(x)

1l(Ys≤ψs(t)) ds +
(
λαt(x)(t)− λαt(a)(t)

)

− 2
∫ ∞

0

1l(a<Ys≤x∧ψs(t)) dBs.

Therefore the proof of Theorem 5.1 will be completed once we show that

(5.4)
∫∫

φ(s, y)dM(s, y) =
∫ ∞

0

φ(s, Ys) dBs,

for the identifiable process φ(s, y) def= 1l(a<y≤x∧ψs(t)) (x, t are fixed). Observe that {αt(y) ≤
s} = {t ≤ As(y)} = {ψs(t) ≤ y}. Hence φ(s, y) = 1l(s<αt(y)) 1l(a<y≤x). Thanks to
Proposition 3.3, (5.4) follows. tu
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