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Abstract. For the model of directed polymers in a gaussian ran-
dom environment introduced by Imbrie and Spencer, we establish:
• a Large Deviations Principle for the end position of the poly-

mer under the Gibbs measure;
• a scaling inequality between the volume exponent and the

fluctuation exponent of the free energy;
• a relationship between the volume exponent and the rate

function of the Large Deviations Principle.

1. Introduction

Let us first describe the model of directed polymers in a random envi-
ronment introduced by Imbrie and Spencer [12]. The random media is
a family (g(k, x), k ≥ 1, x ∈ Zd) of independent identically distributed
random variables defined on a probability space (Ω(g),F (g),P). Let
(Sn) be the simple symmetric random walk in Zd. Let Px be the prob-
ability measure of (Sn)n∈N starting at x ∈ Zd and let Ex be the corre-
sponding expectation.

The object of our study is the Gibbs measure 〈·〉(n), which is a random
probability measure defined as follows: Let Ωn be the set of nearest
neighbor paths of length n:

Ωn
def
=

{
γ : [1, n] → Zd, |γ(k)− γ(k − 1)| = 1, k = 2, . . . , n

}
.

For any measurable function F : Ωn → R+,

〈F (S)〉(n) def
=

1

Zn(β)
E0

(
F (S)eβHn(g,S)

)
, Hn(g, γ)

def
=

n∑
i=1

g(i, γ(i)) ,

where here and in the sequel, β > 0 denotes some fixed positive con-
stant and Zn(β) is the partition function:

(1.1) Zn(β) = Zn(β; g) = E0

(
eβHn(g,S)

)
.

Date: September 29, 2003.
1991 Mathematics Subject Classification. Primary 60K37 .
Key words and phrases. Random Environment; Directed Polymers; Large Devi-

ations; Concentration of Measure.
1



2 P. CARMONA AND Y. HU

In other words, for a given realization g(ω) of the environment, the
Gibbs measure gives to a polymer chain γ having an energy Hn(g, γ)
at temperature T = 1

β
, a weight proportional to eβHn(g,γ).

Dating back to the pioneer work of Imbrie and Spencer [12], the sit-
uation in dimension d ≥ 3 is well understood for small β > 0. There
exists some constant β0 > 0 such that for all 0 < β < β0, Sn is diffusive
under 〈·〉(n).

Theorem A (Imbrie and Spencer [12], Bolthausen [3], Sinai [21],
Albeverio and Zhou [1]) If d ≥ 3, then there exists β0 = β0(d) > 0 such
that for 0 < β < β0,

(1.2)
〈|Sn|2〉(n)

n
→ 1 P a.s..

It is believed in many physics papers (see e.g. [10, 13]) that for low
dimension d = 1, 2 and β small enough 〈|Sn|2〉(n) behaves as n2ζ for
some ζ > 1

2
. However no rigorous proof has been given yet.

The aim of this paper is to establish some results when the random
media is given by i.i.d. N (0, 1) gaussian random variables. Our results
will be available for all dimension d ≥ 1 and β > 0; however, the
behavior of 〈·〉(n) will be much different from small β to large β even
in the same underlying d-dimensional lattice space.

Our first result is a large deviations principle for the end position of
the polymer under the Gibbs measure. Denote by p(β) the free energy
which plays an important rôle: for d ≥ 1 and β > 0,

(1.3) p(β)
def
= sup

n≥1

1

n
E log Zn(β) = lim

n→∞
1

n
log Zn(β) ∈ (0,

β2

2
], P a.s.

(the above limit exists and also holds in L1(P), cf. Section 2. Let

∆d
def
= {x = (x1, ..., xd) ∈ Rd : |x1| + ... + |xd| ≤ 1}. Let

o

∆d be the
interior of ∆d and ∂∆d its boundary. We have

Theorem 1.1. For d ≥ 1 and β > 0, there exists a deterministic
convex rate function Iβ : ∆d → [0, log(2d) + p(β)] such that P-almost
surely,

lim sup
n→∞

1

n
log〈Sn

n
∈ F 〉(n) ≤ − inf

ξ∈F
Iβ(ξ), for F closed ⊂ ∆d,

lim inf
n→∞

1

n
log〈Sn

n
∈ G〉(n) ≥ − inf

ξ∈G
Iβ(ξ), for G open ⊂ ∆d.

The function Iβ is continuous in the interior of ∆d and

(1.4) lim
y→x: y∈

o
∆d

Iβ(y) = Iβ(x), ∀x ∈ ∂∆d.
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We shall prove that the rate function Iβ is exactly the pointwise rate
function at least in the interior of ∆d:

Theorem 1.2. Let d ≥ 1 and β > 0. For θ ∈
o

∆d ∩Qd, we have

(1.5)
1

n
log

〈
1(Sn=nθ)

〉(n) → −Iβ(θ), P− a.s.,

where we take the limit along n such that P0(Sn = nθ) > 0. Moreover,
Iβ(0) = 0, Iβ(ξ1, ..., ξd) = Iβ(±ξσ(1), ... ± ξσ(d)) for any permutation σ
of [1, ..., d], and for e1 = (1, 0, ..., 0) ∈ Zd, we have

(1.6) Iβ(e1) = log(2d) + p(β).

Finally, there exists some positive constant cd > 0 only depending on d
such that

(1.7) Iβ(ξ) ≥
(
cd|ξ|2 − (

β2

2
− p(β))

)+

, ξ ∈ ∆d.

For the sake of notational convenience, we have omitted (and shall
omit) the dependence on d in Iβ (and in other quantities).

Remark 1.3. It remains open to characterize the zero set of Iβ. In
the convergence (1.5), we do not know what happens with a general
boundary point θ ∈ ∂∆d. However, (1.6) shows that (1.5) still holds
for those 2d boundary points.

Our second result is a scaling inequality between the volume exponent
and the fluctuation exponent of the free energy. Following Piza [18] we
define the volume exponent

ζ
def
= inf

{
α > 0 : 〈1(maxk≤n |Sk|≤nα)〉(n) → 1 in P probability

}
,

and the fluctuation exponent of the free energy

χ = sup
{

α > 0 : Var(log Zn) ≥ n2α for all large n
}

,

with the convention here that sup ∅ = 0. We shall establish a scal-
ing inequality similar to the one obtained by Piza [18] in a different
framework. He works with a polymer model more related to oriented
percolation, where furthermore the potentials g are assumed non posi-
tive.

Theorem 1.4. For all d ≥ 1 and β ≥ 0,

χ ≥ 1− dζ

2
.

Remark 1.5. If we believe the superdiffusivity of (Sn) under 〈·〉(n),
i.e. ζ ≥ 1

2
(which is always unproven to our best knowledge), the above

result makes sense only in the one-dimensional case.
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The large deviations result (Theorem 1.1) may seem at first sight highly
uncorrelated to these two exponents ζ and χ. However, there is a close
relationship between the volume exponent and the rate function Iβ of
the large deviations principle.

Theorem 1.6. Assume that for some constants α ≥ 1 and c > 0, the
rate function satisfies:

(1.8) Iβ(θ) ≥ c |θ|α, ∀ θ ∈ ∆d .

Then, the volume exponent satisfies:

(1.9) ζ ≤ 1− 1

2α
.

Using the lower bound of Iβ in (1.7), we deduce from Theorem 1.6 the
following corollary:

Corollary 1.7. We have

p(β) =
β2

2
=⇒ ζ ≤ 3

4
(1.10)

=⇒ χ ≥ 1

8
, if d = 1.(1.11)

When d ≥ 3 and β > 0 is small, we have ζ = 1/2, p(β) = β2/2 (cf.
Theorem A) and χ = 0 (by using e.g. Theorem 1.5 of [4]), therefore
(1.10) does not give any effective bound in this situation; however, it
seems interesting that some (rough) bounds on volume and fluctuation
exponents can be obtained only in terms of free energy.

It is worthy noticing that in two related models, the exponent 3/4 is
universal for all d ≥ 1 and β > 0. More precisely, when (Sn) is replaced
by a discrete time d-dimensional Brownian motion and g(·, ·) by a
gaussian fields, Petermann [17] showed ζ ≥ 3/5 in the one-dimensional
case and Mejane [15] showed ζ ≤ 3/4 for all d ≥ 1. Comets and
Yoshida [6] recently gave another model with Brownian motion in a
Poisson environment, they also showed that ζ ≤ 3/4. In both these
models, the Girsanov transform for Brownian motion plays a crucial
rôle which allows to obtain that Iβ(θ) = |θ|2/2 (see Theorem 2.4.4
in [6]). It would be very interesting to obtain an invariance principle
between the Brownian motion model and the random walk model.

We are much inspired from Talagrand [23] for the use of concentration
of measure and integration by parts. Furthermore, we would like to
stress the fact that while in spin glasses the covariance structure of the
energies of configurations is influenced by the exchangeability of the
individuals spins, in the polymer model it is influenced by the Markov
property of the underlying random walk.

This paper is organized as follows: In Section 2, we estimate the rate
of convergence of n-th free energy (Propositions 2.3 and 2.4) by using
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the concentration inequality; The proof of Theorem 1.1 is given in
Section 3 by using the subadditivity, whereas Theorem 1.2 is proven in
Section 4 with Lemmas 4.1 and 4.3; In Section 5, we give a weak law
of large numbers for the polymers measure with biased random walk;
In Sections 6 and 7, we prove respectively Theorem 1.4 and Theorem
1.6.

Throughout this paper, c, c′, c′′ denote some unimportant positive con-
stants whose values may change from one paragraphe to another.

Acknowledgements: We are grateful to an anonymous referee and
an associated editor for their careful reading on the preliminary version
and for their suggestions and comments.

2. Notations and basic tools

For the sake of notational convenience, we omit sometimes the de-
pendence of β in the partition functions. In addition to the partition
function Zn, we define the partition function starting from x:

Zn(x) = Zn(x; g)
def
= Ex

(
eβHn(g,S)

)
, Hn(g, γ) =

n∑
i=1

g(i, γ(i)) ,

and the point to point partition function

Zn(x, y) = Zn(x, y; g) = Ex

(
eβHn(g,S)1(Sn=y)

)
.

This function is strictly positive if and only if there exists a nearest
neighbor path of length n connecting x to y, i.e. Px(Sn = y) = P0(Sn =
y − x) > 0. We shall denote this fact by y − x ←↩ n. Observe that

x ←↩ n if and only if n−
d∑
1

xj ≡ 0 (mod 2) and
d∑
1

|xj| ≤ n,

with x = (x1, ..., xd) ∈ Zd. We shall also write
∑
x←↩n

to mean that the

sum is taken over those x such that x ←↩ n. Let τn be the time shift of
order n on the environment:

(τng)(k, x) = g(k + n, x) (x ∈ Zd, k ≥ 1) .

Our first tool is the

Lemma 2.1 (Markov Property). For every integers n,m and every
x, y ∈ Zd, we have:

Zn+m(x) =
∑

y

Zn(x, y; g)Zm(y; τng)(2.1)

Zn+m(x, z) =
∑

y

Zn(x, y; g)Zm(y, z; τng) .(2.2)
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Proof: The two identities are proved similarly, with the help of the
Markov property for the random walk Sn. Indeed,

Hn+m(g, S) =
n+m∑
i=1

g(i, Si) = Hn(g, S) + Hm(τng, Sn+·) .

Therefore,

Zn+m(x; g) = Ex

(
eβHn(g,S)eβHm(τng,Sn+·)

)

= Ex

(
eβHn(g,S)Zm(Sn; τng)

)

=
∑

y

Zn(x, y; g)Zm(y; τng) .

¤
Let us recall the concentration of measure property of Gaussian pro-
cesses (see Ibragimov and al. [11]).

Proposition 2.2. Consider a function F : RM → R and assume that
its Lipschitz constant is at most A, i.e.

|F (x)− F (y)| ≤ A||x− y|| (x, y ∈ RM) ,

where ||x|| denotes the euclidean norm of x. Then if g = (g1, . . . , gM)
are i.i.d. N (0, 1) we have

P
(
|F (g)− E(F (g))| ≥ u

)
≤ exp(− u2

2A2
) (u > 0).

Following Talagrand [22], we apply this Proposition to partition func-
tions. Define for n integer pn(β) = E

[
1
n

log Zn(β)
]
. It is easy to es-

tablish the convergence of the free energy (1.3) (cf. [4]). Indeed, we
deduce from Lemma 2.1 that the sequence n → pn(β) = 1

n
E

[
log Zn(β)

]
is superadditive so p(β) = lim pn(β) is well defined. The concentration
of measure (Proposition 2.3) implies that 1

n
log Zn(β) − pn(β) → 0 a.s

and in L1. See also Comets, Shiga and Yoshida [5] where they studied
general environments g by using martingale deviations.

Proposition 2.3. (i) For any u > 0, and x ←↩ n,

P

(∣∣∣∣
1

n
log Zn(β)− pn(β)

∣∣∣∣ ≥ u

)
≤ exp(−nu2

2β2
)(2.3)

P (|log Zn(0, x)− E [log Zn(0, x)]| ≥ u) ≤ exp(− u2

2nβ2
) .(2.4)

(ii) Let ν > 1
2
. Then almost surely there exists n0(ω) such that for

every n ≥ n0: ∣∣ log Zn(β)− npn(β)
∣∣ ≤ nν(2.5)∣∣ log Zn(0, x)− E [log Zn(0, x)]
∣∣ ≤ nν (x ∈ Zd, x ←↩ n) .(2.6)
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(iii) There exists a constant c = c(d, β) > 0 such that:

E exp
( 1√

n

∣∣ log Zn(0, x)− E(log Zn(0, x))
∣∣
)
≤ c (n ≥ 1, x ←↩ n).

Proof: (i) Fix n. Consider the set Ξ = {(i, x) : 1 ≤ i ≤ n, x ←↩ i} and
let M = #Ξ. We define a function F : RM → R by

F (z) = logE0

[
exp(β

n∑
i=1

zi,Si
)
]

= logE0

[
exp(β

∑

(i,x)∈Ξ

zi,x 1(Si=x))
]

= logE0

[
eβ aS .z

]
,

where z = (zi,x, (i, x) ∈ Ξ) ∈ RM and aγ ∈ RM is the vector with
coordinates:

aγ
i,x = 1(γ(i)=x) ((i, x) ∈ Ξ) .

Cauchy-Schwarz’ inequality yields that

|aγ.z − aγ.z′| ≤ ||aγ|| ||z − z′|| = √
n ||z − z′|| .

Therefore, F has Lispschitz constant at most A = β
√

n, and we obtain
the concentration of measure inequality (2.3). The inequality (2.4) is
obtained in the same way.
(ii) The second part of the Proposition is proved by introducing the
events:

An = ∪x←↩n{|log Zn(0, x)− E [log Zn(0, x)]| ≥ nν}
∪ {|log Zn(β)− npn(β)| ≥ nν} .

Then, P(An) ≤ cd nd exp(−n2ν−1

2β2 ),
∑

n P(An) < +∞ and we conclude

by Borel Cantelli’s Lemma.
(iii) The third part is a straightforward consequence of the concentra-
tion inequality

E exp
( 1√

n

∣∣ log Zn(0, x)− E(log Zn(0, x))
∣∣
)

=

∫ ∞

0

P
(|log Zn(0, x)− E [log Zn(0, x)]| ≥ √

n log v
)
dv

≤ 1 +

∫ ∞

1

exp

(
−(log v)2

2β2

)
dv

= c(d, β) < +∞ .

¤

Proposition 2.4. Fix ν > 1
2
.
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(i) For all large n, we have

E
[
log Zn(β)

] ≤ nν +
1

2
E [log Z2n(0, 0)].

(ii) For m large enough

1

m
E [log Zm(β)] ≤ p(β) ≤ 1

m
E [log Zm(β)] + mν−1

and almost surely, for m large enough

1

m
log Zm(β)−mν−1 ≤ p(β) ≤ 1

m
log Zm(β) + mν−1

(iii) Almost surely for all large even n,

0 ≥ log〈1(Sn=0)〉(n) ≥ −nν .

Proof: (i) The Markov Property (Lemma 2.1) implies that for x ∈ Qd

such that nx ←↩ n,

Z2n(0, 0; g) ≥ Zn(0, nx; g)Zn(nx, 0; τng) .

Therefore,
(2.7)
E [Z2n(0, 0)] ≥ E [log Zn(0, nx)]+E [log Zn(nx, 0)] = 2E [log Zn(0, nx)] .

Let 1
2

< ν ′ < ν and let ε = n−ν′ . Then,

E [log Zn] ≤ 1

ε
log E [Zε

n] (Jensens’ inequality)

≤ 1

ε
log E

[∑
x←↩n

Zn(0, x)ε

]
(since 0 < ε < 1)

=
1

ε
log E

[∑
x←↩n

eε(log Zn(0,x)−E[log Zn(0,x)])eεE[log Zn(0,x)]

]

≤ 1

ε
log

(
c

∑
x←↩n

eεE[log Zn(0,x)]

)
(by Proposition 2.3)

≤ 1

ε
log

(
c(2n + 1)deε/2E[log Z2n(0,0)]

)
(by (2.7))

≤ nν +
1

2
E [log Z2n(0, 0)] ,

for all large n.

(ii) The second claim in (ii) follows from the first one and from the
concentration of measure property. We omit the parameter β. By
construction 1

m
E [log Zm] ≤ p(β). Therefore, we only need to establish

that for m large enough

p(β) ≤ 1

m
E [log Zm] + mν−1 .
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Fix a large m and a small 0 < ε = ε(m) < 1 whose value will be
determined later. Define

hε(n)
def
= log E [Zε

n] ≥ εE [log Zn] .

Observe that by the Markov property and the concavity of x → xε,

Zε
n+k =

( ∑
x←↩n

Zn(0, x; g)Zk(x; τng)
)ε

≤
∑
x←↩n

Zε
n(0, x; g) Zε

k(x; τng) .

Hence, by independence,

hε(n + k) ≤ log
( ∑

x←↩n

E [Zε
n(0, x; g)]E [Zε

k(x; τng)]
)

≤ log
(
(2n)dE [Zε

n]E [Zε
k]

)

= hε(n) + hε(k) + d log(2n) .

Thanks to Hammersley’s general subadditivity theorem [9], the follow-
ing limit exists and satisfies: For all large m,

h(ε) = lim
n→+∞

hε(n)

n
≤ hε(m)

m
+ c

log m

m
.

Recall that hε(n) ≥ εE [log Zn]. Hence, h(ε) ≥ εp(β). We now choose
ε = m−ν′ with 1/2 < ν ′ < ν. We obtain that

hε(m) = log E
[
eε(log Zm−E[log Zm])

]
+ εE [log Zm]

≤ c + εE [log Zm] (by Proposition 2.3) .

Therefore,

p(β) ≤ h(ε)

ε
≤ hε(m)

mε
+ c

log m

mε
≤ 1

m
E [log Zm] + c′mν′−1 log m,

proving the desired result since ν ′ < ν.

(iii) Combining (i) and (ii), we have that for all n even and large enough,

1

n
E [log Zn(0, 0)] ≤ p(β) ≤ 1

n
E [log Zn(0, 0)] + nν−1 ,

hence E
(

log〈1(Sn=0)〉(n)
)
≥ −nν . This in view of the concentration

property (Proposition 2.3) imply (iii). ¤
We end this section by recalling the well known result (see e.g. Tala-
grand [23])

Lemma 2.5. Let (g(i))1≤i≤N be a family of N (0, 1) random variables,
not necessarily independent. Then,

E

[
max

1≤i≤N
g(i)

]
≤

√
2 log N .



10 P. CARMONA AND Y. HU

Proof: This short proof was given by M. Talagrand during the École
d’été de Saint-Flour, but was not incorporated in the notes [23].
Let g∗ = max1≤i≤N g(i). Then for all real number x, by Jensen’s in-
equality

Ne
x2

2 = E
N∑

i=1

exg(i) ≥ Eexg∗ ≥ exp(xE(g∗)) .

Therefore, x2

2
+log N ≥ xE(g∗) and optimizing for x =

√
2 log N yields

the desired result. ¤

3. Large deviations principle: Proof of Theorem 1.1

The proof of Theorem 1.1, inspired from Varadhan [24], relies essen-
tially on the sub-additivity. Fix d ≥ 1 and β > 0. Firstly, we establish
an auxiliary lemma:

Lemma 3.1. For any λ > 0, there exists a continuous convex function

I
(λ)
β : Rd → R+ such that almost surely, for any ξ ∈ ∆d and any

sequence xn ∈ Rd satisfying xn

n
→ ξ, we have

− 1

n
log〈e−λ|Sn−xn|〉(n) → I

(λ)
β (ξ).

The above limit also holds in L1. Furthermore, we have

I
(λ)
β (ξ) ≤ p(β) + log(2d), ξ ∈ ∆d,

where p(β) is the free energy defined in (1.3).

Proof: Define

V (λ)
n (x, y; g) = logEx

[
eβ
Pn

1 g(i,Si) e−λ |Sn−y|
]
, x ∈ Zd, y ∈ Rd.

For i ≥ 0 and x ∈ Zd, denote by τi,x the shift operator: τi,x ◦ g(·, ·) =

g(i + ·, x + ·). Then V
(λ)
n (x, y; g) = V

(λ)
n (0, y− x; τ0,x ◦ g). Let n,m ≥ 1

and x ∈ Zd, y, z ∈ Rd. Since |Sn+m − y| ≤ |Sn − z| + |(Sn+m − Sn) −
(y − z)|, we have

V
(λ)
n+m(x, y; g) ≥ logEx

[
eβ
Pn+m

1 g(i,Si) e−λ|Sn−z|e−λ|(Sn+m−Sn)−(y−z)|
]

= logEx

[
eβ
Pn

1 g(i,Si)−λ|Sn−z| eV
(λ)
m (0,y−z;τn,Sn◦g)

]

= V (λ)
n (x, z) + log

∑

u∈Zd

σn(u)eV
(λ)
m (0,y−z;τn,u◦g)

≥ V (λ)
n (x, z) +

∑

u∈Zd

σn(u) V (λ)
m (0, y − z; τn,u ◦ g),(3.1)

by the concavity of the logarithmic function, and where

σn(u)
def
= e−V

(λ)
n (x,y;g) Ex

[
eβ
Pn

1 g(i,Si)−λ|Sn−z| 1(Sn=u)

]
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satisfies
∑

u σn(u) = 1. Define

v(λ)
n (y) = E

(
V (λ)

n (0, y; g)
)
, y ∈ Zd.

Then v
(λ)
n (y) = v

(λ)
n (−y) by symmetry. Since σn(·) is independent of

V
(λ)
m (0, y − z; τn,u ◦ g), we deduce from (3.1) that

v
(λ)
n+m(y) = E

(
V

(λ)
n+m(0, y; g)

)
≥ v(λ)

n (z) + v(λ)
m (y − z), ∀y, z ∈ Rd.

Observe the elementary relation:

|v(λ)
n (y)− v(λ)

n (z)| ≤ λ |y − z|,
v(λ)

n (y) ≤ n pn(β) ≤ np(β).

Using the subadditivity theorem, we obtain a function φλ : Rd →
(−∞, p(β)] such that φλ is concave, λ-Lipschitz continuous and for any
ξ ∈ Rd

lim
n→∞, xn

n
→ξ

v
(λ)
n (xn)

n
= φλ(ξ).

Put

I
(λ)
β (ξ)

def
= p(β)− φλ(ξ) ≥ 0, ξ ∈ Rd,

gives the convergence in L1 stated in the Lemma.
We shall prove the convergence a.s. by the concentration property of
Gaussian measure. Firstly, since

1

n

∣∣ log〈e−λ|Sn−xn|〉(n) − log〈e−λ|Sn−x̃n|〉(n)
∣∣ ≤ λ |xn − x̃n|

n
, ∀xn, x̃n ∈ Rd,

it suffices to prove that for any fixed ξ ∈ Rd,

(3.2) − 1

n
log〈e−c|Sn−nξ|〉(n) → I

(λ)
β (ξ), a.s.

Following the same lines as in the proof of Proposition 2.3, we deduce
from the concentration of Gaussian measure that almost surely, for all
large n, ∣∣ log〈e−λ|Sn−nξ|〉(n) − E log〈e−λ|Sn−nξ|〉(n)

∣∣ = O(nν),

for some ν > 1/2 (the above estimate in fact holds uniformly on ξ ∈
∆d). This yields (3.2). Finally, for any ξ ∈ ∆d, we take xn ∈ Zd such
that xn

n
→ ξ and P(Sn = xn) > 0. It follows from Jensen’s inequality

that

〈e−λ|Sn−xn|〉(n) ≥ 〈1(Sn=xn)〉(n)

=
1

Zn(β)
E

(
eβ
Pn

1 g(i,Si)
∣∣Sn = xn

)
P (Sn = xn)

≥
P

(
Sn = xn

)

Zn(β)
exp

(
βE

[ n∑
1

g(i, Si)
∣∣Sn = xn

])
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which implies that for any λ > 0,

I
(λ)
β (ξ) ≤ p(β) + 2(d/2π)d/2|ξ|2 ≤ p(β) + log(2d), ξ ∈ ∆d,

proving the lemma. ¤
The function I

(λ)
β is nondecreasing on λ and we let λ → ∞, hence

the limit function Iβ : ∆d → [0, p(β) + log(2d)] is convex and lower
semi-continuous on ∆d.

Proof of Theorem 1.1: The proof relies on an ω-by-ω argument.
Upper bound: It suffices to show that for any ξ ∈ ∆d and small ε > 0,

lim sup
n→∞

1

n
log〈1(|Sn

n
−ξ|≤ε)〉(n) ≤ −I∞(ξ) + o(1),

where o(1) (possibly random) tends to 0 when ε → 0. Let δ > 0. Take

λ > 0 be sufficiently large such that |Iβ(ξ) − I
(λ)
β (ξ)| ≤ δ. Since the

number of lattice points xn such that |xn

n
− ξ| ≤ ε is of order nd, we

obtain:

〈1(|Sn
n
−ξ|≤ε)〉(n) =

∑

xn←↩n: |xn
n
−ξ|≤ε

〈1(Sn=xn)〉(n)

≤
∑

xn←↩n: |xn
n
−ξ|≤ε

〈e−λ|Sn−xn|〉(n)

≤ (2n + 1)d

εd
eλnε〈e−λ|Sn−nξ|〉(n),

which in view of Lemma 3.1 imply that

lim sup
n→∞

1

n
log〈1(|Sn

n
−ξ|≤ε)〉(n) ≤ λε− I

(λ)
β (ξ) ≤ −Iβ(ξ) + 2δ,

for ε ≤ δ/λ.
Lower bound: Let ξ ∈ G such that Iβ(ξ) < ∞. We shall bound below
〈1(|Sn

n
−ξ|<ε)〉(n). Let λ be sufficiently large such that λε > Iβ(ξ) ≥

I
(λ)
β (ξ) and I

(λ)
β (ξ) = Iβ(ξ) + o(1). Therefore by using again Lemma

3.1, we have

〈1(|Sn
n
−ξ|<ε)〉(n) ≥ 〈e−λ|Sn−nξ|〉(n)−e−λεn ≥ e−I

(λ)
β (ξ)(1+o(1))n ≥ e−Iβ(ξ)(1+o(1))n,

showing the lower bound.

The continuity of Iβ in the interior of ∆d follows from the convexity.
It remains to show (1.4).
Since Iβ is uniformly bounded below and above, we may repeat the
same argument in the proof of Theorem 10.4 ([20], page 86) and prove
that

lim sup
y→x: y∈

o
∆d

Iβ(y) ≤ Iβ(x),

which together with the lower-continuity of Iβ yields (1.4). ¤
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4. Pointwise rate function: Proof of Theorem 1.2

Before entering into the proof of Theorem 1.2, we need some prelimi-
nary lemmas (Lemma 4.1 is devoted to the proof of (1.6) and Lemma
4.3 to (1.5)).

Lemma 4.1. There exists a constant c = c(d) > 0 such that for all
0 < ε < 1/9,

(4.1) #Ω(ε)
n ≤ ec n ε log(1/ε),

where

Ω(ε)
n

def
=

{
γ ∈ Ωn : γ(0) = 0, |γi(n)| ≥ (1− ε)n, ∃i = 1, ..., d

}
,

with γi(n) denoting the i-th coordinate of γ(n) ∈ Zd. Consequently,
almost surely for all small ε > 0,

(4.2) lim sup
n→∞

1

n
log〈1(|Sn

n
−e1|≤ε)〉(n) ≤ c′

√
ε log(1/ε)− log(2d)− p(β),

for some constant c′ = c′(d) > 0.

Proof: Let S1
n = Sn · e1 be the first coordinate of Sn. Then (S1

n)n≥0 is
a symmetric random walk on Z with step distribution P

(
S1

n − S1
n−1 =

+1
)

= P
(
S1

n−S1
n−1 = −1

)
= 1/(2d) and P

(
S1

n−S1
n−1 = 0

)
= 1− 1/d.

The large deviations principle implies that

log P
(
|S1

n| ≥ (1− ε)n
)
∼ −n sup

λ∈R

(
λ(1− ε)− ψ(λ)

)
def
= − nψ∗(1− ε),

where ψ(λ) = log EeλS1
1 = log(1+ cosh(λ)−1

d
). Elementary computations

show that

ψ∗(1− ε) = log(2d)− (c′′ + o(1)) ε log(1/ε), ε → 0,

for some constant c′′ > 0. This implies (4.1) by symmetry. Finally,

1

n
E

(
log〈1(|Sn

n
−e1|≤ε)〉(n)

)

=
1

n
E

(
logE

[
1(|Sn

n
−e1|≤ε)e

βHn(g,S)
])− pn(β)

≤ β

n
E max

γ∈Ω
(ε)
n

Hn(g, γ) +
log #Ω

(ε)
n

n
− log(2d)− pn(β)

≤ β
√

2cε log(1/ε) + cε log(1/ε)− log(2d)− pn(β),

by applying Lemma 2.5 to the gaussian family {Hn(g,γ)√
n

, γ ∈ Ω
(ε)
n }.

Thanks to the concentration inequality (2.6), we deduce from the Borel-
Cantelli lemma that almost surely for all large n,∣∣∣ log〈1(|Sn

n
−e1|≤ε)〉(n) − E

(
log〈1(|Sn

n
−e1|≤ε)〉(n)

)∣∣∣ = O(nν),

for any ν > 1/2, which completes the proof. ¤
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The following lemma is an easy consequence of subadditivity:

Lemma 4.2. For any θ ∈
o

∆d ∩Qd,

a(θ)
def
= sup

nθ←↩n,n>1

1

n
E

(
log Zn(0, nθ)

)
−p(θ) = lim

nθ←↩n,n→∞
1

n
log〈1(Sn=nθ)〉(n)

the above limit exists almost surely and in L1(P).

The function a(·) is auxiliary: In fact, according to Theorem 1.2, a(θ) =
−Iβ(θ).
Proof: From the Markov Property (Lemma 2.1) we get that for x ←↩ n
and y ←↩ m,

Zn+m(0, x + y; g) ≥ Zn(0, x; g)Zm(x, x + y; τng) (x, y ∈ Zd) .

Taking the expectation of the logarithm, we get, since τng is distributed
as g,

E [log Zn+m(0, x + y)] ≥ E [log Zn(0, x)] + E [log Zm(x, x + y)]

= E [log Zn(0, x)] + E [log Zm(0, y)].(4.3)

This shows that the sequence n → E log Zn(0, nθ) is super additive and
the standard subadditivity theorem and the concentration inequality
(2.6) yield that 1

n
log Zn(0, nθ) converges almost surely and in L1(P).

The integrability is guaranteed by Lemma 2.5. This together with (1.3)
complete the proof. ¤

Lemma 4.3. For any θ ∈
o

∆d ∩Qd, P almost surely,

lim
ε→0

lim inf
nθ←↩n,n→∞

1

n
log〈1(|Sn−nθ|<εn)〉(n) = a(θ),

where a(θ) has been defined in Lemma 4.2.

Proof: Pick a small ε > 0 such that 3εd < 1−|θ|L1 , where |θ|L1
def
=

∑d
1 |θj| <

1 for θ = (θ1, ..., θd) ∈
o

∆d ∩Qd. Write θ = (p1

p
, ..., pd

p
) where p1, ..., pd ∈

Z and p is an integer such that p >
∑d

1 |pj|. We shall consider those
n →∞ such that n/p is even. This choice ensures that nθ ←↩ n. Let

k = k(n) = 2p
⌊ εd

1− |θ|L1

n

p

⌉
∼ 2εd

1− |θ|L1

n,

where bxe denotes the integer part of x. For any xn ∈ Zd satisfying

xn ←↩ n and |xn−nθ| ≤ εn, we define x̃n
def
= (k+n)θ−xn ∈ Zd. Observe

that

|x̃n|L1 ≤ k|θ|L1 + d|xn − nθ| < k,



15

by our choice of k = k(n). Hence x̃n ←↩ k. By the Markov property
(Lemma 2.1), we get

Zn+k(0, (n + k)θ) ≥
∑

exn←↩k

Zk(0, x̃n) Zn(x̃n, (n + k)θ; τkg)

≥
∑

xn←↩n:|xn−nθ|≤εn

Zk(0, x̃n) Zn(x̃n, (n + k)θ; τkg).(4.4)

Observe that by stationarity, Zn(x̃n, (n + k)θ; τkg) has the same law as
Zn(0, xn). It follows from (2.4) that for ν > 1/2,

P
(
∃xn : xn ←↩ n,

∣∣ log Zn(x̃n, (n + k)θ; τkg)− log Zn(0, xn)
∣∣ > 2nν

)

≤
∑

xn←↩n

P
(∣∣ log Zn(x̃n, (n + k)θ; τkg)− E log Zn(x̃n, (n + k)θ; τkg)

∣∣ > nν
)

+
∑

xn←↩n

P
(∣∣ log Zn(0, xn)− E log Zn(0, xn)

∣∣ > nν
)

≤ 2(2d + 1)ne−n2ν−1/(2β2),

whose sum on n converges. The Borel-Cantelli lemma implies that
almost surely for any 1

2
< ν < 1 and all large n,

(4.5) max
∀xn←↩n

∣∣ log Zn(x̃n, (n + k)θ; τkg)− log Zn(0, xn)
∣∣ ≤ 2nν .

On the other hand, for any y ←↩ k, Jensen’s inequality implies that

E log Zk(0, y) = E
[
logE

(
eβ
Pk

1 g(i,Si)
∣∣Sk = y

)]
+ logP(Sk = y)

≥ logP(Sk = y)

≥ −k log(2d),

which combined with (2.6) imply that almost surely for all large k,

(4.6) inf
y←↩k

log Zk(0, y) ≥ −k(1 + log(2d)).

Now, we can complete the proof of Lemma 4.3 by an ω-by-ω argument.
Almost surely, let n be large such that n/p is even. Injecting (4.5) and
(4.6) into (4.4), we get

Zn+k(0, (n + k)θ) ≥ e−k(1+log(2d))−2nν
∑

xn←↩n:|xn−nθ|≤εn

Zn(0, xn)

= e−k(1+log(2d))−2nν

Zn(β) 〈1(|Sn−nθ|≤εn)〉(n).
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Since k = k(n) ∼ 2εd
1−|θ|L1

n, we deduce from the above estimate and

from Lemma 4.2 and (1.3) that

a(θ) = lim
n
p

even, n→∞
1

n + k
log

(Zn+k(0, (n + k)θ)

Zn+k(β)

)

≥ −c ε + lim inf
nθ←↩n,n→∞

1

n + k
log〈1(|Sn−nθ|≤εn)〉(n)

≥ −c ε + (1 + c′ ε) lim inf
nθ←↩n,n→∞

1

n
log〈1(|Sn−nθ|≤εn)〉(n),

where c > 0 and c′ > 0 denote some constants depending on d and θ.
Let ε → 0, we obtain that

lim sup
ε→0

lim inf
nθ←↩n,n→∞

1

n
log〈1(|Sn−nθ|≤εn)〉(n) ≤ a(θ),

yielding Lemma 4.3 since 〈1(|Sn−nθ|≤εn)〉(n) ≥ 〈1(Sn=nθ)〉(n). ¤
Combining Lemmas 4.3, 4.1 with Theorem 1.1, we immediately obtain
Theorem 1.2:
Proof of Theorem 1.2: The proof is again an ω-by-ω argument. Let
θ ∈ ∆d ∩ Qd and let n → ∞ with nθ ←↩ n. Since the single point set
{θ} is closed, we deduce from the upper bound of Theorem 1.1 that P
almost surely,

a(θ) = lim
n→∞,nθ←↩n

1

n
log〈1(Sn=nθ)〉(n) ≤ −Iβ(θ),

bu using the notation a(θ) introduced in Lemma 4.2. To show the
lower bound, we can assume that Iβ(θ) < ∞, because otherwise there
is nothing to prove. Pick a small ε > 0. Using the lower bound of
Theorem 1.1, we have that P almost surely, for all large n,

〈1(|Sn
n
−θ|<ε)〉(n) ≥ e−(Iβ(θ)+o(1))n,

where o(1) → 0 when ε → 0. This in view of Lemma 4.3 imply that
a(θ) ≥ −Iβ(θ), completing the proof of (1.5).

To show (1.7), thanks to the concavity of the logarithm, we have that
for ξ ∈ Qd and nξ ←↩ n,

1

n
E [log Zn(0, nz)] ≤ 1

n
log E [Zn(0, nξ)]

=
1

n
log

(
en β2

2 P0

[
Sn = nξ

])
.

We conclude from the local central limit theorem. Finally, (1.6) follows
from (4.2) by letting ε → 0. According to Proposition 2.4 (iii), we let
n →∞ and obtain that Iβ(0) = 0. ¤
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5. A weak law of large numbers

In this section, we present a law of large numbers for biased random
walk. Firstly, in view of Theorem 1.1, Varadhan’s lemma ([7], [8])
implies that

Proposition 5.1. For every λ ∈ Rd, we have the convergence

lim
n→+∞

1

n
log

〈
eλ·Sn

〉(n)
= φβ(λ) Pa.s. and in L1(P) .

with

φβ(λ) = sup{λξ − Iβ(ξ) : ξ ∈ ∆d}.
The function φβ : Rd → R is convex nonnegative, φβ(0) = 0, and for
every permutation σ: φβ(λ1, . . . , λd) = φβ(±λσ(1), . . .± λσ(d)) .

We can also directly prove the above convergence by using the sub-
additivity.

We now state a Law of Large Numbers in dimension d = 1. Say (Xn)n∈N
is a nearest neighbour random walk on Z with mean a ∈ [−1, +1] if Xn

is the partial sum of iid variables with common distribution P(X1 =
+1) = 1+a

2
and P(X1 = −1) = 1−a

2
. We define a polymer measure

〈·〉(n,a) associated with (Xn) and (g(i, x)) in the same way as 〈·〉(n) does
to (Sn) and (g(i, x)).

Proposition 5.2. Assume that the function φβ is differentiable at λ ∈
R. Then the walk (Xn) satisfies a law of large numbers under the
polymer measure 〈·〉(n,tanh λ):

〈Xn

n
〉(n,tanh λ) → φ′β(λ) almost surely .

The exact value of φ′β(λ) is unknown. This very weak law of large
numbers is not a surprise for the symmetric random walk, since we

have then 〈Sn〉(n) law
= − 〈Sn〉(n) and thus E

[
〈Sn〉(n)

]
= 0.

Proof: The function φβ is the limit of the convex C1 functions fn(λ) =
1
n

log
〈
eλSn

〉(n)
. Therefore, since φβ is differentiable at λ (see Lemma 5.3),

almost surely

φ′β(λ) = lim f ′n(λ) = lim
1

n

〈
Sne

λSn
〉(n)

〈eλSn〉(n)
.

Define ψ(λ) = log cosh(λ). Then Mλ
n = eλSn−nψ(λ) is a martingale and

under the new probability

E(λ)
x

[
f(Sk, k ≤ n)

] def
= E0

[
f(Sk, k ≤ n)eλSn−nψ(λ)

]
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the nearest neighbour random walk S has mean tanh(λ). Let us denote
by S(λ) this walk; then almost surely

φ′β(λ) = lim
n→∞

1

n

〈
S(λ)

n

〉(n)
,

which is the desired result. ¤

Lemma 5.3. Assume the sequence fn of real valued, differentiable,
convex functions converge on an open interval I to a function f . Then
f is convex, and for every x such that f is differentiable at x, f ′n(x)
converges to f ′(x).

Proof: See Theorem 25.7 ([20], pp. 248). Although we only assume
the differentiability of f at one point, the argument in pages 249-250
still works. ¤

6. A scaling inequality involving the volume and the
fluctuation exponents: Proof of Theorem 1.4

The following lemma is elementary, but nevertheless gives useful lower
bounds on the variance:

Lemma 6.1. ([16], Lemma 2) Let X ∈ L2(Ω,F ,P) and assume that
G1, ...,Gk, ... is a sequence of independent sub-σ-fields of F . We have

Var(X) ≥
∞∑

k=1

Var
(
E [X | Gk]

)
.

Lemma 6.2. Denote by g
law
= N (0, 1) a standard real-valued Gaussian

variable. For any β > 0, there exists some constant cβ > 0 such that
for all u, v ≥ 0, we have

Cov
(

log(u+ eβg), log(v + eβg)
)
≥ cβ max

(
0, 1(u≤1,v≤1),

1

uv
1(u>1,v>1)

)
.

Proof: Denote by f(u, v) the above covariance. Since f(u, v) =
Cov

(
log(1+ 1

u
eβg), log(1+ 1

v
eβg)

)
, we get limu→∞ f(u, v) = 0. Let g̃ be
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an independent copy of g, we have

∂2f

∂u∂v
(u, v) = Cov

( 1

u + eβg
,

1

v + eβg

)

= E

[
1

(u + eβg)(v + eβg)
− 1

(u + eβg)(v + eβeg)
]

= E

[
eβeg − eβg

(u + eβg)(v + eβg)(v + eβeg)
]

= E

[
(eβeg − eβg)(u + eβeg)

(u + eβg)(u + eβeg)(v + eβg)(v + eβeg)
]

= E

[
(eβeg − eβg)eβeg

(u + eβg)(u + eβeg)(v + eβg)(v + eβeg)
]

=
1

2
E

[
(eβeg − eβg)2

(u + eβg)(u + eβeg)(v + eβg)(v + eβeg)
]
,(6.1)

where the last equality is obtained by interchanging g and g̃. Remark
that for u, v ≥ 0, limv→∞

∂f
∂u

(u, v) = 0, hence

f(x, y) =

∫ ∞

x

du

∫ ∞

y

dv
∂2f

∂u∂v
(u, v) ≥ 0.

Going back to (6.1), we remark that

inf
0≤u≤2,0≤v≤2

∂2f

∂u∂v
(u, v) = c ∈ (0,∞),

and for all u ≥ 1
2
, v ≥ 1

2
,

∂2f

∂u∂v
(u, v) =

1

2u2v2
E

[
(eβeg − eβg)2

(1 + 1
u
eβg)(1 + 1

u
eβeg)(1 + 1

v
eβg)(1 + 1

v
eβeg)

]
≥ c′

u2v2
.

From the above estimates, the desired conclusion follows. ¤

Proof of Theorem 1.4: Applying Lemma 6.1 to
{
σ(g(j, x)), 1 ≤ j ≤

n, x ∈ Zd
}
, we get

Var
(

log Zn(β)
)
≥

n∑
j=1

∑
x←↩j

Var
(
E [log Zn(β) | g(j, x)]

)
.

Fix j ≤ n and x ∈ Zd such that x ←↩ j. Denote by Dn(g, S)
def
= eβ

Pn
1 g(i,Si).

We have

Zn(β) = E0

[
Dn(g, S)1(Sj 6=x)

]
+E0

[
Dj−1(g, S)1(Sj=x)

]
eβg(j,x) Zn−j(x, g◦θj)

It follows that

log Zn(β) = log
(
Y +eβg(j,x)

)
+log

[
Zn−j(x, g◦θj)E0

[
Dj−1(g, S)1(Sj=x)

]]
,
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where P0

[
Sj = x

]
> 0 and

Y
def
=

E0

[
Dn(g, S)1(Sj 6=x)

]

Zn−j(x, g ◦ θj)E0

[
Dj−1(g, S)1(Sj=x)

]

is independent of g(j, x). Since Zn−j(x, g ◦ θj)E0

[
Dj−1(g, S)1(Sj=x)

]
is

also independent of g(j, x), we get

Var
(
E [log Zn(β) | g(j, x)]

)
= Var

(
E

[
log(Y + eβg(j,x)) | g(j, x)

])

= E

[∫

y>0

P (Y ∈ dy)
[
log(y + eβg(j,x))− E

[
log(y + eβg(j,x))

]]]2

=

∫ ∫
P (Y ∈ dy1)P (Y ∈ dy2) Cov

(
log(y1 + eβg(j,x)), log(y2 + eβg(j,x))

)

≥ cβ max
((

P (Y ≤ 1)
)2

,
(
E

[
Y −11(Y >1)

])2)

≥ cβ

4

(
E

[
1 ∧ 1

Y

])2

,

where the first inequality is due to Lemma 6.2. Recalling the definition
of Y , we remark that

1

Y
= e−βg(j,x) 〈1(Sj=x)〉(n)

1− 〈1(Sj=x)〉(n)
≥ e−βg(j,x) 〈1(Sj=x)〉(n),

which in view of Lemma 6.1 imply that

Var(log Zn) ≥ cβ

4

∑

j≤n,x∈Zd

(
E

[
1 ∧ (

e−βg(j,x) 〈1(Sj=x)〉(n)
)])2

.

Pick ζ ′ > ζ. Define Mn(g)
def
= maxj≤n,|x|≤n g(j, x). Cauchy-Schwarz’ in-

equality implies that

∑

j≤n,|x|≤nζ′

(
E

[
1 ∧ (

e−βg(j,x) 〈1(Sj=x)〉(n)
)])2

≥

( ∑
j≤n,|x|≤nζ′ E

[
1 ∧ (

e−βg(j,x) 〈1(Sj=x)〉(n)
)])2

∑
j≤n,|x|≤nζ′ 1

≥ n−1−ζ′d
( ∑

j≤n,|x|≤nζ′
E

[
1 ∧ (

e−Mn(g) 〈1(Sj=x)〉(n)
)])2

≥ n−1−ζ′d
( ∑

j≤n,|x|≤nζ′
E

[(
e−Mn(g) 1(Mn(g)≥0) 〈1(Sj=x)〉(n)

)])2

= n−1−ζ′d
( ∑

j≤n

E
[
e−Mn(g) 1(Mn(g)≥0) 〈1(|Sj |≤nζ′ )〉(n)

])2

.
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It follows from the standard extreme value theory [19] that if

Nn
def
= |{(j, x) : j ≤ n, |x| ≤ n}| = (n + 1)(2n + 1)d ³ nd+1

then,
Mn(g)√
2 log Nn

→ 1, almost surely.

We introduce the event

An =

{
1

2

√
2 log Nn ≤ Mn ≤ 2

√
2 log Nn

}
,

hence P (An) → 1. Let

Xn =
〈

1(supk≤n |Sk|≤nζ′ )

〉(n)

∈ (0, 1).

then Xn → 1 in probability thanks to the definition of ζ. Therefore,
Xn → 1 in L1(P), and E [Xn1An ] → 1. So, there exists n0 such that
for n ≥ n0,

E [Xn1An ] ≥ 1

2
.

Consequently, for n ≥ n0 and j ≤ n,

E

[
e−Mn(g) 1(Mn(g)≥0)

〈
1(|Sj |≤nζ′ )

〉(n)
]
≥ E

[
e−Mn(g)Xn1An

]

≥ exp(−2
√

2 log Nn)E [Xn1An ]

≥ 1

2
exp(−2

√
2 log Nn) .

Hence

Var(log Zn) ≥ cβ

16
n1−ζ′de−4

√
2 log Nn ,

which implies that 2χ ≥ 1− ζ ′d for all ζ ′ > ζ, ending the proof. ¤

7. A relationship between the volume exponent and the
shape of the rate function: Proof of Theorem 1.6

Proof of Theorem 1.6: Fix ν > 1
2

and γ such that 1 + α(γ − 1) >
ν. Using the concentration of measure inequality as in the proof of
Proposition 2.3, it is easy to show that almost surely for n large enough,
for all k ≤ n and z ←↩ k:∣∣∣log

〈
1(Sk=z)

〉(n) − E
[
log

〈
1(Sk=z)

〉(n)
]∣∣∣ ≤ 2nν .

Assume that k is even, so that 0 ←↩ k. Then, Markov property implies
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〈
1(Sk=z)

〉(n)
=

Zk(0, z)Zn−k(z; τkg)∑
x Zk(0, x)Zn−k(x; τkg)

≤ Zk(0, z)

Zk(0, 0)

Zn−k(z; τkg)

Zn−k(0; τkg)
.

Since Zn−k(z; τkg)
law
= Zn−k(0; τkg), we obtain

E
[
log

〈
1(Sk=z)

〉(n)
]
≤ E

(
log Zk(0, z)

)
− E

(
log Zk(0, 0)

)
.

By Lemma 4.2 (recalling a(θ) = −Iβ(θ)), we have E
(

log Zk(0, z)
)
≤

−kIβ( z
k
) + k p(β). On the other hand, by means of Proposition 2.4 (i)

and (ii), E
(

log Zk(0, 0)
)
≥ kp(β) − kν for all large even k. It follows

that

E
[
log

〈
1(Sk=z)

〉(n)
]
≤ −kIβ(z/k) + kν .

Hence, if |z| ≥ nγ, we get almost surely for large enough n,

log
〈
1(Sk=z)

〉(n) ≤ −kIβ(z/k) + kν + 2nν

≤ −c k |z/k|α + 3nν (by assumption on Iβ)

≤ −c k1−αnγα + 3nν (since |z| ≥ nγ)

≤ −c n1−α+γα + 3nν (since k ≤ n and α > 1)

≤ −c′ n1−α+γα .

Thus we have proven that for k even,

〈
1(|Sk|≥nγ)

〉(n) ≤ c′′ nd e−c′n1−α+γα

.

If k is odd, then

〈
1(|Sk|≥nγ)

〉(n) ≤ 〈
1(|Sk−1|≥nγ−1)

〉(n)

and we obtain the same type of upper bound.

It turns out that
〈
1(∃k≤n,|Sk|≥nγ)

〉(n) ≤
∑

k≤n

〈
1(|Sk|≥nγ)

〉(n) ≤ c′′ nd+1e−c′ n1−α+γα → 0

Therefore, P almost surely,

〈
1(maxk≤n |Sk|≤nγ)

〉(n) → 1 ,

hence γ ≥ ζ. We conclude by letting ν ↓ 1
2

and γ ↓ 1− 1
2α

. ¤
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