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Summary. Let Q(µ)
ε be absolutely continuous with respect to the Wiener measure

with density Dt = exp
( ∫ t

0
h(Bs)dBs − 1

2

∫ t

0
h2(Bs)ds

)
, where h = µ

x1l(|x|≥ε) and
ε > 0. When µ ≥ 1/2, we show that as ε → 0+, there exists a “penalization effect”
of the Wiener measure through the densities Dt such that the limit law does not
charge the paths hitting 0. The remaining case µ < 1/2 together with a more general
form of h are also studied.

Mathematics Subject Classification 2000. 60F05; 60J55.

1. Introduction.

Let h : R → R be a bounded measurable function. On the canonical space
Ω = C(R+,R), we consider the probabilities :

• W the Wiener measure.
• Q(h) the law of the process X(h), the unique strong solution of the equation (cf.

Zvonkin [21]):

(1.1) Xt = Bt +
∫ t

0

h(Xs)ds, t > 0,

where B is a one-dimensional Brownian motion starting from 0.
- Q̂(h) the law of the process:

(1.2) B̂
(h)
t = Bt −

∫ t

0

h(Bs)ds, t > 0.

According to Girsanov’s theorem:
• The probability law Q(h)

|Ft
is absolutely continuous with respect to W|Ft

with
density ((Ft) being the natural filtration of the canonical process):

(1.3) D(h)
t = exp

( ∫ t

0

h(Bs)dBs − 1
2

∫ t

0

h2(Bs)ds
)
, t > 0.
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• Under Q(h), B̂(h) is a Brownian motion. Moreover,

(1.4) for every t, F B̂(h)

t = FB
t ,

where FX
t denotes the natural filtration of a process X. (see e.g. Revuz and

Yor [13, pp. 367])

When h is not bounded, these results are no more true (and even meaningless).
Nevertheless, for some functions h, the process B̂(h) makes sense. For example, if
h has a singularity at 0, we can define

∫ t

0
h(Bs)ds

def= limε→0+

∫ t

0
h(Bs)1l(|Bs|≥ε)ds

when the limit exists. For instance, this is the case for h(x) = sgn(x)|x|−α for
α < 3/2, due to the Hölder continuity of Brownian local times. In that case, we
denote the limit by p.v.

∫ t

0
h(Bs)ds as Cauchy’s principal values. We refer to Biane

and Yor [2], Yor [20] and Yor [19, Chap. 10] for studies and references on principal
values.

In this paper, we shall concentrate on the case h(x) = µ
x , where µ ∈ R\{0}

denotes some fixed parameter. We firstly consider µ = 1. Let

B̂t = Bt − p.v.
∫ t

0

ds

Bs
= lim

ε→0
B̂

(hε)
t ,

where hε(x) = 1
x1l(|x|≥ε). Contrarily to the bounded case (see (1.4)), the filtration

of B̂ is strictly included in the filtration of B (see [2,15]). An open problem is to
characterize this loss of information (see Yor [19, Chap. 17]). Instead of discussing
this difficult problem here, we consider the following question:

For h(x) = 1
x , what can we say about (1.1) and (1.3)?

It is well known that (1.1) does not admit uniqueness in law, since the law P(3)
0

of the 3-dimensional Bessel process (BES(3)) is a solution as well as the law P̂(3)
0 of

the opposite of a BES(3). Nevertheless, we can think that there exists a probability
Q(h) (singular with respect to W) which morally satisfies:

Q(h)
|Ft

= exp
( ∫ t

0

h(Bs)dBs − 1
2

∫ t

0

h2(Bs)ds
)
W|Ft

, t > 0,

This density is meaningless, and we shall study the law Q(µ)
ε of the solution of (1.1)

with h(x) = µ
x1l(|x|≥ε), with µ ∈ R\{0} and ε > 0. We obtain (as expected!) the

following

Theorem 1.1 (µ = 1). When ε → 0, Q(1)
ε converges to 1

2P
(3)
0 + 1

2 P̂
(3)
0 , where P(3)

0

denotes the law of a 3-dimensional Bessel process (R3(t), t ≥ 0) starting from 0, and

P̂(3)
0 denotes the distribution of (−R3(t), t ≥ 0).

Remark (M. Yor). Let h(x) = 1
x . The family of the laws of all solutions of (1.1)

is exactly
{
aP(3)

0 + (1− a)P̂(3)
0 , 0 ≤ a ≤ 1

}
.

We give a first proof of Theorem 1.1 in Section 2 by using the absolute continuity
(1.3): dQ(1)

ε |Ft = D(hε)
t dP|Ft , and by studying carefully the density term D(hε)

t . The
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proof shows that the penalization effect of the density D(hε)
t is to prevent the paths

from hitting 0 when ε → 0. This should be compared with the polymer measure
which is defined as the limit of the Wiener measure in Rd with densities preventing
the paths from self intersecting. See [3] and [5] for some related references.

Another proof of Theorem 1.1 will be given in Section 3 based on the one-
dimensional diffusion theory, and we shall remark that the penalization parameter
µ ∈ R plays an important role. More precisely, we summarize the different cases as
follows:

• if µ ≥ 1
2 , the above phenomenon of penalization of 0 holds, see Proposition 3.1.

• if − 1
2 < µ < 1

2 , Q(µ)
ε converges to that of a symmetric Bessel process of di-

mension δ = 2(1 + µ) in the terminology of Watanabe [17, 18], see Proposition
3.2.

• if µ = − 1
2 , this case is studied in Section 4 by using Krein’s spectral theory.

See Theorem 4.1 for the behaviour of the solution of (1.1).

• if µ < − 1
2 , there exists a stationary measure of the corresponding diffusion, see

Proposition 3.3.

Finally, we consider some general form of h in Section 5 by using Girsanov’s
transform.

Before closing this introduction, we would like to say that the proof of Theorem
1.1 presented in Section 2 is much more complicated than that in Section 3, but
this proof, based on the decomposition of Brownian path, clearly shows where the
“penalization effect” comes from, and also brings some by-product such as Lemma
2.3 and Corollary 2.1.

Throughout this paper, we denote by Rδ a Bessel process starting from 0, of
dimension δ > 0, and by P(δ)

0 its law. For a process X, we denote lat (X) its local
time process (when it exists) defined by:

lat (X) = lim
ε→0

1
2ε

∫ t

0

1(|Xs−a|≤ε)ds.

Acknowledgements: We are very grateful to Professor Marc Yor for helpful dis-
cussions and for references.

2. Proof of Theorem 1.1: Penalization through the densi-
ties.

We shall prove that for any continuous bounded functional F on C([0, t],R),

Q(1)
ε

(
F

)
→ 1

2
P(3)

0

(
F

)
+

1
2
P̂(3)

0

(
F

)
, ε → 0.

We prove this only for t = 1, the general t > 0 follows by using the same method
or from the scaling property. The proof consists of four steps:
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Step 1: On F1, Q(1)
ε is absolutely continuous with respect to W with density:

D(ε)
1 = exp

(∫ 1

0

dBs

Bs
1l(|Bs|≥ε) −

1
2

∫ 1

0

ds

B2
s

1l(|Bs|≥ε)

)

=
(

1 ∨ |B1|
ε

)
exp

(
− 1

2ε
lε1(|B|)

)
.(2.1)

To obtain (2.1), we have from the Itô-Tanaka formula that

|Bt| ∨ ε = ε +
∫ t

0

d(|Bs|)1l(|Bs|≥ε) +
1
2
lεt(|B|),

log(|Bt| ∨ ε) = log(ε) +
∫ t

0

dBs

Bs
1l(|Bs|≥ε) −

1
2

∫ t

0

ds

B2
s

1l(|Bs|≥ε) +
1
2ε

lεt(|B|).

And (2.1) follows. tu

Step 2: Decomposition of the Brownian path (see [13, Exercise (XII.3.8)]): Let
g

def= sup{t ≤ 1 : Bt = 0}. Then,
• (b(s) def= 1√

g Bgs, s ≤ 1) is a standard Brownian bridge,

• (m(s) def= 1√
1−g

|Bg+(1−g)s|, s ≤ 1) is a standard Brownian meander,
• b, m, g and sgn(B1) are independent.

We shall now express (2.1) in terms of b, m, g, sgn(B1). On one hand, we need
to express F (B) in terms of these processes. This is the content of the following
lemma:

Lemma 2.1. Let C0([0, 1],R) def= {ω continuous on [0, 1] : ω(0) = ω(1) = 0}. To any
measurable functional F on C([0, 1],R), we can associate a measurable functional F̃
on C0([0, 1],R)× [0, 1]× C([0, 1],R) such that:

i) F̃ (ω; 0; ω′) = F (ω′)
ii) The following equality holds :

(2.2) F ((Bs)s≤1) = F̃ ((bs)s≤1; g ; sgn(B1)(ms)s≤1).

Moreover, if F is continuous, then:

t → F̃ (ω; t;ω′) is continuous at t = 0.

Proof of Lemma 2.1. Pick up (ω, t, ω′) ∈ C0([0, 1],R) × [0, 1] × C([0, 1],R), we
define

F̃ (ω, t, ω′) def= F (ω |t |ω′),
where ω |t |ω′ is the continuous path defined by:

(ω |t |ω′)(s) def=
{√

t ω( s
t ), if s ≤ t√

1− t ω′( s−t
1−t ), if t < s ≤ 1.
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Then (i) and (ii) follow, and it is not difficult to prove that for fixed ω, ω′, t →
(ω | t |ω′) is continuous at t = 0. tu

On the other hand, we have:

lε1(|B|) =
√

1− g l
ε√
1−g

1 (m) +
√

g l
ε√
g

1 (|b|).
Thus,

Q(1)
ε

(
F

)
= E

[
F̃ ((bs); g; sgn(B1)(ms))

(
1 ∨

√
1− g m1

ε

)

exp(−
√

g

2ε
l

ε√
g

1 (|b|)) exp(−
√

1− g

2ε
l

ε√
1−g

1 (m))
]

=
1
2
Q(1)

ε,+

(
F

)
+

1
2
Q(1)

ε,−
(
F

)
,

where Q(1)
ε,±

(
F

)
def= Q(1)

ε

(
F

∣∣ sgn(B1) = ±1
)
. We shall now study the term Q(1)

ε,+, the

other term Q(1)
ε,− follows from symmetry.

Step 3: Conditioning by g: We recall that g is arcsine distributed. Then,

Q(1)
ε,+

(
F

)
=

1
π

∫ 1

0

dx√
x(1− x)

E
[
F̃ (b; x; m)

(
1 ∨

√
1− xm1

ε

)

exp(−
√

x

2ε
l

ε√
x

1 (|b|)) exp(−
√

1− x

2ε
l

ε√
1−x

1 (m))
]

=
1
π

∫ 1
ε2

0

dy√
y(1− ε2y)

E
[
exp

(−
√

y

2
l

1√
y

1 (|b|)) Aε
F (y, b)

]
,(2.3)

where for any path ω ∈ C([0, 1] → R),

(2.4) Aε
F (y, ω) def= E

[
F̃ (ω; ε2y;m)(ε ∨

√
1− ε2y m1) exp(−

√
1− ε2y

2ε
l

ε√
1−ε2y

1 (m))
]
,

where the expectation is taken with respect to m. The asymptotic behaviour of Aε
F

is given by:

Lemma 2.2. Let y > 0 and ω ∈ C([0, 1],R). Then as ε → 0,

Aε
F (y, ω) →

√
π

2
E

[
F̃ (ω; 0; R3)

]
E

[
exp(−1

2
l1∞(R3))

]

=
√

π

8
E

[
F (R3)

]
.(2.5)

Proof of Lemma 2.2: From Imhof [6]’s absolute continuity between the law of m
and R3,

Aε
F (y, ω) =

√
π

2
E

[
F̃ (ω; ε2y;R3) (

ε

R3(1)
∨

√
1− ε2y) exp(−

√
1− ε2y

2ε
l

ε√
1−ε2y

1 (R3))
]
.
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Let us denote

Bε
F (y, ω) = E

[
F̃ (ω; 0; R3) exp(−

√
1− ε2y

2ε
l

ε√
1−ε2y

1 (R3))
]
.

Then,

Aε
F (y, ω)−

√
π

2
Bε

F (y, ω) → 0, ε → 0.

This follows from the a.s. convergence of

F̃ (ω; ε2y; R3)(
ε

R3(1)
∨

√
1− ε2y) → F̃ (ω; 0; R3), ε → 0,

(see Lemma 2.1) and the integrability of 1/R3(1) (F̃ is bounded). Now,

Bε
F (y, ω) = E[F̃ (ω; 0; R3) exp(−1

2
l11−ε2y

ε2
(R(ε)

3 ))]

where R
(ε)
3 (t) =

√
1−ε2y

ε2 R3

(
ε2

1−ε2y t
)

is a 3-dimensional Bessel process. Since ε2

1−ε2y

goes to 0 as ε → 0, it follows from the ergodicity of the scaling transformation that
R3 and R

(ε)
3 are asymptotically independent, i.e.:

(R3, R
(ε)
3 )

(d)−→ (R3, R̃3), ε → 0,

where R̃3 is an independent copy of R3. See e.g. [13, Exercise (XIII.1.17)].
It follows that

Bε
F (y, ω) → E

[
F̃ (ω; 0; R3)

]
E

[
exp(−1

2
l1∞(R̃3))

]
, ε → 0,

and (2.5) follows from F̃ (ω; 0; R3) = F (R3) and E
[
exp(− 1

2 l1∞(R3))
]

= 1/2. tu

Step 4: convergence of Q
(ε)
+ :

Lemma 2.3. We have

∫ ∞

0

dy√
y
E

[
exp(−

√
y

2
l

1√
y

1 (|b|))
]

< ∞.

Proof: We write (2.3) for F ≡ 1. Then,

1 =
1
π

∫ ∞

0

∫

C([0,1]→R)

1(y≤ 1
ε2

)

dy√
y(1− ε2y)

P0,0(db) exp(−
√

y

2
l

1√
y

1 (|b|)) Aε
F (y, b),

where P0,0 denotes the law of the Brownian bridge. The function in the integral

converges dydP0,0(db) a.s. to
√

π
8y exp(−

√
y

2 l
1√
y

1 (|b|)).
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By Fatou’s lemma,

1√
8π

∫ ∞

0

∫

C

dy√
y
P0,0(db) exp(−

√
y

2
l

1√
y

1 (|b|)) ≤ lim inf
ε→0

Q(ε)(1) = 1,

as desired. tu

In order to pass to the limit in the integral (2.3), we shall decompose the

integral in
∫ η

ε2

0

. . . +
∫ 1

ε2

η

ε2

. . ., where η ∈]0, 1[ is a fixed number whose value will be

determined later. Let us denote

(2.6) Φ1(ε, η) =
1
π

∫ η

ε2

0

dy√
y(1− ε2y)

E
[
exp(−

√
y

2
l

1√
y

1 (|b|))Aε
F (y, b)

]

where Aε
F is defined by (2.4) and for all y, b, |Aε

F (y, b)| ≤ K for some constant K
(since E[m1] < ∞). Using Lemmas 2.2 and 2.3, we deduce from the dominated
convergence theorem that (η being fixed)

Φ1(ε, η) → C E
[
F (R3)

]
, ε → 0,

where

(2.7) C =
1√
8π

∫ ∞

0

dy√
y
E

[
exp(−

√
y

2
l

1√
y

1 (|b|))
]
.

It remains to choose η such that the remaining term is arbitrarily small when ε → 0.
Let

Φ2(ε, η) =
1
π

∫ 1
ε2

η

ε2

dy√
y(1− ε2y)

E
[
exp(−

√
y

2
l

1√
y

1 (|b|)) Aε
F (y, b)

]
.

Since ε ∨
√

1− ε2y m1 ≤ ε +
√

1− ε2y m1 and F̃ ≤ K ′, we deduce from (2.4) that

Φ2(ε, η) ≤ K ′
{∫ 1

ε2

η

ε2

dy√
y
E

[
exp(−

√
y

2
l

1√
y

1 (|b|))
]
E

[
m1

]
+ ε

∫ 1
ε2

η

ε2

dy√
y(1− ε2y)

}
.

Now,

ε

∫ 1
ε2

η

ε2

dy√
y(1− ε2y)

= 2
∫ √

1−η

0

dz√
1− z2

→ 0, η → 1.

Let α > 0 be arbitrarily small, we can choose η such that:

K ′ε
∫ 1

ε2

η

ε2

dy√
y(1− ε2y)

≤ α

2
.

Thanks to Lemma 2.3, there exists ε0 such that for ε ≤ ε0,

K ′
∫ 1

ε2

η

ε2

dy√
y
E

[
exp(−

√
y

2
l

1√
y

1 (|b|))
]
E

[
m1

]
≤ α

2
.
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Thus, we have obtained:

Q(1)
ε,+

(
F

)
→ C E

[
F (R3)

]
, ε → 0,

where C is given by (2.7) and necessarily C = 1.
In the same way,

Q(1)
ε,−

(
F

)
→ E[F (−R3)], ε → 0,

proving the theorem. tu

The following consequence may have an independent interest:

Corollary 2.1. We have
∫ ∞

0

dy√
y
E[exp(−

√
y

2
l

1√
y

1 (|b|))] =
√

8π.

3. Convergences in law.

In this section and the forthcoming one, we shall consider a family of processes
(Xε(t), t ≥ 0), which are the unique (strong) solutions of the following equations:

(3.1) Xε(t) = B(t) + µ

∫ t

0

ds

Xε(s)
1l(|Xε(s)|>ε).

We shall simply write (X(t) ≡ X1(t), t ≥ 0) for the solution of (3.1) corresponding
to ε = 1. By scaling, we have

(3.2) (Xε(t), t ≥ 0) law= (εX(t/ε2), t ≥ 0)

We are interested in the convergence in law of Xε as ε → 0. When µ = 1, we have
shown in Theorem 2.1 how the penalization prevents Xε from hitting the origin, this
fact holds for all µ ≥ 1/2. We shall also show that when the penalization parameter
µ is small, the limit process can hit the origin.

Lemma 3.1. Assume µ > −1/2. As ε → 0, we have

∣∣∣Xε(·)
∣∣∣ (d)−→ Rδ(·),

where Rδ denotes a Bessel process of dimension δ
def= 1 + 2µ > 0 starting from 0,

and
(d)−→ means the convergence in law on C(R+ → R) endowed with the topology

of uniform convergence on each compact interval.

Proof. Define Yε(t)
def= X2

ε (t), for t ≥ 0. Using Itô’s formula, the process Yε satisfies

(3.3)





Yε(t) = 2
∫ t

0

√
Yε(s) dW (s) +

∫ t

0
ds

(
1 + 2µ1l(Yε(s)>ε2)

)
,

Yε(t) ≥ 0,

t ≥ 0,
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with a Brownian motion W , which a priori depends on ε. It is elementary to verify
that (3.3) admits the uniqueness in law (e.g. by using Zvonkin’s method [21] and
then using Engelbert and Schmidt’s criteria, see Karatzas and Shreve [7, Chap.
5.5]). Hence, it suffices to show that the solutions of (3.3) converge in law to R2

δ(·).
But this can be done in a standard way, see e.g. the proof of Stroock and Varadhan
[16, Theorem 11.3.3]. The only remaining fact to verify is that

lim
ε→0

E
∫ t

0

ds1l(Yε(s)≤ε2) = 0.

To this end, we use the comparison theorem (cf. [13]) to the two diffusions Yε and
R2

δ′ which satisfies the following equation:




R2
δ′(t) = 2

∫ t

0
Rδ′(s) dW (s) + δ′ t,

Rδ′(t) ≥ 0,

t ≥ 0,

with the dimension 0 < δ′ < min(1, 1 + 2µ). It follows that almost surely for all
t ≥ 0, Yε(t) ≥ R2

δ′(t). It follows that

E
∫ t

0

ds1l(Yε(s)≤ε2) ≤ E
∫ t

0

ds1l(Rδ′ (s)≤ε) → 0, ε → 0,

completing the proof. tu

Remark 3.1. To our best knowledge, the comparison theorems for two diffusions
often require some regularities of drift terms (at least one of the two drift terms),
this is why we are not able to deduce the convergence of Yε directly from (3.3).

Proposition 3.1. Assume that µ ≥ 1/2. The law of Xε(·) converges to 1
2Qδ + 1

2 Q̂δ,
where Qδ denotes the law of Rδ a Bessel process starting from 0, of dimension

δ
def= 1 + 2µ ≥ 2, and Q̂δ denotes the law of −Rδ(·).

Proof. Fix a small η > 0. Since the Bessel process Rδ does not visit the origin after
time 0 (δ ≥ 2), we deduce from Lemma 3.1 that (Xε(s), η ≤ s ≤ t) will keep the
same sign as Xε(η), with probability approaching 1 when ε → 0. This fact together
with Lemma 3.1 imply that the process (Xε(s), η ≤ s ≤ t) will converge in law to
(URδ(s), η ≤ s ≤ t), as ε → 0, where U is independent of Rδ and U

law= sgn(Xε(η)).
The symmetry implies that U is a (symmetric) Bernoulli variable and the rest of
the proof is completed by letting η → 0. tu

Remark 3.2. Proposition 3.1 admits a natural generalization to the multidimen-
sional case: By considering a Lipschitz drift term which coincides with µx

|x|2 when
|x| ≥ ε, we can prove in the same way that the associated diffusion converges in
law to Ud(du)×Qδ(u), where Ud denotes the uniform probability measure on the
sphere {u ∈ Rd : |u| = 1}, and Qδ(u) the law of the process uRδ.

When µ < 1/2, the limit process can hit 0. Firstly, we have
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Proposition 3.2 (− 1
2 < µ < 1

2). Let δ ≡ 1 + 2µ ∈ (0, 2). As ε → 0, the law Q(µ)
ε

converges to that of the continuous process (Uδ(t), t ≥ 0), which is determined by
the following time-change:

(3.4) Uδ(t) = 2α sgn(B(ρ−1(t))
∣∣B(ρ−1(t))

∣∣1/(2α)
,

with α
def= 1

2 − µ ∈ (0, 1) and ρ−1 the inverse of ρ:

(3.5) ρ(t) def=
∫ t

0

|B(s)| 1α−2ds, t ≥ 0.

Remark 3.3. According to the terminology of Watanabe [17, 18], Uδ is a symmetric
Bessel process of dimension δ. More precisely, Uδ is the unique diffusion on R such
that Uδ(0) = 0 and
(i) For every f ∈ C2(R) with compact support and vanishing on a neighborhood

of 0, the process f(Uδ(t))−
∫ t

0
ds

(
1
2f ′′(Uδ(s)) + (δ−1)

2
f ′(Uδ(s))
Uδ(s)

)
is a martingale.

(ii) Almost surely for t > 0,
∫ t

0
1l{0}(Uδ(s)) ds = 0.

(iii) The function
∫ ·
0
|y|1−δdy is a scale function of Uδ.

We can verify that the process Uδ defined via (3.4) and (3.5) satisfies the prop-
erties (i)–(iii). For more details on the skew and bilateral Bessel processes, we refer
to Watanabe [17,18].

Proof. The proof follows from Feller’s time change for one-dimensional diffusion.
Recall (3.2). Denote by S the scale function of the diffusion X:

(3.6) S(x) def=
∫ x

0

S′(y)dy
def=

∫ x

0

(
1l(|y|≤1) + 1l(|y|>1)|y|−2µ

)
dy, x ∈ R.

We have

(3.7) Z(t) def= S(X(t)) =
∫ t

0

S′(X(s))dB(s) =
∫ t

0

σ(Z(s))dB(s),

where σ(x) def= S′(S−1(x)), and S−1(·) denotes the inverse function of S(·). Recall
that α = 1

2 − µ. It is elementary to obtain that

εS−1(zε−2α) → sgn(z)
(
2α |z|)1/(2α)

, ε → 0, z ∈ R,(3.8)

σ(x) ∼ (
2α |x|)1−1/(2α)

, |x| → ∞.(3.9)

In view of scaling, we write
(
Xε(t), t ≥ 0

)
law=

(
εS−1

(
ε−2α ε2αZ(t/ε2)

)
, t ≥ 0

)
,

therefore it suffices to show that

(3.10)
(
ε2αZ(t/ε2), t ≥ 0)

(d)−→
(
(2α)2α−1 B(ρ−1(t)), t ≥ 0

)
, ε → 0.

10



To this end, applying Dubins-Schwarz’ representation theorem to the continuous
martingale Z(t) shows that for some Brownian motion W , we have

Z(t) = W (ψ−1(t)),

where ψ−1 denotes the inverse of ψ, and

ψ(t) def=
∫

R
L(t, x)σ−2(x)dx,

with L(t, x) the local times of W . Using the scaling property, we obtain:

(3.11)
(
ε2αZ(t/ε2), t ≥ 0

)
law=

(
W (ψ−1

ε (t)), t ≥ 0
)
,

where ψ−1
ε denotes the inverse of ψε, and

ψε(t)
def=

∫

R
L(t, x)ε2−4ασ−2(x

/
ε2α) dx.

Using (3.9), we obtain that uniformly on each interval [0, T ] for T > 0,

ψε(t) → (2α)
1
α−2

∫

R
L(t, x) |x| 1α−2 dx, 0 ≤ t ≤ T.

Applying this observation to (3.11), we obtain:

(
ε2αZ(t/ε2), t ≥ 0

)
(d)−→

(
B(ρ−1(t(2α)2−1/α)), t ≥ 0

)
, ε → 0,

showing (3.10) by using the scaling property. tu

Proposition 3.3. Assume that µ < −1/2. For t > 0,

Xε(t)
ε

(d)−→ |1 + 2µ|
4|µ|

(
1l(|x|≤1) + |x|2µ 1l(|x|>1)

)
dx, ε → 0.

Proof. We use again (3.6)–(3.9). Observe that the diffusion Z is on its natural
scale, and its speed measure has a finite mass on R. It turns out (see e.g. Rogers
and Williams [14, Theorem V.54.5]) that

Z(u)
(d)−→π(dx), u →∞,

where π(dx) def= σ−2(x)dx/
∫
R σ−2(y)dy is the stationary measure of Z. Now, observe

that
Xε(t)

ε

law= X1(t/ε2) = S−1(Z(t/ε2)),

yielding the desired result after elementary calculations. tu
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The case µ = −1/2 is discussed in the next section.

4. Krein’s spectral theory: Application to the case µ = −1/2.

The main result of this section is the following:

Theorem 4.1. Let µ = −1/2 and fix v > 0. Recall that Xε denotes the solution
of (3.1). As ε → 0, we have

√
log(1/ε) sup

0≤s≤v

∣∣Xε(s)
∣∣ (d)−→

√
v

e
,

log |Xε(v)|
log(1/ε)

(d)−→ −U,

where e and U are respectively exponential distributed with parameter 1 and uni-
form on [0, 1].

Before we present the proof, we recall some facts on Krein’s correspondence,
see Dym and McKean [4], Kotani and Watanabe [10] and Kasahara [8] together
with their references for details. Let M be the class of functions m : [0,∞] → [0,∞]
which are nondecreasing, right-continuous and m(∞) = ∞. Put m(0−) = 0 and let
` = sup{x : m(x) < ∞} (` = 0 if m(x) ≡ ∞). When ` > 0, consider the following
integral equations:

φ(x, λ) = 1 + λ

∫ x

0

dy

∫ y+

0−
φ(z, λ)dm(z), 0 ≤ x < `,(4.1)

ψ(x, λ) = x + λ

∫ x

0

dy

∫ y+

0−
ψ(z, λ)dm(z), 0 ≤ x < `,(4.2)

h(λ) def=
∫ `

0

dx

φ2(x, λ)
= lim

x→∞
ψ(x, λ)
φ(x, λ)

.(4.3)

When m(x) ≡ ∞, we define h(λ) ≡ 0. The correspondence m(x) ↔ h(λ) is called
Krein’s correspondence and h is called the characteristic function of m. When
m(x) 6≡ 0, h 6≡ ∞ and h can be represented as follows:

(4.4) h(λ) = c +
∫ ∞

0−

dν(t)
λ + t

,

where c ≥ 0 denotes the left endpoint of the support of m, and ν(dt) is a nonnegative
measure on [0,∞) such that

∫∞
0−

dν(t)
1+t < ∞. We call dν(t) the spectral measure. Let

H def= {h : of form (4.4)} ∪ {h ≡ 0} ∪ {h ≡ ∞}.
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Theorem (Krein [11], Kasahara [8]). Krein’s correspondence

m ∈M ←→ h ∈ H
is one to one and onto. Let mn ∈ M ←→ hn ∈ H. We denote by φn and ψn the
solutions of (4.1)-(4.2) related to mn. The following three assertions are equivalent:
(i) As n →∞, mn(x) → m0(x) at each continuity point x ∈ [0,∞) of m0(x).
(ii) As n →∞, (φn(x, λ), ψn(x, λ)) → (φ0(x, λ), ψ0(x, λ)) for x ∈ [0,∞) and λ > 0.
(iii) As n →∞, hn(λ) → h0(λ) for λ > 0.

We shall make use of the following scaling property:

Lemma 4.1. Let m(x) ←→ h(λ) be in Krein’s correspondence. For a, b > 0, we
define m̃(x) = b

am(x
a ), and denote by h̃, ν̃(t), φ̃, ψ̃ the associated characteristic

function, the spectral measure and the fundamental solutions. We have for all
x, t, λ ≥ 0,

(4.5) h̃(λ) = a h(bλ), ν̃(t) =
a

b
ν(bt), φ̃(x, λ) = φ(

x

a
, bλ), ψ̃(x, λ) = a ψ(

x

a
, bλ).

When m(x) < ∞, the functions φ(x, ξ), ψ(x, ξ) are analytic on ξ, and the scaling
property can be extended to all ξ ∈ C.

Krein’s theory together with Kotani and Watanabe’s extension are very pow-
erful to treat the real-valued diffusion of generator d

dM
d
dz (here, dM(z) is a Radon

measure on R). See Bertoin [1] for a nice application to Brownian principal additive
functionals. See also Kasahara et al. [9]. Here, we study a particular example of
diffusion, and the method can be applied to a more general class of diffusions.

Proposition 4.1. Let Z be a diffusion on R of generator 1
2σ2(z) d2

dz2 with σ(z) =
1 ∨

√
(2|z| − 1)+ for z ∈ R (cf. (3.12)–(3.13) with µ = −1/2). As t →∞, we have

log t

t
sup

0≤s≤t

∣∣Z(s)
∣∣ (d)−→ 1

e
,(4.6)

log |Z(t)|
log t

(d)−→ U,(4.7)

where e and U denote respectively the exponential distribution with parameter 1
and the uniform distribution on [0, 1].

Proof. We consider the two measures m1,m2 ∈ M determined by m1(dx) =
2σ−2(x)dx and m2(dx) = 2σ−2(−x)dx (x ≥ 0). Since m1 = m2 by the symmetry of
σ, we can only consider m ≡ m1. Consider Krein’s correspondence h(λ) ←→ m(x)
and let (φ(x, λ), ψ(x, λ)) and dν(t) be the fundamental solutions and the spec-
tral measure respectively. We define the extensions of φ(·, λ) and ψ(·, λ) on R by:
φ(z, λ) def= φ(|z|, λ) and ψ(z, λ) = sgn(z) ψ(|z|, λ) for z ∈ R. Put

u+(z, λ) = φ(z, λ)− 1
h(λ)

ψ(z, λ), z ∈ R, λ > 0,

u−(z, λ) = φ(z, λ) +
1

h(λ)
ψ(z, λ),

gλ(z, y) def= gλ(y, z) def=
1
2

h(λ)u+(z, λ)u−(y, λ), z ≥ y ∈ R.

13



We refer to Kotani and Watanabe [10] for details. Therefore gλ is the density of
the resolvent operator of Z with respect to its speed measure. We denote by p(t, y)
the density of the law of Z(t) with respect to the speed measure: P

(
Z(t) ∈ dz

)
=

p(t, z)2σ−2(z)dz. We have p(t, z) = p(t, |z|) and for x ≥ 0,

(4.8)
∫ ∞

0

e−λt2p(t, x)dt = 2gλ(0, x) = h(λ)u+(x, λ) =
∫ ∞

0−

φ(x,−ξ)
λ + ξ

dν(ξ),

where the last equality follows from the following spectral representation:

(4.9) h(λ)u+(x ∨ y, λ)φ(x ∧ y, λ) =
∫ ∞

0−

φ(x,−ξ)φ(y,−ξ)
λ + ξ

dν(ξ), x, y ≥ 0,

see Dym and McKean [4, pp. 176]. Inverting the Laplace transform of (4.8), we get

(4.10) p(t, x) =
1
2

∫ ∞

0−
e−t ξ φ(x,−ξ) dν(ξ), t > 0, x ≥ 0.

The above integral is absolutely convergent, since we have e.g.
∫∞
0−

φ2(x,−ξ)
λ+ξ dν(ξ) <

∞ by taking x = y in (4.9).

Now, we are going to prove (4.6) and (4.7). Let H(r) def= inf{t > 0 : |Z(t)| > r}
for r > 0. Observe that (e−λtφ(Z(t), λ), 0 ≤ t ≤ H(r)) is a bounded continuous
martingale. Recall that φ(z, λ) = φ(|z|, λ). The optional stopping time theorem
yields

(4.11) E exp
(
− ε λ H(

r

a
)
)

=
1

φ( r
a , ελ)

,

where we take a ≡ a(ε) def= ε log(1/ε) and ε > 0 is assumed to be small. It remains
to study the behaviour of φ( r

a , ελ) when ε → 0. Define mε(x) = ε
am(x

a ), and
hε, dνε(t), φε, ψε in the obvious way. Observe that

mε(x) → m0(x) = 1, x > 0, ε → 0,

where m0(x) def= 1l(x≥0) (m0(0−) = 0). It is immediate to obtain that m0(x) ←→
h0(λ) = 1/λ, and φ0(x, λ) = 1 + λx, ψ0(x, λ) = x for x, λ > 0. Using Lemma 4.1
and Kasahara’s continuity theorem, we have that for x > 0 and λ > 0,

φ(
x

a
, ελ) = φε(x, λ) → 1 + λx, ε → 0,

ψ(
x

a
, ελ) =

1
a
ψε(x, λ) ∼ x

ε log(1/ε)
, ε → 0,

a h(ελ) = hε(λ) → 1
λ

, ε → 0.

Finally, we apply (4.4) to hε and dνε (with c = 0 in (4.4)). By considering hε(λ)−
hε(1), we deduce from (4.14) that as ε → 0,

(4.12)
1

hε(1)
1l(s≥0)

1 + s
dνε(s) weakly converges to the Dirac measure at 0,
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see e.g. Dym and McKean [4, pp.179].
Going back to (4.11), we obtain that for fixed r > 0 and λ > 0

εH(
r

ε log(1/ε)
)

(d)−→ r e, ε → 0.

Inverting the above convergence, we obtain (4.6).
To prove (4.7), fix 0 < c < 1 and t0 > 0. We have from (4.10) that

P
(
|Z(t0/ε)| < ε−c

)
=

∫ ε−c

0

dx2σ−2(x)
∫ ∞

0−
e−t0ξ/ε φ(x,−ξ) dν(ξ)

=
2ε

a

∫ ε−c

0

dxσ−2(x)
∫ ∞

0−
dνε(s)e−st0 φε(ax,−s),(4.13)

by using Lemma 4.1 and the change of variable ξ = sε, with a
def= ε log(1/ε). Admit-

ting for the moment that uniformly on y ∈ [0, 1],

(4.14)
∫ ∞

0−
dνε(s)e−st0 φε(y,−s) → 1, ε → 0.

Then, it follows from (4.13) that

P
(
|Z(t0/ε)| < ε−c

)
=

2ε

a

∫ ε−c

0

dxσ−2(x)(1 + o(1)) = c + o(1), ε → 0,

showing the desired convergence in law (4.7) since 0 < c < 1 is arbitrary.
It remains us to prove (4.14). Firstly for some large but fixed K > 0, we deduce

from Cauchy-Schwarz’ inequality that (recalling from (4.4) that hε(1) =
∫∞
0−

dνε(s)
1+s )

∫ ∞

K+

e−st0
∣∣φε(y,−s)

∣∣ dνε(s) ≤ sup
s≥K

(
e−st0(1 + s)

)( ∫ ∞

0−

φ2
ε(y,−s)
1 + s

dνε(s)
)1/2 (

hε(1)
)1/2

= sup
s≥K

(
e−st0(1 + s)

)
h3/2

ε (1) u+,ε(y, 1)φε(y, 1),

≤ sup
s≥K

(
e−st0(1 + s)

)
h3/2

ε (1) φε(1, 1),(4.15)

where the equality is due to the analogue form of (4.9) for dνε, and the last inequality
follows from the facts that the function x → u+,ε(x, 1) def= φε(x, 1) − 1

hε(1)
ψε(x, 1)

is positive and nonincreasing hence is bounded by 1 and the function φε(·, 1) is
increasing. In view of (4.15), it suffices to show that for any fixed K > 0, when
ε → 0, the following convergence holds uniformly for y ∈ [0, 1],

(4.16)
∫ K

0−
dνε(s)e−st0 φε(y,−s) → 1.
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Now consider 0 ≤ s ≤ K. By using e.g. the integral equation for φε(·,−s) and
applying (4.12), it is easy to show that

sup
0≤s≤K,0≤y≤1

∣∣φε(y,−s)− (1− sy)
∣∣ → 0, ε → 0.

Using the above estimate and applying (4.12), we obtain (4.16) and complete the
whole proof. tu

Proof of Theorem 4.1. Follows from (3.2), (3.7)–(3.8) with α = 1, and Proposi-
tion 4.1. tu

5. An example of Girsanov’s transform.

In the above penalization procedure (Sections 2 and 3), the key property of the
function h is that h(x) ∼ µ/x as x → 0. Therefore, it is natural to consider

h(x) = f(x) +
µ

x
, x 6= 0,

with f ∈ C1
(
R → R

)
a bounded function such that f(x) ≥ f(0) = 0 ≥ f(−x) for

x ≥ 0 and f ′ is bounded. Consider the diffusion

(5.1) Yε(t) = B(t) +
∫ t

0

h(Yε(s))1l(|Yε(s)|≥ε) ds.

Using the corresponding result for the case f ≡ 0, we obtain:

Theorem 5.1. Suppose that µ ≥ 1/2. When ε → 0, the diffusion Yε converges in
law to

1
2
Qµ,f +

1
2
Q̂µ,f̂ ,

where Qµ,f and Q̂µ,f̂ denote respectively the laws of the processes Ξ and −Ξ̂ which
are the unique solutions (in law) of:

0 ≤ Ξt = B(t) +
∫ t

0

( µ

Ξs
+ f(Ξs)

)
ds,

0 ≤ Ξ̂t = B(t) +
∫ t

0

( µ

Ξ̂s

− f(−Ξ̂s)
)
ds.

Proof. The proof is based on Girsanov’s transform. Recall that the diffusion Xε

satisfies

Xε(t) = B(t) + µ

∫ t

0

ds

Xε(s)
1l(|Xε(s)|≥ε).
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Define fε(x) = f(x)1l(|x|≥ε) and consider the probability Qε defined by

(5.2)
dQε

dP

∣∣∣
Ft

= exp
( ∫ t

0

fε(Xε(s))dB(s)− 1
2

∫ t

0

f2
ε (Xε(s))ds

)
.

It follows from Girsanov’s transform that under Qε, the process Xε has the same
law as Yε under P. We need to treat the density in (5.2). To this end, define
Fε(x) =

∫ x

0
fε(y)dy for x ∈ R. Using Itô’s formula,

∫ t

0

fε(Xε(s))dB(s) = Fε(Xε(t))−
∫ t

0

(1
2
f ′(Xε(s)) + µ

f(Xε(s))
Xε(s)

)
1l(|Xε(s)|>ε) ds

− 1
2

(
f(ε)Lε

t(Xε)− f(−ε)L−ε
t (Xε)

)
.

It turns out that for any bounded continuous functional Φ, we have

(5.3) EΦ
(
Yε(s), 0 ≤ s ≤ t

)
= E

(
Φ(Xε(s), 0 ≤ s ≤ t) exp

(
Ht(Xε) + Kε(t)

))
,

where Ht(·) is a functional defined by:

(5.4) Ht(X) def= F (X(t))−
∫ t

0

(1
2
f2(X(s)) +

1
2
f ′(X(s)) + µ

f(X(s))
X(s)

)
ds,

with F (x) def=
∫ x

0
f(y)dy, and

Kε(t)
def=

(
Fε(Xε(t))− F (Xε(t))

)− 1
2

(
f(ε)Lε

t(Xε)− f(−ε)L−ε
t (Xε)

)

+
∫ t

0

(1
2
f2(Xε(s)) +

1
2
f ′(Xε(s)) + µ

f(Xε(s))
Xε(s)

)
1l(|Xε(s)|≤ε) ds.

Notice that |Fε(x) − F (x)| ≤ 2ε sup|y|≤1 |f(y)| and by assumption, f(ε) ≥
0 ≥ f(−ε). It follows that eKε is uniformly bounded and converges in probability
to 1 (recall that E

∫ t

0
ds1l(|Xε(s)|≤ε) → 0, see Section 3). The functional Ht(·) is

continuous by the hypothesis on f , the family {exp
(
Ht(Xε)

)
, ε > 0} is uniformly

integrable since for all p > 1,

EepHt(Xε) = E exp
(
p

∫ t

0

f(Xε(s))dB(s)− p

2

∫ t

0

f2(Xε(s))ds
)

≤ exp
(p(p− 1)t

2
sup
x∈R

f2(x)
)

< ∞.

Then we apply the convergence result for Xε to (5.3) and obtain that as ε → 0,
the LHS of (5.3) converges to (recalling (5.4) and that Rδ denotes a Bessel process
of dimension δ = 1 + 2µ)

1
2
E

(
Φ(Rδ(s), 0 ≤ s ≤ t) exp

(
Ht(Rδ)

))
+

1
2
E

(
Φ(−Rs, 0 ≤ s ≤ t) exp

(
Ht(−Rδ)

))

def=
1
2
Qµ,f (Φ) +

1
2
Q̂µ,f̂ (Φ).
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The rest follows from Girsanov’s transform in view of the fact that

Ht(Rδ) = F (Rt)−
∫ t

0

(1
2
f2(Rs) +

1
2
f ′(Rs) + µ

f(Rs)
Rs

)
ds

=
∫ t

0

f(Rs)dγs − 1
2

∫ t

0

f2(Rs)ds,

if we denote by γ the Brownian driver for the Bessel process R. tu

We give an example: Fix λ > 0 and consider h(x) = λ coth(λx). Let Vλ be the
diffusion taking values in R+ and starting from 0, with infinitesimal generator

1
2

d2

dx2
+ λ coth(λx)

d

dx
.

In the terminology of Watanabe [18], Vλ is a Bessel diffusion with drift, of
dimension 3 and drift parameter (λ2

2 , 0). We recall the absolute continuity relation
between the law P(3),λ

0 of Vλ and P(3)
0 (see Pitman and Yor [12]):

(5.6) dP(3),λ
0

∣∣∣
Ft

=
sinh(λRt)

λRt
exp(−λ2t

2
) dP(3)

0

∣∣∣
Ft

, t > 0.

In view of Theorems 5.1 and 1.1, we obtain

Corollary 5.1. Let λ ≥ 0 and denote by Q
(λ)
ε the law of the solution of (1.1)

associated to the function h = λ coth(λx)1l(|x|≥ε). When ε → 0+, the sequence

(Q(λ)
ε )ε converges in distribution to 1

2P
(3),λ
0 + 1

2 P̂
(3),λ
0 , where P̂(3),λ

0 is the distribution
of (−Vλ(t), t ≥ 0).
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