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Abstract. In this note, we partially confirm some conjectures of P. Révész
[10] on the critical branching Wiener process.

1 Introduction

The spatial branching process is one of the simplest models that describe a system of particles
combining branching property with spatial motion. We consider here a critical branching
Wiener process which is denoted by (Zn, n ≥ 0). At time 0, Z0 is a Poisson point measure
on Rd whose intensity is the Lebesgue measure: for any measurable A ⊂ Rd,

P
(
#{ points of Z0 fall in A } = k

)
=
|A|k
k!

e−|A|, k ≥ 0,

where |A| denotes the Lebesgue measure of A. Every point of Z0 is associated with a particle
which moves, independently each from other, according to the following rules:

• a particle starts from x ∈ Rd and executes a d-dimensional Wiener process during an
unit time;

• arriving at the new location at time 1 the particle dies and gives offsprings:

P
(
# offsprings = 0

)
= P

(
# offsprings = 2

)
=

1

2
;

• each offspring, if exists, starting from where its ancestor died, executes an independent
d-dimensional Wiener process and repeats the above steps and so on. All Wiener
processes and offspring numbers are assumed to be independent;

• there is no collision between particles.
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Denote by λ(n, x) the number of particles living at time n and at position x ∈ Rd. The
process Zn taking values in positive measures, is defined by

Zn =
∑

x

λ(n, x)δ{x},

the above sum makes sense because there are only countable x ∈ Rd such that λ(n, x) > 0.

The measures-valued process Zn is called a critical branching Wiener process. The above
model and more generally the branching random fields were presented and studied in detail
by Révész [9] and his book [7]. Let us also mention some recent references in various settings:
Kesten [5] and Révész [8] (critical case), Chen [3], Révész [11] and Révész, Rosen and Shi
[12] (supercritical case), and Csáki, Révész and Shi [4] (coalescing random walk).

This note is devoted to the studies of the asymptotic behaviors of Zn, more precisely the
empty balls left by (Zn). We aim at two conjectures arisen in Révész [10]. Let α > 0 and
define

B(x, r)
def
= {y ∈ Rd : |y − x| ≤ r},

B(r)
def
= B(0, r),

R(n)
def
= sup{r > 0 : 〈Zn, 1B(r)〉 = 0},

R(α, n)
def
= sup{0 < r < nα : ∃x ∈ B(nα − r), 〈Zn, 1B(x,r)〉 = 0}.

In other words, R(n) is the radius of the largest ball around the origin which does not
contain any particles at time n and R(α, n) is the radius of the largest empty ball contained
in B(nα) at time n. Let us quote the following results in the two-dimensional case (Révész
[9], Theorem 6.3 and Révész [10], Theorem 4):

Theorem A (Révész [9] and [10]) Let d = 2, α > 1
2
. We have

lim sup
n→∞

R(n)√
n log log n

= (2π)−1/2, a.s. (1.1)

2α− 1

2π
≤ lim inf

n→∞
R(α, n)√
n log n

≤ lim sup
n→∞

R(α, n)√
n log n

≤ α

π
, a.s. (1.2)

The above results show a clear image on the almost surely asymptotic behaviors of R(n)
and R(α, n), moreover it has been conjectured by Révész [10] that the limit (instead of
lim inf and lim sup) in (1.2) should exist and equal 2α−1

2π
.

We confirm this conjecture:

Theorem 1.1 Let d = 2 and α > 1
2
. We have

lim
n→∞

R(α, n)√
n log n

=
2α− 1

2π
, a.s.
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Concerning on the typical values of R(n), Révész [10] conjectured that

R(n)√
n

converges in law when d = 2, (1.3)

R(n) converges in law when d ≥ 3. (1.4)

We partially confirm the above conjecture by affirming (1.4):

Theorem 1.2 Let d ≥ 3. The radius R(n) converges in law when n → ∞ to some non-
degenerated law.

The above result holds for more general branching mechanisms. Le Gall [6] has shown
that the renormalized spatial branching processes converge to the superprocesses. It would
be an interesting question to evaluate the limit law, for instance through the superprocess.
We also mention Bertoin, Le Gall and Le Jan [2] where they considered general spatial
branching processes whose branching times are independent exponential variables. Exploit-
ing the Markov structure of (Zn), we shall prove Theorem 1.2 in Section 2, whereas the proof
of Theorem 1.1 is given in Section 3 by a direct analysis of (Zn).

2 Convergence in law

We consider a more general branching mechanism in this section. Let (pk)k≥0 be a probability
measure on {0, 1, ...} such that p0 > 0,

∑∞
k=0 kpk = 1 and

∑
n n2pn < ∞. Defining in the

same way as in Introduction the branching Wiener process (Zn) excepted from the branching
rule: a particle dies and gives offsprings according to the probability that P(# offsprings =
k) = pk for k ≥ 0. Denote by M(Rd) the space of point measures on Rd. Then the process
(Zn) is a Markov process taking values inM(Rd). For every ν ∈M(Rd), we denote by Pν the
law of (Zn) starting from Z0 = ν; in particular, (Zn) under PPoisson or simply Pmeans that Z0

is a Poisson point measure with Lebesgue measure as its intensity. We write (W,Px, x ∈ Rd)
to mean that W is a Wiener process in Rd starting from x under the probability measure
Px.

The following result, whose statement is inspired from Bertoin, Le Gall and Le Jan [2],
is an easy consequence of the branching mechanism and the Markov property of (Zn):

Lemma 2.1 For a measurable function g : Rd → R+, we define f(x) = e−g(x) and

Φn(f)(x) = Eδx exp (− 〈Zn, g〉), x ∈ Rd, n ≥ 0,

where 〈Zn, g〉 denotes the integral of g with respect to the point measure Zn and δx the Dirac
measure on x. Let µ, ν ∈M(Rd) and n ≥ m ≥ 0. We have

Eµ+νe
−〈Zn,g〉 = Eµe

−〈Zn,g〉 Eνe
−〈Zn,g〉, (2.1)
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Eµ

(
e−〈Zn,g〉|σ{Zk, k ≤ m}

)
= e〈Zm,log Φn−m(f)〉, (2.2)

Φn+k(f) = Φn(Φk(f)), n, k ≥ 0, (2.3)

EPoissone
−〈Zn,g〉 = exp

(
−

∫

Rd

dx(1− Φn(f)(x))
)
, (2.4)

Φ1(f)(x) =

∫

Rd

dy q(x, y) Π(f(y)), (2.5)

where qn(x, y)
def
= Px(Wn ∈ dy)/dy = (2πn)−d/2e−|x−y|2/(2n) denotes the density of Brownian

semigroup, q(x, y) = q1(x, y) and Π denotes the generating function: Π(v)
def
=

∑
n≥0 pnvn, 0 ≤

v ≤ 1.

Proof: The equalities (2.1) and (2.2) follow from the branching property and from the
Markov property of Z respectively. Taking the expectation on both two sides of (2.2) we
obtain (2.3). By means of (2.1)

EPoissone
−〈Zn,g〉 = EPoissone〈Z0,log Φn(f)〉

which shows (2.4) according to the exponential formula for a Poisson point measure. Finally
(2.5) follows from the definition of Z1:

Φ1(f)(x) = Eδxe
−〈Z1,g〉 = Ex

∞∑
n=0

pn e−ng(W1) = Ex

(
Π(f(W1))

)
,

yielding (2.5). 2

By virtue of (2.4), we obtain that

PPoisson

(
Rn ≥ r

)
= exp

(
−

∫

Rd

dxPδx(Rn < r)
)
, r > 0, n ≥ 0. (2.6)

We now give the proof of Theorem 1.2:

Proof of Theorem 1.2: Observe that {Rn ≥ r} = {〈Zn, 1B(r)〉 = 0}, where B(r) denotes
the ball centered at the origin and of radius r. It follows that

Pδx(Rn ≥ r) = lim
a→∞

Eδxe
−a〈Zn,1B(r)〉

= lim
a→∞

Φn(e−a1B(r))(x)

= Φn(1− `
(r)
0 )(x),

where `
(r)
0 (x)

def
= 1(|x|<r). Define for n ≥ 1,

`(r)
n (x) = Pδx(Rn < r) = 1− Φn(1− `

(r)
0 )(x).
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Based on (2.5),

`
(r)
1 (x) = 1− Φ1(1− `

(r)
0 )(x)

= 1−
∫

dy q(x, y)Π(1(|y|≥r))

= (1− p0)Px(|W1| < r).

Using (2.3), we obtain that

`(r)
n (x) = 1− Φ1(Φn−1(1− `

(r)
0 ))(x)

= 1− Φ1(1− `
(r)
n−1)(x)

=

∫
dy q(x, y)

(
1− Π(1− `

(r)
n−1)(y))

)

def
=

∫
dy q(x, y) Π̂(`

(r)
n−1(y)), (2.7)

where Π̂(v)
def
= 1 − Π(1 − v), for 0 ≤ v ≤ 1. It is easily checked that Π̂(v) ≤ v, Π̂(0) = 0,

Π̂(1) = 1− p0 < 1 and Π̂′(0) = 1. Define

an(r) =

∫
`(r)
n (x)dx, n ≥ 0, r > 0.

Then

an(r) =

∫
dx

∫
dyq(x, y)Π̂(`

(r)
n−1(y)) =

∫
dyΠ̂(`

(r)
n−1(y)) ≤

∫
dy`

(r)
n−1(y) = an−1(r),

where the second equality follows from the symmetry of semigroup. Hence the limit

a∞(r)
def
= lim ↓ an(r) exists, ∀ r > 0,

and a∞(r) is a nondecreasing function on r. We shall prove that when d ≥ 3, for every r > 0,

a∞(r) > 0, a∞(0) = 0, a∞(∞) = ∞. (2.8)

This and (2.6) imply that for every r > 0,

lim
n→∞

PPoisson

(
Rn ≥ r

)
= lim

n→∞
e−an(r) = e−a∞(r),

yielding Theorem 1.2.

It remains to prove (2.8). Firstly, since Π̂(v) ≤ v, we deduce from (2.7) that

`(r)
n (x) ≤

∫
dyq(x, y)`

(r)
n−1(y)

def
= q ∗ `

(r)
n−1(x) ≤ ... ≤ qn ∗ `

(r)
0 (x) = Px(|Wn| < r),

5



by iteration on the convolution operator ∗. Hence for some constants c(d), c′(d) > 0,

an(r) ≤ an−1(r) ≤ ... ≤ a0(r) = c(d) rd, (2.9)

`(r)
n (x) ≤ c′rd

nd/2
. (2.10)

Elementary calculations show that there exists a convex decreasing function κ(·) such

that Π̂(v) = v κ(v) and κ(0) = 1, κ(1) = 1 − p0 < 1. It follows from the convexity of κ(·)
that

an(r) =

∫
dx`

(r)
n−1(x)κ(`

(r)
n−1(x)) ≥ an−1(r) κ

( ∫
dx

(`
(r)
n−1(x))2

an−1(r)

)
.

Note that
∫

dx
(`

(r)
i (x))2

ai(r)
≤ supx `

(r)
i (x) ≤ c′rdi−d/2 by (2.10). The function κ being de-

creasing, it turns out that

an(r) ≥ a0(r)
n−1∏
i=1

κ
(
c′rdi−d/2

)
.

The infinite product
∏∞

i=1 κ
(
c′rdi−d/2

)
> 0 since for large i, κ

(
c′rdi−d/2

)
∼ 1− c′′rdi−d/2

and d ≥ 3. This proves Theorem 1.2. 2

Finally, we mention that by computing the second moment of 〈Zn, g〉, we may obtain a
lower bound of a∞(r) when r → ∞: when d ≥ 3, there exists some constant c = c(d) > 0
such that a∞(r) ≥ c rd−2. See also Révész [10].

3 Proof of Theorem 1.1: d = 2

In view of the lower bound of (1.2), it remains to show the upper bound: For d = 2 and
α > 1

2
, we have

lim sup
n→∞

R(α, n)√
n log n

≤ 2α− 1

2π
, a.s.. (3.1)

Fix an arbitrary constant a > 2α−1
2π

. Let n be large and define a sequence of integers

tn = [en/ log n]. Plainly, tn+1

tn
− 1 ∼ 1

log n
as n → ∞. Define rn =

√
an log n. We are going to

estimate
In

def
= P

(
∃ k ∈ [tn, tn+1], R(α, k) ≥ rk

)
,

where P should to be understood that Z0 is a Poisson point measure with Lebesgue measure
as its intensity. If we can prove that

∑
n

In < ∞, (3.2)
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then a.s. for all large k, R(α, k) < rk which implies (3.1) since a is arbitrary.

To estimate In, we consider a covering of the disc B(tαn+1) centered at the origin and of
radius tαn+1 by N discs {B(xj,

√
tn), 1 ≤ j ≤ N}. We can choose a covering such that N

is of order
t2α
n+1

tn
, hence N ≤ ct2α−1

n+1 for some constant c > 0. Now suppose that for some
k ∈ [tn, tn+1], R(α, k) ≥ rk, which means the existence of an empty disc B(x, rk) ⊂ B(kα).
Since x ∈ B(xj,

√
tn) for some 1 ≤ j ≤ N , the disc B(xj, sn) centered at xj is empty, where

sn
def
= rtn −

√
tn ≤ rk −

√
tn and sn ∼ rtn =

√
atn log tn. It turns out that

In ≤ P
(
∃ j ∈ [1, N ],∃ k ∈ [tn, tn+1] : 〈Zk, 1B(xj ,sn)〉 = 0

)

≤
N∑

j=1

P
(
∃ k ∈ [tn, tn+1] : 〈Zk, 1B(xj ,sn)〉 = 0

)

= N P
(
∃ k ∈ [tn, tn+1] : 〈Zk, 1B(sn)〉 = 0

)

where the above equality follows from the translation invariance of Poisson point measure.
By using the upper bound of N and the exponential formula for Poisson point measure, we
obtain that

In ≤ c t2α−1
n+1 exp

(
−

∫

R2

dxPδx(∀ k ∈ [tn, tn+1] : 〈Zk, 1B(sn)〉 ≥ 1)
)

= c t2α−1
n+1 exp

(
−

∫

R2

dxPδ0(∀ k ∈ [tn, tn+1], 〈Zk, 1B(x,sn)〉 ≥ 1)
)
, (3.3)

by using the translation from x to 0. Under Pδ0 , the process (〈Zk, 1〉, k ≥ 0) is a critical
Galton-Watson process. It is well-known ([1]) that

Pδ0

(
〈Zk, 1〉 > 0

)
∼ 2

k
, k →∞. (3.4)

Let us consider the tree associated with the Galton-Watson process (〈Zk, 1〉, k ≥ 0). Its
leaves are ordered lexicographically and 〈Zk, 1〉 is the total number of leaves of height k.
Each leaf of height k corresponds to a point of Zk.

On {〈Ztn+1 , 1〉 > 0}, we denote by (ζi, 0 ≤ i ≤ tn+1) the chain of leaves such that for any
0 ≤ i < tn+1, ζi is the root of ζi+1, ζ0 = 0 is the origin and ζtn+1 is the first leaf of height tn+1

in the lexicographical order. For every 0 ≤ i ≤ tn+1, we denote by W (i) the point of the Zi

associated with ζi. Then W forms a standard two-dimensional Wiener process starting from
0, independent of (〈Zk, 1〉, k ≥ 0). The law of W is denoted by P0.

Fix a small ε > 0 such that 2aπ(1− 4ε)4 > 2α− 1, we have

Pδ0

(
∀ k ∈ [tn, tn+1], 〈Zk, 1B(x,sn)〉 ≥ 1

∣∣∣ 〈Ztn+1 , 1〉 > 0
)

≥ P0

(
∀ k ∈ [tn, tn+1],Wk ∈ B(x, sn)

)

≥ P0

(
|x−W (tn+1)| ≤ (1− ε)sn, sup

tn≤t≤tn+1

|W (t)−W (tn+1)| ≤ εsn

)
.

7



Combining this with (3.3), we deduce from (3.4) that

In

≤ c t2α−1
n+1 exp

[
−2− ε

tn+1

∫

R2

dxPδ0

(
∀ k ∈ [tn, tn+1], 〈Zk, 1B(x,sn)〉 ≥ 1

∣∣∣ 〈Ztn+1 , 1〉 > 0
)]

≤ c t2α−1
n+1 exp

[
−2− ε

tn+1

∫

R2

dxP0

(
|x−W (tn+1)| ≤ (1− ε)sn, sup

tn≤t≤tn+1

|W (t)−W (tn+1)| ≤ εsn

)]

= c t2α−1
n+1 exp

[
−2− ε

tn+1

π (1− ε)2 s2
n P0

(
sup

tn≤t≤tn+1

|W (t)−W (tn+1)| ≤ εsn

)]
,

by Fubini’s theorem. Using the standard estimate for the Gaussian tail, we get

P0

(
sup

tn≤t≤tn+1

|W (t)−W (tn+1)| ≤ εsn

)
= P0

(
sup

0≤t≤tn+1−tn

|W (t)| ≤ εsn

)

= 1− P0

(
sup

0≤t≤tn+1−tn

|W (t)| > εsn

)

= 1−O(e−ε2s2
n/(2(tn+1−tn)))

≥ 1− ε,

for all large n. It follows that

In ≤ c t2α−1
n+1 e−(2−ε)(1−ε)3πs2

n/tn+1 ≤ c t2α−1
n+1 e−2aπ(1−4ε)4 log tn ≤ 2c t−2aπ(1−4ε)4+2α−1

n ,

yielding (3.2) since −2aπ(1− 4ε)4 + 2α− 1 < 0. The proof of Theorem 1.1 is completed. 2
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[4] E. Csáki, P. Révész and Z. Shi: Large void zones and occupation times for coalescing
random walks. Stoch. Proc; Appl. 111 (2004) 97–118.

[5] H. Kesten: Branching random walk with a critical branching part, Journal of Theo-
retical Probability 8 (1995) 921–962.

[6] J. F. Le Gall: Spatial Branching Processes, Random Snake and Partial Differential
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