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Part I

Introduction

1 Motivation

A System-of-Systems (SoS) is a system that joins capabilities of different systems in order to achieve
missions, services and goals not achievable by a monolithiic system. SoS appears in many application
such us defence application, medical and healthcare management, robotics and sensors, air vehicles,
space applications and many other applications. There are many types of SoS (see [4]). This project
deals with aknowledged SoS. In this SoS, systems retain their own managment and exhibit many
treats such as evolutionary development, geographic distribution, and a wide level of operational
independence.

From these characteristics arise many challenges. Indeed, the SoS needs a constant revison of its
constituents as well as integeration issues in the case where other systems have to be included. It has
also to deal with purpose conflicts - global goals and local goals- of the SoS and its constituents. Since
the SoS is large scaled and its constituent could be geographically distributed, it is difficult to main-
tain a good communication within the SoS. These challenges and many others evolve the complexity
in SoS designing and leads to difficulties in predecting emergent behaviours. Hence optimization
techniques are needed in order to find the most convenient SoS that fulfil all the requirements.

SoS should enable the decision-makers to understand the implications of various choices on techni-
cal performance, costs, extensibility and flexibility over time; thus, effective SoS methodology should
prepare decision-makers to design informed architectural solutions for System-of-Systems problems
[1]. The design and development of a an SoS go by two main levels: static and dynamic levels.
The first level copes with investigations in order to conceptualize the product (SoS). These investi-
gations must take into account many parameters such us customer and stakeholders requirements.
While the conception of the SoS, optimization techniques are applied in order to optimize the SoS
architechture and its constituents types. In the second level, simulation and analysis are made in
order to evaluate the good fonctionning of the product (SoS). This work is made according to a
platform which has the abiliy to detect and define SoS failures then reconfigurate it so that it can
purssue its tasks without any perturbations. The reconfiguration consists on finding an optimized
solution to the probem under the current configuration environment parameters and SoS constituents.

Hence, the aim of the internship is to look for many optimization methods that could be fit in
the SoS and develop an optimization engine, which -depending on its intputs- has the ablility to give
an optimized solution regarding the case study .

2 Report constituents

The report is organized as folloing: In the first part, we give an overview about the subject studied
as well as the company EADS where the internship is taken place. In the second part, we present
the optimization methods found in the literature besides their resolution algorithms. The third part
copes with the developing of the optimization engine. Finally, in the fourth part, we give a conclusion
about the internship.
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3 Global view about EADS

The European Aeronautic Defense and Space group (EADS) is a global leader in aerospace, defence
and related services. The group was formed in July 10, 2000. It is the fruit of the merger of the
German group DaimlerChrylser Aerospace AG (DASA), the French group Aerospatiale-Matra and
the Spanich company Construcciones Aeronauticas SA (CASA). The headquarters of the company
are located in Toulouse (France) and Leiden (Netherlands). The EADS Group is employing around
133 115 people at more than 170 sites worldwide throught its fourth following companies [2]:

• Airbus is the leading commercial and military transport aircraft manufacturer. It employs
around 69,300 people at sixteen sites in four European Union countries: France, Germany, the
United Kingdom and Spain. In 2011, its capital reached e33.1 billion (incl. e2.5 billion for
Airbus Military).

• Astrium Astrium provides civil and military space systems and services. It operates via three
branches: Astrium Space Transportation, Astrium Satellites and Astrium Services. In 2011,
Astrium had a turnover of e5 billion and 16,623 employees in France, Germany, the United
Kingdom, Spain and the Netherlands. Astrium is member of Institute of Space, its Applica-
tions and Technologies.

• Eurocopter is a global helicopter manufacturing and support company. It is the largest in
the industry in terms of revenues and turbine helicopter deliveries. In 2011, its turnover is
about e5.4 billion with 20,759 employees and more than 11,470 helicopters in service.

• Cassidian is the defence and security division of the EADS group and a major provider of
global security solutions, lead system integration and aerial, land, naval and joint systems.
It is the second largest division of EADS. Until 17 September 2010 it was known as EADS
Defence and Security. In 2011, Cassidian has a turnover of e5.8 billion with 20,923 employees
and more tham 200 secure networks delivered.

3.1 EADS Innovation Works

Innovation works is a part of EADS group that concerns scientific research and development in a
multi-national environment and diverse research fields. It is looking for technology innovations and
adaptation, and processes improvements and developments that enhances other EADS group partners
( Airbus, Eurocopter, Cassedian, Astrium) in the fields of aerospace, defence, and space industry.

3.2 System engineering Process and Platform team

System engineering Process and Platform team is one of systems engineering and architecture depart-
ment teams. Its members are distributed over different Europe countries ( Germany, Britain, France)
with diverse scientific background that related to system engineering process. The team is taking
part of different internal ( within EADS group) and external ( Out of EADS) projects that covers
a wide range of system engineering process and development. It provides research and development
services in the fields of system engineering methodologies, techniques, processes, and tools.
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4 Systems-of-Systems: SoS

Sytems-of-Systems (SoS) are systems-of-interest whose system elements are themselves systems; typi-
cally these entail large-scale inter-disciplinary problems involving multiple, heterogeneous, distributed
systems. These interoperating collections of component systems usually produce results unachievable
by the individual systems alone[3].

Using a SoS approach promotes a new way of thinking for solving unprecedented and complex
challenges where the interactions of technology, policy and economics influence the system’s develop-
ment and operation. The new thinking must recognize that, unlike traditional system development,
a SoS will likely experience greater influence from policy and economics than technology.

4.1 SoS characteristics

Mark W. Maier has stated in [4] five traits for identifying system of systems challenges. These traits
are known as Maier’s criteria and are like following:

1. Operational Independence of the Elements: If the system-of-systems is disassembled into
its component systems the component systems must be able to usefully operate independently.
The system-of-systems is composed of systems which are independent and useful in their own
right.

2. Managerial Independence of the Elements: The component systems not only canoperate
independently, they dooperate independently. The component systems are separately acquired
and integrated but maintain a continuing operational existence independent of the system-of-
systems.

3. Evolutionary Development: The system-of-systems does not appear fully formed. Its
development and existence is evolutionary with functions and purposes added, removed, and
modified with experience.

4. Emergent Behavior: The system performs functions and carries out purposes that do not
reside in any component system. These behaviors are emergent properties of the entire system-
of-systems and cannot be localized to any component system. The principal purposes of the
systems-of-systems are fulfilled by these behaviors.

5. Geographic Distribution: The geographic extent of the component systems is large. Large
is a nebulous and relative concept as communication capabilities increase, but at a minimum
it means that the components can readily exchange only information and not substantial
quantities of mass or energy.

4.2 Classification of SoS

In [4], Mair classified systems-of-systems into 3 categories according to their managerial control cri-
terias:

• Directed: The SoS in this case is centrally managed. It is built to fulfill specific purposes. The
component systems maintain an ability to operate independently, but their normal operational
mode is subordinated to the central managed purpose. For example, an integrated air defense
network is usually centrally managed to defend a region against enemy systems, although its
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component systems may operate independently.

• Collaborative: Collaborative SoS reffers to systems-of-systems whose central management
organization does not have coercive power to acheive SoS purposes. In this case, the compo-
nent systems collaborate voluntarily to fulfill the agreed upon central purposes. An example
for collaborative SoS is the Internet.

• Virtual: Virtual SoS lack a central management authority and has no agreed purpose. In this
case, large scale behavior emerges and may be desirable. For example, supply chain manage-
ment is a virtual SoS.

There is also another type of SoS called Acknowledge SoS. This type of SoS has a defined
goals and objective and its own management and resources while the constituent systems keep
their own independency regarding ownership, funding and goals ([5]).

4.3 SoS applications

SoS has been investigated predominantly in the defence sector. An example for a such application
is the air defenses of modern military forces. An integrated air defense system is composed of a
geographically dispersed network of semi-autonomous elements. These include surveillance radars,
passive surveillance systems, missile launch batteries, missile tracking and control sites, airborne
surveillance and tracking radars, fighter aircraft, and anti-aircraft artillery. All units are tied to-
gether by a communications network with command and control applied at local, regional, and
national centers.

Another application of SoS is the Command and Control Center (CCC) which is a part of the
emergency responde system. It operates and monitors communications, detection, and weapons
systems essential for controlling air, ground and naval operations. Duties include maintaining and
relaying critical communications between air, naval, and ground forces; implementing emergency
plans for natural and wartime disasters and also relaying command center information to high-level
military and government decision makers. The following figure illustrates an example of CCC.
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Figure 1: Command and Control Center

This CCC can be used in order to assure an emergency rescue for people detained by a fire in a
building. The rescue operation is made as following:

1. CCC receives a call from people who have seen the fire through its call handling systems. The
CCC gathers information via the callers and its surveillance systems.

2. Dispatching systems analyse the case then send a dispatching plans to emergency units (fire
brigade, police station, hospital or external organization) through communication system.

3. Once the emergency units receive the plans, they handle the emergency operations on the site
and report back the site information.

4. The CCC receives the site information and monitors the emergency case.

The internal communication systems assure the communication within the CCC while the com-
munication systems assure the communication between the CCC and the other systems (fire brigade,
hospital, police station, hospital or external organization).
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Part II

Optimization in SoS
SoS characteristics have many impacts on its operation. In fact, due to the operational independence,
the global goal for which the SoS has been built, can conflicts with the local goals of the SoS com-
ponents. Furthermore, the geographic distirubtion of SoS components make the control of interfaces
and communication more complicated, while the evolutionary development can lead to changes in
the architecture or SoS operations. Hence, optimization techniques are needed in order to deal with
SoS conflicts and to acheive its purposes in the most convenient way.

In the following section, many optimization methods are introduced and classified into three main
categories:

1. Optimization in Multi-player environment is used to deal with the multitude of SoS components
and to manage systems and SoS purposes.

2. Optimization in Uncertain environment which deals with optimization problems that involve
incertainty such as emergent behaviours.

3. Optimization in Dynamic environment is used to deal with problems that exhibit the propreties
of overlapping subproblems.

1 Optimization in Multi-player environment

Optimization in Multi-player environment concerns problems where there is various interoperating
systems. Each system is autonomous and has the ability to make decisions that affect, at the same
time, its operation and SoS operations. Some systems exhibit hierachical traits while decisions are
made. This type of problem can be solved with Bi-level optimization. In this case, optimization has
to find an equilibrium set of decisions that satisfies all the systems and achieve the SoS purpose. If
the problem studied has many goals to achive and has exhibit any hierarchy in decisions, it can be
solved via Multi-objective optimization.

1.1 Bi-level Optimization

Bi-level Optimization copes with mathematical programming problems involving two optimization
problems called upper (leader) and lower (follower) problems. It is a special case of Multi-level
optimization. The bilevel programming problem can be viewed as two-person static Stackelberg
game in which control of the decision variables is partitioned among the players who seek to minimize
their individual objective functions [6]. Play is sequential and uncooperative. Perfect information
is assumed in that both players know the objective functions and allowablee strategies of the other.
This type of leader-follower game can be used to model almost any hierarchical system in which two
autonomous agents make decisions in a prescribed manner. Applications can be found is such areas
as government regulation [7] and market behavior [8]. The general form of Bi-Level Programming
Problem (BLPP) is:

min
x

F (x, y)

s.t G(x, y) ≤ 0

where y ∈ argmin f(x, y)

s.t g(x, y) ≤ 0

(1)
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x and y are vectors of the decision variables of the upper and lower problems, respectively; F
and f are the objective functions of the upper and lower problems, while G and g are the upper-level
and lower-level constraints. The upper objective is often referred to as the objective of the BLPP,
while the lower objective is considred as just a constraint.

In this case, the upper-level problem refers to the SoS and deals with the global goal, while
the lower-level problem refers to SoS components and copes with the local goals. According to the
structure of the BLPP, the system behaviour is a part of the SoS constraints.

1.1.1 Farmer example:

A salmom breeder, who is located on the edge of a river, has the possibility to produce two races of
salmon. Each with its own costs of breeding. The local authority is allowed to raise taxes on the
sale price of the salmon. Its aim is to establish a healthy compromise between the company and the
level of pollution in the river, given by the criterion F . This problem contain two decision-makers;
the local authority who sets taxes and and the breeder who has the control over his production.
Decisions are made in this order: First of all, the local authority fixes the appropriate taxes in order
to optimize F . Then, the farmer, depending on taxes, fixes the sale price that he could make the
greatest possible benefit f . Hence, the upper-variable x refers to the price of taxes and y to the sale
price of salmon.

Note : According to the expression of F, G, f, g, the BLPP can be devided into many categories.
The following section resumes the most commun BLPP problems found in the literature such as Linear
Bi-level Programmin Problem (LBPP) and Quadratiq Bi-level Programming Problem (QBPP).

1.1.2 Linear Bi-level Programming Problem (LBPP)

LBPP is similar to standar Linear Programmin (LP) [9] where the objectives functions and constraints
are linear. The formulation of the LBPP is given by:

min
x1

F (x1, x2) = c11x1 + c12x2

where x2 solves

min
x2

f(x1, x2) = c21x1 + c22x2

s.t A1x1 +A2x2 ≤ b,
x1, x2 > 0,

(2)

where x1 = (x1
1, ..., x

1
n1

)′ is a vector of decision variables controlled by the upper level decision
maker, x2 = (x2

1, ..., x
2
n2

)′ is a vector of decision variables controlled by the lower level decision maker,
A1 is m × n1 matrix of coefficients for the upper level decision variables, A2 is m × n2 matrix of
coefficients for the lower level decision variables, c11 is a 1 × n1 vector of profit coefficients of the
upper level decision variables in the upper level onjective function F , c12 is a 1× n1 vector of profit
coefficients of the lower level decision variables in the upper level onjective function F , c21 is a 1×n1

vector of profit coefficients of the upper level decision variables in the lower level onjective function
f , c22 is a 1 × n1 vector of profit coefficients of the lower level decision variables in the lower level
onjective function f , and b is an m× 1 vector of resource capacity of the system.

For the convenience of analysis, the following notations are intoduced:

S2 = {(x1, x2)| A1x1 +A2x2 ≤ b, (x1, x2) ≥ 0} (3)
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and
S1 = ψf (S2) = {(x̂1, x̂2) ∈ S2| f(x̂1, x̂2) = max{f(x1, x2) : (x2|x̂1)}} (4)

where S1 represents the feasible region of the upper level desicion maker and S2 is the feasible region
of the lower lever decision maker. The maximization in (4) is only taken over x2 for a fised x̂1.

The geometric properties of the BLPP are more complex than familiar mathematical programmin
problems. The convexity of the problem is very important to define the solution and is difficult to
establish in some cases. Although the set of rational reactions S2 may be nonconvex, it does possess
some of the important properties of the convex sets. These features are important to establish the
solution of the LBPP. Based on these features, Karwan and Bialas developped an algorithm in [10]
for solving the problem (2). He took the case where S2 = {x| Ax = A1x1 + A2x2 = b, x ≥ 0} is
bounded with no degeneracy and where the upper level problem has a unique feasible x1.

The algorithm is based on an extreme point search procedures. It uses most of the standard tools
of the simplex method for bounded variables. Furthermore, the solution obtained is a local optimal
solution. On rare occasions, it can identify a global optimal solution. The algorithm is as following:

• Step 1. Solve the following problem via the simplex method:

max c1x s.t Ax = b, x ≥ 0, (5)

where c1 = (c11, c12), A = (A1, A2) and x̂ = (x̂1, x̂2) .

• Step 2. Set x1 = x̂1, and solve the following problem via bounded simplex (l = u = x̂1),
beginning with basic feasible solution (x̂1, x̂2):

max c2x s.t Ax = b, x1 = x̂1 x2 ≥ 0. (6)

Let the optimal solution be x̄. If x̄ = x̂, stop; x̂ is a global optimal solution. Otherwise, go to
Step 3a with current basis B̄ and relax the constraints x1 = x̂1.

• Step 3a. If all nonbasic variables are equal to zero, go to step 4 with curent basis B̄. Other-
wise, go to Step 3b.

• Step 3b. If b̄i > 0 for all i, then go to Step 3c. Otherwise consider b̄s = 0. Choose ys,N such
that 1 ≤ j ≤ k and ys,Nj 6= 0. Bring x1

Nj
, into the basis via a degenerate pivot. Go to Step §a.

• Step 3c. Consider any nonbasic level one variable which is at a strictly positive value, say
x1
Nj

. If rj ≤ 0, then increase the value of x1
Nj

, bringing it into the basis until another variable

is forced out of the basis. If rj > 0, then decrease the value of x1
N , until it eitheur reaches zero,

or forces another variable out of the basis. Go to Step 3a.

• Step 4. Beginning with the current basis B̄, solve the following problem via a modified simplex
procedure:

max c2x s.t : A2x2 = (b−A1x̃1), x1 = x̃1, x2 ≥ 0. (7)
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If x∗ = x̃, then enter the candidate into the basis. Repeat Step4 until no more candidates
exist which satisfy the above conditions, then stop. The resulting solution is a local optimal
solution to (2).

A complete proof of convergence of the above procedure is provided in [11]. The algorithm begins
by finding the maximum of c1x over the entire feasible region, S2. A check in Step 2 determines if
the resulting solution is also an element of S1. If it is, the algorithm terminates with a global (not
simply local ) optimal solution. Otherwise, the algorithm finds a point, x̄, in S1 whose x1 coordinates
are the sameas the solution in Step 1.

The purpose of Step 3 is to relax the constraint x1 = x̄1, and move to an extreme point, x∗, of
S1 such that c1x∗ ≥ c1x̄. The vector x̄ is guaranteed to be an element of S1 simply by its definition.
The extreme point x∗ must be also in S1 (see Theorem 5.1 in [10]) since x∗ positively contributes in
a convex combination which forms x̄.

Once the algorithm has found an extreme point in S1, it then moves among extreme points of
S1, never allowing c1x to decrease. The algorithm terminates with an extreme point solution in S1

which has the property that all adjacent extreme points either lead to a decrease in c1x or do not
belong to S1. Thus a local optimal solution is obtained.

1.1.3 Linear-Quadratic Bi-level Programming Problem (LQBPP)

Here, another case of the BLPP called the ”linear/quadratic” bilevel problem, where the upper-level
objective function is linear whereas the lower-level objective function is quadratic. The problem is
given by:

max
x

F (x, y) = c1x+ c2y, (8)

s.t x ∈ X = {x : Dx ≥ d} (9)

max
y

f(x, y) = c3y + xTQ1y +
1

2
yTQ2y, (10)

s.t g(x, y) = Ax+By ≥ b, (11)

y ∈ Y = {y : Ey ≥ e} (12)

where F : X × Y → R1 is linear and f : X × Y → R1 is quadratic, A is m1 × n1, B is m2 × n2,
E is m3 × n2, Q1 is n1 × n2, Q2 is n2 × n2 symmetric, negative semidefinite, and c1, c2, c3, b, d, and
e are vectors of conformal dimension.

In [12], Brand and Moore have developed a branch and bound algorithm for solving the problem
(8)-(12). The algorithm needs the following notations and assymptions:

Let the follower’s (lower problem) Rational Reaction Set be:

M(x) = {y : y = argmax[f(x, y) : y ∈ Y, g(x, y) ≥ b]}. (13)

and the Inducible Region:
R = {(x, y) : x ∈ X, y ∈M(x)} (14)

In order to assure that (8)-(12) is well posed, the feasible region (9), (11) and (12) is assumed
to be nonempty and compact, and that for each decision taken by the leader, the follower variable
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has some room to respond. The rational set M(x) defines this response while the inducible region
R represents the set over which the leader may optimize when given control of all the variables.
Furthermore, M(x) is assumed to be a point-to-point map. Hence, the problem solved by branch
and bound algorithm is

max{F (x, y) : (x, y) ∈ R}. (15)

In order to make the problem more manageable, it is reformulated as a standard mathematical
program by exploiting the follower’s Kuhn-Tucker conditions.

Karush-Kuhn-Tucker theorem necessary conditions : Let x∗ be a local minimum of the
problem

min f(x)

s.t h1(x) = 0, ..., hm(x) = 0

g1(x) ≤ 0, ..., gr(x) ≤ 0

(16)

where f , hi, gi are continuously differentiable functions from Rn to R, and assume that x∗ is regular.
Then there exist unique Lagrance multiplier vectors λ∗ = (λ∗1, ..., λ

∗
m), µ∗ = (µ∗1, ..., µ

∗
r) such that

∇xL(x∗, λ∗, µ∗) = 0,

µ∗j ≥ 0, j = 1, ..., r,

µ∗j = 0, ∀j /∈ A(x∗)

(17)

where A(x∗) is the set of active constraints at x∗ and L is the Lagrangien given by

L(x, λ, µ) = f(x) +
m∑
i=1

λihi(x) +
r∑
i=1

µigi(x)

With applying Karush-Kuhun-Tucker conditions to the follower’s problem, the problem becomes:

max
x

F (x, y) = c1x+ c2y, (18)

s.t xTQ3y + yTQ2y + u1B + u2I = −c3, (19)

u1(Ax+By − b) + u2y = 0, (20)

Ax+By ≥ b, (21)

x, y, u1, u2 ≥ 0, (22)

where u1 and u2 are m− and n2− dimensional Kuhn-Tucker multipliers, and I is an n2 × n2

identity matrix. Constraints (19), (20) and (22) can be interpreted as an explicit representation of
the inducible region.

As suggested in [12], the basic idea of the algorithm discussed is to suppress the complementarity
term (20) and solve the resulting linear program. At each iteration, a check is made to see if (20)
is satisfied. If so, the corresponding point is a potential solution to (18)− (22); if not a branch and
bound scheme is used to implicitly examine all combinations of complementary slackness.

The following notations are used in the algorithm. Define u = (u1, u2), let W = 1, ...,m+ n2 be
the index set for the complementarity term (20), and let F be the incumbent lower bound on the
upper-level objective function, Wk ⊆ W the kth level of the branch and bound tree, and Pk (with
|Wk| nonzero components) corresponding to an assignment of either ui = 0 or gi = 0 for i ∈ Wk.
Define also the following sets:
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S+
k = i : i ∈Wk and ui = 0,

S−k = i : i ∈Wk and gi = 0,

S0
k = i : i /∈Wki.

Fot i ∈ S0
k , the variables ui and gi are free to assume any nonnegative in the solution of (18)−(22)

with (20) omitted, so (20) will not necessarily be satisfied. The algorithm is as follow:

Algorithme 1 Branch and Bound for LQBLPP

Step 0. (Initialization). Put k = 0, S+
k = ∅, S−k = ∅, S0

k = {1, ...,m + n2}, and F = −∞.

Step 1. (Iteration k). Set ui = 0 for i ∈ S+
k and gi = 0 for i ∈ S−k . Attempt to solve

(18)-(22) without (20). If the resultant subproblem is infeasible, go to Step 5 ;
otherwise, put k ← k + 1 and label the solution (xk, yk, uk).

Step 2. (Fathoming). If F (xk, yk) ≤ F , go to Step 5.

Step 3. (Branching). If uki · gi(xk, yk) = 0, i = 1, · · · ,m + n2, go to Step 4; otherwise, select
i for which uki · gi(xk, yk) is largest and label it i1. Put S+

k ← S+
k ∪ {i1},

S0
k ← S0

k \ {i1}, S−k ← S−k , append i1 to Pk, and go to Step 1.

Step 4. (Updating). F = F (xk, yk).

Step 5. (Backtracking). If no live node exists, go to Step 6. Otherwise branch to the newest
live vertex and update S+

k , S−k , S0
k and Pk as discussed below. Go to Step 1.

Step 6. (Termination). If F = −∞, there is no feasible solution to (18)− (22). Otherwise,
declare the feasible point associated with F the optimaö solution.

Step 1 is designed to find a new point that is potentially bilevel feasible. If no solution exists,
or the solution does offer an amelioration over Step 2, the algorithm goes to Step 5 and backtracks.
At Step 3, a check is made to determine if the complementary slackness conditions are satisfied. In
practice, if |ui · gi| < 10−6, it is considered to be zero. Confirmation indicates that a feasible solution
of the bilevel program has been found, and Step 4, the lower bound on the leader’s objective function
is updated. Alternatively, if the complementary slackness conditions are not satisfied, the term with
the largest product is used at Step 3 to provide the branching variable. Branching is always done on
the Kuhn-Tucker multiplier.

At Step 5, the backtracking operation is performed. A live node is one associated with a sub-
problem that has not yet been fathomed at either Step 1 due to infeasibility or at Step 2 due to
bounding, and whose solution violates at least one complementary slackness condition. To facilitate
bookkeeping, the path Pk in the depth of the tree. Indices only appear in Pk if they are in either
S+
k or S−k with the entries underlined if they are in S−k . Because the algorithm always branches on

Kuhn-Tucker component of Pk, underlined entry is deleted from S+
k and added to S−k ; the erased

entries are deleted from S−k to S0
k .

Once Step 6 is reached and F = −∞, it can be conclued that the original constraint region
(9), (11), (12) is empty. This will only be the case if the first subproblem at Step 1 is infeasible.
Alternatively, the algorithm terminates with the incumbent whose optimality is now established. The
following proposition shows that the algorithm terminates.
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Proposition 1 Under the uniqueness assumption associated with the rational reaction set M(x),
the algorithm terminates with the global optimum of the LQBLPP (18)− (22).

The proof is in [12].

Note: This algorithm can be also applied in ordor to solve the linear case of BLPP. Consider the
following BLPP:

max
x1

F (x1, x2) = c11x1 + c12x2

where x2 solves

maxx2 f(x1, x2) = c21x1 + c22x2

s.t A1x1 +A2x2 ≥ b,
x1, x2 > 0.

(23)

KKT conditions and the linear Complementarity problem Consider the linear
problem

max
x
{cx : Ax ≥ b, x ≥ 0} (24)

The corresponding Lagrangien is

L(x, λ, µ) = cx− λT (Ax− b)− µTx (25)

where λ and µ are the m− and n− dimensional Kuhn-Tucker or Lagrange multipliers for the tech-
nological and nonnegativity constraints, respectively. The Kuhn-Tucker necessary conditions for
optimality gives:

∇xL(x, λ, µ) = c− λTA− µT = 0

∇λ = Ax− b ≥ 0

∇µL(x, λ, µ) = x ≥ 0

λT (Ax− b) = 0

µTx = 0

λ, µ ≥ 0.

(26)

Hence, the previous algorithm can also be applied in order to solve the linear case of BLPP.

1.1.4 Mixed Integer Two-level Linear Programming Problem

In some hierarchical structure system, the high-level decision making situations often require the
inclusion of zero-one variables which present ”yes-no” decisions. In [13], Wen and Yang presented a
Mixed Integer Two-Level Linear programming problem, where they combine the zero-one decision
variables controlled by the high-level decision maker with the real-valued decisions variables controlled
by the low-level decision maker. The general form of the problem is given by:
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(MITLP ) : max {f1(x1, x2) = c11x1 + c12x2 : (x1)}
st : max{f2(x1, x2) = c22 : (x2|x̂1)}

st : A1x1 +A2x2 ≤ b
st : x1 = (x1

1, x
1
2, ..., x

1
n1

),

x1
j ∈ {0, 1}, j = 1, 2, ..., n1,

x2 ≥ 0

where max{f1(x1, x2) = c11x1 + c12x2 : (x1)} denotes the maximum of f1 over x1, x2 but only x1

can be controlled at the high level problem; max{f2(x1, x2) = c22x2 : (x2|x̂1)} denotes the maximum
of f2 over x2 for a fixed value of x̂1; x1 ∈ Rn1 , x2 ∈ Rn2 , A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , c11 ∈ Rn1 ,
c12 ∈ Rn2 , c22 ∈ Rn1 and b ∈ Rm.

Let Wf2(S) be the feasible region of the high-level decision-maker such as:

Wf2(S) = {(x̂1, x̂2) ∈ S|f2(x̂1, x̂2) = max{f2(x1, x2) : (x2|x̂1)}},

where
S = {(x1, x2)|A1x1 +A2x2 ≤ b, x1

j ∈ {0, 1}, j = 1, 2, ..., n1; x2 ≥ 0}

This model assumes that A2 and b ≥ 0, S is nonempty and the optimal solution of MITLP is
nondegenerate.

Wen and Yang developed an algorithm based on a Branch and Bound method in order to solve the
MITLP. The lower bound on the optimal value of the high-level objective function can be determined
as the greatest value of the high-level objective function found so far. Hence, the problem is to
determine a lower bound. These notations are introduced in order to develop the bounding function:

• k: the order number of generated node in a branch-and-bound tree.

• J0
k = {j|x1

j is free binary variable, j = 1, 2, ..., n1}.

• J+
k = {j|x1

j is fixed at 1, j = 1, 2, ..., n1}.

• J−k = {j|x1
j is fixed at 0, j = 1, 2, ..., n1}.

For the MITLP, if part of the high-level decision variables are fixed, the problem becomes:

(MITLP )f : max f1 =
∑

j∈J0
k
c11
j x

1
j +

∑
j∈J+

k
c11
j +

∑n2
j=1 c12

j x
2
j

st : max f2 =
∑n2

j=1 c
22

st :
∑

j∈J0
k
a1
jx

1
j +

∑n2
j=1 a2

jx
2
j ≤ b−

∑
j∈J+

k
a1
j

x1
j ∈ {0, 1}, j ∈ J0

k ,

x2 ≥ 0

where a1
j is the jth column vector of A1, a2

j is the jth column vector of A2.
Furthermore, by neglecting the low-level objective function, f2 of MITLPf , the resulting problem

becomes the following mixed integer linear programming problem :
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(MILP )f : max f1 =
∑

j∈J0
k
c11
j x

1
j +

∑
j∈J+

k
c11
j +

∑n2
j=1 c12

j x
2
j

st :
∑

j∈J0
k
a1
jx

1
j +

∑n2
j=1 a2

jx
2
j ≤ b−

∑
j∈J+

k
a1
j

x1
j ∈ {0, 1}, j ∈ J0

k ,

x2 ≥ 0

Hence, the high-level optimal objective value of MITLPf is less than or equal to the optimal
objective value of MILPf (see [13]). The algorithm proposed in [13] to solve this problem is based
on the following theorem:

Theorem 2 Consider the following problem:

(B) : max ZB =
∑n2

j=1 c
12
j x

2
j

st :
∑n2

j=1 a2
jx

2
j ≤ b

x2
j ≥ 0, j = 1, 2, ..., n2.

Then, if Z∗B is the optimal objective value of (B) and Y ∗B is the dual optimal solution of (B), then
the high-level optimal objective value of MITLPf is less than or equal to the value Zu, where

Zu = Z∗B +
∑
j∈J+

k

(c11
j − Y ∗Ba1

j ) +
∑
j∈J0

k

max{c11
j − Y ∗Ba1

j , 0},

i.e. Zu is an upper bound of (MITLPf ).

The proof is in [13].

Based on the previous theorem, he upper bounf of node k in the tree can be found by solving the
problem (B). The branching procedure always chose the first free variable to branch upon by first
setting the corresponding binary variable to zero and then setting it to one. There are two important
reasons for this: one is to reduce the number of performing dual simples pivot operationsm the other
is to save the memory storage space. Especially, the first reason will greatly affect the efficiency for
solving the MITLP (see [13]). The exact algorithm is described as follows:

• Step 1a: (INITIALIZATION) Set N = 0, K = 0, J0
k = {1, 2, ..., n1}, J+

k = J−k = ∅ and solve
the following problem (F):

max

n2∑
j=1

c22
j x

2
j

st :

n2∑
j=1

a2
jx

2
j ≤ b

x2
j ≥ 0, j = 1, 2, ..., n2

with the optimal solution x2∗ and objective value Z∗.

• Step 1b. Solve the problem (B) with the optimal objective value Z∗B and the dual optimal
solution Y ∗B. Calculate H(j) = c11

j − Y ∗Ba1
j , j = 1, 2, ..., n1.

02/04/2013 17/52



EADS SoS optimization

• Step 2. (BRANCHING) Set N = N + 1, J0
k = J0

k \ {N}, J
−
k = J−k ∪ {N}, N = N + 1.

• Step 3: (CALCULATING BOUND) Zu = Z∗B +
∑

j∈J+
k
H(j) +

∑
j∈J0

k
max{H(j), 0}.

• Step 4a: (FATHOMING) If Zu ≤ Z∗, go to Step 5a; otherwise, go to Step 4b.

• Step 4b: Check if N = n1 − 1, set N = N + 1, J0
k = J0

k \ {N}, J
−
k = J−k ∪ {N}, k = k+ and

go to Step 6a; otherwise, go to Step 2.

• Step 5a: (BACKTRACKING) If N ∈ J−k , set J+
k = J+

k ∪ {N}, J
−
k = J−k \ {N}, k = k + 1

and go to Step 3; otherwise go to Step 5a.

• Step 6a: (CALCULATING FEASIBLE SOLUTION) Solve the following problem (L):

max
∑n2

j=1 c
22
j x

2
j

st :
∑n2

j=1 a
2
jx

2
j ≤ b−

∑
j∈J+

k
a1
j

x2
j ≥ 0, j = 1, 2, ..., n2

Let x2L be the optimal solution of (L) and set

ZL =

n2∑
j=1

c12
j x

2L
j +

∑
j∈J+

k

c11
j .

• Step 6b: If ZL > Z∗, update (x1∗;x2∗) and Z∗ by (x1L, ;2L ) and ZL, respectively. Go to Step
6c.

• Step 6c: If N ∈ J−, set J+
k = J+

k ∪ {N}, J
−
k = J−k \ {N}, k = k + 1 and go to Step 6a;

otherwise, go to Step 5b.

• Step 7: (TERMINATION) Stop; (x1∗;x2∗) is the optimal solution with the high-level optimal
objective value Z∗.

Step 1a is to find an initial feasible solution of MITLP by setting all the high-level decision
variables to zero via the simplex method. Step 1b is designed to find the basic information about
bounds. Branching occurs at Step 2 where Jk is updated. Step 3 is to calculate the upper bound.
Step 4 is to check if the upper bound is less than or equal to the current optimal objective value.
If so, this node may terminate; otherwise, it is necessary to move forward to branch. Backtracking
procedure is adopted by branching to the newest live node which takes place in Step 5. To find a
potentially better solution for MITLP is accomplished in Step 6. Finally, if there exists no live node,
the solution procedure will terminate with the current optimal solution in Step 7.

Note: The branch-and-boung technique is often an effective tool for dealing with the problems
in mixed zero-one form. Its efectiveness depends on the design of the bound and the selection of
branching rules. In the worst case, when the number of high-level zero-one decision variables grows
linearly, the computational times grows exponentially.
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1.1.5 Nonlinear Bi-level Programming Problem

Consider the general form of BLPP (1), for the case where the functions F , f , g and h are nonlin-
ear and nonconcex, to date only few algorithms exist for the problem with any degree of success.
The existing algorithms may fall into three classes. The first one utilizes the Karush-Kuhn-Tucker
(KKT) conditions on the lower-level problem as constraints on the upper level problem. Brad and
Edmunds in [14] have developped an algorithm based on branch and bound method in order to solve
the nonconvex mathematical problem, which result from the application of the KKt conditions.

The second set of algorithms are based on descent approaches for the upper level problem with
subgradient information from the lower level problem aquired in a variety of ways. In this sets
of algorithms, the BLPP may be viewed solely in terms of the upper variables. Assuming that,
for any x, the optimal solution of the lower-level problem is unique and defines y as an implicit
function y(x) of x. Descent methods consist on finding a feasible direction d for a given feasible
point x so as to ensure a resonable deacrease of the upper-level objective function F . The major
issue is the availability of the gradient (or sub-gradient) of the upper-level objective ∇xF (x, y(x)), at
a feasible point. Applying the chain rule of differentiation, it results, whenever ∇xy(x) is well defined:

∇xF (x, y(x)) = ∇xF (x, y) +∇yF (x, y)∇xy(x) (27)

Unfortunately, y(x) may not be everywhere differentiable, in which case the functions of the
upper-level problem will not be differentiable everywhere. Furthermore, without significant restric-
tions on the lower-level problem, the upper-level problem may not be convex. In[15], Lasdon have
proposed a method for approximating this gradient. The procedure for computing this gradient re-
quires solving a linear system of size n+m, where n is the dimension of y and m the dimension of f .

Gaunvin in [15] shows that an upper-level descent direction at a given point x is a vector d ∈ Rn1

such that:
∇xF (x, y∗) +∇yF (x, y∗)w(x, d) < 0, (28)

when y∗ = y(x) and w ∈ Rn2 is a solution of the program

min
w

(dT , wT )∇2
xyL(x, y∗, λ)(d,w)

s.t ∇ygi(x, y∗)w ≤ −∇xgj(x, y∗)d, i ∈ J,
∇ygj(x, y∗)w = −∇xgi(x, y∗)d, i ∈ I(x),

∇yf(x, y∗)w = −∇xf(x, y∗)d+∇xL(x, y∗, λ)d

(29)

with

I(x) = {i ∈ I : gi(x, y
∗) = 0} (30)

and
L(x, y, λ) = f(x, y) +

∑
i∈I(x)∪J

λigi(x, y) (31)

is the Lagrangien of the lower level problem with respect to the actives constraints. The steepest
descent then coincides with the optimal solution of the linear-quadratic bilevel program

min
d
∇xf(x, y∗)d+∇yf(x, y∗)w(x, d)

s.t ||d|| ≤ 1,

w(x, d) solves the quadratic problem(),

(32)
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for which exact algorithms exists, such as those in [12].

Kolstad and Lasdon in [12] have adapted the previous computational method to large problem,
where the lower-level problem may have hundred of x variables and/or constraints, and where many
components of x have simple bounds. In addition, many of constraints in g may be inactive at the
optimum. for extracting derivative information on the implicit function y(x), which is especially
efficient when the lower level problem has simple bounds on the variable and/or many inactive con-
straints. The quantity ∇x is computed using an adaptation of the methods and theory presented in
Fiacco.

The third set of algorithms use double-penalty methods approximating both the lower level
problem and upper level problem by sequences as unconstrained minimization problems of penalized
augmented objective functions (see [16] and [17]).

1.1.6 Example of BLPP

1. Agent Problem: Some agency relations are Stackelberg games. Assume that there are N
agents and a corporation and the agents are competitive or non-competitive. Let the cost
function of corporation be F (x, y) and the constraint be G(x, y) ≤ 0. The cost function of the
ith agent is fi(x, y) and the ith follower subjects constraints gi(x, y) ≤ 0. Then the model is

minx F (x, y)

s.t G(x, y) ≤ 0 (33)

where

y ∈ arg minx (f1(x, y), ..., fN (x, y)) :

s.t gi(x, y) ≤ 0 i = 1, ..., N

1.2 Agent-Based Optimization

Agent Based Models (ABM) cope with optimization problems whose domains present several inter-
related components characterized by some attributes, which interact in a distributed and heteroge-
neous environment.

In agent-based modelling (ABM), a system is modeled as a collection of autonomous decision-
making entities called agent. In [18] Wooldridge and Jennings have defined an agent as a computa-
tional system interacting with an environment that characterized by the following features:

• Independence: The agent is free to act without any control of other entities.

• Social-ability: Each agent has to be able to communicate with the other entites in order the
fulfil the goals.

• Re-activeness: Agents have the abilily to react over signals coming from the environment.

• Pro-activeness: Agents are endowed with goal-directed behaviors. They take the initiative in
order to satisty their objectives.

02/04/2013 20/52



EADS SoS optimization

The development of an ABM needs a complete description for a set of basic building blocks.
According to [19], the previous maneuver needs an overview about the object of the simulation, the
nature of agents’ population as their degree of activeness and pro-activeness and finaly, the interac-
tion paradigm among agents.

Each kind of interaction between two agents needs communication capabilities such as sending
and receiving messages. Hence, it is necessary to establish a coordination mechanism among agents
themselves, in order to avoid conflicts that can affect the achievement of their objectives. Two cate-
gories can be used:

• Distributed ABM. Agents has the control on themselves and are endowed with self-organizing
rules for resource sharing and goal pursuing.

• Centralized ABM. Agents’ behaviors are controled by a mediator agent who is assigned with
the task of regulating.

As pointed out in [20], ABM can provide some advantages in terms of computational times,
thanks to their ability to divide problems in several sub-problems, and tend to be preferable when
the size of the problem is large, the domain is modular in nature and the structure of the domain
changes frequently. However, these computational advantages can be offset by the need frequent
interation in order to coordinate activities according to a given paradigm.

ABMs and classical heuristics have complementary characteristics. Hence, many studies focus
in establishing approches that could link the both kind of optimization. In practice, optimization
techniques are utilized for strategic planning and ABMs for operational and tactic re-planning.

Domain of application : Scheduling problem, transportation and logistics supplychain.

The most applications of ABMs deal with models under cooperative decentralize decision rules.
Under these rules agents have to coordinate to perform best actions for a team. The problems
involved by a such setting are known as ditributed constraint satisfaction problem (DisCSP) and
distributed constraint optimization problem (DCOP).

1.2.1 Distributed Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a problem which deals with finding a consistent assign-
ment of values to variables. A distributed CSP (DCSP) is a CSP in which variables and constraints
are distributed among multiple automated agents. Its most common applications deal with config-
uration, planning, scheduling and ressource allocation and form the basis of a significant software
industry.

Makoto Yokoo in [21] has made the following assymptions in order to solve the DCSP:

• Agents communicate by sending messages. An agent can send messages to other agents if the
agent knows the addresses of the agents.

02/04/2013 21/52



EADS SoS optimization

• The delay in delivering a message is finite, though random. For the transmission between any
pair of agents, messages are received in the order in which they were sent.

Each agent has some variables and tries to determine theirvalues. However, there exist inter-
agent constraints, and the value assignment must satisafy these inter-agent constraints. Formally,
there exist m agents 1, 2, ...,m. Each variable xj belongs to one agent i (this relation is represented
as belongs(xj , i) ). Constraints are also distributed among agents. The fact that an agent l knows a
constraint predicate pk is represented as known(pk, l).

A DCSP is solved if the following conditions are satisfied:

• ∀ i, ∀ xj where belongs(xj , i), the value of xj is assigned to dj , and ∀ l, ∀ pk where known(pk, l),
pk is true under the assignment xj = dj .

The following assumptions are made for simplificity in describing the algorithms :

• Each agent has exactly one variable, has a unique identifier.

• All constraints are binary.

• Each agent knows all constraint predicates relevant to its variable.

For an agent xi, a set of agents reffers to each of which is directly connected to xi by a link, as
neighbors of xi.

1.2.2 Asynchronous Backtracking Algorithm

Assyunchronous Backtracking is a asynchronous version of backtracking algorithm used as a standar
method for solving Costraints Satistfaction Problems (CSPs) [21]. This algorthim is defined as fol-
lowing:

• Each agent is assigned a priority. Uasually, variables are subjected to an alphabetical order of
their identifiers.

• Each agent instantiates its variable by selecting a random value from its domain.

• Each agent communicates its tentative variable assignments to its neighboring agents with tak-
ing into account the priority order.The message to communicate in this case is ”ok?” (Agent
with the higher priority, its assignment)”. For example, the agent A has a higher priority
than the agent B (alphabetical order). Lets A take the value 2. A send to B the message
”ok?(A = 2)”.
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• The agent how received the message places the received assignment in a data called ”agent-
view”.

• If the current value of the agent is consistent with his agent’s view then he does nothing.

• If the current value of the agent is not consistent with his agent’s view, the agent searches in
his domain for a new consistent value:

◦ If a consitent value exists, the agent assigns his variable that value and sen ”ok?(agent,value)”
to all his lower priority neighboors.

◦ If no consistent value exists, the agent backtracks. This operation is executed by sending
a message describing the conflict to the lowest priority agent whose variable is involved
in the conflict. Then it waits for this agent to send back the new assignment to its variable.

∗ If the agent receives a BACKTRACK message, but the conflict and the agent’s view
do not match, one of them must be obsolete; then it ignores the BACKTRACK.

∗ Otherwise, it records the conflict as a new constraint must enforce. This operation
requests a new link if necessary.

∗ When an agent receives a NEW-LINK request, it adds the sender to its neighboring
agents (children list) and responds through an OK? message.

∗ If the agent receives a NO-SOLUTION message, it terminates.

◦ If one of the conflicts set is empty set, this means any overset of is a conflict, so that
there is no solution to the DSCP. The agent broadcasts a NO-SOLUTION message and
terminates.

1.2.3 Asynchronous weak-commitment search

One limitation of the asynchronous backtracking algorithm is that the agent or variable ordering
is statically determined. If the value selection of a higher priority agent is bad, the lower priority
agents need to perform an exhaustive search to revise the bad decision. The asynchronous weak-
commitment search algorithm [22] introduces the min-conflict heuristic to reduce the risk of making
bad decisions. Furthermore, the agent ordering is dynamically changed so that a bad decision can
be revised without performing an exhaustive search. The asynchronous weak-commitment search
introduces the following priority system:

• For each agent, the initial priority is 0.

• If there no exists consistent value for xi, the priority of xi is changed to k + 1, where k is the
largest value of related agents.
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• The order is defined such that any agent with a larger priority value has higher priority. If the
priority values of agents are the same, the order is determined by the alphabatical order of the
variables.

• As in the asynchronous backtracking, each agent concurrently assigns a value to its variable,
and sends the variable value to other agents.

• The priority value, as well as the current assignment, is communicated through the ”ok?”
messages.

• If the current value is not consistent with the local view, the agent changes its value using the
min-conflict heuristic, i.e., a value is consistent with the local view and minimizes the number
of constraint violations with variable of lower priority agents.

2 Optimization in Uncertain environment

There is a various origins of uncertainty that could affect an aptimization problem. Beyer and Send-
hoff class them in four principal classes:

• Class A: This class concerns the uncertainties due to environmental conditions, which can be
represented as non-contollable parameters e of the model. Hence, the objective function can
be represented by f(d, e), where d is the vector of decision variables.

• Class B: It deals with inaccuracies on the decision variables. Indeed, it is impossible to build a
real system with an infinite precision. Generally, the systems are built with a certain tolerance
of the decision variables. Hence, the objective function of the system can be represented by
f(d+ δ, e), where δ is the disruption due to manufacturing.

• Class C: This class represents the measurement uncertainty of the system output. It is indeed
impossible to accurately measure the output values and performance of the system. This class
includes both uncertainty measurement errors and approximations errors made by the use of
numerical model to represent the actual physical system. In practice, it is generally represented
with a white noise.

• Class D: To have a feasible system, it is necessary to ensure that the constraints of the problem
are satisfied. Similarly, it is difficult to acccurately evaluate the objective functionf as it shown
in teh previous classes. Hence, uncertainty can be on the constraints of the problem, which
limit the set of parameters.

2.1 Stochastic Optimization

Stochastic programming deals with mathematical programs where some of the data incorporated
into the objective or constraints is uncertain.
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min
x∈X

g(x, ε)

s.t gi(x, ε) ≤ 0, i = 1, · · · ,m,
(34)

where ε is a random vector.

In a such model, it is fondamental to know the distribution of the probability of the unkown
parameters. Indeed, it is not always necessary to know the entire distribution. In general, having
information about the impact of those variables is sufficient. Therefore, it must be able to identify
the origine of the uncertainty. The most known appllication in this field copes with decisions making
under uncertainty.

Example 1 (Newsvendor Problem) Many companies sell seasonal products, such as fash-
ion articles, airline seats, Christmas decorations, magazines and newspapers. These products are
characterized by a relatively short selling season, after which the value of the products decrease
substantially. Often, a decision has to be made how much of such a product to manufacture or
purchase before the selling season starts. Once the selling season has started, there is not enough
time remaining in the season to change this decision and implement the change, so that at this stage
the quantity of the product is given. During the season the decision maker may be able to make
other types of decisions to pursue desirable results, such as to change the price of the product as the
season progresses and sales of the product takes place. Such behavior is familiar in many industries.
Another characteristic of such a situation is that the decisions have to be made before the eventual
outcomes become known to the decision maker. For example, the decision maker has to decide how
much of the product to manufacture or purchase before the demand for the product becomes known.
Thus decisions have to be made without knowing which outcome will take place.

Stochactic programming approach requires the use of the ”Scenario approach”. This consists
on approximation the randomness elements by some realization called scenarios. The most widely
applied and studied sthocastic programming model is two-stage (linear) programs which can be ex-
tendes to a general form as Multistage model.

2.1.1 Two-stage model

This model is based on two stages of decision and are as following:

• A number of decisions have to be taken before the experiment. All these decisions are called
first-stage decisions and the period when these decisions are taken is called the first stage.

• A number of decisions can be taken after the experiment. They are called second-stage deci-
sions. The corresponding period is called the second stage.

The general form of two-stage stochastic programming problem is given by:

min
x∈X
{g(x) = f(x) + E[Q(x, ζ)]} (35)
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whee Q(x, ζ) is the optimal value of the second-stage problem

min
y
{q(y, ζ)|T (ζ)x+W (ζ)y = h(ζ)} (36)

The problem above can be reformulated as:

min
x∈A

g(x) = cTx+ E[Q(x, ζ)] (37)

s.t Ax = b, (38)

x ≥ 0, (39)

whee Q(x, ζ) is the optimal value of the second-stage problem

min
q

q(ζ)T y, (40)

s.t T (ζ)x+W (ζ)y = h(ζ) (41)

y ≥ 0, (42)

where x ∈ A the first-stage decision vector, X is a polyhedral set, defined by a finite number of
constraints, y ∈ Y is the second stage decision vector and ζ(q, T,W, h) contains the data of the
second stage problem. As the second-stage problem contains random data, its optimal value Q(x, ζ)
is random variable. The distribution of this random variable depends on the first-stage decisions x,
and therefore the first-stage problem cannot be solved without understanding the properties of the
second-stage problem.

Assuming that W is deterministic and chosen such that system Wy = χ, y ≥ 0 have solution
for every χ, the problem exhibits nice properties that have allowed for the design of some successful
solution methods. For any realization q(ζ), T (ζ), h(ζ) the function Q(x, ζ) is piecewise linear and
convex in x on the set: {x ∈ A, x ≥ 0, Ax ≥ b}. If the distribution of ζ is discrete, the function
Q(x, ζ) is piecewise linear and convex on this set. In case is continuously distributed then Q(x, ζ)
is convex and differentiable. Thus, we have a continuous convex programming problem under linear
constraints.

The main difficulty in solving the two-stage problem remains in compution E[Q(x, ζ)]. To over-
pass this problem, the approach of scenarios has been used. Assume that the random vector ζ has
a finite number of possible realizations, called scenarios, say ζ1, · · · , ζK , with respective probability
masses p1, · · · , pk.Then the expectatiion in the first-stage problem’s objective function can be written
as the summation:

E[Q(x, ζ)] =
K∑
k=1

pkQ(x, ζk) (43)

For a given x, the expectation E[Q(x, ζk)] is equal to the optimal value of the linear programming
problem

min
x∈X

K∑
k=1

pk q
T
k yk, (44)

s.t Tkx+Wkyk = hk, (45)

yk ≥ 0, k = 1, · · · ,K. (46)

Thus, the two-stage problem can be formulated as one large linear programming problem:

02/04/2013 26/52



EADS SoS optimization

min
x∈X

cTx+
K∑
k=1

pk q
T
k yk, (47)

s.t Tkx+Wkyk = hk, k = 1, · · · ,K (48)

Ax = b, (49)

x ≥ 0, yk ≥ 0. (50)

The problem above is called the deterministic equivalent of the stochastic problem. Propreties of
the expected recourse cost follow directly from properties of parametric linear programming. This
linear program has a certain lock structure which makes it amenable to various decomposition meth-
ods such as L-shaped method developed by Van Slyke and Wets (Van Slyke-Wers, 1969 ).

This numerical approach works reasonably well if the number K of scenarios is not too large.
Suppose, however, that the random vector ζ has m independently components each having just 3
possible realizations. Then the total number of different scenarios is K = 3m. That is, the number
of scenarios grows exponentially fast in the number m of random variables. In the case, even for a
moderate number of random variables, say m = 100, the number of scenarios becomes so large that
even modern components of ζ have continuous distributions.

The Sample Average Approximation (SAA) can be used in order to reduce the size of scenario
set. It consist on generating a sample ζ1, · · · , ζN of N replications of the random ζ. Each taken with
the same probability pk = 1

K , the sample is asumedd to be independent identically distributed. Then

the expectation E[Q(x, ζk)] is approximated by the sample average q̂N (x) = 1
N

∑N
j=1Q(x, ζj). The

first-stage problem is given by :

ĝN (x) = min
x∈X

cTx+
1

N

N∑
j=1

Q(x, ζj) (51)

s.t Ax = b x ≥ 0. (52)

More details and algorithms concerning numerical methods can be found in (Ermoliev-Wets,
1988).

The farmer’s problem: Consider a European farmer who specializes in raising wheat, corn,
and sugar beets on his 500 acres of land. During the winter, he wants to decide how much land to
devote to each crop. The farmer knows that at least 200 tons (T) of wheat and 240 T of corn are
needed for cattle feed. These amounts can be raised on the farm or bought from a wholesaler. Any
production in excess of the feeding requirement would be sold. Over the last decade, mean selling
prices have been $170 and $150 per ton of wheat and corn, respectively. The purchase prices are 40%
more than this due to the wholesaler’s margin and transportation costs. Another profitable crop is
sugar beet, which he expects to sell at $36/T; however, the European Commission imposes a quota
on sugar beet production. Any amount in excess of the quota can be sold only $10/T. The farmer’s
quota for next year is 6 000T. Based on past experience, the farmer knows that the mean yield on his
land is roughly 2.5 T, 3 T, and 20 T per acre for wheat, corn, and sugar beets, respectively. Hence,
they are the decisions on how many acres to devote to each crop.

Define the following variables:
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• x1 = acres of land devoted to wheat.

• x2 = acres of land devoted to corn.

• x3 = acres of land devotes to sugar beets.

• w1 = tons of wheat sold.

• y1 = tons of wheat purchased.

• w2 = tons of corn sold.

• y2 = tons of corn purchases.

• w3 = tons of sugar beets sold at favirable price.

The problem is formulated as following:

Q(x, s) = min{238y1 − 170wy + 210y2 − 150w2 − 36w3 − 10w4} (53)

s.t.t1(s)x1 + y1 − w1 ≥ 200, (54)

t2(s)x2 + y2 − w2 ≥ 240, (55)

w3 + w4 ≤ t3(s)x3, (56)

w3 ≤ 6000, (57)

y, w ≥ 0, (58)

where ti(s) represents the yield of crop i under scenario s (or state of nature s).

2.1.2 Multistage model

Most practical decisions problems, however, involve a sequence of decisions that react to outcomes
that envolve over time. The stochastic programming approach to a such problem is called Multistage
programming. It’s an extention of two-stage programming to a multi-stage setting. This model is
based on a set of uncertain data ζ1, · · · , ζT which is revealed gradually over time, in T periods and
our decisions should be adapted to this process. The decisions process has the form

decision(x1)→ observatin(ζ2)→ decision(x2)→ · · · observatin(ζT )→ decision(xT ).

The sequence ζt ∈ Rd, t = 1, · · · , T of data vectors is a stochastic process, i.e, a sequence of
random variables with specified probability distribution. Let ζ[t] := (ζ1, · · · , ζt) be the history of the
process up to time t. It may occure that the value of the decision vector xt, chosen at stage t, depend
on the information ζ[t] available up to time t, but not on the results of the futur observations. Thus,
xt is a stochastic process.

In a generic form a T -stage stochastic programming problem can be written in the nested formu-
lation

min
x1∈X1

f1(x1) + E[ min
x2∈X2(x1ζ2)

f2(x2ζ2) + E[· · ·+ E[ min
xT∈XT (xT−1,ζT )

fT (xT , ζT )]]] (59)

It can be reformulated as following:

min
x1,··· ,xT

E[f1(x1) + f2(x2(ζ[2]), ζ2) + · · ·+ fT (xT (ζ[T ]), ζT )] (60)

s.t x1 ∈ X1, x1(ζ[t]) ∈ Xt(xt−1(ζ[t−1]), ζt), t = 2, · · · , T. (61)
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Note that optimization in the previous problem is performed over implementable and feasible
policies and that policies x2, · · · , xT are functions of the data process, and hence are elements of
appropriate functional spaces, while x1 ∈ Rn1 is a deterministic vector. Therefore, unless the data
process ζ1, · · · , ζT has a finite number of realizations, formulation (42) − (43) leads ti an infinite
dimensional optimization problem.

Another possible way is to write the corresponding dynamic programming equations. That os,
consider the last-stage problem

min
xT∈XT (XT−1,ζT )

fT (xT , ζT ) (62)

The optimal value of this problem, denotes QT (xT−1, ζT ), depends on the decision vector xT−1.
At stage t = 2, · · · , T − 1, we formulate the problem

min
xt

ftxt, ζt + E[Qt+1(xt, ζt+1)|ζ[t]] (63)

s.t xt ∈ Xt(xt−1, ζt) (64)

where E[·|ζ[t]] denotes conditional expectation. Its optimal value depends on the decision xt−1

at the previous stage and realization of the data process ζ[t], and denoted Qt(xt−1, ζt) (cost-to-go or
value function) which is calculated recursively, going backyard in time. In the case where the process
is Markovien, each cost-to-go funtion Qt depends only on ζt. If moreover, the stagewise independence
conditions holds, then each expectation function does not depends on realization of random process.

2.1.3 L-shaped method for multistage ( and two-stage) stochastic linear programs

The basic idea of the L-shaped method is to approximate the nonlinear term in the objective of the
problem (63)-(64) by successively appending supporting hyperplanes. The method is generalized to
apply to problems with up to three periods and up to three hundred seventy-five different future
scenarios.

In [23],the musltistage stochastic linear program considered by the algorithm is

min c1x1 + Eε2 [min c2x2 + · · ·+ EεT [min cTxT ]]

s.t A1x1 = b1,

B1x1 +A2x2 = ε2
...

BT−1xT−1 +ATxT = εT

xt ≥ 0, t = 1, ..., T, εt ∈ Et, t = 2, ..., T,

(65)

where ct is a known vector in Rnt for t = 1, ..., T , b1 is a known vector in Rm1 , εt is a random
m2−vector defined on the probability space (Et,Ft, Ft) for t = 1, ..., T , and At and Bt−1 are cor-
respondingly dimensioned known real-valued matrices.”Eεt” denotes mathematical expectation with
respect to εt.

The L−shaped method of Van Slyke and Wets [24] applies to (65) when T = 2. Methods for the
multi-stage problem have generally assumed a specific structure for the problem. Beale, et al. [25]
and Ashford [26] for example, consider a multistage production problem and implement an appro-
priate approximation. The generalization of the L − shaped method introduced in Brige [27], does
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not, however require any special structure except that the random vectors εt are discretely distributed.

The algorithm is called the Nested Decomposition for Stochastic Programming Algorithm (NDSPA).
It is based on the observation that given a realization εjt of the random vector in period t can be
written (see Wets [28])

min ctxjt +Qt+1(xjt )

s.t Atx
j
t = εjt +Bt−1x

a(j)
t−1

Dl,j
t x

j
t ≥ d

l,j
t , l = 1, ..., rjt ,

xt ≥ 0,

(66)

where qt+1(xt) is a convex function, Dl,j
t ∈ Rnt for all l, rjt ≥ mt+1, and the constraint Dl,j

t x
j
t ≥

dl,jt , l = 1, ..., rjt is a feasibility cut.

The previous program can be solved using a relaxed master problem (RMP):

min ctx
j
t + θjt (67)

s.t Atx
j
t = εjt +Bt−1x

a(j)
t−1 (68)

Dl,j
t x

j
t ≥ d

l,j
t , l = 1, ..., rjt (69)

El,jt x
j
t + θjt ≥ e

l,j
z , l = 1, ..., sjt (70)

xjt ≥ 0 . (71)

Program (67) is solved to obtain (x̄jt , θ
j
t ). If θ̄jt < Qt+1(x̄jt ) then another optimality cut (70) is

added to (67) then it is resolved . If x̄jt froces infeasibility in any future period then a feasibility cut
(69) is added (67). This process is repeated until θjt ≥ Qt+1(x̄jt ). For the construction of feasibility
and optimality cuts, (Chapter 3 of [23]).

For implementation in multistage problems, it is assumed that there are a finite number Kt of
scenarios in each period t. The scenarios consist of all possible realizationof the random vectors from
periods 2 through t. For every period t scenarion j, there corresponds a unique ancestor scenario
a(j) in period t − 1 and, perhaps, several descendant scenario d(j) in period t + 1. NDSPA solves
(65) by first obtaining a feasible solution to (67)-(71) and for all t and j and by then sequentially
solving (66) using the relaxaed master problem from periods T to one.

NDSPA

• Step 0.
Solve (RMP) for t = 1 (dropping the scenario index j) where θ1 = 0, r1 = s1 = 0 and (68)
is replaced by A1x1 = b1. Set θjt = 0 and rjt = sjt = 0 in (RMP) for all t and scenarios in j
at t. (The indices rjt and sjt are updated whenever a constraint (69) or (70) is added to (RMP)).

• Step 1.
If () is infeasible for t = 1, STOP. The problem (RMP) is infeasible. Otherwise, let x̄1 be the
current optimal solution of (65) for t = 1. Use x̄1 as an input in (RMP) for t = 2. Solve (RMP)
for t = 2 and all εj2, j = 1, ...,K2. If any period two problem (RMP) is infeasible, then add a
feasibility cut (69) to (RMP) for t = 1, resolve (RMP) for t = 1, and return to 1. Otherwise
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let t = 2 and go to 2.

• Step 2.

1. Let the current period t optimal solutions be x̄jt , j = 1, ...,Kt. Solve (RMP) for t+ 1 and
all j = 1, ...,Kt+1 using the ancestor solution x̄jt in (68).

2. If any period t + 1 problem is infeasible, add a feasibility cut (69) to the corresponding
ancestor period t problem and resolve that problem.
If the period t problem is infeasible, let t = t− 1.
If t = 1, go to Step 1.
Otherwise, return to Step 2.1

Otherwise, all period t+ 1 problems (RMP) are feasible.
If t ≤ T − 2, let t = t+ 1 and return to Step2.1.
Otherwise (t = T − 1), remove the θjτ = 0 restriction for all periods τ and scenarios j at τ . Let
the current value of each θjτ be θjτ = −∞ if o constraints (70) are present. Go to Step 3.

• Step 3.

1. Find El,jt and el,jt for a new constraint (70) at each scenario t problem (RMP) using the
current period t+ 1 solutions.

2. If there exists j such that
θ̄jt < el,jt − E

l,j
t x̄

j
t , (72)

then add the new constraint (70) to each period t problem (RMP) for which (72) holds.
Solve each period t problem (RMP). Use the resulting solutions (x̄jt , θ

j
t ) to form (68) for

the corresponding descendant period t+ 1 problems (RMP) and resolve each period t+ 1
problem (RMP).

◦ If t < T − 1, let t = t+ 1 and go to Step 2.1.

◦ Otherwise, return to Step 3,1.

Otherwise, θ̄jt = el,jt − E
l,j
t x̄

j
t for all scenarios j at t.

◦ If t > 1, let t = t−1 and return to Step 3,1, Otherwise, STOP. The current solutions
x̄jτ , τ = 1, ..., T form an optimal solution of (65).

2.2 Multiobjective Stochastic Linear Programming

In recent years, multiobjective stochastic programming problems have become increasingly important
in scientifically based decision making involved in practical problem arising in economics, industry,
health care, transportation, agriculture, military purposes, and technology. A multiobjective stochas-
tic linear programming problem is defined as follow:

min
x∈D(w)

(c1(w)x, ..., ck(w)x) (73)

where
D(w) = x ∈ Rn : A(w)x ≤ b(w);x ≥ 0

where (c1(w)x, ..., ck(w)x) are n−dimensionql rqndon vectors defined on a probability space (Ω,Γ,P),
A(w) and b(w) are respectively m× n and m× 1 random matrices defined on the same probability
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space.

As an example of a concrete problem that may be put into the form of (73), there is the automated
manufacturing system in a production planning situation, with several objective functions, where the
costs and time of production are known stochastically [30].

2.2.1 Methodological Approaches for Solving Multiobjective Stochastic Linear
Programs

For this method the following assumptions should be met: Ai(w), i = 1, ...,m; b(w) and ck(w),
k = 1, ...,K are normally distributed random vectors. λk, k = 1, ...,K are strictly positive real
numbers in the interval (0, 1] such that

∑K
k=1 λk = 1.Moreover, the following notations are used:

• hi(w, x) = Ai(w)x− bi(w), i = 1, ...,m.

• Φ denotes the cumulative distribution function if the standard normal random variable.

• q1 and q2 are weights associated with the expected value and the standard deviation of c(w)
respectively.

• α = (α1, ..., αm) where αi, i = 1, ...,m are probability levels prescribed by the Decision maker
for constraints satisfaction.

A stepwise description of the method is as follow:

• Step 1. Read λk, k = 1, ...,K; ck(w), k = 1, ...,K; hi(w, x), i = 1, ...,m; αi, i = 1, ...,m.

• Step 2. Find

c(w) =
∑
k=1

Kλkc
k(w) (74)

• Step 3. Replace D(w) by

D∗ = {x ∈ Rn : E(hi(w, x)) + Φ−1(αi)σ(hi(w, x)) ≤ 0, i = 1, ...,m;x ≥ 0} (75)

• Step 4. Solve the mathematical program:

min
x∈D∗

(q1E(c(w)) + q2σ(c(w))) (76)

and let x∗ be the solution.

• Step 5. Stop.

This algorithm transforms the original problem into a single objective problem, that has been
put in the deterministic form (76), using the expected value model approach [31]. The solution x∗

obtained in an expected value-standard deviation efficient solution for ptoblem (73) (see [33]).
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2.2.2 Multiobjective Two-stage Stochastic Programming

A general model of multiobjective two-stage stochastic programming can be stated as follow:

max zt =

n∑
j=1

ctjxj − E[

m∑
i=1

qti |yi|], t = 1, · · · , T, (77)

s.t. yi = bi −
n∑
j=1

aijxj , i = 1, · · · ,m1, (78)

n∑
j=1

dijxj ≤ bm1+i, i = 1, · · · ,m2, (79)

xj ≥ 0, j = 1, · · · , n yi ≥ 0, i = 1, · · · ,m1, (80)

where xj , j = 1, · · ·n and yi, i = 1, · · · ,m1 are the first stage and second-stage decision variables
respectively. Further, qi, i = 1, · · · ,m1 are defined as the penalty cost associated with the discrep-
ancy between

∑n
j=1 aijxj and bi and E is used to represent the expected value of the discrete random

variable.

Remark The statistical approach requires that the distribution function of the data must be known
in advance. Otherwise it will not lead to an optimal result. This can be a real problem in many
cases since it is often difficult to obtain a statistical model of the data. For this reason the statis-tical
approach is not suitable if no accurate model is known, which is usually the case in assessing customer
demand for a product, for example. Estimation errors have especially dire consequences in industries
with long production lead times, such as the automotive, retail and high-tech industries: They result
in stockpiles of unneeded inventory or lost sales and customers’ dissatisfaction. Moreover, another
disadvantage of stochastic programming is that the size of the resulting deterministic model increases
drastically as a function of the number of scenarios, making the running time exponential. These
two draw-backs are the reason why not everyone just uses the statistical approach, but why some
researchers have tried to come up with alternatives such as robust optimization. Research has further
been motivated by a recent increase in an demand for such an alternative due to volatile customer
tastes, technological innovation and reduced product life cycles.

2.3 Robust Optimization

Robust optimization concerns situations where different scenarios on data ae considered, and where
the objective is to determine solution which remains ”good” regardless the scenarios chosen. The idea
is to build a flexible solution which can react to modifications on data with taking into account the
uncertainty orthe impreicion on the costs. In the real world, models for environmental and energy
systems assessments are plagued with uncertainty. They are usually formulated as mid-term to
long-term planning problems, crucially influenced by uncertain factors like climate change, economy
growth, technological progress.

2.3.1 Robust linear optimization

The robust conterpart of a linear optimization problem is written, without loss of generality, as

min cTx

s.t Ax ≤ b, ∀a1 ∈ U1, · · · , am ∈ Um,
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where ai represents the ith row of the uncertain matrix A, and takes values in the uncertain set
Ui ⊆ Rn. Then, aTi x ≤ bi, ∀ai ∈ Ui, if and only if

max
ai∈Ui

aTi x ≤ bi, ∀i. (81)

The set of the above subproblem determines the complexity of solving the Robust Oprimization
problem.

Ellipsoidal Uncertainty Let U be ”ellipsoidal,” i.e U = U(Π, Q) = {Π(u)| ||Qu|| ≤ ρ}, where
u → Π(u) is an ffine embedding of RL into R/m × n and Q ∈ RM×n. According to Ben-Tal and
A.Nemirovski’s in [34], the previous robust counterpart problem is equivalent to a second-order cone
program (SOCP). Explicitly, if

U = {(a1, · · · , am) : ai = a0
i + ∆iui, i = 1, · · · ,m, ||u||2 ≤ ρ} (82)

where a0
i denotes the nominal value. Then the robust counterpart is:

min cTx (83)

s.t a0
ix ≤ bi − ρ||∆ix||2 ∀i = 1, · · · ,m. (84)

The subproblem (81) is an optimization over a quadratic constraint. The dual, therefore, involves
quadratic functions, which leads to the resulting SOCP.

Polyhedral Uncertainty When U is polyhedral, the subproblem becomes linear, and the the
robust counterpart is equivalent to a linear optimization problem, To illustrate this, consider the
problem:

min cTx (85)

s.t max
{Diai≤di}

aTi x ≤ bi, ∀ i = 1, · · · ,m, (86)

With using the dual of the problem above the problem (85)− (86) becomes:

min cTx (87)

s.t. pTi di ≤ bi, i = 1, · · · ,m (88)

pTi Di = x, i = 1, · · · ,m (89)

pi ≥ 0, i = 1, · · · ,m. (90)

The size of this problem grows polynomially in the size of the nominal problem and the dimensions
of the uncertainty set.

In short, for many choices of the uncertainty set, robust linear optimization problems are tractable.
Bertsimas and A. in [37] have studied the case where the unconstraited set is described by more gen-
eral norms leas to convex problems with constraints related to the dual norm. Bertsimas and Sim
in [36] consider an uncertainty sets that control the number of parameters of the problem that are
allowed to vary from their nominal values, providing a different trade-off between the optimality of
the solution, and its robustness to parameter perturbation.
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2.3.2 Robust geometric programming

A geometric program (GP) is a convex optimization problem of the form

min cT y (91)

s.t g(Aiy + bi) ≤ 0, i = 1, · · · ,m. (92)

Gy + h = 0, (93)

where g : Rk → R is the log − sum− exp function, g(x) = log(
∑k

i=1 e
xi) , and the matrices and

vectors Ai, G,bi, and h are of appropriate dimension. For many engineering, design, and statistical
applications of GP, see [39].

g(Ãi(u)v + b̃i(u)) ≤ 0, ∀u ∈ U (94)

where (Ãi(u)v+b̃i(u)) are affinely dependent on the uncertainty u, and U is an ellipsoid or polyhedron.
The complexity of this problem is unknown.

2.3.3 Robust discrete optimization

Bertsimas and Sim in [35] present a model for cost uncertainty in which each coefficient cj is allowed
to vary within the interval [c̄j , c̄j + 1], with no more than Γ ≥ 0 coefficients allowed to vary. They
then apply this model to a number of combinatorial problems, i.e., they attempt to solve

min cTx+ max
S⊂D

∑
j∈S

djxj (95)

s.t x ∈ X, (96)

(97)

where N = 1, · · · , n, D = {S|S ⊆ N, |S| ≤ Γ} and X is a fixed subset. They show that under
this model for uncertainty, the robust version of a combinatorial problem may be solved by solving
no more than n + 1 instances of the underlying, nominal problem. They also show that this result
extends to approximation algorithms for combinatorial problems. For network flow problems, they
show that the above model can be applied and the robust solution can be computed by solving a
logarithmic number of nominal, network flow problems.

2.3.4 Optimization models with probabilistic constraints

Chance (or probabilistic) constrained optimization problem can be writhem in the following form :

min
x

E[f(x, ζ)] (98)

s.t (99)

either P{gi(x, ζ) ≤ 0} ≥ αi, i = 1, · · · ,m. (100)

or P{gi(x, ζ) ≤ 0 i = 1, · · · ,m} ≥ α. (101)

where f, g : Rn × Rp → R are at least differentiable with respect to x ∈ X ⊂ Rn, x is a vector
of deterministic variables; ζ ⊂ Ω ⊂ Rp is a vector of random variables with joint probability density
φ(ζ). P is the probability measure induced by the random ζ.
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Example In the following example probabilistic constraints arise in a natural way. Consider n
investment opportunities, with random returns R1, · · · , Rn in the next year. The initial capital K
and the aim is to invest some of it in such a way that expected value of our investment after a year is
maximized, under the condition that the chance of losing no more than a given fixed amount b > 0
is at least p, where p ∈ (0, 1). Such a requirement is called the Value at Risk (VaR) constraint. Let
x1, · · · , xn be the amounts invested in the n opportunities. The investment changes in value after
a year by g(x,R) =

∑n
i=1Rixi. The stochastic optimization problem with probabilistic constraints

can be formulated as following:

max

n∑
i=1

E[Ri]xi (102)

s.t. P [

n∑
i=1

Rixi ≥ −b] ≥ p, (103)

n∑
i=1

xi ≤ K, (104)

x ≥ 0. (105)

Let Z := g(x, ζ) be the random variable. x is feasible if P{g(x, ζ) ≤ 0)} ≥ α holds with realibity
α. Define p(x) := P{g(x, ζ) ≤ 0) Therfore, the feasible set of the previous problem is :

Q := {x ∈ X| p(x) ≥ α} (106)

Many studies have discusses several properties of the chance constrained optimization problem,
which deal with the contituity of a such problem those in [32].

The main difficulty in solving this problem remains in the computation of the chance constraint
givien by

p(x) = P{g(x, ζ) ≤ 0} =

∫
{ζ∈Ω |P{g(x,ζ)≤0}

φ(ζ)dζ

which makes the CCOP a hard-problem.

In some special cases, where the the probability density function of Z is known, the chance
constranit can be subtituted by a deterministic constraint of the form q(x) ≤ 0, that the entire
optimization problem can be handled as an ordinary nonlinear programming problem. Depending on
the form of g(x, ζ), the explicit form of q(x) may be difficult to obtain. Here some simple examples
where the q(x) can be writheen in its analatical form:

1. If g(x, ζ) = aTx+ b− ζ, where ζ ∈ R ∼ N(µ, σ2). Then :

P{g(x, ζ) ≤ 0} = P{aTx+ b ≤ ζ} (107)

= 1− P{aTx+ b ≥ ζ} (108)

= 1− P{ζ − µ
σ
≤ (aTx+ b)− µ

σ
} (109)

= 1− φ(aTx+ b) (110)

The chance constraint is then equivalent to 1− φ(aTx+ b) ≥ α or φ−1(1−α)− (aTx+ b) ≥ 0.
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2. If g(x, ζ) is a linear transformation of ζ; g(x, ζ) = a(x)ζ + b(x), with ζ ∼ N(µ, σ2) (the case
where stochastic variable ζ can be separated from the decision variable x) the deterministic
equivalent can be found fairly easily by using the probability density function (pdf) of ζ to
find a valu β, from p =

∫
· · ·
∫∞
β pdf(ζ)dζ such that g̃(x) ≤ β ⇒ P{g(x) ≤ ζ} ≥ p. Consider

for example, a constraint of the form

P{ζ(Mx+ b) ≤ a} ≥ p, ζ ∼ N(µ, σ2) (111)

P (
ζT (Mx+ b)− µT (Mx+ b)√

(Mx+ b)Tσ2(Mx+ b)
≤ a− µT (Mx+ b)√

(Mx+ b)Tσ2(Mx+ b)
) ≥ α (112)

Let F−1(p) is the value of the inverse cumulative distribution function of the standard normal
distribution evaluated at p Hence the probabilistic constraint can be recast as the deterministic
constraint:

µT (Mx+ b) ≤ a− F−1(p)
√

(Mx+ b)Tσ2(Mx+ b). (113)

Generally, chance constraint is severely computational. Whenever this is the case, a natural
course of actions is to look for tractable approximation of the chance constraint, i.e., for efficiently
verifiable sufficient conditions for its validity. The first method consist on using Sample Average
Approximation (AAA) (See [39]). Define the followinf function:

I(0,∞](g(x, ζ)) =

{
0, if g(x, ζ) > 0

1, if g(x, ζ) ≤ 0.
(114)

The idea is to determine samples {ζ1, · · · , ζN} ⊂ Ω and replace the chance constrains with

pN (x) =
1

N

N∑
k=1

I(0,∞](g(x, ζk)) ≤ α. (115)

pN (x) is called Relative-frequency count for the satisfactio of g(x, ζ). This method maintains
the convexity of the chance constrained optimization problen and avoids computation of multidi-
mensional integrals. On the other hand, the CCOP becomes a non-smooth optimization problem,
furthermore, to have a feasible solution the number of samples must be very large; the feasibility of
the obtained solution of the CCOP is guaranted only when N →∞.

Another method consist on generating a sample (independent identically distributed) ζ1, · · · , ζN
of N replications on the distribution of ζ from Ω using Monte-Carlo method, then approximate the
constraint P (gi(x, ζ) ≤ 0, i = 1, · · · ,m) by gj(x, ζ(n)). In other words, robust optimization considers
the worst-case problem, which is giving by:

min
x

1

N

N∑
k=1

f(x, ζk) (116)

s.t g(x, ζk) ≤ 0, k = 1, · · · , N, (117)

x ∈ X (118)

In the case where f(·, ζ) is convex with respect to x ∈ Rn, then under mild additional conditionsm
with the sample size N satisfying :

N ≥ 2n

1− α
ln(

1

1− α
) + (

2

1− α
)ln(

1

α
) + 2n, (119)
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the optimal solution obtained from the previous problem is solution of the chance constrained
problem(worst-case), with reliability α.

The advantage of this method remain in the facility of implementing and solving the resulting
problem. On the other hand, for a high reliability level α, the number of scenarios required becomes
very large. Indeed, the sample size as giving by the formula above grows linealy with n, which makes
it difficult to apply the approach already to medium-size problems (with α = 0.09 and n = 200 the
estimate results is N ≥ 184 608).

3 Optimization in Dynamic environment

Dynamic programming was the brainchild of an American Mathematician, Richard Bellman, who
described the way of solving problems where it is needed to find the best decisions one after another.
In the forty-odd years since this development, the number of uses and applications of dynamic pro-
gramming has increased enormously. It is both a mathematical optimization method and a computer
programming method. It is applicable to both discrete and continuous domains.It is a commonly
used for solving complex problems by breaking them down into simpler problems. Furthermmore,
it is a powerful technique for handling (characterizing and solving) problems with intertemporal
decision-making. It allows to solve problems recursively, rather than at the beginning of time, while
keeping track of all past histories in a relatively parsimonious way, using state variables. It is also
applicable to problems that exhibit the properties of overlapping subproblems which are only slightly
smaller and optimal substructure.

3.1 Dynamic Programming for discrete-time systems

For N ∈ N, consider sequences {Sk}Nk=0, {Ck}N−1
k=0 , and {Dk}N−1

k=0 of (random) state spaces Sk,
0 ≤ k ≤ N , control spaces Ck, 0 ≤ k ≤ N − 1, and (random) disturbance spaces Dk, 0 ≤ k ≤ N − 1.
Given an initial state x0 ∈ S0, assume that the states xk ∈ Sk, 0 ≤ k ≤ N , evolve according to the
discrete-time dynamic system

xk+1 = fk(xk, uk, wk), 0 ≤ k ≤ N − 1,

where fk : Sk × Ck ×Dk → Sk+1, 0 ≤ k ≤ N − 1. The controls uk satisfy

uk ∈ Uk(xk) ⊂ Ck, 0 ≤ k ≤ N − 1,

i.e., they depend on the state xk ∈ Sk, and the random disturbances wk, 0 ≤ k ≤ N − 1, are
characterized by a probability distribution

Pk(·|xk, uk), 0 ≤ k ≤ N − 1

which may explicitly depend on the state xk ∈ Sk, and the control uk, but not on the prior distur-
bances wj , 0 ≤ j ≤ k − 1.
At the time instants 0 ≤ k ≤ N −1, decisions with respect to the choice of the controls have to made
by means of contro laws

µk : Sk → Sk, uk = µk(xk), 0 ≤ k ≤ N − 1,

leading the control policy
π = {µ0, ..., µN−1}.
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where Π is the set of admissible control policies. The cost functionals are defined by

gk : Sk × Ck ×Dk → R, 0 ≤ k ≤ N − 1

associated with the decisions at time instants 0 ≤ k ≤ N − 1, and a terminal cost

gN : SN → R.

.
A discrete dynamic optimization problem is formulated as following:

min
π∈Π

Jπ(x0) = E[gN (xN ) +

N−1∑
k=0

gk(xk, µk(xk), wk)],

s.t xk+1 = fk(xk, µk(xk), wk), 0 ≤ k ≤ N − 1

(120)

where the expectation E is taken over all random states and random disturbances.
For a given initial state x0, the value

J∗(x0) = min
π∈Π

Jπ(x0), (121)

then π∗ is called and optimal policy.

3.1.1 Bellman’s principle of optimality

Bellamn’s principle of optimality is the key for a construcive approach to the solution of the minimiza-
tion problem (120), which readlily leads to a powerful algorithmic tool: the Dynamic Programming
algorithm (DP algorithm).

For the intermediate states xk ∈ Sk, 0 ≤ k ≤ N − 1 that occur with positive probability, consider
the minimization subproblems

min
π∈Π

Jπ(x0) = E[gN (xN ) +
N−1∑
l=k

gk(xl, µl(xl), wl)],

s.t xl+1 = fl(xl, µl(xl), wl), k ≤ l ≤ N − 1

(122)

where πk = {µk, µk+1, ..., µN−1} and Πk is the set of admissible policies obtained from Π by deleting
the admissible control laws associated with the previous time instants 0 ≤ l ≤ k − 1.

Bellman’s optimality principle states that if

π∗ = {µ∗0, ..., µ∗N−1}

is an optimal policy for the minization subproblem (120). Let

J∗k (xk) = Jπ∗
k
(xk)

be the optimal cost-to-go for state xk at the time instant k to the final time N . For completeness,
set J∗N (xN ) = gN (xN ). The intuitive justification for Bellman’s optimality principle is that if the
trancated policy π∗k were not optimal for subproblem (122), then it’s able to reduce the optimal cost
for (120) by switching to the optimal solution for (122) once xk is reached.
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3.1.2 The DP algorithm and its optimality

Bellman’s optimality principle strongly suggests to solve the optimality subproblems (122) backwars
in time, beginning with the terminal cost at final time instant N and then recursively compute
the optimal cost-to-go for subproblems k = N − 1, ..., 0. This leads to the so-called backward DP
algorithm which is characterized by the recursions

JN (xN ) = gN (xN ), (123)

Jk(xk) = min
uk∈Uk(xk)

Ewk
[gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))], 0 ≤ k ≤ N − 1, (124)

where Ewk
means that the expectation is taken with respect to the probability distribution of wk.

Theorem. (Optimality of the backward DP algorithm) Assume that

• The random disturbance spaces Dk, 0 ≤ k ≤ N − 1 are finite or countable sets.

• The expectations of all terms in the cost functionals in (124) are finite for every admissible
policy.

Then, there holds
J∗k (xk) = Jk(xk), 0 ≤ k ≤ N. (125)

Moreover, if there exist optimal policies µ∗k, 0 ≤ k ≤ N − 1, for (124) such that u∗k = µ∗k(xk), then
π∗ = {µ∗0, µ∗1, ..., µ∗N−1} is an optimal policy for (120).

3.1.3 Applications of the DP algorithm

Consider the following inventory control problem:

The problem is to minimize the expected cost ordering quatities of a certain product in order in
order to meet a stochastic demand for that product. The ordering is only possible at discrete time
instants t0 < t1 < · · · < tN−1, N ∈ N. Let xk, uk, and wk, 0 ≤ k ≤ N − 1 be the available stock,
the order and the demand at tk. Here, wk, 0 ≤ k ≤ N − 1, are assumed to be independent random
variables. Here, the states xk, the controls uk and the demands wk are non-negative integers which
can take the values 0, 1 and 2 where the demand wk has the same probability distribution

p(wk = 0) = 0.1 , p(wk = 1) = 0, 7 , p(wk = 2) = 0.2

for all planning periods (k, k + 1).Furthermore, assume that the excess demand wk − xk − uk is lost
and that there is an upper bounf of 2 units on the stock that can be stored. Consequently, the
equation for the evolution of the stock takes the form

xk+1 = max(0, xk + uk − wk)

under the constraint
xk + uk ≤ 2.

For the holding costs and the terminal cost, assume that

r(xk) = (xk + uk − wk)2 , R(xn) = 0,

and suppose that the ordering cost is 1 per unit, i.e,

c = 1.

02/04/2013 40/52



EADS SoS optimization

Therefore, the functions gk, 0 ≤ k ≤ N , are given by

gk(xk, uk, wk) = uk + (xk + uk − wk)2, 0 ≤ k ≤ N − 1,

gN (xN ) = 0.

Finally, suppose x0 = 0 and for the planning horizon, take N = 3 so that the recursions (122) of
the backward DP algorithm heve the form

J3(x3) = 0, (126)

Jk(xk) = min
0≤uk≤2−xk

Ewk
[uk + (xk + uk − wk)2 + Jk+1(max(0, xk + uk − wk))], 0 ≤ k ≤ 2.(127)

The execution of the algorithm will stard with period 2, followed by period 1, and finish with
period 0:

• Period 2: Compute J2(x2) for each possible value of the state x2:

1. x2 = 0:

J2(0) = min
u2∈{0,1,2}

Ew2 [u2 + (u2 − w2)2]

= min
u2∈{0,1,2}

[u2 + 0.1u2
2 + 0.7(u2 − 1)2 + 0.2(u2 − 2)2].

The computation of the right-hand side for the three different values of the control u2

yields

u2 = 0 : E[·] = 0.7 · 1 + 0.2 · 4 = 1.5,

u2 = 1 : E[·] = 1 + 0.1 · 1 + 0.2 · 1 = 1.3,

u2 = 2 : E[·] = 2 + 0.1 · 4 + 0.7 · 1 = 3.1,

Hence,
J2(0) = 1.3 , µ∗2(0) = 1.

2. x2 = 1: In view of the constraint x2 + u2 ≤ 2 only u2 ∈ {0, 1} is admissible. Thus,

J2(1) = min
u2∈{0,1}

Ew2 [u2 + (1 + u2 − w2)2]

= min
u2∈{0,1,2}

[u2 + 0.1(1 + u2)2 + 0.7u2
2 + 0.2(u2 − 1)2].

The computation of the right-hand side for the three different values of the control u2

yields

u2 = 0 : E[·] = 0.1 · 1 + 0.2 · 1 = 0.3,

u2 = 1 : E[·] = 1 + 0.1 · 4 + 0.7 · 1 = 2.1,

It follows that,
J2(1) = 0.3 , µ∗2(1) = 1.1.
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3. x2 = 2: Since the only admissible control is u2 = 0, it follows

J2(2) = Ew2 [(2− w2)2] = 0.1 · 4 + 0.7 · 1 = 1.1,

hence
J2(2) = 1.1 , µ∗2(2) = 0.

• Period 1: Compute again J1(x1) for each possible value of the state x1 taking into account
the possible value J2(x2) :

1. x1 = 0 : then

J1(0) = min
u1∈{0,1,2}

Ew1 [u1 + (u1 − w1)2 + J2(max(0, u1 − w1)]

The computation of the right-hand side for the three different values of the control u2

yields

u1 = 0 : E[·] = 0.1 · J2(0) + 0.7 · (1 + J2(0)) + 0.2 · (4 + J2(0)) = 2.8,

u1 = 1 : E[·] = 1 + 0.1 · (1 + J2(1)) + 0.7 · (1 + J2(0)) + 0.2 · (4 + J2(0)) = 2.5,

u1 = 2 : E[·] = 2 + 0.1 · (4 + J2(2)) + 0.7 · (1 + J2(1)) + 0.2 · J2(0) = 3.68.

Hence,
J1(0) = 2.5 , µ∗1(0) = 1.

2. x1 = 1 : then

J1(1) = min
u1∈{0,1}

Ew1 [u1 + (u1 − w1)2 + J2(max(0, u1 − w1)]

The computation of the right-hand side for the three different values of the control u2

yields

u1 = 0 : E[·] = 0.1 · (1 + J2(1)) + 0.7 · J2(0) + 0.2 · (1 + J2(0)) = 1.5,

u1 = 1 : E[·] = 1 + 0.1 · (4 + J2(2)) + 0.7 · (1 + J2(1)) + 0.2 · J2(0) = 2.68.

Consequently,
J1(1) = 1.5 , µ∗1(1) = 0.

3. x1 = 2 : Since the only admissible control is u1 = 0, it follows that

J1(2) = Ew1 [(2− w1)2 + J2(max(0, 2− w1)]

= 0.1 · (4 + J2(2)) + 0.7 · (1 + J2(1)) + 0.2 · J2(0) = 1.68,

hence
J1(2) = 1.68 , µ∗1(2) = 0. (128)
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• Period 0: Here, only J0(0) is needed to be computed, since the initial state is x0 = 0.

1. x1 = 0:

J0(0) = min
u0∈{0,1,2}

Ew0 [u0 + (u0 − w0)2 + J1(max(0, u0 − w0)]

The computation of the right-hand side for the three different values of the control u2

yields

u1 = 0 : E[·] = 0.1 · J1(0) + 0.7 · (1 + J1(0)) + 0.2 · (4 + J1(0)) = 4.0,

u1 = 1 : E[·] = 1 + 0.1 · (1 + J1(1)) + 0.7 · J1(0) + 0.2 · (1 + J2(0)) = 3.7.

u1 = 2 : E[·] = 2 + 0.1 · (4 + J1(2)) + 0.7 · (1 + J1(1)) + 0.2 · J1(0)) = 4.818.

Consequently,
J0(0) = 3.7 , µ∗0(0) = 1.

Conclusion: The optimal ordering policy is to order one unit for each period, if the stock
is 0, and to order nothing, otherwise.
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Part III

Optimization Engine

1 Optimization Engine under Run Time

The next step is to build an Optimization Engine (OE) which has the capability to find an optimized
solution with respect to some problems that could be fit in the previous discussed methods.

As discussed before, the conception of the SoS goes by the dynamic phase. In a such step, a
platform is built in order to analyse, manage and control SoS operations. The figure bellow describes
the platform components.

Figure 2: SoS Platform

The SoS operational, functional and architecture levels contain respectively discreptions about
SoS operations, fuctionalities as welll as its architerture. SoS behaviour and constituent system be-
haviours gather information about the behavouir of the SoS and its constituents. The SoS failure
detection engine helps in detecting and defining failure. This failure is reported to the SoS simulation
and SoS optimization and reconfiguration engines in order to solve the problem and reconfurate the
SoS. All this maneuver is done with respect to the SoS control rules.
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As showed in the figure below, OE receives the inputs of the problem from the platform frame-
work. OE has to define the most suitable algorithm to the problem and then resolve it. Afterwards,
the solution is sent back to the framework in order to reconfigurate the systems.

Figure 3: Optimization Engine

The OE is developed in MATLAB regarding to its flexibility. Indeed, SoS are developed using
SysML (Systems Modeling Language). Systems are presented with blocks joined with links which
define the nature of their interactions as well as relations. Once the SoS model is done, it is possible
to simulate its behaviours. In some cases, simulations need complex tools such as advanced calcula-
tion tools. Hence, it is possible to add MATLAB to the SoS model (pattern).

OE algorithms are devided into three categories. The first one deals with optimization problems
in a multi-player environment. The second one copes with optimization problems in uncertain envi-
ronment and the third deals with the dynamic environment.

We have developed the algoritm for solving the Mixed-Integer Two-level programming problem,
where we use MATLAB Optimization toolbox, which provides as with the linear programming solver
”linprog”. In the following section, we give an example of resolution of MITLPP.
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2 Mixed Integer Two-Level Linear Programming Ex-

ample

To verify the Branch and Bound algorithm for MITLPP, we take the following example from [13]:

(P1) max {20x1
1 + 60x1

2 + 30x1
3 + 50x1

4 + 15x1
2 + 10x2

2 + 7x2
3 : (x1

1, x
1
2, x

1
3, x

1
4)}

st : max{2x2
1 + 6x2

2 + 8x2
3 : (x2

1, x
2
2, x

2
3|x1

1, x
1
2, x

1
3, x

1
4)}

st : 5x1
1 + 10x1

2 + 30x1
3 + 5x1

4 + 8x1
2 + 2x2

2 + 3x2
3 ≤ 230

20x1
1 + 5x1

2 + 10x1
3 + 10x1

4 + 4x1
2 + 3x2

2 ≤ 240

5x1
1 + 5x1

2 + 10x1
3 + 5x1

4 + 2x1
2 + x2

3 ≤ 90

x1
j ∈ {0, 1}, j = 1, 2, 3, 4.

x2
j ≥ 0, j = 1, 2, 3.

Let

A1 =

 5 10 30 5
20 5 10 10
5 5 10 5

, A2 =

8 2 3
4 3 0
2 0 1

, b =

230
240
90

,

c11 =
(
20 60 30 50

)
, c12 =

(
15 10 7

)
c22 =

(
2 6 8

)
Once the algorithm is chosen in the OE. To run it, we need ta enter the inputs A1, A2, b, c11, c12,

and c22.

After solving the problem (F) (see the Mixed-Integer Two-level programming algorithm), we
have x∗2 = (0, 80, 23.333), Z∗ = 666.6667. The resolution of the problem (B) leads to Y ∗B =
(2.3333; 1.778; 0), Z∗B = 963.333 and H = (−27.2222; 27.7778;−57.778; 20.5556). The following figure
resumes all the resolution steps made by the algorithm.
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Figure 4: Branch-and-Bound tree for the example (P1)

In each node (iteration k), we check if Zu ≤ Z∗, and then we decide which node to branch upon
next. The solution of the problem is (x1∗, x2∗) = (0, 1, 0, 1; 0, 75, 21.667) with the high level optimal
objective Z∗ = 1011.667. The number of node generated with this algorithm is 12 which is less than
the total node number of complete tree (31). This is due to the branching condition (Zu ≤ Z∗). The
nodes 6, 11 and 12 are fathomed since the branching condition is not respected. The nodes 4, 5, 9
and 10 are terminated.

When the number of high-level variables increases, the execution time of exact algorithm increases
approximately exponentially; the fewer low-level variables there are, the slower execution time grows.
In [13], Wen and Yang have proposed a heuristic solution procedure, which can provide satisfactory
near-optimal solutions in a reasonably short computational time.
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2.1 Application to Command Control Center

In SoS, it is possible to describe communication systems problem as a Mixed-Integer Programming
Problem. Assume that we have n1 communication systems. Each system has its own cost and cover-
age rate. Furthermore, assume that we have n2 constituent systems that we want to connect to each
other through communication systems. Suppose that each constituent system has its own connec-
tion time as well as signal quality and realibility rate. Note that when the coverage rate increases,
the signal quality as well as systems realibilities increase too. On the other hand, when the time
increases, the realibility decreases. Taking into account these informations, the idea of this problem
is to maximize - as the high level objective- the coverage rate of communication systems in addition
to the quantity signal quatity×connection time, taking into account the maximazation of the quatity
rability×connection time.

Let c11 be a vector with n1 elements which refer to the coverage rate of each communication
system. c12 is a vector of n2 elemnts which refer to the signal quality value of each constituent
system. c22 is a vector of n2 elements which refer to the constituent system reability. Let A2 be
the cost matrix of communication systems and A2 the cost matrix of connection time. Let b be the
upper bound of the cost. Hence the problem can be formulated as in (MITLP).
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Part IV

Conclusion and Further Outlooks
This report resumes the most common optimization methods that could fit in the system-of-systems.
The SoS characteristics have many impacts on its operations. Hence, many challenges appear such
as controlling SoS and constituent systems purposes and predicting emergent behaviours. In the lit-
erature, we found many optimization methods applied to multi-players environment. These methods
deal with problems which exhibit hierarchical traits according to decision makers. We have stated
the most common method in a this field such as Bi-level optimization method. On the other hand,to
deal with the emergent behavior, the wide studied optimization problem in this field is the Two-stage
model which can be solved with the L-shaped method.

The optimization engine developed here has for objective to find the best solution according to
some criteria given as inputs. Until now, we have developed only two algorithms. The next step
is to add the other algorithms which were introduced in the previous sections. The efficiency of an
algorithm takes into account the nature of the solution as well as many other issues such as the
computation time. Hence, we may add some modifications to these algorithms in order reduce the
run time. This procedure is essential to make optimization under run time.

During my internship in EADS Innovation Works, I had the opportunity to enhance my knowl-
edge in Optimization techniques as well as in System engineering field. To be a part of an important
project allowed me to confront my ideas with the realities in the company. It brought to me a bet-
ter visibility of the project organization in a long-term. Indeed, the exchanges with my colleagues
allowed me to understand better the system engineering environment, goals and challenges. The
participation in the meetings also helped me to seize the stakes in the project.

The work within Innovation Works needs to keep up to date with other research being carried out
in, or related to, the field studied. This includes reading lots of articles as well as attending scientific
meetings and conferences. Furthermore, the international profile of EADS helps me in developing
my communication skills as well as integration issues within a multi-national team.

My internship in EADS Innovation Works was extremely enriching on the professional level as the
personal. So, I got acquainted with the Optimization field, which was abstracted in the beginning.
Within this company, I worked beside professionals experimented engineers and also beside students,
who made their first step in the company as me. We all had in common the team spirit, sharing
knowledge as well as the will to progress in a very rich innovation universe while being a part of huge
projects. The liberties of action and management which were granted to me by my tutor make me
more exigent towards my work.

Basing on this experience, I would like to continue working in the same field because I appreciate
the research subject of my internship. Furthermore, I would like to work within a big company
like EADS because every step of the project process is structured and well informed, so that allows
employees to understand the evolution of the project and the importance of their contributions.
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