
Arfima Spain
42,Cardenal Financial Mathematics
Marcelo Spinola

Pricing autocallable structured
products

End of master project presented in

Universidad Autonoma de Madrid

To obtain the title of

Engineer in Applied Mathematics and Scientific
Calculus / Master in Mathematics and its Applications.

by

Rania TOBI

Madrid, September 2013

Jose-luis Fernandez Academic Tutor

Olivier Lafitte Academic Tutor

Juan Toro Supervisor

Year 2013 Universidad Autonoma de Madrid



Pricing autocallable products

Abstract

The purpose of this end of master project is to show the methodologies of pricing the auto-

callable structured products.

Therefore, in this work, we will present the two most common ways of pricing this special type

of financial products. First of all, we will highlight the famous Monte Carlo simulations, which

reproduce as probable as possible, the future product through simulations. Then we will study

the pricing of an autocallable product with the closed form solution which is based on the

probability calculations.

In the second part of this work we will compare numerical results of those two methods. In the

third part of this work, we will study the risk of a concrete autocallable contract.

Keywords: Autocallable products, Structured products, Monte Carlo methods, Pric-

ing methods, Options, Black Scholes, Risk analysis.
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Introduction

Arfima Spain is a privately held global proprietary company. All of the trading is exectued

for their own account. They are present in a wide range of assets classes, both domestically

and internationally. I had the opportunity to spend my off-cycle internship in this company

and more precisely in their financial solutions departement. The ”Arfima financial solutions”

departement provides a wide range of structured products to their investors by pricing and

assessing risks related to these products.

In my internship, I focused on the pricing of some structured products mainly reverse

convertibles and autocalls. In this work, I will discuss the two pricing methodologies I have

been using :

� The Monte Carlo Path Generation

� The Closed Form Solution

Framework

We first start with a product description, presenting derivatives products and some financial no-

tions. Beyond all the structured products, we introduce particularly the so called Autocallable

structured products.

In the second part, we will discuss the theoretical aspect in order to understand the assumptions

that have been made and the methods which have been used in this work. We will implement

the scripts related to the models. Then we will apply this theory on a concrete example taken

from real trades done in the OTC market.

In the numerical part, we will study the effectiveness of the different methods and we will show

the convergence of the Monte Carlo prices to the closed form solutions prices.

Then, to finish with we will do a little study on a specific autocallable contract risk.

Finally the conclusions and possible studies will be presented for the reader interested in con-

tinuing in this field.
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Part I

Financial and derviative products

1 The market

1.1 The regulated Market

The regulated market is a market on which are exchanged standardized contracts, regulated

by markets authorities. Counterparties do not trade directly with each other but place their

buy (bid) and sell (ask) orders on display for all market participants. The market operator

defines the rules, authorises membership, organises and supervises trading and ensures the

proper functioning of the market and its technical facilities.

The main element of this regulated market is the clearing room which encompasses all the

required steps between the trade and settlement: order verification and matching, compensation

and management of the counterparty risk concerning the default of one party in the transaction.

The caracteristics of the regulated market are:

� The existence of a regulation which normalize the contract(underlyings,maturity, strike)

� The existence of a compensation room which realize the contracts liquidation and manage

the counterparty default risk by providing to the market the necessary liquidity.

� The availability of a transparent information about the supply and the demand.

1.2 The OTC Market

The Over The Counter (OTC) market is a market on which exchange is done directly between

two parties, whithout any supervision. In an OTC trade, the price is not necessarily made public

information. Moreover, contracts are bilateral( only between two parties). OTC derivatives

can lead to significant risks. Especially counterparty risk has gained particular emphasis due

to the credit crisis in 2007. Counterparty risk is the risk that a counterparty in a derivatives

transaction will default prior to expiration of the trade and will not make the current and future

payments required by the contract. The advantages of OTC derivatives over exchange-traded

ones are mainly the lower fees and taxes, and greater freedom of negotiation and customization

of a transaction, as it involves only a seller and a buyer and no standardization authority. All

the exotics products are traded on the OTC market.
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2 The concept of volatility

The volatility is a statistical measure of the dispersion of returns for a given security or market

index. Volatility can either be measured by using the standard deviation or variance between

returns from that same security or market index. Commonly, the higher the volatility, the

riskier the security. In other words, the volatility is the measure of range of motions of an

underlying.

Moreover, the volatility is one of the parameters in the option pricing formulas, showing the

extent to which the return of the underlying asset will fluctuate between now and the option’s

expiration. Volatility, as expressed as a percentage coefficient within option-pricing formulas,

arises from daily trading activities.
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2.1 Historical volatility

The realized volatility of a financial instrument over a given time period corresponds to the

volatility realized in the past. Generally, this measure is calculated by determining the average

deviation from the average price of a financial instrument in a given time period in the past.

From a mathematical point of view, standard deviation of percentage changes in price is used

to calculate historical volatility within the considered timeframe.

For the pricing, the realized volatility is generally calculated when there is no option prices

available. The calculation is made from the last 180 days applying the methodology widely

used by variance swap market participants,

σ2
realized =

252 ∗
N∑
i=1

Return2
i

N

and,

σrealized =
√
σ2
realized

where:

Returni = Ln( St
St−1

)

N is the number of trading days over the period.

2.2 Implied volatility

The one parameter on Black-and-Scholes pricing formulas that cannot be directly observed

is the volatility of the stock price. Market participants usually work with what is known as

implied volatilities, which are the volatilities implied by option prices observed on the market.

In financial mathematics, the implied volatility of an option contract is that value of the volatil-

ity of the underlying instrument which, when input in an option pricing model will return a

theoretical value equal to the current market price of the option. The implied volatility shows

how volatile the market might be in the future. In general, implied volatility increases when

the market is bearish and decreases when the market is bullish. This is due to the common

belief that bearish markets are more risky than bullish markets.
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2.3 The volatility skew

The Black scholes model assumes the volatility constant which is not very realistic. This is at

odds with what happens in the market where traders know that the formula misprices deep

in-the-money and deep out the-money options. The mispricing is rectified when options (on

the same underlying with the same expiry date) with different strike prices trade at different

volatilities. Traders say volatilities are skewed when options of a given asset trade at increasing

or decreasing levels of implied volatility as you move through the strikes. The empirical relation

between implied volatilities and exercise prices is known as the volatility skew. A plot of the

implied volatility of an option as a function of its strike price is known as a volatility skew.

The volatility skew used by traders to price options has this form:

The volatility decreases as the strike price increases.

3 Basics about Options

An option is a derivative financial instrument that specifies a contract between two parties. It

gives the right not the obligation to buy or sell a specific financial product officially known as

the option’s underlying instrument. The contract itself is very precise. It establishes a specific
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price, called the strike price, at which the contract may be exercised, or acted on. And it has

an expiration date. When an option expires, it no longer has value and no longer exists.

There are two basic types of options:

� Call Option: The holder has the right to buy the underlying asset at a certain time(the

expiration date) for a certain price(the strike price).

� Put Option: The holder has the right to sell the underlying asset at a certain time(the

expiration date) for a certain price (the strike price).

The holder pays a fee (called a premium) for this right.

Options can have different types of features:

� European type: The option can be exercised only at the expiry date.

� American type: The option can be exercised at any time until expiry date

� Autocallable type: The option may terminante prior to maturity due to a barrier

condition one or several underlyings.

In this thesis, we will look in more details the autocallable type.

Options terminology

� S0: is the spot price, the current price of the underlying

� K: the strike price is the pre-agreed price at which the underlyings are exchanged if the

option is exercised.

� T : is the time before maturity. It represents the time remaining to exercise the option

and it is expressed in days.

� σ : The volatility measures the variations of the spot price. It is expressed in percentage.

� r : The risk free interest rate.

Options Payoffs

The payoff is the pay the option’s holder receives when exercised. This payoff depends on the

position we have on the option and the type of option we have. We have to distinguish between

two types of positons: The Long and the short position.
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� Call Payoffs :

If we are long a call, it means that we are buying a call ( see Figure 1.).

Mathematically the payoff is written as :

Payoff = max(0, S −K)

If we are short a call, it means that we are selling a call ( see Figure 2.).

Mathematically the payoff is written as :

Payoff = min(0, K − S)

� Put Payoffs :

If we are long a put, it means that we are buying a put ( see Figure 3.).

Mathematically the payoff is written as :

Payoff = max(0, K − S)

If we are short a put, it means that we are selling a put ( see Figure 4.).
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Mathematically the payoff is written as :

Payoff = min(0, S −K)

4 Standard structured products

In structured finance, a structured product, also known as a market linked investment, is

generally a pre-packaged investment strategy based on derivatives, such as a single security, a

basket of securities, options, indices, commodities, debt issuance and/or foreign currencies, and

to a lesser extent, swaps. The variety of products just described is demonstrative of the fact

that there is no single, uniform definition of a structured product.

The standard structured product is a combination of mainly two products. The first element is

a zero coupon bond, ZT , also called a discount bond. The bond is bought at a price lower than

its face value, and guarantees the repayement of this face value at the time of maturity. The

second item in those structured products is an option or a set of options of some underlying

assets.

Usually, the difference between the bond price and the face value of the bond is the amount

invested in the risky assets, that way, the complete product will be capital guaranteed seen

in the long perspective as the investor will, in the worst-case-scenario, receive the notational

amount i.e. the face value of the bond.
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This difference between the bond price and the face value is in reallity the participation

rate.

From this figure we can see how a zero coupon bond can make the product capital protected.

The option part represents the possible profit. This part generally adds value to the products

that will be payed off at maturity.
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5 Autocallable structured products

Since first introduced in 2003, the number of autocallable structured products has increased

exponentially and became an often seen investment vehicle in any investors portfolio.

The autocall feature causes the product to be called and redeemed automatically as soon as a

certain barrier condition is fulfilled on one of some predefined observation dates. More precisely,

the idea of this type of financial instrument is as follows ( see Figure 6.)

The figure below shows the payoff profile of an autocallable structure. At the observation

dates, it is checked whether the underlying(s) reaches a certain barrier. If this is the case,

the buyer of the autocallable gets the pre-agreed early payoff and the contract terminates.

Otherwise the instrument continues to exist until the next observation date. In the case, where

the autocallable survives until maturity, the buyer gets a payoff depending on the underlying’s

performance. Autocallables can be considered as an exotic type of barrier options.

In the following part, we will introduce the concept of pricing autocallables.

14
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Part II

Concepts and assumptions for pricing

autocallables

5.1 The Wiener process and Ito Lema

The Wiener process W (t) is a continuous-time stochastic process. This model is often called

the brownian motion and is used to describe the behavior of particles and so the progression of

the state over the time.

The Wiener process plays an important role both in pure and applied mathematics. In pure

mathematics, the Wiener process gave rise to the study of continuous time martingales. It is a

key process in terms of which more complicated stochastic processes can be described. As such,

it plays a vital role in stochastic calculus and diffusion processes. In applied mathematics, the

Wiener process is used to represent the integral of a Gaussian white noise process, and so is

useful for pricing and modeling financial products.

Characterizations of the Wiener process

The Wiener process is characterized by three properties:

� W0 = 0

� The function t→ Wt is almost surely everywhere continuous.

� Wt has independant increments with Wt − WS ∼ N(0, [t − s]) where N(r, σ2) denotes

the normal distribution with r representing the expected value and σ2 representing the

variance.

In general, the Wiener process is defined with this expression:

dx = rdt+ σdWt

where σ is known as the volatility of the process.

To understand the equation above, here is a representation of the Wiener process.
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Parameters

The process for a stock price involves two parameters, r and σ. The parameter r is the expected

return (annualized) earned by an investor in a short period of time. In most of the cases, higher

is the expected return, higher is the risk taken by investors. It follows that the value of r should

depend on the risk of the return from the stock. It also depends on the interest rate of the

economy. The parameter σ is the volatility and is important to the determination of the value

of many derivatives.

Ito Lemma

The value of a stock option is a function of the stock price and the time. More generally, we

can say that the price of any derivative is a function of the stochastic variables underlying the

derivative and time [2].

We suppose that the value of a variable x follows the Ito process:

dx = r(x, t)dt+ σ(x, t)dWt

Ito lemma shows that a function G of x and t follows this process:

dG =

(
∂G

∂x
r +

∂G

∂t
+

1

2

∂2G

∂x2
σ2

)
dt+

∂G

∂x
σdWt
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Thus by identification , we recognize that G has a drift rate of :

∂G

∂x
r +

∂G

∂t
+

1

2

∂2G

∂x2
σ2

and a variance rate of:

(
∂G

∂x
)2σ2

( See Appendix for the proof of the Ito lemma )

If we note that S the stock price at time t , we have that the variation of a stock price

follows the following model :

dS = rSdt+ σSdWt

with r and σ constant.

From the previously introduced Ito lemma, we get the process followed by a function G of

S and t is :

dG =

(
∂G

∂S
rS +

∂G

∂t
+

1

2

∂2G

∂S2
σ2S2

)
dt+

∂G

∂S
σSdWt

This stochastic differential equation is very important in the derivation of the Black scholes

results.

The lognormal property
We define :

G = lnS

Since,
∂G

∂S
=

1

S
,
∂2G

∂S2
= − 1

S2
,
∂G

∂t
= 0

Then remplacing in this equation,

dG =

(
∂G

∂S
rS +

∂G

∂t
+

1

2

∂2G

∂S2
σ2S2

)
dt+

∂G

∂S
σSdWt

We get ,

d(lnS) = (r − σ2

2
)dt+ σdWt

After integrating between time 0 and some future time T, we have:

ln(ST ) = ln(S0) + (r − σ2

2
)dt+ σdWt
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Thus, we have the following formula for a stock price

ST = S0 × e(r−σ
2

2
)T+σWT

5.2 The Black Scholes Model

In the early 70’s, F.Black and M.Scholes achieved a major breakthrough in the pricing of stock

options. This involved the development of the famous Black Scholes model. The model of stock

price behavior used by Black Scholes and Merton is the model we introduced previously.

Hypotesis
The hypotesis used in the Black Scholes model are:

� The stock price follows the process developed previously with r and σ constant.

� There are no transactions costs or taxes. All securities are perfectly divisible.

� There are no dividends during the life of the derivative.

� There are no riskless arbitrage opportunities

� The risk free rate of interest, r is constant and the same for all maturities.

Some of these assumptions can be relaxed. For example σ and r can be known as functions

of t, also the interest rate can be stochastic provided that the stock price distribution at

maturity of the option is still lognormal.

Black Scholes Partial differential equation (PDE)

We introduce V(S, t), the price of a derivative as a function of time and stock price. We

define a portfolio Π where the holder is short one derivative and long an amount ∂V
∂S

of shares :

Π = −V +
∂V

∂S
S

The change ∆Π in the value of the portfolio in the time interval is:

∆Π = −∆V +
∂V

∂S
∆S

We have that :

∆S = rS∆t+ σS∆Wt

18
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and from the Ito lemma,

∆V =

(
∂V

∂S
rS +

∂V

∂t
+

1

2

∂2V

∂S2
σ2S2

)
∆t+

∂V

∂S
σS∆Wt

Thus after substitution, we get:

∆Π =

(
− ∂V

∂t
− 1

2

∂2V

∂S2
σ2S2

)
∆t

We also have that :

∆Π = rΠ∆t

Then, (
∂V

∂t
+

1

2

∂2V

∂S2
σ2S2

)
∆t = r

(
V − ∂V

∂S
S

)
∆t

Finally, we get the famous Black Scholes PDE:

∂V

∂t
+

1

2

∂2V

∂S2
σ2S2 +

∂V

∂S
S = rV

With the assumptions of the BlackScholes model, this second order partial differential equation

holds for any type of option as long as its price function V is twice differentiable with respect

to S and once with respect to t.

Vanilla option’s pricing

We note : C the price of a call option and P the price of a put option.

Call

As introduced previously, we have that the payoff of a call is :

Payoff(ST ) = Max(ST −K, 0) = (ST −K)+

The price of a call follows the following formula:

C = E(Payoff× e−rT )

⇒
C = e−rT × E(Payoff)

⇒
C = e−rT × E((ST −K)+)

19
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⇒

C = e−rT ×
∫ +∞

−∞

(
S0 × e(r−σ

2

2
T+σWT ) −K

)
+

× e−
x2

2

√
2π
dx

Then ,

C = S0 ×N(d1)−Ke−rTN(d2)

With d1 =
ln(

S0
K

)+(r+σ2

2
)T

σ
√
T

and d2 = d1 − σ
√
T

In the following picture , we show the behavior of the Call price regarding to the spot price

and the time to maturity:

The parameters used in this call pricing are :

� The maturity T= 1 year

� The Strike K= 14 euros

� The volatility σ = 25
100

� The risk free rate r= 0.5
100
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Call convergence study :

We can see that call price converges to the prefixed payoff.

Put

The payoff of a put is :

Payoff(ST ) = Max(K − ST , 0) = (K − ST )+

The price of a put follows the following formula:

P = E(Payoff× e−rT )

⇒
P = e−rT × E(Payoff)

⇒
P = e−rT × E((K − ST )+)

21
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⇒

P = e−rT ×
∫ +∞

−∞

(
K − S0 × e(r−σ

2

2
T+σWT )

)
+

× e−
x2

2

√
2π
dx

Then ,

P = Ke−rTN(−d2)− S0 ×N(−d1)

With d1 =
ln(

S0
K

)+(r+σ2

2
)T

σ
√
T

and d2 = d1 − σ
√
T

In the following picture , we show the behavior of the Put price regarding to the spot price

and the time to maturity:
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Put convergence study :

We can see that put price converges to the prefixed payoff.

5.3 Modeling Autocallable structured products with PDE

It was recently presented by Geng Deng, Joshua Mallett and Craig McCann [3] that it is possible

to price an Autocallable structure by using a flexible PDE. Their valuation model follows the

Black-Scholes framework presented previously with risk-neutral assumptions.

This method is useful only in the single underlying asset case. In general, the PDE is a very

efficient and useful method. It is rewritten as an ordinary heat equation and solved by well

known method as the finite difference for example. Indeed, the finite difference allows to

determine the expected return for such a product without having to simulate any scenarios.

By the way, in this work we have choosen to study an alternative approach to valuing dis-

crete autocallables. We renamed it the closed form solution and it consists in calculating the

probability of the autocall being exercised on each call dates.
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5.4 The Closed Form Solution(theory)

Another way to estimate the value of an autocallable structured product is by calculating the

probability of the autocall on each observation dates. Let pi for i = 1, ..., n be the probability

of the autocall being exercised at time tci . Then, the probability of the autocall never being

exercised is then 1 −
∑n

i=1 pi where each pi is conditional on the autocall not being exercised

at any previous autocall date (tc1, ...., t
c
i−1).

We recall that an asset price Stci follows a lognormal distribution [4]:

Stci = Stci−1
e(r− 1

2
σ2)∆tci+σ∆

√
tciWi

Where ∆tci is the time between two autocall dates ∆tci = tci − tci−1 and Wi where i = 1, ...., n are

i.i.d standard normal variables. To simplify notation, we use Xi = (r− 1
2
σ2)∆tci + σ∆

√
tciWi to

represent the continuously compounded return from tci−1 to tci . This means that the final stock

price is written as :

ST = S0e
∑n
i=1(r− 1

2
σ2)∆tci+σ∆

√
tciWi

ST = S0e
∑n
i=1Xi

Because of the price’s Markov property the Xi’s are pairwise independent. Furthermore, if ∆tci

is a constant, the Xi’s are i.i.d normal variables. Then, the probability of the autocall being

exercised at time tci can now be written as:

pi = Prob

(
Sctj < C, j = 1, 2, ..., i− 1, and Scti ≥ C

)

pi = Prob

( j∑
k=1

Xk < log

(
C

S0

)
, j = 1, 2, ...., i− 1, and

i∑
k=1

Xk ≥ log

(
C

S0

))

pi =

∫
∑j
k=1 xk<log(

C
S0

),j=1,2,...,i−1,
∑j
k=1 xk≤log(

C
S0

)

....

∫
g(x1, ..., xn)dx1dx2...dxn

Where g(x1, ..., xn) is the joint probability density function of X1, ...., Xn. Because the Xi’s

are independent. Then we can estimate the product’s present value as :
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V =

Number of autocall Dates∑
i=1

pi × Rebatei × e−rTi

5.5 The Monte Carlo Simulation (theory)

We use the Monte Carlo method to price products when a closed formula is not available or

depends on too many inputs ( and is therefore less robust). Monte Carlo method’s principle

is to sample random paths for a given underlying, calculate the payoff of the product for the

underlying path obtained and repeat the process until it becomes robust enough. For each

simulation, we evaluate the final payoff of the product by discounting the cash flow with the

corresponding CDS and risk free rate. Lastly, we calculate the mean of all payoffs to get the

final value of the structured product. Monte Carlo is based on the Law of Large Numbers and

is very useful as all products can be priced with the right script.

The following inputs are used to simulate the underlying(s) paths,

� Implied Volatility of the underlying(s).

� Last price of the underlying(s).

� Risk Free Interest Rate to simulate the drift of the underlying(s).

� Dividend Yield to simulate the drift of the underlying(s) when relevant.

� Correlation Matrix of the underlyings if it is a multiple underlying product.

� Expiry and Settlement Date of the product.

� The step used is 1-trading day, i.e. dt = 1=252.

� Number of simulations is 1000.

Since there is only one possible implied volatility for the Monte Carlo simulation under the

Black- and-Scholes model, we are using ATM (At-The-Money) implied volatility of the corre-

sponding expiry. Each underlying asset is considered as a FOR/DOM pair. The drift of each

asset is calculated as the difference on returns between FOR and DOM as follows,

r = RDOM −RFOR

Then, for each step of each simulation,we generate a multivariate normal distribution matrix

W with a zero mean and variance-covariance matrix implied by the correlation matrix and
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simulate each underlying as follows,

Sj,i,k = Sj,i−1,k × e(r−σ
2

2
)×dt+

√
dt×Wj

Where,

� dt is the time step

� i is the step number

� j is the asset number

� k is the simulation number

As already mentioned, once all the underlyings’ paths have been simulated, we set the specifi-

cations of the product’s payoff (script) and calculate the payoff value for each simulation. We

finally take the mean in order to get the final structured product price.

In the next part we will expose the numerical results we got from applying those two methods

to a real autocallable contract.

Part III

Application to the autocallable exotic

contract:

5.6 General description of our autocallable structure

Below, an example of contract on Telefonica equity on which we will base our numerical results

and compare the two methods:
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In order to make the understanding of this contract easier, we will sum it up.

� If at T1 : 03/09/2014

ST1 > 90% ⇒ Payoff = Nominal× 110%

� If at T2 : 03/09/2015

ST1 > 90% ⇒ Payoff = Nominal× 120%

� If at T3 : 03/09/2016

ST1 > 90% ⇒ Payoff = Nominal× 130%

ST1 < 90% ⇒ Payoff = Nominal× 100%

As the third date is at the same time an autocallable date and the maturity date, if the contract

doesn’t autocall it matures.

5.7 The Closed Form Solution(numerical results)

We consider the previous autocallable structured product with three rebates. We want to

modelise it with the closed form solution. We set, T1=1, T2=2, T3=3;

We have that :

ST1 = S0 × e(W1×σ+(r−σ
2

2
))

ST2 = S0 × e(W2×σ×
√

2+(r−σ
2

2
)×2)

ST3 = S0 × e(W3×σ×
√

3+(r−σ
2

2
)×3)

and our aim is to calculate the following probability: P (ST1 < K1, ST2 < K2, ST3 > K3)

Where K1: condition 1, K2 : condition 2, K3 condition 3.

Using : ST1 < K1 we get: W1 < (
ln(K1/S0)−(r−σ

2

2
)

σ
)

Using : ST2 < K2 we get: W2 < (
ln(K2/S0)−2×(r−σ

2

2
)√

2×σ )

Using : ST3 > Kg we get: W3 > (
ln(K3/S0)−3×(r−σ

2

2
)√

3×σ )
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we recall

(
ln(K1/S0)− (r − σ2

2
)

σ
) = A

(
ln(K2/S0)− 2× (r − σ2

2
)

√
2× σ

) = B

(
ln(K3/S0)− 3× (r − σ2

2
)

√
3× σ

) = C

Considering that W1,W2,W3 w Z1, Z2, Z3 ∼ N(0, 1) we compute this probability :

P (Z1 < A,Z2 < B,Z3 > C)

Below some details of the correlation calculus :

E(W1W2) = E(W1(W1 + (W2 −W1))) = E(W 2
1 ) = 1

E(W2W3) = E(W2(W2 + (W3 −W2))) = E(W 2
2 ) + E(W2(W3 −W2)) = 2

E(W1W3) = E(W1(W1 + (W3 −W1))) = E(W 2
1 ) = 1

corr(W1,W2) =
E(W1W2)− E(W1)E(W2)√

V (W1)×
√
V (W2)

=
1√
2

corr(W1,W3) =
E(W1W3)− E(W1)E(W3)√

V (W1)×
√
V (W3)

=
1√
3

corr(W2,W3) =
E(W2W3)− E(W2)E(W3)√

V (W2)×
√
V (W3)

=

√
2√
3

Then we get the following correlation Matrix :

Σ =

( 1 1/
√

2 1/
√

3

1/
√

2 1
√

2/
√

3

1/
√

3
√

2/
√

3 1

)

We then rewrite the probability we have to calculate as :
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P (Z1 < A,Z2 < B,Z3 > C) =

∫ A

−∞

∫ B

−∞

∫ +∞

C

1√
|Σ|(2Π)3

× e(−1
2

(x−µ)Σ−1(x−µ)′)

To finish with, the closed form price we get will be:

Product Value = P (Z1 > A)×Rebate1 × e−RT1 + P (Z1 < A,Z2 > B)×Rebate2 × e−RT2 +

P (Z1 < A,Z2 < B,Z3 > C)×Rebate3×e−RT3 +P (Z1 < A,Z2 < B,Z3 < C)×Rebate4×e−RT3

Numerical Result:

After running the programm (6.2) in the appendix, which is the closed form solution script

for the final terms exposed beyond, we get a price of 1056AC . It means that if someone wants

to buy this contract, he will have to paye 1056AC .

To get this exact price we have used the following parameters and values :

� Strike= 9.8AC

� CDS= 175/10000

� Risk free rate = 0.20/100

� Volatility = 25/100

This price is considered as high because the product participate in the underlying’s upside

performance. In other words, it is a secure contract(Capital protected) and you don’t loose any

money.

Adding a short put

If we add a short put to the contract, it is obvious that the price we will obtain will be lower.

Indeed, by adding the put at the maturity, we increase chances to loose money at the expiration

of the contract, that’s why the price of the contract falls considerably. Below, thanks to the

Matlab code in the appendix (6.4), we experienced what we said above. After running the

code, we get a price of 624AC .
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5.8 The Monte Carlo generation path (numerical results)

After running the programm (6.3) in the appendix, which is the Monte Carlo script for the

final terms exposed beyond with , we get with the same parameters values than previously by

changing the number of simulations the following prices:

Number of simulations Product Value

50 1075AC

500 1070AC

5000 1069AC

10000 1065AC

We can see that the more we increase the number of simulations, the more we converge to the

price obtained with the closed form solution. The error we get is about 0.8 %.

Usualy, for the Monte Carlo we use 10 000 simulations to get high precision. However, the

velocity of the convergence is in 1√
n
, hence to double the precision, we have to quadruple the

number of simulations.

Adding a short put

After running the Monte carlo code with a put for 5000 simulations, we get a price of 855AC .

Once again, the price has fallen which is logical as explained above.

Part IV

Risk study:

In this part our aim is to study the risk of an autocallable contract. For doing that, we will

use two models. The first model we will use is the historical model and the second model will

be the normal model.

The historical model

For this model, we started by taking the historical prices for a Telefonica share from the

27/06/2012 until 17/05/2013 [1]. We set the start price of the Telefonica share at 17.4AC .

From this data base we calculated the returns ”R” ( daily variations of S in percentage ) and we

used the following basic fomula to compute the values of S1. The formule we used to calculate
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S1 in this model is the following :

Si = S0(1 +Ri) ∀i = 1, ..., 226

We then noted that the probability is constant in this case, equal to 1
227

.

The next step in our risk study with the historical model, is using the closed form solution

introduced previously, to compute the value of the autocall for each value of S1. We will still

use the previous example given above on Telefonica.

We then work out the 5% Var and TailVar.

Results:

Comments :

We see in those results that the value of the no put autocall is higher than the value of the

contract which is in line with our previous explanations. Moreover the prices we got with this

risk study are more or less the same than the ones calculated previously with both pricers we

created.
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Concerning the percentile, which consists in finding x such that P (Autocall < x) = 5%, we

found that we have 5% of chances for my autocall contract with put to be lower than the 87.59%

of the price found with our pricer ( which is around 546,58AC ) against 5% of chances that the

my autocall contract without put be lower than the 104.28% of the price we found (which is

around 1101,22AC ).

Finally for the TAILVAR, we took the average of all the prices below 87.59% with 5% of

chances and we found around 86.03% for the autocall contract with put whereas we got the

mean of all the cases where we were below 104.28% with 5% of chances around 103.80% .

The normal model

For this model, we started by a discretization of the N values (with N the normal law). We

calculated the probability for each N value for example for N=4.8 we computed the following

probability P (−4.9 < N < −4.7)

Then, in the normal model, we know that:

S1 = S0 × eσ×
√

1
252

N

and thanks to this equation, we completed the column with the S1 values.

As before, our next step is to compute thanks to the closed form solution script, the autocall

values in function of every S1. We did this calculation once again for the previous contract

with and without put.

Then we calculate VAR and Tailvar:

Results:
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Comments :

In the previous results , we got almost the same conclusions than with the historical model.

Indeed, we can see that the value of the no put autocall is higher than the value of the contract.

Concerning the percentile, which consists in find x such that P (Autocall < x) = 5%, we found

that we have 5% of chances that my autocall contract with put be lower than the 91.48%

against 5% of chances that the my autocall contract without put be lower than the 105.33%.

Finally for the TAILVAR, we took the average of all the prices below 91.48% with 5% of chances

and we got around 89.47% for the autocall contract with put whereas we got the mean of all

the cases where we were below 105.33% with 5% of chances around 104.79% .
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Part V

Conclusion

This report introduces a two main algorithms of pricing autocallable structured products which

are the closed form solution and the Monte Carlo simulations. The strengh of the Monte Carlo

solution is it’s availability to price all very complex options whereas the closed form solution

doesn’t allow us for instance to price an autocall of a basket of underlyings. However the

Monte Carlo simulation is time consumming, especially if the number of simulation is high for

instance more than 2 hours to price an autocallable product with 50 000 simulations. This

is obviously not the case with the closed form solution, which gives an instantaneous result.

We finally mentionned that there is a convergence of the Monte Carlo simulation towards the

closed form solution as the number of simulation goes to infinity which is implied by central

limit theorem. However, it worths mentionning that we only assumed that the volatility is a

constant parameter. We then would suggest to complete, this work, by studying the different

models of volatility such as the local volatility model, the stochastic volatility model in order

to get more realistic price in line with the market volatility surface.
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6 Appendix

6.1 Matlab Code for the call/put price in function of spot and ma-

turity
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6.2 Closed form solution Matlab script without put
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6.3 Monte Carlo Matlab script without put
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6.4 Closed form solution Matlab script with put
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6.5 Monte Carlo Matlab script with put
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