i
2
UNIVERSITE PARIS 1

PANTHEON SORBONNE

VIERE M A ZARS

SqualHée

INTERNSHIP REPORT AT MAZARS
FINAL YEAR INTERNSHIP

2016 - 2017

Different Machine Learning Techniques in
Finance

September 12, 2017

Author: Supervisor:
Riyaz MOUHAMAD Mathieu SCHNEIDER

Acknowledgements

As the saying goes, good premises do not entail good stories. Yet, this report would certainly not have
come to its successful end without the help, support and trust of colleagues, friend and family. First
of all, I would sincerely thank my supervisor Mathieu Schneider for his countless support, guidance.
He helped me to re-discover the world of data science. Thanks to him for his advice on content and
design and for making this challenging endeavor an effective and fruitful work.

I am grateful to my senior manager Xavier Larrieu for the freedom and the trust I was granted
throughout this internship. He contributed to create and maintain a pleasant and stimulating working
environment for the quantitative team. I would like to thank Grégoire Thiercelin for the innumerable
conversations that we had about Finance and bodybuilding. I came to know about so many new
things, I am truly grateful to them.

I would also like to thank all the professors from the M2MO for providing us a high-quality
education and especially Annie Millet for having put her trust in me. I cannot express enough
thanks to my professor from my engineering school for their continued support and encouragement:
Hackim Boumaza, Ahmed Kebaier, Laurent Tournier, Emmanuel Audusse and all the great and very
supporting professors of Sup Galilée.

Thanks to my parents. The countless time you helped throughout my journey at school. Your
encouragement when the times got rough and provided everything that I have needed even though I
know you have struggled a lot.

Last but not least, I would not be in this position without the trust of my director Olivier Lafitte,
I am forever grateful for his unconditional support, valuable advice, and knowledge. He always makes
sure that we, students of the "MACS”, reach our goal. I hope in coming future, we will continue our
endless conversation.

When you know a thing, to hold that you know it; and when you do not know a thing, to allow
that you do not know it—this is knowledge. - Confucius, The Analects

Presentation of the Internship

The internship has taken place at Mazars UK, an independent audit organisation in the United
Kingdom. The company has over 1700 employees and around 140 partners. It also specialized in
consulting on financial services (FS consulting). I was working in the quantitative finance team within
FS consulting. The quantitative team is composed of actuaries, quantitative analysts and statisticians
in charge of instrument valuations, risk management, internal model assessment.

During the internship, I was charged to test different machine learning algorithms on a dataset.
More generally, I was expecting to work on different matters related to data science. The senior
manager Xavier Larrieu intend to build a data science team within the quantitative finance team in
order to develop an expertise on this matter. Many subjects related to data science are on going.
Thus in order to achieve these requirements, I was asked to have a deep knowledge on the different
Machine Learning techniques. Hence Mathieu Schneider, the supervisor of the internship, proposed
to split the internship into two phases:

e In the first half, an extensive knowledge of the various algorithms will be acquired. This step
intends to have both a mathematical and a practical point of view of each algorithm. Further-
more, I was asked to concentrate my work first on basic techniques and after on more advanced
ones as deep learning algorithms.

e In the second half, we needed to put all these algorithms into actions. He proposed to use a
dataset related to direct bank marketing. This dataset comes with an article where the authors
had some result. The end of the work is to have a better performance than the one in the paper.

Nevertheless, I want to highlight the fact that I was led to work also on different matters other
than Machine Learning. In fact, I ought to work on valuation services as the pricing of financial
instruments or risk assessment and management.

Finally, this internship was only a premise of a bigger project. In fact after this experience, I was
fully operational to work in full time with a French investment bank on V@R, shocks detection.

Contents

Introduction
1 Different Machine Learning algorithms

2 Modelling

2.1 Generalized Linear Model
2.1.1 Linear Regression. L e
2.1.2 Probabilistic interpretation oo
2.1.3 Logistic Regression e

2.2 Model e
2.2.1 Gradient Descent

2.3 Bayes Classifier e
2.3.1 Model e
2.3.2 Linear and Gaussian classifiers

2.4 Tree-Based methods e
2.4.1 Decision Tree e e

2.5 Random Forests e

2.6 Kernel Methods e
2.6.1 Reproducing Kernel Hilbert Space
2.6.2 Application: Support Vector Machine
2.6.3 Example: Iris dataset L

2.7 Neural Networks e

2.8 Validations e
2.8.1 Training and Testing
2.8.2 Cross-Validation e

3 Applications

3.1 Data Analysis L

3.1.1 Data description

3.1.2 Data preparation

3.2 Validation

3.3 GLM: Logistic regression e

3.4 Bayes Classifiers e

3.5 Tree-Based methods

3.5.1 Decision Tree e e e

3.5.2 Random Forest

3.6 Support Vector Machine

3.7 Neural Networks e

3.8 SUMMATY . . . o o o e e e
Conclusion
Appendix

© © @®

10

11
12
12
12
14
14
14
18
20
21
25
26
27
29
29
31

33
33
33
35
37
38
38
39
39
42
43
45
46

48

48

Introduction

Nowadays, most records and observations are captured electronically from devices connected to the
internet. This, in principle, allows investors to access a new source of a competitive dataset with the
available alternative data sources as well as the application of new quantitative techniques of Machine
Learning to analyse these data. However, new datasets are often bigger in variability and volume
compared to an old dataset as stock prices for instance. Alternative datasets could be found as data
generated by people (social media, search trends, product review, ...) or data generated by sensors (
satellite image data, ship locations, ...). In most of the case, we need to analyse these data before we
used them in trading strategies for example. Even with a large traditional dataset, simple methods
as linear regression often lead to over-fitting or inconsistent results. That is where Machine Learning
comes in.

In last decade, there has been a massive development in the field of pattern recognition (uncov-
ering relationship between variables). These methods are known Machine Learning techniques, and
they are part of a more broader family in Computer Science and Statistics Machine Learning tech-
niques enables analysis of large and unstructured datasets. To illustrate this consider a self-driving
car which learns for being initially driven by a human driver; further, as it drives itself, in reinforces
its learning and improves it with experience. In finance, one can view Machine Learning as a way
to uncover relationships between variables, where given historical data, the algorithms forecast out-
comes out of sample. In the study of Machine Learning, we find three principal branches: Supervised
Learning, Unsupervised Learning, reinforcement learning. There been a huge development in deep
learning. The year 2016 saw a multitude application of deep learning in real life: Google Home, Apple
Siri, Samsung Bixby, Amazon Echo which relied mostly on the deep learning algorithms. The reader
should notice there is a lot of hype around Machine Learning, researchers estimate that only 0.5% of
the data available is being analyzed in [6]. Moreover, in implementing Machine Learning in Finance,
it is more important to understand the data and the signals, 7.e. the economics behind the data, than
to be able to develop sophisticated algorithms. We have too many concepts in Machine Learning may
sound plausible but will not lead to viable strategies in Finance. Moreover, the provided framework
in this report is not a "ready-to-use” method for a given dataset.

One point is clear: techniques of Machine Learning yielded some spectacular results when applied
to problems of pattern recognition, automation of complex tasks (driving a car), image processing and
natural language processing. What is the application of Machine Learning in Finance, and how do
these methods differ from each other.

In the first chapter of this report, we provide some basic definition of Machine Learning. In the
second chapter, we provide an initial framework to understand some Machine Learning techniques.
Finally, in the third chapter we try to apply these methods to a given dataset and try to compare the
efficiency

Chapter 1

Different Machine Learning algorithms

Machine Learning is the study of methods for building computer programs that automatically improve
and adapt their performance through experience.

The goal of machine learning is to discover methods by which the machine will provide its own
model based on examples. Dietterich [3] mentioned four categories situations in which it is not easy
for software engineers to design the software for solving a problem. In particular, there are problems
where phenomena are changing rapidly, and we want programs whose adapt their behaviour in this
environment. In finance, for example, people would like to predict the future evolution of the stock
market. These practices change very frequently so that if a programmer could write a program which
has a good prediction power, it has to be rewritten at every change of the market. A learning program
can relieve the programmer of multiple tasks such as constantly modifying and calibrating a set of
learned prediction rules. In this chapter, we will discuss the different classes of machine learning
algorithms that are used.

Terminology Before getting into the core of a learning system, we need first to define the basic
notions. An example (also called an instance) is the data used by an algorithm to learn how to classify.
For example, if we consider the credit card frauds detection, then clients are examples. An example
is represented by a group of attributes known as wvariables or features. The category that we are
trying to forecast is the label. The latter could be either categorical or numerical. Classification aims
to replicate decision making in order to develop such predictive analytics. Classifications algorithms
work well for problems with well-defined boundaries. Basically, the classification process is to learn
past experiences and use this to evaluate new inputs by matching them with previously observed
patterns. This process is suitable for categorical outputs. Regression is one of the most important and
widely used machine learning and statistics tools available nowadays. It allows to forecast from data
by discovering the relationship between variables and a real valued response. This method is used
in a massive number of fields ranging from predicting stock prices to understanding gene regulatory
networks. We can classify the different type of learning. Some common situations are:

o Supervised Learning: Given the desired outputs, the machine’s goal is to learn to produce the
correct output given a new input. In supervised learning, the response variable is available which
provides the desired action corresponding to the data. Example: to identify fraudulent or none
authorized bahaviour quickly.

o Unsupervised learning: The purpose of the machine is to build a model of input that can be
used for reasoning, forecasting things, decision making. In unsupervised learning no teacher is
available. The machine discovers only patterns in the data using a collection of examples. This
is called exploratory learning. Example: To highlight any relevant relationship between the
operating and financial history of a company and its performance on the stock market.

o Active learning: Here not only a teacher is available, the program has the freedom to ask the
teacher for suitable perception-action example pairs which will help the program to improve its
performance. Consider a news recommender system which tries to learn a user’s preference and

categorize news articles as interesting or uninteresting to the user. The system may present a
particular article (of which it is not sure) to the user and ask whether it is interesting or not.

Reinforcement learning: The machine can also produce actions which affect the state of the
world, and receive rewards (or punishment). The goal is to learn to act in a way that maximizes
rewards in the long term. In reinforcement learning, the computer could interact with the user.
Instead of directly providing the desired action corresponding to a perception, he returns reward
and punished to the program for its action corresponding to an example.

Chapter 2

Modelling

Contents
2.1 Generalized Linear Model 0 it ittt 9
2.1.1 Linear Regression 9
2.1.2 Probabilistic interpretation oo 10
2.1.3 Logistic Regression Lo 11
2.2 Model o o e 11
2.2.1 Gradient Descent 12
2.3 Bayes Classifier i i i i i i i it i i i e e e e e e e e e e e e 12
2.3.1 Model e 12
2.3.2 Linear and Gaussian classifiers 14
2.4 Tree-Based methods, 14
2.4.1 Decision Tree e e 14
2.5 Random Forests i i i i i i i i i e e e e e e e e e e e e e e e e 18
2.6 Kernel Methods i i i i i i i i i i i i e e e e et e e 20
2.6.1 Reproducing Kernel Hilbert Space 21
2.6.2 Application: Support Vector Machine 25
2.6.3 Example: Iris dataseto 26
2.7 Neural Networks 0 i i i i i i i i e i e i e e e e et et e e e e 27
2.8 Validations 0 i i i i e 29
2.8.1 Training and Testing e 29
2.8.2 Cross-Validation 31

(Bibliographic sources.: I. Goodfellow and Y. Bengio and A. Courville [4]; I. H.
Witten, E. Frank, M. A. Hall and C.J. Pall, [5])

To establish notations for future use, we define x; as input variables, also called input features
or design matrix, typically x; = (z;1,- .., %im)! € R™ and y; as an output variable known as target
variable that we are trying to predict. The vector x; could be either real or categorical vector. A
pair (x;,y;) is called a training example and denotes the ensemble of the training set by & =
{(x1,91),- -, (Xn,yn)} We will also use X which is the space of input values, and) the space of
output values. Let X be a n x m matrix and Y = (y1,...,y,)!. Given our data, our class of learning
is supervised learning. Basically, supervised learning is what statisticians do almost all the time.
The term ”supervised” refers to the fact that y,s are available, in contrast to unsupervised learning.
Supervised learning more typically refers to a topic that is less familiar but is the focus of this chapter:
classification.

The task is to learn a function h : X —) so that h(x;) is a "good” predictor for the related value of
y;- The function h is called the hypothesis function for historical reasons. The picture below sums
up our idea:

Training Data

New data - Classifier - Predictions

When the response variable is continuous, such as the stock market for example, we call the
learning problem a regression problem. When y can take discrete values, typically y € N, we call
it a classification problem. For i € 1,...,n, we want to explain x; from y;. For this purpose, we
introduce a new family of models called: parametric models. They suppose the hypotheses h has a
particular form, unlike non-parametric models. The following table resuming our thoughts of this

section:
Statistics Computer Science Meaning
classification supervised learning predicting Y from X
data training sample (X1, Y7),..., (X, Yy)
covariates features the design matrix X
classifier hypothesis a function h which map: X — Y
estimation learning finding a good classifier

2.1 Generalized Linear Model

2.1.1 Linear Regression

To perform supervised learning, we must decide how we represent the hypotheses h. As the natural
choice, we decided to estimate Y as a linear function of X:

m
1€l,...,n h@(XZ‘) = Z@ﬂ;zj = Htxi
j=1

where 6 € R™.

Here, 6 are the weights, also called parameter. They are parametrizing the space of linear
functions mapping from X to). Given a training set, we want to learn the parameters 6. A natural
choice is to choose h(x;) close y;. For this goal, we have to take a measure which is going to quantify
the error we make and help us to find #. For example, we can take the ls norm and define the cost
function known as the residual sums of squares:

n 0) = 1 . h 2
vx; € R", i €R, J(0) = 2;(o(Xi) — vi)

Minimizing this function using the training set, we should be able to find optimal §. Note that
the optimization problem, we have posed here, presents one global optimum. Indeed, J is a convex
quadratic function.

2.1.2 Probabilistic interpretation
Let us suppose that the response variables and the inputs are linked via the following equation:
yi =h(x;)+eie{l,...,n}

where € is distributed 4.i.d according to a Gaussian distribution: € ~ N(0,,,c2.1,) This implies that:

ho(z) = E[Y]0; X = 2] = / yf (416; 2)dy

We can thus write the linear regression model as follows
Definition 1. The simple linear regression model

yi=0'xi+ €
2

where Ele;|x;] = 0 and Var[e;|x;] = o

Furthermore, the distribution of ; can also write as v;|x;; 6 ~ N (0'x;,02). In order to estimate
the parameters 6 regarding x;, one could use the likelihood function.

L) = L(0; X,Y) = P(Y|X;0)

We recall that a good choice of parameters is a choice which maximizes the probability in the training
set.
Note that by the independence assumption of €, we can rewrite as follows:

=1

ﬁ 1 (yi — 0'x;)?
= exp | —

i V2mo? P 202

Using the maximum likelihood estimators (MLE), one could find an estimation of the parameters:

sup L(0)
feR™

Instead of maximizing L(6), we could also maximize any strictly increasing function of L(#). In
particular, we maximize the log-likelihood to make it a little bit easier:

Consequently,

. ty)2
Slalp 1(0) = ugf 5 Z(yl —0'x;)

=1

Thus, maximizing [(6) leads back to minimizing J(6).

10

2.1.3 Logistic Regression

So far we have assumed that y; is real valued. Logistic regression is a parametric method for
regression when y; € {0,1}. Intuitively, it makes no sense for hy(x;) to take values larger than 1 or
smaller than 0 when the target variable y is between {0, 1}. For this purpose, we choose our hypotheses
he(x;) as follows:

' 1
Vi €40, 1 ho(x) = g

The function x — H% is called the logistic function or the sigmoid function. Others functions

could be taken for the hypothesis function. We have supposed for the linear regression that y; follows
a Gaussian distribution. Now y; are binary, this model asserts that y; are i.i.d Bernoulli random
variables:

P(y; = 1]x;;0) = ho(x;)
P(y; = 0[x;0) = 1 — ho(x;)

Rewriting this, we obtain:
P(yilxi; 0) = (ho(xi))* (1 — ho(x;)) ¥
As we did in the previous section, we compute the likelihood:

n

[T Pwilxi; 0)

7

L(0)

Il
—

(ho(x))Yi(1 — hg(x;)) Y

—.

I
—

7

As before, we take the logarithm of the likelihood in order to simply:
1(0) =log(L(0))

=" yilog(h(xi)) + (1 — ;) log((1 — hg)(x;)
=1

The maximum likelihood estimator 8 = (51, . ,gm)t cannot be found in a closed form. Thus, we have
to perform an iterative algorithm.

2.2 Model

For a better approach to the exponential family, see Antoniadis et al. (1992).

We have seen the simple regression and also the logistic regression. In the regression, we had
Y|X;0 ~ N(u,0%) and for the logistic regression Y|X;6 ~ B(¢) for some definitions of p and ¢
as the function of X and 6. These methods are special cases of a broader family of models, called
Generalized Linear Models (GLMs). Suppose now that an insurance company would like to build a
model to estimate the number of car accidents, we know that the Poisson distribution usually gives a
good model for this problem.

The Exponential Family We assume that the observations belong to the exponential family with
probability density function:

yi0; — b(0;)
ai(¢)

where 0; and ¢ are the parameters and a;(¢), b(6;) and c(y;, ¢) are known functions. For some
distribution, the function a; will be:
_ ¢

Wj

f(yi) = exp < + c(yi, ¢)> (2.1)

ai(e)

11

where the weights w; are known from the observations; ¢ is known as the dispersion parameter. We
can also write the canonical form of the exponential family:

Fysin) = b(y:) exp(n” (yi) — a(n))

Here, 7 is named the canonical parameter of the distribution; T'(y;) is the sufficient statistic and
a(n) is the logpartition function. The quantity exp(—a(n)) basically plays the role of normalization
constant.

So we have all the tools necessary to introduce the GLM. For this model we will make the three
assumptions to predict the value of some about the conditional distribution of y; given x; and about
our model:

1. Y|X;60 ~ ExponentialFamily(n) and the z;’s are i.i.d

2. Our goal is to predict E[T'(y)|x] knowing . This means we want the prediction h(x;) output by
our learned hypothesis h to satisfy h(x;) = Ely;|x;]

3. The parameter and the inputs x; are linked linearly: n = 6'x;.

When the hypothesis function makes the linear predictor i as the canonical parameter 6;, it is named
the canonical link. The canonical link for the normal distribution is the identity function. One can
remark that the canonical link for the Poisson distribution is the log function. The canonical link for
the binomial distribution is the logistic function. This leads to some natural pairings:

Error Link function
Normal Identity
Poisson Log

Binomial Logistic

2.2.1 Gradient Descent

This section presents the gradient descent algorithm. We want to choose 6 so as to minimize the
log-likelihood 1(#). TO do so, let us use a search that starts with some ”initial guess” for 6, and that
changes over and over to 6 to make [(6) smaller, until we converge to a value of § to that minimizes
1(#). The update rules write as follows:

8.J(0)
09,

0j+1 = 9]‘ —

This method is going through every example in the whole training set on every step and it is known
as batch gradient descent. We remark the gradient descent will converge to a local minimum in
general unless the optimization problem has a global optimal.

2.3 Bayes Classifier

Our goal is to find a classification rule h that makes accurate predictions. For this purpose, let us
introduce some definitions.

2.3.1 Model
Definition 2. The error rate of a classifier h is
L(h) = P(h(X) #Y)

and the empirical error rate is
~ 1 &
Ln(h) = =3 Lnixot)
i=1

12

We consider that) = {0,1}. Let
rx) =EY|X =2)=P(Y =1|X =2)
be the regression function. Thanks to Bayes’ theorem we have
r(x) =P =1|X =2x)

_ P(X|]Y = 1)P(Y =1) 2.2)
P(X]Y = 1)P(Y = 1) + P(X|Y = 0)P(Y = 0) '

Definition 3. The Bayes classification rule h* is

. 1
B () = Lifr(z) >3
0 otherwise
The set D(h) ={x: P(Y =1|X =2) =P(Y =0|X =2x)} is called the decision boundary.
We have another interesting result with Bayes classifiers:

Theorem 2.3.1. The Bayes rule is optimal, that is, if h is any other classification rule then L(h*) <
L(h).

The Bayes classifiers depend on many unknown quantities. We have to use the learning set in
order to estimate them. We present here three main approaches:

1. Emperical Risk Minimization: Choose a set of classifiers in H and find the optimal h* € H which

minimizes the loss L(h).

2. Regression Find an estimation of the regression function 7 and set:

h*(x):{nf?(xp;

0 otherwise

3. Density estimation One could find an estimation of (2.2). First, estimate P(X|Y = 0) from x;’s
for which y; = 0, estimate P(X|Y = 1) from x;’s for which y; = 1. Second, set P(Y = k) =
%Z?:o 1,,— for k = {0,1}. Given these estimations, one could compute easily:

ﬁ(w):{lif?(x)>é

0 otherwise

We can also generalize the Bayes classifiers when Y = {0,..., K} for K € N:
Theorem 2.3.2. Suppose that Y = {0,...,K}. The optimal rule is
h(z) = max P(Y =k|X =x)

= max e fi(7)

where P(Y = kX = z) = $TE40 with 7, = P(Y = k), fu(z) = f(X = 2|V = k).

13

2.3.2 Linear and Gaussian classifiers

The first approach to classification is too use the density estimation method. Suppose that) = {0,1}
and that fo = f(z|Y =0) and f; = f(z|Y = 1) are both multivariate Gaussian:

fk(.%') = Wexp {—;({p — 'U’k)TElzl(x — Nk)} ,k = 0, 1

Thus, X’Y =0~ N(Mo, 20) and X’Y =1~ N(Hla 21).
Theorem 2.3.3. If X|Y =0~ N (ug,%0) and X|Y =1~ N(u1,%1), the optimal Bayes rule is

. - s
B () = {0 ifr? <rd+ 2log(7) + log(%)

1 otherwise

where
= (e —) 27 (@ —)i = 1,2

7

is the Manalabhobis distance. A different way of expressing the Bayes’ rule is
h*(z) = max ok ()

where

1 _
— gl) "5 (2 —) + log ()

In practice, up, X and 7 are estimated using the training set in place of the true value. The
decision boundary of the above classifiers is quadratic. Hence, this procedure is called quadratic
discriminant analysis (QDA). Setting ¥y = ¥; = X, a simplification occurs and the decision
boundary is a linear so this procedure is called linear discrimination analysis (LDA).

Su(w) = — 5 log(|5)

2.4 Tree-Based methods

We saw in the previous section two classifications methods which assumed a parametric structure on
the available data. Now, we will see some non-parametric structure methods. Trees are classification
methods that partition the space of input values X into disjoint pieces and then classify the observation
X; inot the partition element each of which fall in. As the name implies, the classifier can be represented
as a tree.

2.4.1 Decision Tree

This section introduces widely used in classification technique, the decision tree classifier. A decision
tree algorithm try to model the data using a tree representation where each internal node corresponds
to a feature and every terminal node corresponds to a class. The tree has three types of nodes:

¢ A root node that have no incoming edges and zero or more outgoing edges.
e Internal nodes which have exactly one incoming edge and two or more outgoing edges.
e Leaf or terminal nodes which has exactly one incoming edge and no outgoing edges.

In this method, each leaf is assigned a class. The non-terminal nodes, which include the root
and other internal nodes, contain attribute test conditions to separate instances that have different
characteristics

The power of this algorithm is that once the tree is built, classifying an unseen example is
straightforward. From the root node, we apply the condition to the example and follows the appro-
priate branch based on the outcome of the test. Indeed we apply the test to the example x; and then
using the outcome of the test, we choose the suitted branch. According the outcome of the test, we
will go to another internal node for which a new test is applied or directly to a leaf node.

14

petal length (cm) < 2.45
gini = 0.6667
samples = 150

value = [50, 50, 50]

petal width (cm) < 1.75
gini = 0.5
samples = 100
value = [0, 50, 50]

gini = 0.0
samples = 50
value =[50, 0, 0]

petal length (cm) < 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]

5 petal width (cm) < 1.55 sepal length (cm) < 5.95
gini = 0.4444 gini = 0.4444
samples = 6 samples = 3
value = [0, 2, 4] value = [0, 1, 2]

petal length (cm) £ 5.45 P
gini = 0.4444 g =e,
samples = 3 samples =
value = [0, 2, 1] velleE (1, 1, 0

gini = 0.0
samples = 2
wvalue = [0, 2, 0]

gini = 0.0408
samples = 48
value = [0, 47, 1]

[petal width (cm) < 1.6

Figure 2.1: Example: Decision tree for iris dataset. This dataset is multiclass dataset presented by
Ronal Fisher in 1936. The purpose of this data is to quantify the morphologic variation of Iris flowers
of three related species.

Building a Decision Tree

Decision trees are constructed by analyzing a set of training examples for which the class labels are
known. Afterwards, they can classify previously unseen instances. In principle, there is no unique
decision tree for a given data set. In fact, we could find a large range of decision tree which fit the data
set. However some of the trees are more accurate than others, the problem is then to find the optimal
tree. But it is computationally infeasible because of the exponential size of the search space. However,
powerful algorithms have been create to build a accurate decision tree in a reasonable amount of time.
The main idea is to use a greedy strategy that grows a decision tree by making a series of locally
optimum decisions about which attribute to use for splitting the data. One of these algorithms is
Hunt’s algorithm, which uses the basis of different existing decision tree algorithms (CART, ID3
and C4.5).

Hunt’s Algorithm In Hunt’s algorithm, a decision is grown in a recursive way by partitioning the
training set into homogeneous subsets. Let D; be the training set that are joint with the node ¢ and
Y ={y1,v2,...,yn} be class labels. The Hunt’s algorithm is the following:

Step 1: If all the examples in D; belong to the same class y;, then ¢ is a leaf node labelled as ;.

Step 2: If D; contains examples that belong to more than one class, an attribute test con-
dition is selected to partition the records into smaller subset. A child node is created according to
the outcome of the test. Afterwards the algorithm is recursively applied to each child node. Hunt’s
algorithm works very well if all the possible combinations are present in the training set and if each
combination has a unique label. These assumptions are too constraining in most practical situations.
Additional conditions are needed.

Decision tree induction algorithms have to provide a method in order to express an attribute test
condition and its corresponding outcomes for different attribute types.

e Binary Attributes The test for a binary attribute generates two possible outcomes.

e« Nominal Attributes Since a nominal attribute can have many values, the test can be expressed
in two ways. If it is a multi-way split, the number of nodes is the number of distinct values for the
corresponding attribute. For example, if an observation has three distinct categories: Married,
single, divorced there is multiple ways to split. If it is a binary split, then we have to group the
attributes as in Figure (77).

15

Marital
Status

Single Divorced Married

(a) Multiway split
Marital Marital Marital
Status Status Status

{Married} {Single, {Single} {Married, {Single, {Divorced}
Divorced} Divorced} Married}

OR OR

(b) Binary split {by grouping attribute values}

Figure 2.2: Test conditions for nominal attributes

{Small, {Large, {Small} {Medium, Large, {Small, {Medium,
Medium} Extra Large} Extra Large} Large} Extra Large}

(a) (b) ()

Figure 2.3: Different ways of grouping ordinal attribute values

e Ordinal Attributes Ordinal attributes can also produce multi ways splits. These attributes
could be grouped into difference sets as long as it preserves the order.

e Continuous Attributes The test condition can be expressed as a comparison test for a given
(C < v) with binary output where v € R, or a range query with outputs of the form v; > C <
vi+1. For the binary tree, the decision tree algorithm look after all possible split position v, and
selects the one that produces the one which produces the most homogeneous sub sample. In
case of a binary tree the algorithm must consider all possible split position v and choose the one
that produces the best subset.

Here we will describe a popular decision tree method called Classification and regression tree
algorithm (CART).

Regression Trees Let us consider a regression problem with continuous responses Y and inputs
X = {x1,x2} with i = {0,1} x; € R", each taking values in the unit interval. To simplify matters, we
restrict our attention to recursive binary partitions like that in We first split the space into two regions
and model the response by the mean of Y in each region. We choose the variable and split-point to
achieve the best fit. The one or both regions are splits into two more regions, and we repeat this
process until some stopping rule is applied. For example, in the following figure the first region is split
by x; = t1, then the region x; > ¢; is split at x; > ¢; is divided at x; = t3. Finally, the region x; > ¢3
is separated at xo = t4. At the end, we have five different regions Ry,..., Rs shown in the following
figure. This regression model predicts Y with a constant ¢, in region R,,:

5

Fo0) = el e}

m=1

cm are the estimated values of outcome Y in region R,,. This same model can be represented as a
binary tree. The entire dataset is located at the top of the tree and each observation falls either into

16

the left branch or right branch satisfying the condition at the node. As we said previously, the leaves
of the trees correspond to the regions Ry, ..., R5. We have to say that the major key of the recursive
binary tree is its interpretability. The feature space is fully represented by a single tree.

If we take as our criterion minimization the sum of squares Y, (y; — f(x;))?, taking the derivative
regarding c, we can see that

~ 1 .
cm:MZyi if x; € Ry,
1

Now finding the best binary partition in terms of minimum variance is commonly computationally
infeasible. Hence we could proceed with a greedy method. Starting at the root of the tree, consider a
splitting feature j and cut point v and define the half-region:

Ri(j,v) = {x|x; > v} and Ra(j,v) = {x|x; > s}
Afterwards, we are looking for the splitting variable j and split point v that solve:
. . N2 : o)
n;lin min Z (yi —ci)” + min Z (i — c2)
XiERl(j,’U) xiERz(j,U)

For V(j,v), the internal minimization is:

1 R
EI_NE;% andEQ—N E;Z/z
1= 1=

where i = {0,1} N1 = #(x; € R1(j,v)) and No = #(x; € Ra(j,v)).
The idea behind is to get as much as possible two homogeneous groups in order to choose Y,
that is why we minimize the variance in (2.4.1). More generally, one can define for m region:

Np, = #{xz € Rm}7

™ x;€Rm
1 =)2
Qu(T) = 5~ %; (v —) (2.3)

where T represents the tree. The function @, is called impurity measure.

For each splitting variable, the value of the split point v can be computed very quickly and hence
by scanning through all of the inputs, determination of the best pair (j, s) is feasible. After founding
the best split, we separate the data into two different regions and repeat the splitting process on each
of the two regions until we attain a stopping rule.

Classifications Trees If the target is a categorical outcome taking for example Y = {1,..., K}.
The previous algorithm that we described would not change so much besides the splitting criteria the
tree. For regression, we used the mean squared error (MSE) node impurity measure Q,,(7) defined
n (2.3), but this is not suitable for classification problem since the response variable is categorical. In
a node m, representing a region R, with N,, observations, let

~ 1
Pmk = N, Z Lyi=k
X;ERm

the proportion of class k observations in node m. We classify the observations in node m to class
k(m) = argmax;Dmk, the majority class in node m. There is a multiple measure Q,,(T") of node
impurity which includes the following;:

e Misclassification error: ﬁ Zie R, Lyi#k(m)y = 1 — maxy Dink

17

e Gini index: Zk#k’ ﬁmkﬁmk/
e Cross-entropy or deviance: — Zk;ék’ Pk 10g(Pmk)

For K = 2, if p is the proportion in the second class, these three measures are equal respectively to
1—mazx(p,1—p), 2p(1 —p) and —plog(p) — (1 —p) log(1 —p). We can see the following figure the three
different measure. They are all similar except that cross-entropy and the Gini index are differentiable,
and hence more suitable for numerical optimization.

The Gini index can be interpreted in two ways. In fact, rather than classifying observations to
the majority class in the node, we could classify them to class k with probability p,,x. Then the
expected training error rate of this rule in the node is > k # k'PpkPmis -the Gini index. Similarly, if
we code each observation as 1 for class k and zero otherwise, the variance over the node of this 0 — 1
response is Pk (1 — Dk). Summing over classes k again gives the Gini index.

Advantages and Disadvantages of using Decision Trees

Decision trees offer multiple advantages over other methods. They are:

e Visualization. The interpretation of graphic is very helpful in the comprehension of the data
set and the outcome dependencies.

« Efficient.

Although this algorithm is simple and intuitive, it has some limits.

2.5 Random Forests

So far our attention has focused on obtaining a specific tree for a given problem (in the context of
classification or regression). However, Decision trees are models and hence they are subject to model
misspecification. We can state that choosing a single tree and not giving some appreciation of its mean
squared error (MSE) or other impurity measures gives a false notion of how good the classifier is. As
we have said earlier, it is unclear how to estimate a standard error or bias for a tree, it is important
to look into techniques that average over trees because as we will see it can reduce the variability that
we could have with a single tree. One of these techniques is: Random Forests.

Random Forests build an extensive collection of de-correlated trees and then averages them.
The essential idea is to average many noises as possible hence reduce the variance. Trees are ideal
candidates for this since they can capture complex interaction structure in the data. If grown deep
enough, they have a relatively low bias. This method was invented by Breiman® (2001) and substan-
tially developed by Breiman and Cutler (2004)

Operationally , the random forest work as:

The main distinction between random forests for classification and regression is:

e When used for classification, the method gets a class vote from each tree and then classifies
using majority vote.

e When used for regression, the predictions from each tree at a target point = are simply averaged.

There are two important features of Random forests that make the method particularly efficient.

'Leo Breiman (January 27, 1928 — July 5, 2005) was a distinguished statistician at the University of California,
Berkeley. He was the recipient of numerous honors and awards and was a member of the United States National
Academy of Science. - Wikipedia

18

Algorithm 1 Random forest for Regression or Classification
1: fori=1to B do
2: Draw a bootstrap sample Z* of size N from the training data.
3: Construct a Tree T; from the bootstrapped data, by recursively repeating the following steps
for each terminal node of the tree, until a given stopping rule is attained:
- Select m variables at random from the p variables. - Choose the best splitting point among
the m. - Split the node into two daughter nodes.
4: Return the ensemble of trees {T;}7
5: To make a prediction for test sample x:
o Regression: J/”;f =1 25;1 T;(x)
o Classification: Let ab(a:) be the class prediction of the i-th tree. Then @f(x) = majority
~ B
vote {Cy(2) }4

Out of Bag samples The first trick is "out of bag”(OOB) error estimate. It is a technique to get
an estimate of the misclassification error. Indeed, the estimate is often claimed to be unbiased when
it is corresponding to bootstrap samples. The idea is the following: For each observation z; = (z;,v;),
construct its random forest predictor by averaging only those trees corresponding to bootstrap samples
in which z; did not appear. For each data point, roughly % of the bootstrap samples will not contain
it, so approximately % of the trees generate can be used.

Let us see what happened in the classifications case. If k£ be the class that gets the most votes
for the i-th data point. The proportion of times that k differs from the class of the initial data point
is the out-of-bag error estimate. Once the OOB error stabilizes, the training can be terminated.

Variable Importance Another significant feature is the variable importance. Recall that, at each
step in a decision tree, the recursive partitioning examines all p variables to determine the best split
variable. By contrast, random forests pick ,/p of the variable at random, taking the best split among
them afterwards. The improvement in the split-criterion at each split in each tree is the measure
attributed to the splitting variable. It is accumulated over all the trees in the model separately for
each variable. The candidate split-variable selection increases the chance that any single variable gets
included in a random forest.

Random forests use the OOB samples in order to estimate the relative importance of, say, the j-
th explanatory variable. When the b-th tree is grown, the OOB samples are passed down the tree and
the prediction accuracy is recorded.The accuracy dropping as a result of this permuting is averaged
over all trees and is used as of the importance of variable j in the random forest. For the classification
case, random forest runs each observation through all the trees for which the observation is out of
bag and counts the number of votes for the correct class. This method could also be be applied on
the observations rather than on features. One can look at observations and create a local measure
of importance specific to each observation in the training sample. So basically the procedure take an
observation ¢, then run it down all the trees for which it is out-of-bag. It repeats this process taking
randomly and permuted features j, and looks at the difference in the number of correct votes.

Analysis of Random Forests So far, we reviewed some great features of Random Forests. In
this section, we will present multiple results that assure random forests will work well. However, we
restrict our scope to the regression function. For the classification case, on can refer to [1] as most of
the results in Random forests are due to Breiman.

We suppose that we have i.i.d sample {(x1,91),. .., (Xn,¥n)}, (R" x R)-valued random variable
satisfying FY? < oo. We recall that our goal is to estimate the regression function r(x) = E[Y|X =
x| using the training sample. We will say that a regression function estimating r, is consistent if
E[jrn(X) — 7(X)[?] = 0 as n — co. Formally, a random forest consists of a collection of random
regression trees denoted by {r, (X, ©,,), m > 1} where © = O1,...,0,, are i.i.d. These trees are then

19

aggregated in order to have:
7(X) = Ee[rn (X, 0)] (2.4)

where Eg is the expectation regarding the random variable ©. Usually to estimate (2.4), we utilize the
Monte-Carlo methods, i.e. by generating M (large enough) random regression trees and taking the
average of the individual outcomes. The randomizing variable ©,, characterizes the m-th random tree
how we select the different features and how the successive cuts are performed such as the selection and
the position of the coordinate to split Intuitively, reducing m will minimise the correlation between
any pair of trees in the ensemble, thus decreasing the variance.

The mean squared generalization error for any numerical predictor is:

E[(Y - r(X))?]
We have the following results
Theorem 2.5.1. Let n be the number of the training samples, we have:
E[(Y —7(X))%] 5 E[(Y —r(X))? (2.5)

One could notice that in right-hand side of (2.5) is the error term that we denote PE*(forest) -
the generalization error of the random forest. We define the generalization error of a tree as:

PE*(tree) = Eg[E[(Y — r(X, ©))?]]
Theorem 2.5.2. Assume that VO, E[Y] = E[r(X, ©)], we have then
PE*(forest) < pPE*(tree)

where p is the weighted correlation between the residual Y — r(X,0) and Y — (X, 0") with ©,0" are
independent.

2.6 Kernel Methods

In the previous section, we had seen multiple methods for predicting numerical values when the inputs
space X was R". Basically, we know how to do this:

10°

102

10!

109

O
[\]
i
D
o
=
(e}

However, the real data are often more complicated, they are not always real values or categorical
values. For instance, the inputs could be graphs, chemical formulas and so on.

In this section, we are going to see kernel methods which help us to extend linear methods to a
high-dimensional, unstructured and real-world data. The strength of these methods is that they lie
on a rigorous mathematical framework.

20

2.6.1 Reproducing Kernel Hilbert Space

Our motivations here is to develop algorithms without making any assumptions regarding the data.
Let us roll some definitions. As we did before, we suppose that our inputs are denoted X.

Definition 4. A positive definite (p.d) kernel on a set X is a function k: X x X — R.

Symmetry:
Vx,x € X, k(x,x) = k(x,x)

Positivity condition:

%

Vn € N, suppose (x1,...,X,) € X" and a € R", then ZZaiajk(xi,xj) >0
J
Remark 2.6.1. e Fquivalently, we can say the kernel is p.d if and only if the kernel matriz K,
defined by (K);; = k(xi,%x;), is p.d

o K is always a squared matriz whatever the nature of the data: the algorithm will work regardless
the type of the data (vectors, graphs, ...)
Here we provide some example of p.d kernels:

Lemma 2.6.1. Let &: X — R%. Then the function k: X? — R defined by:
Vx,x € X, k(x,%) = (P(x), P(X))ga

is a p.d kernel

Proof. Let a € R%.

e Symmetry:

e P.D:
o' Ka = Z Zaz’a]’@(xi)a ®(x;))
=12 i (xi)l* > 0

The following result resumes our result above:

Theorem 2.6.1 (Aronszajn, 1950). k is p.d kernel if and only if there is a Hilbert space H and a
feature map ® : X — H such that

YV (x,%) € X, k(x,%) = (P(x), (X))

Proof. See appendix O
Remark 2.6.2. Thus, a positive definite kernel provides:
e a function space of X € R

e a norm for this space

21

e a feature map ®: X — H, k(x,x) = (®(x), P(x))
We observe that H could be infinite.

It brings us to the construction of the reproducing kernel Hilbert space (RKHS). Let (-,-) g the
inner product in H

Definition 5 (RKHS). Let X be a set and H C RY is the space of functions mapping X into R via:
d: X = RY where x — k(-,x)

The function k : X* — R is called the reproducing kernel (r.k.) of H if

e H contains all functions of the form

Vx € X, k(-,x)

o Forxe X and f € H the reproducing property holds:
f&x) = (f k(X))
(i.e. k(-,x) corresponds to ”"Dirac” at x)
If a r.k. exits, then H is called a RKHS.

Definition 6 (RKHS). Let X be a set and H C RY is the space of functions mapping X into R:
n
H = {Zaik(xi,~) neN,x; € X, €R,i = 1,...,n}
i=1
H is a Reproducing Kernel Hilbert Space equipped with a dot product (-,-)g. If it exits a function
k: X% = R, called the reproducing kernel (r.k.) of H with the following properties:

e for all elements x € X, k(x,) belongs to H

o Forx e X and f € H the reproducing property holds,i.e.:
Vf € H, <f7 k’(X,))H = Zaik(xi?x) = f(X)
i=1

(i.e k(x,-) corresponds to "Dirac” at x)
If a r.k. exits, then H is called a RKHS.
We can also stipulate another definition of RKHS using the Riesz representation:

Theorem 2.6.2. The Hilbert space H C RY is a RKHS iff forx € X

F:H—R
f= f(x).
15 continuous.

A positive definite kernel could be seen as of an inner product after embedding the input space
X in some Hilbert space. Such p.d kernel define a metric on X
The following result gives us the uniqueness of r.k:

Proposition 2.6.1. If H is a RKHS then there exists a unique function ® of H such that Vx € X,
Ve H, f(x)=(®(x),f). k is called a reproducing kernel

22

Example of kernels Let us see some example of kernels. We already presented some positive
definite kernels, and now intend to do so for non-exhaustive list of p.d kernels.
Linear kernel Take X = R? and the linear kernel: k(x,y) = (x,y)gs Here H is linear
function space which we associate the euclidean norm ||z||ge = 1/ ((X, X)) s and ®(x) = x.
Polynomial kernel Take X = RY, k(x,y) = (x'y)" where r € N.

p T |
k(x,y) = (Z 332?/0) = Z ﬁ(aﬁlyl)“ .. (zpyp)'™® (multinomial theorem)
] e S LR
1

Thus the feature map is ®(x) = <”7',) *(z1)"...(2zp). Finally H = { homogeneous

il
polynomial function of degree p }. We observe that dim H ~ p”
kernel allows to manipulate a large space without paying the cost.
We will see now some applications of kernels and RKHS in Machine Learning. But first, let us
introduce some key results. A family of powerful algorithms for data analysis using p.d. kernels rely

on two theoretical results:

, it is a huge space. The

e The kernel trick based on the representation of p.d. kernels as inner products.

e The representation theorem

Kernel tricks The following result is fundamental in the construction of algorithms. It has huge
practical applications.

Proposition 2.6.2. Every algorithm based on finite dimension using only inner product could be
replaced by the inner product of any p.d. kernel.

Example 1. For instance, consider a simple classification problem where Y = {—1,1} and so the
training set is {(x1,91),--.,(Xn,yn)} - The algorithm is to compute the mean of two classes in the
feature space:

1 < 1<

= Z D(x;)1yy,—41) and c1 = — Z Tiy——13P(x:)
i=1 =1

where ny. and n_ corresponds respectively to the number of positive examples and negative examples.

Thus we assign a new point ®(x) to the class whose mean is closest The prediction could be written
as (we suppose that the closest means have the same distance to the origin):

y = sign((¢(x), c11) — (®(x),¢-1))

This could be rewritten as follows:

y = sign | — (D), D)) i1y — —— (2(x), 8(x:))) Ly 1) (2.6)
o k(x,x;) " k(x,x;)

This substitution is called the kernel trick. There is example of p.d. kernels which can be
evaluated efficiently even though they correspond to dot products in infinite dimensional dot product
spaces.

Reprensenter Theorem We know that the RKHS H is a space function and for f € H ||f||x

it measures the smoothness of the function f. Given a training set {(x1,v1),..., (Xn,yn)} & natural
way to do a regression is to find the minimum of the following objective function

U3t £ + I (2.7)
=1

where the f is the loss function. The following theorem shows that the (2.7) could be expressed
in terms of kernel expansions as for large class of optimization problems.

23

Theorem 2.6.3. Let H be a RKHS, (x1,...,%X,) € X" and ¥ : R"*! — R strictly increasing with
respect to the last variables then each minimisers f € H

min J(f(x1),..., f(xn), || fll7)

feHd

admits the following representation of the form:

Fx) = aik(xi,x)
=1

Proof. See appendix O

Example 2. We take (2.7) and suppose that u s (y,u) is the mean squared error, we have then:

J(f(@r)s s f () || fll) = % > (i = FOa)* + AllfI (2.8)

i=1

One observes that we are in kernel ridge regression case. Thanks to representer theorem, we know
that the solution (2.8) can be expanded as:

fi(x) = Zaik(xi,x)

Thus the minimisation rewrites as follows:

n

1

* : 2 2
= - i — f(%i A
f argf}ggn;:l(y F(x))™ + All Iz
1 T T
= arg min g(Ka—y) (Ka—x)+ X’ Ka (2.9)
acR™

This function being convex and differentiable w.r.t «. Its minimum can therefore be found by
setting the gradient to zero. For A > 0, the unique solution (2.9) is

a=(K+)y

k(z, z)

Bl e

. Decision function
Kernel function Learning Algorithm

Kernel matrix

Data (n,d)

Figure 2.4: Processing chain of kernel methods

24

2.6.2 Application: Support Vector Machine

Here we are interested on the binary approximation, i.e. finding a decision rule in order to distinguish
classes and this with the help of the hyperplane h : X — Y, h(x) = (w, z)+wp. We suppose that X’ has
a dimension equal to d and Y = {—1,1}. We use the following decision rule: g(x) = sign((w,x) +wp).
The first intuition that explains why we choose this decision rule is to represent the positive and
negative training examples as below:

Figure 2.5: Representation of the classification

As we said in the Linear Regression section, a "good classifier” has to minimize the number
of misclassification using the training set S = {(x1,%1),-.., (Xn,yn)}. Vapnik et al. [4] decided to
rather look to a confidence criterion, in other words, to consider the margin separating the example
of the class 7+1” and 7-1” as in Figure (2.5). The distance of a new point x’ to the hyperplane h
is given by: (w,x’) + wp as the vector w is orthogonal to the plan. However, in order to compare
many hyperplanes with each other, we want to impose some sort of a normalization. From now on,
we will consider (w/||wl|,wo/||w]|). As there is an infinite number of margins which separates into
two classes, we have to seek one of these margins which to do this at best. One way to formalize it,
is to define the optimal margin:

argmax min{||x — x;|| : x € RY, (wix +w) =0,i=1,...,i=1,...,n (2.10)
wW,wo

Transforming (2.10) into a nicer one, we have

12
R 3 Iwl (2.11)
subject to y(wix; +wg) >1i=1,...,n.

The previous problem is called the primal optimization problem and implies (d 4+ 1) parameters. This
problem could be solved using a quadratic programation method. However, the complexity of (2.11)
is O(d®). This problem becomes hard to solve when d is more than few hundreds. Fortunately, using
the Lagrange duality we can reformulate the problem to solve it easier.

Dual Formulation In the optimization theory, we say that an optimization problem has a dual
formulation when the objective function and the constraint are strictly convex. Thus solving the dual

25

optimization problem is equal to the primal (strong duality). Let us write the Lagrangian of the
problem (2.11):

1 n
(CBS ([R-f-)nv E(w,wg,a) = 5 ”W||2 + Zaiyi(wai + U)O)

i=1
Computing the gradient of £ and setting it to zero:
oL oL
— =0and — 2.12
ow an Jwy ()
We find:
Z a;y; =0 and w* = Z Qi YiX; (2.13)
i=1 i=1

We check here the representation theorem which stipulates the vector parameter wsx is the linear
combination of the training set x1, ..., x,. More precisely, the Karush-Kuhn-Tucker (KKT) conditions
show that only the point lying on decision boundary will count, i.e. (w*,x;)+w§ = £1. These points
where the Lagrange multipliers « is non-null is called support vectors. One noticed that the number
of support vector is lower that the size of the training set, it will reduce the cost of the resolution.
Substituting (2.13) in (2.12), we remove all the primary variables and we obtain the dual formulation:

n n
1
max Za,- ~3 Z 005y (Xi, Xj)
i=1 ij=1
subject to «a; >0 i=1,...,n. (2.14)

n
Z aiy; = 0
i=1
The corresponding hyperplane solution writes:

n
BE(x) = (w*,x) +wg = 3 (i, x) + wf
=1

In the case of non-separable case, we are going to use the theory we saw previously. One noticed
that the problem (2.15) depends on the inner product (without computing it). Using the non-linear
future map ®, we can use the kernel trick. Equivalently, we can replace all x by ®(x) in our previous
equations. Thanks to the kernel trick, the dual optimization problem could rewrites:

n n
1
mgx Zai -3 Z aiajyiyjk(xiaxj)
i=1 ij=1
subject to «; >0 i=1,...,n. (2.15)

n
Z a;y; =0
i1

This transformation leads to huge reducing cost of computations because computation k(x;,x;)
is much more easier than (®(x;), ®(x;)) especially when the feature space is high dimensional

2.6.3 Example: Iris dataset

We applied the SVM method to the Iris dataset. We remark that we can separate the data set into 3
different class. Nonetheless, this separation has to be non-linear in order to be effective.

For several values of regularization parameter, we observe that high values of C encourage the
over-fitting as in Figure (2.7)

26

SVC with linear kemel SVC with Gaussian kernel

Figure 2.6: Visualization of the different clusters

SVC with Gaussian kemel with € =1 SVC with Gaussian kerel with C = 10 SVC with Gaussian

-
= .
g3 oo oo
= » .
Tu| o wl ofEA
A ad

:
N AL :

8 8 8

6 7
Sepal length

6 7 6 7
Sepal length Sepal length

Figure 2.7: Visualization of the regularization parameter C' impact

2.7 Neural Networks

Neural Networks or often called Multilayer Layer Perceptrons (MLP) are the tremendous
illustration of deep learning models. Here we describe the most widely used ”vanilla” neural networks
as there is a huge type of neural network. There has been a sort of hype surrounding neural networks,
making them at the same time magical and mysterious. The goal of the neural network is the same
all the models we have seen before: to approximate some function f* which can forecast the response
variable. For instance, the classification task is to find f* such that y = f*(x) where y is the category.
These models are feed forward model because information flow through different layer where x is
evaluated through intermediate computations to finally compute y. The neural networks are called
networks because they are representing using an ensemble of many different functions.

Model Let us see how we are going to represent the hypothesis function. At very basic level, each
neuron is doing a simple task as a regression taking an input {xi,...,x,}. Outputs of each activation
unit z,, are created from linear combination of the inputs and then the target y! is modelled using
the linear combination of the 2% : Let j be the number of the layer, we define the output sequence of
each layer j by:

LIt — Qigl
aj+1 — g(zj+1)
where a! = x

In this case, the layer j = 1 is referred to as the first layer and the layers j = 2,...,n— 1 is
called the hidden layers and ¢ is known as the activation function. We will discuss shortly the choice
of the activation function for each layer.

One way to understand the neural networks is to see how a simple activation unit work. An
activation unit is equal to a linear model such as the linear regression or the logistic regression. As we
saw in the previous section Linear Models, these models may fit efficiently and reliably. However, the
defective aspect is that the model capacity is limited to linear function and thus it could not catch
the relation between two features. We can represent a non-linear function of x to overcome this void,
transform the input x by ®(x). Equivalently, we can apply the kernel trick described in (2.6.2) to
create a non-linear mapping of the inputs. Hence, taking outputs of a given layer as inputs for a the
adjacent layer could facilitate the discovering of relations and improve predictions.

27

Input Hidden Output
layer layer layer

Input 1

Input 2

Input 3 m m Ouput
_/ _/

Input 4

Input 5

Bias
b
Tl o— W1
Activate
function Output

[
Inputs ¢ z2 o w2 ﬁ @ Y

Ir3 o——— W3

Weights

Figure 2.8: An illustration for a simple Neural Network with a single hidden layer

Fitting Neural Networks The reader could notice that as for each model we have unknown
parameters, in our case weights, that we want to find in order to fit the training set well. We denote
(hg)k as being a hypothesis that results in the k-th output. For regression, we use the sum of squared
as loss function:

n K
J(O) =D (ya — (ho(x:))i

i=1 k=1

For classification, we use either cross entropy or the sum of squared as loss function:

n K

J(©) ==Y "> yixlog(h(xi))k

i=1 k=1

and the corresponding classifier is G(x) = argmazy fk(x) In other to avoid over-fitting the training
set, we will need some regularizations: this is done by adding a penalty term to the objective function.
The usual to way to minimize J(©) is by Gradient Descent, called back-propagation in this setting.
Thanks to the composition of the model, the gradient is computed using the chain rule.

Over-fitting Because of the high number of weight in Neural networks, it increases the chance
of over-fitting. A method to avoid this is to use weight decay which is an alternative to ridge regression
used in linear model. Thus, the objective function rewrites as:

J(©) = J(O) + AR(©)

2.8 Validations

Validation is the key to making real progress in Machine Learning. In the previous part, we encountered
many methods but we do not know how to compare one with another. We need a good indicator of
performance but using only the training set would not be a good idea. We introduced at the beginning
two sets: training, test set but we did not give any explanations on them. As it may sounds we need
two different sets to evaluate the predictive power of the model.

2.8.1 Training and Testing

For classifications problems, it is natural to measure classifer’s performances towards the error rate
also said accuracy. The error is the proportion of errors made over a set of examples. An error is
the wrongly classified example. Of course, what we are interested in is the performance on new data.
Why? Because the classifier has been learning form the very same training data so any estimate of
performance will be optimistic and not really exploitable. The error rate on the training set is called
the re-substitution error. Although it is not a reliable predictor of the true error rate on unseen data.
To tackle this problem, we need to split the dataset into two sets and train the model on one and test
it on the other one. In general, 70% of the data can be used as a training set, and the remaining 30%
can be used for the validation process.

Often some models involve two stages, one to come up with a basic structure and the second to
optimize parameters involved in that structure. In such situations, we need three sets: the training
data, the validation data, the test data. The training data will be used to learn, the validation set
is used to optimize parameters of the model and the test set to calculate the accuracy of the final,
optimized method. Each of three sets must be different, the intersection has to be null. The accuracy
seems to be a good indicator of performance. However, the predictor is not adapted for all data.

Metric: Accuracy Let us introduce some definitions:
o True Positive error(TP) is a result that indicates a given condition exists, when it does.

o True Negative error(NP) a result that indicates that a condition does not hold, when it does
not.

29

o False Positive error (FP) is a result that indicates a given condition exists, when it does not.

o False negative error (FN) is a result that indicates that a condition does not hold, while in
fact it does.

Accuracy is the proportion of correct results, either true positive or true negative. Formally, this can

be stated as:
TP+TN

TP+TN+ FP+ FN
Sensitivity (resp. Specificity) is the proportion of true positive (resp. true negative)
e TP ity - TN
Sensistivity : TPTFN Specificity : TN L FP
By our previous definitions, the accuracy measure is not adapted for every situation. Especially
in our case where the main goal is to predict a minor class. Indeed the Figure (3.1) shows us the
proportion of people which accepted the deposit is lower than the proportion who rejected the deposit.
Using the accuracy metric we will always have a good result because the number of TN will be higher
than TP as there is many examples where the individuals have rejected the deposit. Thus, we will
have to use another metric: ROC Curve.

Accuracy :

(2.16)

Metric: ROC Curves ROC Curves are used when the model is trying to select samples of test
examples that have a high proportion of positives. The acronym stands for Receiver Operating Char-
acteristic (ROC). The name came from signal detection to characterize the trade-off between hit rate
and false alarm rate over a noisy channel. ROC Curves describe the performance of a classifier without
regard to class distribution or error costs. They plot sensitivity over the (1-specificity). We define for
that purpose the true positive rate and false positive rate:

TP FP
t—=——— FPR : ———
TP+ FN R TN + FP

As one can remark, TPR is equal to sensitivity and FPR is equivalent to (1 — specificity). TPR and
FPR together fix a point in the ROC curve and the position of a point in this curve shows the trade-off
between sensitivity and specificity. Thus the location of the point describes whether the classification
is useful or not. An ideal situation is a point yielding to the coordinate (0,1). This ideal points
indications the classifier has sensitivity of 100% and specificity of 100%. A graphical presentation of
what we described is below.

TPR

1 ._ Ideal coordinate (0, 1)

0.8
Cut-point

06 Bensitivity (TPR)

i Random classifigdtion

0.4

0 0.2 0.4 0.6 0.8 1

1-specificity (FPR)

Figure 2.9: Hypothetical ROC Curve

The interpretation of ROC Curve is: closer the point of ROC Curve to the ideal coordinate, the
more accurate the classification is. Closer the points on the ROC curve to the diagonal, less accurate

30

the classification is. The Area Under ROC Curve (AUC) provides a way to measure the accuracy of
a classification test. The classifier is more accurate when the area is larger.

1
AUC / ROC(1)dt
0

AUC Range Classification

0.9 < AUC < 1.0 Excellent
0.8 < AUC < 0.9 Good

0.7 < AUC < 0.8 Worthless
0.6 < AUC < 0.7 Not Good

Table 2.1: Accuracy classification by AUC for a classification

The table (?7) shows how to interpret the AUC, it will help us to compare different models.

2.8.2 Cross-Validation

In the previous section, we discussed splitting the data into two sets. However, we may be unlucky:
the sample used for training (or testing) might not be representative of data. In general, you cannot
tell whether a sample is representative or not. One can perform this simple check: each class in the
entire dataset should be represented in approximately the right proportion in the two subsets. If this
is not the case, the classifier will learn the over-presented class in the training set, and it would give
mediocre results in the test set. Instead, we should ensure that the random sampling is done in a way
that guarantees each class is properly represented in both training and test sets. This procedure is
called stratification.

More generally, one can split the data into k& different set or folds of the data, this method is called
cross-validation. This method directly estimated the error E[L(y, f(X))], the average generalization
error when the method f (X) is applied to an independent test sample from the joint distribution of
X and y.

K-Fold Cross-Validation Ideally, if we had enough data we would set a side a validation set and
use it to measure the performance of our prediction model. K-fold cross-validation uses sets of the
full data to fit the model and a different set to test it. For instance, when K=5 the scenario looks like

this:
Fold 1 Fold 2

- Training Training
Training - Training
—>

Training Training Training

—>

g o o o

/A Training Training Training
Training Training Training

Training Training -

Figure 2.10: K-fold splitting with K = 5

For the K th part, we fit the model to other £ — 1 parts of data, and calculates the prediction
error of the fitted model when predicting the kth part of data. We do this for £k = 0,..., K and
combines the K estimates of prediction error. Let x: {1,..., N} +— 1,..., K be an indexing function

31

that shows the partition to which observation i allocated by the randomization. Let fk (z) be the
fitted function, computed with the k-th part of the data removed. Then the cross-validation estimate
of prediction error is

N
. 1 -
V) = 57 2 Ll 70
=
In general, one chose K = 5 or 10 according the size of data. The case K = N is known as
leave-one-out cross-validation.

«©
o

04 0.6

1-Err

0.2

0.0

0 50 100 150 200
Size of Training Set

Figure 2.11: Theoretical learning curve for a classifier: a plot of 1Err versus the size of the training
set N

32

Chapter 3

Applications

Contents
3.1 Data Analysis v v v i i i i i e 33
3.1.1 Data description 33
3.1.2 Data preparation Lo Lo 35
3.2 Validation o o e e e e e e e e e e e e e e 37
3.3 GLM: Logistic regression ittt 38
3.4 Bayes Classifiers i i e e e e 38
3.5 Tree-Based methods e, 39
3.5.1 Decision Tree e 39
3.5.2 Random Forest 42
3.6 Support Vector Machine ittt 43
3.7 Neural Networks o 0 i i i i i i i it it ittt et e e e 45
3.8 SUMMATY . . . v v v v vt e 46

So far we have seen some strong and robust algorithms in supervised learning. We choose a
dataset to compare these algorithms and see which one is more efficient. We want to highlight the
fact that this work is done for a given dataset and should not be used as “generic” approach for
other datasets. The data we choose here is related to direct marketing campaigns (phone calls) of
a Portuguese banking institution [7]. The goal is to predict if the client is going to subscribe to a
long-term deposit. The choice of this particular dataset is motivated by its ability to be used either
in classifications algorithm and regression algorithms because the variable to predict is binary. Prior
to start with this work, let us talk about the coding language that we used: Python. This choice is
due to its easy way to implement algorithms. Python is an object oriented programming language,
multi-paradigm and multi-platform. It encourages structured imperative feature. It is endowed of
strong typing, automatic memory management. The strong point of Python is the availability of large
libraries for a wide range disciplines. Especially for scientific purposes, we have Numpy, Scipy. In
case of machine learning, we have scikit-learn, Theano, Tensor-flow. Tensor-flow is an ecosystem and
in practice, you would not use directly it. There is a library built on top of Tensor-flow called Keras
that we are using for this work.

3.1 Data Analysis

3.1.1 Data description

The data is collected from a Portuguese bank who used its own contact centre to do directed mar-
keting. The dominant marketing channel was the telephone with an interlocutor. Moreover, each
advertisement was managed in an integrated process and the results for all channels were assembled.
The collected dataset is related to 17 campaigns occurred between 2008 and 2010 to a total of 45211
contacts. During these phone campaigns, an attractive deposit long-term deposit with real interest

33

rates. Hence, for each contact they registered a large number of attribute and if there was a success
or not. The obtained data are most of them related to personal information of the client. (?7?)

Features Description
‘ Personal information ‘
Age Age of the client (Numeric)
Marital status Married, single, divorced (Nominal)
Sex Male or Female (Nominal)

Bank Client Information

Annual balance
Debt card
Loans in delay

in Euro currency (Numeric)
Yes or No
Yes or No (Nominal)

Last Contact Information ‘

Agent
Date and time

Human that answered the call
Referring to when the contact was made

Visualizations Information ‘

Number of times the client has seen the product in the home banking site
Result of the last campaign if another contact was made
Days since the last contact in other campaigns

Table 3.1: Dataset features descriptions

Fortunately, we have no missing value that makes things easier. Let us see the behaviour of all
features according to the target variable. One can find more specific information regarding the data
in the appendix.

As we can guess, we have more rejections than subscriptions:

Frequency

39922
40k

35k
30k
25k

20k

5289

Figure 3.1: Frequency for each class: Number of accepted and rejected the deposit

Our dataset is not so unbalanced if this is the case we should do some preprocessing work because
the accuracy score to evaluate the regression is going to be wrong, we are going to assign all the example
to the majority class. In the bank point of view, we are more interested in the people who are going
to accept the long-term deposit. However, here we provide some strategies to tackle this problem:

o Collect more data
o Change the performance metric (we will discuss it later)

e Re-sample the dataset: create two homogeneous class in the training class

34

Let us see how the distribution of numerical features is:

Figure 3.2: Different histograms according to the features

histogram of feature: age

0.06
B yes

no
0.05

0.04

0.03

0.02

0.01

0.00
40 60 80 100

histogram of feature: balance

0.0007 . yes

0.0006 Lo

0.0005
0.0004
0.0003
0.0002

0.0001

0.0000

20000 40000 60000 80000 100000

histogram of feature: duration
0.0040
n yes

0.0035 =

0.0030
0.0025
0.0020
0.0015
0.0010

0.0005

i

0.0000
1000 2000 3000 4000 5000

histogram of feature: campaign

0.8
e yes

0.7 no
0.6
0.5
0.4
0.3
0.2

01

0.0

¢

10 20 30 40 50 60

3.1.2 Data preparation

In this section, we will discuss the form that allows a machine learning algorithm to learn important
features of the dataset quickly. We give a concrete example to illustrate the previous point. Consider
modelling the rise/fall of a stock price, to train the model we may have data over several years from
different companies and such data will not be useful to predict a share price (few data per companies)
but the trained model on this data will reveal some interesting basic information. Indeed, we will

35

deduce that two principal data are needed the stock price and the earnings. The algorithm will be
able to learn that the rise/fall of the stock price depends upon the ratio price-to-earnings but to do
so it will require both time and data. However, the users already know this, it would have helped
the algorithm if we had removed the column of price and that of earnings and had inserted a column
consisting of the ratio. This example is referred to by the general injunction that one should add
domain knowledge into the training data set. This parenthesis is made, in our case we will not need
to add further features to make good predictions. Nevertheless, many algorithms do not support
non-numerical value in dataset. Unfortunately, we have categorical and binary value in our dataset
Table (??7). In instance-based learning, categorical features can be treated as numeric by defining

Table 3.2: Example: Marital Status

Marital Status

Married
Divorced
Single
Divorced

=W N

the ”distances” between two nominal values that are the same, for instance, as 0 and between two
different nominal values as 1 and this regardless of the actual values involved. This can be achieved
for categorical features: replace a k nominal feature by k synthetic binary attributes, one for each
value indicating whether the attribute has that value or not.

Table 3.3: Example: Martial Status feature after transformation

‘ MaritalStatus Married ‘ MaritalStatus Divorced ‘ MaritalStatus_ Single
| 0 | 0

1
0 | 1 | 0
0 | 0 | 1
0 | 1 | 1

This distance is insensitive to the feature values involved because the information of the feature
is not lost. Only “same” or “different” information is encoded, not the hues of difference that be
associated with various outcomes of the features. A more interesting distinction can be made if the
nominal values have weights reflecting their relative importance. For example, being a senior officer
(”blue-collar”) in ”Job” feature tend to accept the long term deposit than a student, so more weight
will be put on these attributes ”blue-collar” than “student”. If the value of the features are ordered,
more issues will arise but fortunately we do not have these kinds of values.

This data encoding is done using the class LabelEncoder. After this task, we extend the number
of features to 39.

"job [T.blue—collar]’, ’job[T.entrepreneur]’, ’job|[T.housemaid]’,

’job [T. management] ', ’job[T.retired]’, ’job[T.self—employed]’,

"job [T.services]’, ’job[T.student]’, ’job[T.technician]’,

"job [T.unemployed]’, ’marital [T.married]’, ’marital [T.single]’,

"education [T.secondary]’, ’education|[T.tertiary]’,

"contact [T. telephone]’, ’month[T.aug]’, ’month[T.dec]|’, ’month[T.
feb]”,

'month [T.jan]’, 'month[T.jul]’, 'month[T.jun]’, ’month[T.mar]’,

"month [T.may] >, 'month[T.nov]’, 'month[T.oct]’, 'month|[T.sep]’,

"poutcome [T.other]’, ’'poutcome[T.success|’, ’age’, ’'default’, °’
balance ’

36

"housing’, ’loan’, ’'day’, ’duration’, ’campaign’, ’'pdays’, ’
previous ’,
"pdays__yes’

Furthermore, some algorithms need more preparation than others like SVM or Neural Networks.
In many scenarios, the different features have different scales and the model may not be comparable to
each other. For example, the dataset has two continuous features: balance, age. They are drawn on a
different scales each other. The latter feature is typically orders of magnitude larger than the former.
As a consequence, any aggregate function computed on these features will be dominated by the feature
of larger magnitude. To address this problem, the common process is the standardization. Consider
the case where the j-th variable has the mean p; and the variance 0]2-. Then the new attribute z
rewrites:
i = Lijg — Hj

0y

A second approach is to reduce the variables to [0, 1] and for that one can do the following:

xij — rninj xij

Fij = o .
max; x;; — min; ;;
This approach has a critical point the minimum and maximum values are extreme value outliers
because of some mistake in data aggregation. For that reason, Standardization is more robust to such
scenarios.

3.2 Validation

We divided the dataset into two different datasets called training set and testing set. We recall that the
training set is used to train the algorithm and the testing set is used to measure the prediction power of
the algorithm. Using the function train_test_split of model_selection class, we can easily divide
the dataset randomly. This function will apply the stratified method introduced in the Validation
section, ensuring that the training and testing set is well balanced. Setting the test_size = 0.20
and random_state = 42, the shape of the two sets are: X_test:(9043, 43), X_train: (36168,
43). With respect to parameter tuning, we will use cross-validation to assess it.

Classification scoring We will also use other score measures in addition to ROC Curve and the
AUC. Here is a non-exhaustive list:

e Precision: The precision is the quantity TPZ%. We recall TP is the number of true positives
and F'P the number of false positives. The precision could be seen as the ability of the classifier
not to categorize as positive a sample that is negative

e Recall: The recall is the ratio ﬂ'ﬂ% where FN the number of false negatives. The recall is
the ability of the classifier to find all the positive samples.

e F1-Score: It can be interpreted as a weighted harmonic mean of the precision and recall. The
scoring reaches its best value at 1 and worst score at 0.

37

3.3 GLM: Logistic regression

Running the logistic regression without any optimization, we have the following result:

Receiver Operating Characteristic Curve We recall that the AUC plots the False Positive Rate
(FPR) versus the True Positive Rate (TPR) and allows identifying how good is the class discrimination:
the higher the better, with the ideal model having a value of 1.0. With a base logistic regression:

LogisticRegression (C=1.0, class__weight=None, dual=False, fit_intercept=

True,
intercept__scaling=1, max_iter=100, multi_class=’ovr’, n_jobs=1,
penalty="12"’, random_ state=None, solver=’liblinear’, tol=0.0001,
verbose=0, warm_start=False)
We have:

Receiver operating characteristic:

1.0

0.8

o
o

True Positive Rate

o
~

0.2

. —— AUC =0.901

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3.3: ROC Curve for a base logistic model. AUC: 0.90

We observe that the logistic regression is an encouraging outcome. It has a good predictive
ability. However, we can improve a little bit this result using the selection model. Using step forward
selection, we select only 31 features out to 40 based on AIC/BIC criterion and the AUC is 0.91. As
we used probabilities for the predictions, thanks to ROC Curve we can fix a threshold to choose a
class. Here the maximum of the ROC Curve is attained for s = 0.21. In overall, using other metrics
as F1-Score and accuracy score, we have:

Model F1-Score Accuracy Score Recall AUC
Logistic regression 0.89 0.88 0.87 090

Table 3.4: Other metrics with the threshold s = 0.21

After few optimizations(adding regularization terms), we remark minor changes of predictive
power for the Logistic regression. We will use this model as a basis to compare other models.

3.4 Bayes Classifiers

We want now to see how the Bayes classifiers perform on our dataset. We use the same training set
and testing set as for the logistic regression. As one can guess, the Gaussian classifiers will not work
with this dataset because it contains:

o Categorical

38

e Bernoulli
e Normal

Thus to tackle this problem, we use the very assumption of using Bayes classifiers, the features are
independent. Consequently, we can do the following:

« Build a Bayes classifiers for each of the categoric features separately with dummy variable and
multinomial Bayes.

o Build a Bayes classifier for all of the Bernoulli features at once

e Repeat the previous procedure for the Gaussian features
By the definition of independence, the probability for an example is the product of the probabil-

ities of examples by these classifiers.
Thus, we have the following result: We find approximately the same AUC compared to the article

1.0

0.8

o
o

True Positive Rate

o
'S

0.2

~ —— ROC curve 0.81

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3.4: ROC Curve for Bayes classifiers. AUC: 0.81

[7]. Nevertheless, logistic regression overtakes Bayes classifiers.

3.5 Tree-Based methods

One of the vast property of tree based algorithm is that it does not need any preprocessing work
on dataset as scaling, normalizing, creating dummy variables. We are going see the application of
decision tree.

3.5.1 Decision Tree

Applying a base decision tree model:

9

DecisionTreeClassifier (class__weight=None, criterion="gini’, max_depth=
None,

max_ features=None, max_leaf nodes=None,

min__impurity_ split=1e—07, min_samples_leaf=1,

min_ samples_ split=2, min_ weight_ fraction_leaf=0.0,

presort=False, random_ state=None, splitter=’best’)

As we can see, the classifier has many parameters. A small description is needed as we can going to
try several values for these parameters.

39

e C('riterion: The function used to measure the quality of a split. We have the choice between two
criteria: gini for the Gini impurity and entropy for the information gain. (See (2.3))

o Splitter: The strategy used to split at each node. The strategies are: best to choose the best
split and random to choose the best random split

e Max depth: The maximum depth of the tree.

e min samples split: The minimum number of samples to split. We will consider only binary trees.
It will be fixed to 2.

e Maxzx features: The number of features to consider when looking for the best split. We have
described this parameter in our model review.

e Max leaf nodes: Fix the number of a leaf node in best fashion way.

Another property of decision tree is that it allows us to visualise each node. The decision rules are
easy to follow, they lead to a definite decision and enable the possibility to visualize how an instance
falls into a class. For simplicity, we have limited the depth to 6.

duration £ 510.5
gini = 0.2052
samples = 36168

value = [31970, 4198]

class = no

duration < 835.5
gini = 0.491
samples = 4056
value = [2300, 1756]
class = no

poutcome[T.success] < 0.5
gini = 0.1405
samples = 32112
value = [29670, 2442]
class = no

age < 60.5
gini = 0.1096
samples = 31080
value = [29271, 1809]

duration < 139.5
gini = 0.4743
samples = 1032
value = [399, 633]

poutcome[T.success] < 0.5
gini = 0.4583
samples = 2700
value = [1740, 960]

marital[T.married] < 0.5
gini = 0.4849
samples = 1356
value = [560, 796]

class = no class = yes class = no class = yes
gini = 0.0985 gini = 0.4503 gini = 0.359 gini = 0.4035 gini = 0.4446 gini = 0.3103 gini = 0.4619 gini = 0.4953
samples = 30411 samples = 669 samples = 226 samples = 806 samples = 2575 samples = 125 samples = 583 samples = 773
value = [28831, 1580] value = [440, 229] value = [173, 53] value = [226, 580] value = [1716, 859] value = [24, 101] value = [211, 372] value = [349, 424]
class = no class = no class = no class = yes class = no class = yes class = yes class = yes

Figure 3.5: Tree visualization for max_depth = 6

The decision tree also gives us features which really counts in the decision process: Duration,
poutcome (outcome of the previous marketing campaign), age.
In the base model, we plotted the ROC curve:

Receiver operating characteristic

1.0

0.8

L
¢
o 06
=
@
o
o
E
£ 0.4

0.2

- -
—— AUC =0.697
//
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 3.6: ROC curve for the Decision tree classifier with default parameter. AUC: 0.70

40

We remark the low performance of the decision tree compared to logistic regression. Before
performing the optimization of the algorithm, let us see how the algorithm over-fit the training set.

As we know the number of samples required to populate the tree doubles for each additional level
the tree grows to. In the following graph, we plotted multiple depths from 1 to 100 and we deduce
that the optimal depth is 6, this process is called post-pruning. More the depth is greater more the
algorithm over-fit the training set. However, we observe the depth growth lead to accuracy and AUC
stagnation in the training set after depth = 25.

1.00

0.98

0.96

o
©
=

—— Training Accuracy
Validation Accuracy

Accuracy

o
©
N

0.90 0.849
0.816
0.712

0.88 0.677
0.691

0.695
070407050706 (703 oeoo 0704 07050702 07T oqon .. o702

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 920 95 100
Depth

Figure 3.7: Evolution of the accuracy regarding the depth of the tree. Annotations are AUCs

Tuning Decision Tree algorithm Until now, we have set each parameter independently to others.
The function GridSearchCv practice an exhaustive search over specified parameter values for an
estimator. Cross-validated grid-search optimizes the parameters of the estimator over a parameter
grid. Therefore, we found that the top parameters are:

top__params_tree = {’criterion’: ’gini’,
"max_ depth’: 8,
"max_ features’: 9,
"min_samples_leaf’: 3,
"min_ samples_ split’: 2,
"splitter’: ’best’

}

We made significant improvement with the GridSearch function. It enables us to find the top
parameter to optimize the predictive power of the tree classifier regarding a scoring function, in our
case the AUC of the ROC curve.

41

Receiver operating characteristic

1.0

0.8

=3
o

True Positive Rate

o
~

0.2

=~ —— AUC = 0.868

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3.8: ROC curve for the Decision tree classifier with top parameters. AUC: 0.86

Model F1-Score Accuracy Score Recall AUC
Decision Tree 0.83 0.87 0.85 0.90

Table 3.5: Other metrics with the threshold s = 0.20

3.5.2 Random Forest

We move to another tree based classifier: Random Forest. We recall that Random Forests build an
extensive collection of de-correlated trees, and then averages them. The essential idea is to average
many noisy instances and, hence reduce the variance. Therefore, it supposes to give better results
than decision tree. Random Forest enables us to see which features are the most used in the fitting
process.

The previous graph shows the use of forests of trees to evaluate the importance of the feature.
The blue bars are the percentage of feature importance along with their inter-trees variability.

Tuning Random Forest algorithm The performance of the Random forest with the default
parameter is quite high. It does better than decision tree with an optimal parameter. Let us see if we
can improve this with Grid search.

We found that top parameter are:

top__params_ forest = {’bootstrap’: False,
"min_ samples_leaf’: 5,
'n__estimators’: 100,
"min_ samples_ split’: 2,
"max_ features’: 8§,
"max_depth’: 9}

We want to highlight GridSearch is very costly in terms of CPU computations because it tries
each combination of parameters for different values. Having an idea of the range of the parameter
could make easier the research and even more when we have many parameters. For instance, we saw
in Figure (3.7) the AUC is acceptable when the depth is from 2 to 15.

Model F1-Score Accuracy Score Recall AUC
Random Forest 0.89 0.88 0.85 0.91

Table 3.6: Other metrics with the threshold s = 0.20

42

Random Forest : Feature Importance

pdays_yes
previous

pdays

campaign

duration

day

loan

housing

balance

default

age
utcome[T.success]
poutcome[T.other]
month[T.sep]
month([T.oct]
month[T.nov]
month[T.may]
month[T.mar]
month([T.jun]
month[T.jul]
month([T.jan]
month[T.feb]
month[T.dec]
month[T.aug]
ntact[T.telephone]
ducation[T tertiary]
ation[T.secondary]
marital[T.single]
marital[T.married]
job[T.unemployed]
job[T.technician]
job[T.student]
job[T.services]
b[T.self-employed]
job[T.retired]
ob[T.management]
job[T.housemaid]
ob[T.entrepreneur]
job[T.blue-collar]

T++!++'TF'llll!-+l-!ll-l"|||I'|‘III'

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%

Figure 3.9: Features Importance in Random Forest

Receiver operating characteristic

1.0

0.8
o)
©
@
g 06
G
[e]
o
g 04
=
0.2
-7 —— AUC=0.881
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 3.10: ROC curve for Random forest classifier with default parameter. AUC: 0.88

3.6 Support Vector Machine

In the article [7], the authors have observed that SVM is the most performing algorithm. In this
section, we will verify their result. However, we need to perform some preprocessing work on dataset
before giving it to the algorithm. In fact, all practical implementations of SVMs have strict re-
quirements for training and testing (prediction). The first requirement is that the data should be
numerical. Furthermore, Support Vector Machine algorithms are not scale-invariant, so it is highly
recommended to scale the data. The scaling is done using the function StandardScaler present in
the class preprocess. reduce The base model is created via the function:

43

Receiver operating characteristic

True Positive Rate

= AUC = 0.909

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3.11: ROC curve for the Random forest classifier with top parameter. AUC: 0.91

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_ function_shape=None, degree=3, gamma='auto’, kernel="rbf’,
max_ iter=—1, probability=True, random_ state=None, shrinking=True,
tol=0.001, verbose=False)

Without any optimization, we have the following ROC Curve:

Receiver operating characteristic

1.0

0.8

=3
o

True Positive Rate

o
~

0.2

=~ —— AUC = 0.880

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3.12: ROC curve for the SVC. AUC: 0.86

The main goal of SVM is to separate the data into different sets. We reduce therefore the
dimension of the data to 2 in order to visualize the result. As already outlined earlier in Figure (3.9),
two features explained at least 40% of the entire dataset: duration, balance. The important features
found in the random forest are almost the same that we get from the forward selection.

The result is acceptable but it could be improved by choosing the correct parameter. Indeed, we
may have chosen the wrong kernel (Gaussian kernel for the model above) or a rough regularization
parameter. That brings us, for the optimization part.

Parameter tuning Similar to any machine learning algorithm, we need to choose/tune hyperpa-
rameters for these models. The relevant parameters to tune here are: C, the penalty parameter or the
error term. We have seen in the model review this acts as a regularization parameter for SVM and ~
for kernel coefficient (only for 'rbf', 'poly' and 'sigmoid' kernels). In above example, we used a
default value of ~.

44

First, let us understand the impact of C' and =y parameters have on SVM models. As seen in
Figure(2.7), we find that higher value of ~, it will try to fit exactly the training set, i.e. generalization
error and cause over-fitting issues. The parameter C controls the trade-off between smooth decision
boundary and classifying the training instances correctly.

In the following graph, we observe ROC Curve with the optimized SVM classifier:

The performance of this model is very encouraging. We almost achieved the same result given
on the paper [7].

Model F1-Score Accuracy Score Recall AUC
SVM 0.87 0.87 0.85 0.90

Table 3.7: Other metrics with the threshold s = 0.20

3.7 Neural Networks

SVMs results are very comforting and until now it is the best algorithm suited for our dataset. Neural
Networks are another kind of supervised learning as we have seen in the model review. We will see
in this section how well neural networks perform and if it can beat SVM. We recall that our model
is built on Keras. Keras allows you to quickly and simply design and train the neural network and
deep learning models.

After creating the model, we are going to use scitkit-learn to evaluate the model using stratified
K-fold cross validation rather than a splitting the dataset into two sets. We recall that stratified
K-fold is a resampling technique that provides an estimate of the performance of the model as the
ROC curve. It results in a robust estimate of performance Stratified means that it will look at output
values and balances the number of instances that belong to each class. It already the case using the
function train_test_split.

We begin by defining the baseline model. Our model will have only a single hidden layer with all
the neurons connected. The weights are initialized using a Gaussian random number. We use rectifier
activation function. In the last layer, we use a sigmoid function in order to produce a probability
output in the range of 0 to 1 that can easily and automatically be converted to probabilities. We can
refer to Figure (?7) where there will be 39 activation units in the hidden layer.

Furthermore, we used a logarithmic loss function (binary_ cross-entropy) during training, the
preferred loss function for binary classification problem. In our computation we fixed K = 10, thus
the model will be created ten times for the 10-fold cross validation being performed.

As we did for SVM, we need to perform data preparation and an effective data preparation
scheme when building neural networks is standardization done by the class StandardScaler. The
data is then rescaled such that the mean-value for each feature is 0 and the standard deviation is 1.
This preserves Gaussian and Gaussian-like distributions.

It is better in practice to train the model using standardization data using cross-validation rather
than performing the standardization in the entire data. This makes Standardization a significant step
in data preparation in the cross-validation process and it prevents the algorithm having the knowledge
of "unseen” data during validation.

Model F1-Score Accuracy Score Recall AUC
Neural Network 0.90 0.88 0.87 091

Table 3.8: Other metrics with the threshold s = 0.21

Tuning Neural Network algorithm There are many parameters to tune on a neural network,
such as activation functions, optimization methods weights, the initialization and so on.

45

Receiver Operating Characteristic Receiver Operating Characteristic

1.0 1.00

0.95

0.8
.7 090

0.85

o
=)

0.80

True Positive Rate

o
~

0.75

True Positive Rate

—— ROC fold 0 (AUC = 0.91)
ROC fold 1 (AUC = 0.91)

—— ROC fold 0 (AUC :

ROC fold 1 (AUC 070 P ROC fold 2 (AUC = 0.90)
02 ROC fold 2 (AUC : ROC fold 3 (AUC = 0.91)
ROC fold 3 (AUC : 0.65 —— ROC fold 4 (AUC = 0.92)
—— ROC fold 4 (AUC : —— Mean ROC (AUC = 0.91 = 0.00)
—— Mean ROC (AUC / + 1 std. dev.

0.60

0.0 EEE + 1std. dev.

0.1 0.2 03 04
0.0 0.2 0.4 0.6 0.8 False Positive Rate

False Positive Rate

Figure 3.13: ROC curve achieved with cross-validation K =5

One aspect that may have an out-sized effect is the structure of the network. In this section, we
take a look at two experiments on the structure of the network:

Making the network smaller In the first run of the model, we set 39 activation units as of
the dataset dimension. In order to reduce the redundancy in the input variable, we can force a type
for feature extraction by restraining the representational space in the first hidden layer. Making a
drastic reduction of number unit in the hidden layer will put pressure on the network during training
to extract the most important structure in the input data to model.

Running this example provides by cross-validation the following result: Accuracy = 89.47%
(0.35%).

We can see that we have a very slight improvement in the mean estimated accuracy and an
important reduction in the standard deviation of the accuracy scores.

This is a great result because we are doing slightly better on a network of half the size, which in
turn takes half the time to train.

The number of layer increment More layers in neural network offer more opportunity for
the network to extract key features and recombine them in useful non-linear ways. In Keras adding
layers is quite easy (one line). The following is the result is got by adding one new layer to the network
that introduces another hidden layer with 30 neurons after the first hidden layer. The idea here is to
give a chance to the network to stock important information in a large space (compared to the number
of features) before being bottlenecked and forced to divide the representational capacity, much like we
did in the experiment above with the smaller network.

Running this example provides by cross-validation the following result: Accuracy = 91.25%
(0.38%).

3.8 Summary

In overall terms, the results of all the classifiers that we have encountered were very satisfying. But
beyond this results, there are some aspects that we have to take in account in order to compare one
model against another. First, each algorithm needs some preprocessing work. For instance, SVM and
Neural networks need scaled inputs to ensure good performance while Random Forests or Decision
Tree do not need this sort of work.

Furthermore, the fitting process could be time-consuming and costly in terms of computations
for some model that we saw even if they perform very well. After running multiple models from

46

GLM, we observed a straightforward fitting process. This may be explained in part by the stringent
constraints of GLM models. This is also the case with Bayes Classifiers. SVM and Neural Networks
require vast computing power. The complexity for SVM can oscillate between a squared and a cubic
term in the number of examples depending on how we choose the regularization parameter. The
complexity of Neural Networks depends mostly on the structure of the network. A large hidden layer
or an important number of activation units could increase drastically the computations. Furthermore,
we find out that the calibration process for Logistic regression and Bayes classifiers are faster than
for other methods. The number of parameters for other models as random forests or svm is high, so
finding the good combination of parameters which maximize the accuracy may be time consuming.

Logistic regression Naive Bayes Decision Tree Random Forest SVM Neural Network

F1-score 0.89 0.83 0.89 0.89 0.87 0.90
Recall 0.88 0.80 0.89 0.87 0.90 0.89
Accuracy 0.88 0.89 0.87 0.88 0.88 0.90
AUC 0.90 0.81 0.90 0.91 0.91 0.92

Table 3.9: Performance of each algorithm for different measures

Finally, we summarize the performance related to the predictive power of each model in Table
(??). We observed that Neural Networks performed for each measure. However, we have done an
important work of calibration for this model. Finding the corresponding structure of the network
was not straightforward. We think that using a single model to forecast the response variable is not
sufficient. One of the reasons is that each algorithm has its own particularities and offer different
features, for instance Random Forests could give a list of important features.

Receiver Operating Characteristic

0.8

o
o

True Positive Rate

o
~

0.2

s = Neural Network
td ~—— Decision Tree
4 —— Logistic Regression
4 —— Gaussian Naive Bayes
1,7 Random Forest

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3.14: ROC Curves for all the models

47

Conclusion and perspectives

By and large, Machine Learning is still an open field of research for which many questions are still left
unanswered. In this report, we have revisited multiple algorithms, consistently calling into question
each and every part of these algorithms, in order to shed new light on their learning capabilities.

In first part, we reviewed these algorithms from the more simple towards the more complex in
the context of classification and regression tasks. In particular the case of tree based algorithms, our
analysis reviewed assignment rules, stopping criteria and splitting rules, theoretically motivating their
design and purpose whenever possible. We have also seen fundamental methods in Machine Learning
as SVM and Neural Networks. The theory behind SVM has been deeply analysed, hence showing their
good computational performance and scalability to larger problems. Finally, the first part of this work
has been concluded by the review of Neural Network, highlighting and discussing considerations that
are critical as for the over-fitting issues, yet easily over-looked, for guaranteeing good computational
performance.

In part II of this report, we analysed and discussed classifications methods using Machine Learning
techniques, based on publicly available financial data, with the aim of addressing the problem of bank
direct marketing campaigns. In particular, we used financial and recent data from a Portuguese bank.
In effect, each algorithm that we reviewed has proven to be of great value, since obtained predictive
performance increased. Using a sensitivity analysis, we measured the importance of each feature, and
such knowledge can be used by managers to improve campaigns (e.g. scheduling campaigns to specific
months). Machine Learning is already widely employed in the Pharmaceutical and Medical Sciences,
Robotics, Oceanography, Image Recognition and numerous other domains, but still the applications
in Finance is quite recent. Our top three performing classifier families were the Neural Network, the
Support Vector Machine and Logistic regression, a result which is consistent with Machine Learning
classification results using non-financial data reported in [2].

There are a number of further directions can be investigated starting from this project. The first
one is to explore other creative and effective methods that might yield even better performance on
direct marketing. Second, we might enhance the data by collecting more client based data, in order
to check if high-quality predictive models can be achieved without contact - based information.

In conclusion, Machine Learning algorithms should not be considered as a black-box tool, but
as a methodology rooted by a rational thought process that is entirely reliant on the problem we are
trying to solve.

48

Appendix

49

Further data description

Outlier:
Data_point > (Q3 % 1.5) is said to be outlier where Q3 is 75%
Quantile !
Age:

x Average age in the dataset is ~41 with std of 10.61

* Min. age is 18

* Max. age is 95

x quantile 75%(percentile) refers that 75 percentage have 49 or
less age.

* As the maximum age is 95, there is great chance that its a
outlier ”49%(3/2).=,73.5”. So anything greater than 73.5 is
outlier .

Balance:

x Average balance in the dataset is 1528.53 with std of 3255.41.
The standard deviation is quite huge, it shows the wide
spreading accross the dataset.

* Min. balance is —6847

x Max. balance is 81204

x quantile 75%(percentile) refers that 75 percentage of the
people have 1708 or less balance.

* while comparing with 75% quantile, 81204 is very huge and its a
outlier data point.

Duration:

Average duration of the people speaking in the dataset is (
approx)371 with std of 347, as standard deviation is quite
huge it means that duration is wide spread across the dataset.

* Min. duration is 2

Max. duration is 3881

quantile 75%(percentile) refers that 75 percentage of the
people spoke for 496 seconds or less.

while comparing with 75% quantile, 3881 is a outlier data point

50

Pdays:

* Average no. of days passed after the client was contacted from
previous campaign in the dataset is (approx)51.33 with std of
108.75.

* Min. pdays is —1

x Max. pdays is 854

x quantile 75%(percentile) for 75% of records it is 20.75 days,
which means the Client was frequently contacted.

Campaign:

* Average no. of contacts performed during the current campaign
for a client in the dataset is (approx)2.50 with std of 2.72.
x Min. balance is 1
x* Max. balance is 63
« quantile 75%(percentile) ,for 75% of records, 3 times the client
has been contacted in the current campaign for a client.
* while comparing with 75% quantile ,63 is a outlier data point.

Previous:

x Average no. of contacts performed before this campaign for a
client in the dataset is (approx)0.83 with std of 2.29.
* Min. balance is 0.
* Max. balance is 58
* quantile 75%(percentile),for 75% of records, 1 times the client
has been contacted before this campaign.
x while comparing with 75% quantile ;58 is a outlier data point.

A more detailled description of the data:
Accepted deposit
age balance day duration campaign \

count 5289.000000 5289.000000 5289.000000 5289.000000
5289.000000

mean 41.670070 1804.267915 15.158253 537.294574
2.141047

std 13.497781 3501.104777 8.501875 392.525262
1.921826

min 18.000000 —3058.000000 1.000000 8.000000
1.000000

25% 31.000000 210.000000 8.000000 244.000000
1.000000

50% 38.000000 733.000000 15.000000 426.000000
2.000000

75% 50.000000 2159.000000 22.000000 725.000000
3.000000

max 95.000000 81204.000000 31.000000 3881.000000
32.000000

pdays previous y

count 5289.000000 5289.000000 5289.0

mean 68.702968 1.170354 1.0

std 118.822266 2.553272 0.0

min —1.000000 0.000000 1.0

o1

25%
50%
75%
max

8

—1.000000
—1.000000
98.000000
54.000000

Rejected deposit

age
count

39

balance
922.000000

39922.000000

mean

std

25%

50%

75%

count
mean
std
min
25%
50%
75%

63.

39

40.838986
.846350
10.172662
.212767
18.000000
.000000
33.000000
.000000
39.000000
.000000
48.000000
.000000
95.000000
000000

922.000000
36.421372
96.757135
—1.000000
—1.000000
—1.000000
—1.000000

871.000000

0.000000
0.000000
1.000000
58.000000

day
39922.000000

1303.714969
2974.195473
—8019.000000
58.000000
417.000000
1345.000000
102127.000000
pdays
39922.000000
0.502154
.256771
.000000
.000000
.000000

.000000
.000000

OO O O O N

52

— = =
o O O O

duration

39922

15

16

21

31

000000

.892290

.294728

.000000

.000000

.000000

.000000

.000000

previous

39922.
0.

[esllen Bl en B en B en B @)
OO O oo oo

0

campaign

39922.

221.

207.

95

164.

279

4918.

000000

182806

383237

.000000

.000000

000000

.000000

000000

\

Proof of theorem 2.6.1

[«<] is trivial. Let us show that: V (x,%) k(x,%) = (®(x), (X)) is definite positive. Let o € R?, we
have:

oI Ka = ZZ%%(‘I’(Xi)aXﬂ‘)
= Zai‘1>(xi)||2 >0

The symmetry of this inner product follows form the symmetry of K.
=]

1. Let Fp subspace spanning by all the vectors k(-,x),x € X.

2. we define an inner product on Fo by: (32, aik(,x:), >, Bik(-,y5)) = D2, 5 ciBik(xi, x;5). Tt is
equivalent to define an inner product on each generated elements by (k(-,x), k(-,y)) This latter
is of course an inner product because:

e k is bilinear and symmetric on Fy

o« Let f e Fo, f =27 aik(-,x;) and ||f||F, = > i viagk(xi,x5) > 0

o Obviously we have ||f||r, = 0 = f = 0. Thanks to Cauchy-Swartz inequality we have
@) < [1fll7k(x,x)2

93

Proof of theorem 2.6.3

Let f € H and Hp = span{) _, a;k(-,x;)|oc € R"}. Let fy € Hp and f| € Hﬁ such that f = fp+ f1.
Then:
Vi, f(xi)=fp(xi)+ fr(x:)

with f) (x;) = (f1, k(-,x;)) = 0. Using the Pythagoras theorem, we have:
1117 = 1 foll7 + 11 (1)
Thus we have the following;:

J(fGe)s s Fxn) 1 FIIE) = T 1), FOn), DT+ [fpersll”)
> J(f(x1)ps -, [) p: L lI7)

Therefore

inf J(f(x1),... f(xn), ||fI[7) = Aot J(f(x1), - fxa), [1F1IF)

feHd

54

Bibliography

[1] L. Breiman. Random forests. Statistics Department, Berkeley, 2001.

[2] Delgado. Do we need hundreds of classifiers to solve real world classification problems? Journal
of Machine Learning Research 1, 2014.

[3] Dietterich. Machine learning. in: Nature encyclopedia of cognitive science. Macmillan, 2011.
[4] 1. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2015.

[5] M. A. Hall I. H. Witten, E. Frank and C.J. Pall. Data Mining, Practical Machine Learning Tools
and Techniques. Elsevier, 2017.

[6] A. Regaldo. The data made me do it. MIT Technology Review, 2013.

[7] P. Cortez S. Moro and P. Rita. A data-driven approach to predict the success of bank telemarketing.
decision support systems. FElsevier, 2014.

95

