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1 Introduction

The ever-increasing capabilities of supercomputers allow scientists to compute simulations
faster and run larger and more realistic cases. Optimizing such applications requires a
knowledge of the computer architecture often resulting in specialized codes, sections of codes,
or kernels which are designed to run extremely well on one or only few specific architectures.

To avoid deteriorating the code, not in terms of performance, but of maintainability, there
is a need to improve code portability. For real world applications, when starting a project,
the target architectures may not be completely known yet, not available or not fully specified.
Very often codes are developed on a desktop computer or small cluster before being run on
supercomputers. This would represent a case where the end architecture is known, but not
accessible yet. Now speaking in terms of architecture changes during the development of a
code, there are a lot more issues. Codes developed over the last 10 years have seen drastic
changes in CPU, GPU and accelerator architecture. The Advanced Vector Extension, Intel’s
AVX, capable of performing vector operations on CPUs was announced in 2008. After AVX
256-bit, modern CPU are now using AVX-512 (from 2016). Intel’s Xeon Phi processors have
appeared in the last 10 years and seem to be loosing momentum recently. On the GPU side,
NVIDIA has created 6 different architectures since 2008, from Tesla to the Volta architecture.
Roadrunner1, the supercomputer ranked 1 in 2008 has less than 1% of Summit’s2 Rmax
performance, the number 1 supercomputer in 2018.

New architectures, such as GPUs, may be added to an existing cluster. Today, changing a
code to run on a different architecture may mean rewriting most of it. After months or even
years of development, one or more person has to go over the entire code and optimize it for the
new architecture. Such tasks can take several months or more for a full time developer.

For all these reasons, there is a need of code abstraction from the hardware. One
would benefit a lot from a reduction of the amount of work needed to port a code to
a different architecture. This would increase performance reliability and reproducibility,
as the architecture-specific kernels would be written and validated independently from
the user’s work, e.g. as a library. And the savings in terms of human efforts are naturally
a driver for the development of more general, multi-architecture libraries, frameworks and APIs.

Multiple solutions which aim at hiding the optimization process from the user by the use of
templates, classes and macros are already available. The solutions come as libraries which try
to provide as much features needed for parallelism as possible while hiding the target archi-
tecture from the user. The goal is a “one-source” code that can run on multiple architectures.
Ideally, the architecture dependent decision would be taken at compile time. Every conditional

1https://www.top500.org/lists/2008/06/, accessed on 10/09/2018
2https://www.top500.org/lists/2018/06/, accessed on 10/09/2018
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statement evaluated during the compilation results in less computation during code execution.
The conditions do not have to be evaluated as they are removed by the compiler, and only the
right branch of the conditional statement is left. All excluded sections are completely removed
from the code, making sure the different architecture-specific implementations of functions do
not add any overhead at run time.

At present, Kokkos [11] and RAJA [16] are the two leading C/C++ libraries to provide such
features, and shall be investigated closer in this thesis.

Kokkos is a package from the Trilinos Project [15]. The Trilinos Project regroups differ-
ent independent packages implementing algorithms mostly around linear algebra. One of the
numerous packages is Kokkos, a C++ performance portability programming ecoSystem. It
is mainly being developed by Carter Edwards and Christian Trott at the Computer Science
Research Institute of the Sandia National Laboratories3.

RAJA is a C++ library developed at the Center for Applied Scientific Computing of the
Livermore National Laboratory4 (LLNL) mainly by Richard Hornung and David Beckingsale.

Both libraries break down parallel computation to 6 abstractions: Execution Space, Exe-
cution Pattern, Execution Policy, Memory Space, Memory Layout and Memory Trait. These
abstractions are the constant features of a parallel section. By modifying the hyper-parameters
for each abstraction the same code can result in a parallel loop or a reduction, it can run on
CPU or GPU, and so on.

To our knowledge, there exist very few comparisons of Kokkos, RAJA and other parallel
frameworks. The two articles found [18, 19] do a comparison of Kokkos, RAJA, OpenACC,
OpenMP 4.0, CUDA and OpenCL using the Tealeaf application. Tealeaf is a miniapp solving
the heat conduction equation and is used to compare the different frameworks. For a parallel
implementation of the heat conduction equation, the mesh used to discretize space is being
split. Each thread will solve the equation on its subdomain. When splitting the mesh, the
threads need the information coming from the neighbor cells. The neighbor cells needed for
each subdomain is called the halo. Because the halo of different threads are overlapping,
updating values has to be done correctly. In [18, 19], a 5% to 30% performance hit is being
observed for Kokkos and RAJA compared to architecture-specific implementations.

To assess the performance and usability of Kokkos and RAJA for a more complex application,
we use a code provided by Dr. Katharina Kormann. This code is part of the Semi Lagrangian
Library (Selalib) [22] and implements a Particle-in-cell method, GEMPIC: Geometric elec-
tromagnetic particle-in-cell methods [17] to solve the Vlasov-Maxwell system of equations.
This is a FORTRAN code parallelized with MPI. We analyzed it and extracted the most time
consuming function. After implementing it in C++, 4 parallel version were developed using
OpenMP, Kokkos, RAJA and Cuda, respectively. The difference between a heat convection
problem, used in [18, 19] and a Particle-In-Cell (PIC) model, as we used in our comparison, is
that with PIC the mesh is not divided among threads but the particles are. Each thread will
deal with a subset of the particles, compute the contribution of each particle to the grid. Finally,
one has to sum the results from all threads. The GEMPIC implementation we are working

3https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/org_chart.cfm, accessed on
10/09/2018

4https://computation.llnl.gov/casc, accessed on 10/09/2018

2



on has not yet been fully optimized. As its optimization is a large project for the next years,
we assess the performance of Kokkos and RAJA in order to provide insight and guidance on
whether or not these libraries should be picked as the parallel framework of choice for the future.

This work is structured in the following way. We start by introducing the mathematical
equations solved in the FORTRAN code in chapter 2, where the equations and their discretized
formulation are presented in section 2.1 and 2.2, respectively. For the complete derivation to
obtain the discretized equations, please refer to [17]. Section 2.3 details on a visualization tool
for the particle data we have developed. In the following, chapter 3, the two performance
portability frameworks Kokkos and RAJA are presented. Kokkos and RAJA’s features are
explained by following a code snippet from our implementation of the GEMPIC code. The
next chapter 4 contains the analysis that was conducted on the GEMPIC FORTRAN code,
and introduces our C++ implementation of the most expensive part from it which forms the
basis and starting point for the investigations done in the following. In chapter 5 follows the
review of Kokkos and RAJA, based on our use of both to implement parallel versions of the
GEMPIC code. Chapter 6 presents the results and performance of the six different parallel
implementations on state of the art hardware platforms, using OpenMP, Kokkos (CPU and
GPU), RAJA (CPU and GPU) and Cuda, respectively. In section 6.2 we detail on an issue
encountered with RAJA that heavily impacted the parallel performance of this code, namely
false sharing, and discuss our strategy to resolve it. Finally, the thesis closes with a summary.
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2 Mathematical background of the GEMPIC
model

2.1 Equations
The GEMPIC code implements the model described in [17].
The system of equations is made of first, the non-relativistic Vlasov equation,

∂fs

∂t
+ v · ∇xfs + qs

ms
(E + v × B) · ∇vfs = 0. (2.1)

where fs is the distribution function of the particles position x and velocity v. E denotes the
electric field and B the magnetic field, s is the particle species, qs its charge and ms its mass.
The Vlasov equation is nonlinearly coupled to the Maxwell equations,

∂E

∂t
− ∇ × B = −J , (2.2)

∂B

∂t
− ∇ × E = 0, (2.3)

∇ · E = ρ, (2.4)
∇ · B = 0. (2.5)

Suitable initial and boundary conditions are needed to solve these coupled equations. The
sources for Maxwell equations, the charge density ρ and the current density J , are obtained
from the distribution functions fs by,

ρ =
∑

s

qs

∫
fsdv, J =

∑
s

qs

∫
fsvdv. (2.6a),(2.6b)

The continuity equation for charge conservation reads
∂ρ

∂t
+ divJ = 0. (2.7)

and is obtain by taking the divergence of equation (2.2) and using equation (2.4).
The Maxwell’s equations are ill-posed when equation (2.7) is not satisfied, (2.7) serves as a

compatibility condition.

2.2 Discretization
We will now introduce the discretized equations solved in the GEMPIC code. The formulation
presented in this section is the one implemented in the code. For the complete demonstration
on how to derive them from the initial Vlasov-Maxwell equations (2.1)-(2.5), please refer to [17].
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First, we are using a particle based model meaning that the distribution function fs is ap-
proximated as follow

fh (x, v, t) =
Np∑
a=1

waδ (x − xa (t)) δ (v − va (t)) . (2.8)

where Np is the number of particles and a the particle’s label.
For each particle a we have its mass m, charge q, weights wa, position xa, and velocity va.
The dynamic variables in this discretization are u = (X, V , e, b)T where X is the 3Np vector

of the particle’s position (x1, ..., xNp)T . Similarly, V is the 3Np vector of the particle’s velocity
(v1, ..., vNp)T . e and b are the coefficient vectors of the discrete electric Eh and magnetic fields
Bh, respectively.

The discrete fileds Eh and Bh are defined as

Eh (t, x) =
3N1∑
i=1

ei (t) Λ1
i (x) , Bh (t, x) =

3N2∑
i=1

bi (t) Λ2
i (x) , (2.9a,2.9b)

with Λi the B-spline finite element basis function described in [5][6].
The dimensions of the spaces where the discretized electric field and magnetic field live are

N1 and N2 respectively.

2.2.1 Semi-discretized equations
In [17], a semi-discrete Poisson bracket is derived from the analytic bracket of the Vlasov-
Maxwell system (2.1)-(2.5) [20][25]. The semi-discrete Poisson bracket written in matrix form
yields,

{F, G} [X, V , e, b] = ∂F

∂X
M−1

p

∂G

∂V
− ∂G

∂X
M−1

p

∂F

∂V

+
(

∂F

∂V

)T

M−1
p MqΛ

1 (X)T M−1
1

(
∂G

∂e

)
−

(
∂F

∂e

)T

M−1
1 Λ1 (X) MqM

−1
p

(
∂G

∂V

)
+

(
∂F

∂V

)T

M−1
p MqB (X, b) M−1

p

(
∂G

∂V

)
+

(
∂F

∂e

)T

M−1
1 CT

(
∂G

∂b

)
−

(
∂F

∂b

)T

CM−1
1

(
∂G

∂e

)
. (2.10)

M1 is the 3N1 × 3N1 mass matrix defined as

(M1)ij =
∫

Ω
Λ1

i (x) · Λ1
j (x) dx. (2.11)

with again, Λi the B-spline finite element basis function described in [5][6]. The 3Np × 3N1
matrix Λi (X) with generic term Λ1

I (xa) and the 3Np ×3Np block diagonal matrix B(X, b) with
blocks

5



B̂h(xa, t) =
N2∑
i=1

 0 bi,3(t)λ2,3
i (xa) −bi,2(t)λ2,2

i (xa)
−bi,3(t)λ2,3

i (xa) 0 bi,1(t)λ2,1
i (xa)

bi,2(t)λ2,2
i (xa) −bi,1(t)λ2,1

i (xa) 0

 (2.12)

are introduced to rewrite the semi-discretized equations into matrix form.
C is the curl matrix, a difference approximation of the curl.

(2.10) can be written,

{F, G} = DF T J(u)DG, (2.13)

where D is the derivative with respect to the variables

u = (X, V , e, b)T , (2.14)

and J is the Poisson matrix

J(u) =


0 M−1

p 0 0
−M−1

p M−1
p MqB (X, b) M−1

p M−1
p MqΛ (X) M−1

1 0
0 M−1

p MqΛ (X) M−1
1 0 M−1

1 CT

0 0 −CM−1
1

 (2.15)

J(u) is anti-symmettric and [17] shows that it satisfies the Jacobi identity, needed for ana-
lytical properties such as conservation.

2.2.2 Matrix discrete Hamiltonian
[17] gives the matrix notation of the discrete Hamiltonian as,

H = 1
2

V T MpV + 1
2

eT M1e + 1
2

bT M2b (2.16)

and the semi-discrete equations of motion are given by,

Ẋ = {X, H} , V̇ = {V , H} , ė = {e, H} , ḃ = {b, H} . (2.17a-2.17d)
which are equivalent to

u̇ = J (u) DH (u) . (2.18)

with DH (u) = (0, MpV , M1e, M2b)T , we obtain

Ẋ = V (2.19)
V̇ = M−1

p Mq

(
Λ1 (X) e + B (X, b) V

)
(2.20)

ė = M−1
p

(
CT M2b (t) − Λ1 (X)T MqV

)
(2.21)

ḃ = −Ce (t) (2.22)

6



2.2.3 Hamiltonian splitting
To discretize in time, a Hamiltonian splitting [10][14][21] is used. The discrete Hamiltonian
(2.16) is split into three parts,

H = Hp + HE + HB (2.23)

with

Hp = 1
2

V T MpV , HE = 1
2

eT M1e, HB = 1
2

bT M2b, (2.24a-2.24c)

writing u = (X, V , e, b)T , we split the discrete Vlasov-Maxwell equations (2.19-2.22) into
three subsystems

u̇ = {u, Hp} , u̇ = {u, HE} , u̇ = {u, HB} , (2.25a-2.25c)

2.2.4 Operator HE
The discrete equations of motion for HE are

Ẋ = 0, (2.26)
MpV̇ = MqΛ

1 (X) e, (2.27)
ė = 0, (2.28)
ḃ = −Ce (t) . (2.29)

For initial conditions (X (0) , V (0) , e (0) , b (0)) the exact solutions at time ∆t are defined as

X (∆t) = X (0) , (2.30)
MpV (∆t) = MpV (0) + ∆tMqΛ

1 (X (0)) e (0) , (2.31)
e (∆t) = e (0) , (2.32)
b (∆t) = b (0) − ∆tCe (0) . (2.33)

2.2.5 Operator HB
The discrete equations of motion for HB are

Ẋ = 0, (2.34)
V̇ = 0, (2.35)

M1ė = CT M2b (t) , (2.36)
ḃ = 0. (2.37)

7



For initial conditions (X (0) , V (0) , e (0) , b (0)) the exact solutions at time ∆t are defined as

X (∆t) = X (0) , (2.38)
V (∆t) = V (0) , (2.39)

M1e (∆t) = M1e (0) + ∆tCT M2b (0) , (2.40)
b (∆t) = b (0) . (2.41)

2.2.6 Operator HP
The discrete equations of motion for HP are

Ẋ = V , (2.42)
MpV̇ = MqB (X, b) V , (2.43)
M1ė = Λ1 (X)T MqV , (2.44)

ḃ = 0. (2.45)

For general magnetic field coefficient b, this system cannot be exactly integrated (He et al.
2015).

Note that each component V̇µ of the equation for V̇ does not depend on Vµ, where V )µ =(
v1,µ, ..., vNp,µ

)T , etc., with 1 ≤ µ ≤ 3. Therefore we can split this system once more into

Hp = Hp1 + Hp2 + Hp3, (2.46)

with

Hpµ = 1
2

V T
µ MpVµ for 1 ≤ µ ≤ 3. (2.47)

For concise notation we introduce the Np × N1 matrix Λ1
µ (X) with generic term Λ1

i,µ (xa)
and the Np × Np diagonal matrix Λ2

µ (b, X) with entries
∑N2

i=1 bi (t) λ2
i,µ (xa), where 1 ≤ µ ≤ 3,

1 ≤ a ≤ Np, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2. Then, for Hp1 we have

Ẋ1 = V1 (t) , (2.48)
MpV̇2 = −MqΛ2

3 ((b (t) , X (t))T V1 (t) , (2.49)
MpV̇3 = MqΛ2

2 (b (t) , X (t))T V1 (t) , (2.50)
M1ė = −Λ1

1 (X (t))T MqV1 (t) , (2.51)

for Hp2 we have

8



Ẋ2 = V2 (t) , (2.52)
MpV̇1 = MqΛ2

3 (b (t) , X (t))T V2 (t) , (2.53)
MpV̇3 = −MqΛ2

1 (b (t) , X (t))T V2 (t) , (2.54)
M1ė = −Λ1

2 (X (t))T MqV2 (t) , (2.55)

and for Hp3 we have

Ẋ3 = V3 (t) , (2.56)
MpV̇1 = −MqΛ2

2 (b (t) , X (t))T V3 (t) , (2.57)
MpV̇2 = MqΛ2

1 (b (t) , X (t))T V3 (t) , (2.58)
M1ė = −Λ1

3 (X (t))T MqV3 (t) , (2.59)

For Hp1 and initial conditions (X (0) , V (0) , e (0) , b (0)) the exact solutions at time ∆t are
defined as

X1 (∆t) = X1 (0) + ∆tV1 (0) , (2.60)

MpV2 (∆t) = MpV2 (0) −
∫ ∆t

0
MqΛ2

3 (b (0) , X (t)) V1 (0) dt, (2.61)

MpV3 (∆t) = MpV3 (0) +
∫ ∆t

0
MqΛ2

2 (b (0) , X (t)) V1 (0) dt, (2.62)

M1e (∆t) = M1e (0) −
∫ ∆t

0
Λ1

1 (X (t))T MqV1 (0) dt, (2.63)

for Hp2 the exact solutions are defined as

X2 (∆t) = X2 (0) + ∆tV2 (0) , (2.64)

MpV1 (∆t) = MpV1 (0) −
∫ ∆t

0
MqΛ2

3 (b (0) , X (t)) V2 (0) dt, (2.65)

MpV3 (∆t) = MpV3 (0) +
∫ ∆t

0
MqΛ2

1 (b (0) , X (t)) V2 (0) dt, (2.66)

M1e (∆t) = M1e (0) −
∫ ∆t

0
Λ1

2 (X (t))T MqV2 (0) dt, (2.67)

and for Hp3 as

9



X3 (∆t) = X3 (0) + ∆tV3 (0) , (2.68)

MpV1 (∆t) = MpV1 (0) −
∫ ∆t

0
MqΛ2

2 (b (0) , X (t)) V3 (0) dt, (2.69)

MpV2 (∆t) = MpV2 (0) +
∫ ∆t

0
MqΛ2

1 (b (0) , X (t)) V3 (0) dt, (2.70)

M1e (∆t) = M1e (0) −
∫ ∆t

0
Λ1

3 (X (t))T MqV3 (0) dt, (2.71)

where all components not specified are constant.

The different operators, HE , HB, Hp1, Hp2 and Hp3, can be combined by Lie splitting, Strang
splitting [23] or higher order decomposition methods [13].

2.3 Visualisation
Plotting the particles gives an easy way of visualize the particles behavior over time. To visualize
the particles, the authors of [17] use 1D histograms to represent the density. 3d3v simulations
are hard to visualize because of the number of dimensions. We developed a post-processing
script that produces a 3D visualization of the particles at a certain time step with a trail behind
the particles corresponding to the N last time iterations. This script will be included in the post
processing scripts of the project. To do the visualization without changing the source code, we
apply our script to the already existing output function of the Selalib GEMPIC code. The files
are set to a standard CSV format using common shell programs. Although the sed command
is very efficient, this script could be replaced by an implementation in the GEMPIC code of a
function writing the output in the CSV format. Displaying the particles themselves and not a
density function requires the amount of particles to be comparably small. We subsample the
particles in the script by keeping only the X first particles. Because the particles are not sorted
and generated with a Sobol sequence, a low-discrepancy sequence, the first particles do spread
over the entire domain.

The second script uses Paraview’s Python module to produce the visualization. Here the
main steps of the Python script are described. After getting the file prefix from the user, the
files are opened with the CSVreader.

1 p a r t i c l e s = CSVReader ( FileName=all_names )

Particles are created from the CSV table. In 2D, only the X and Y fields need to match the
coordinates x1 and x2.

1 tableToPoints = TableToPoints ( Input=p a r t i c l e s )
2 tableToPoints . XColumn = ’ x1 ’
3 tableToPoints . YColumn = ’ x2 ’

This produces points at the position of each particle.
The sense of motion is obtained by displaying multiple time steps of the particles positions.

1 tempora lPar t i c l e sToPath l ine s =
2 Tempora lPart i c l e sToPath l ines ( Input=tableToPoints , S e l e c t i o n=None )

10



Using input values, the next steps set the visual settings such as particle size, previous time
steps, dots size, number of time steps displayed, and so on.

Finally the image is saved using the SaveScreenshot function.
1 SaveScreenshot ( save_f i l e , renderView ,
2 ImageResolut ion =[resX , resY ] , CompressionLevel=’ 0 ’ )

Fig. 2.1 shows the result for data obtained from the 3d3v code. The particles are shown as
white spheres and their trajectory as the colored trail. The color coding refers to the particle’s
ID number.

Figure 2.1: Output of our visualization tool applied to a 3D3V simulation with 100 particles.
The domain is a cube with periodic boundary conditions. The trail shows the
position of the particles for the last 200 time steps. Trail color coding refers to the
particle’s ID number.
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3 Introduction to the performance portability
frameworks Kokkos and RAJA

To point out the similarities and differences of Kokkos and RAJA on a real use case implemen-
tation, our codes, using Kokkos for one and RAJA for the other, are analyzed side-by-side. We
will present the codes’ structures and differences. The code sample shown has been cleaned
from auxiliary lines such as adding, updating physical values, etc., to improve the clarity of the
presentation. Similar code sections are presented just once, for example, array initialization will
be written for one array only. These code snippets keep the essential lines concerning Kokkos
and RAJA.

Lastly, variables have been renamed to fit the codes side by side on one page and these shorter
names are used in the following sections. The original names can be found in Tab. 3.1.

Original name Short name
hamiltonian_splitting HS
view_j_dofs_local_host j_dofs_h
view_j_dofs_local j_dofs
i_species i_sp
view_n_species_host ns_h
view_n_species ns
particle_mesh_coupling pmc
Kokkos K
RAJA R

Table 3.1: Renaming of the code’s variables for improved readability.
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Listing 3.1: Kokkos implementation of the operator Hp1
1 void HS : : operator_Hp1 ( double dt ,
2 int n_threads ,
3 int n_teams ) {
4 for ( int i =0;
5 i<this−>j_dofs_h . s i z e ( ) ; i++) {
6 this−>j_dofs_h ( i ) = 0 . 0 ;
7 }
8 K: : deep_copy ( this−>j_dofs ,
9 this−>j_dofs_h ) ;

10
11
12
13
14
15
16
17
18 int shared_s ize = . . . ∗ s izeof ( double ) ;
19 auto p o l i c y = K: : TeamPolicy
20 <Hp1 , ExecSpace>
21 ( n_teams , n_threads )
22 . s e t_sc ra tch_s i ze
23 (1 ,K: : PerThread
24 ( shared_s ize ) ) ;
25
26
27 K: : p a r a l l e l _ f o r ( po l i cy , ∗ this ) ;
28 }

Listing 3.2: RAJA implementation of the operator Hp1
1 void HS : : operator_Hp1 ( double dt ,
2 int n_threads ,
3 int n_teams ) {
4 for ( int i =0;
5 i<this−>pmc . n_dofs ; i++) {
6 this−>j_dofs [ i ] = 0 . 0 ;
7 }
8 #i f de f ined (RAJA_ENABLE_CUDA)
9 && de f ined (I_USE_CUDA)

10 cudaMemcpy( this−>d_j_dofs ,
11 this−>j_dofs ,
12 this−>pmc . n_dofs∗ s izeof ( double ) ,
13 cudaMemcpyHostToDevice ) ;
14 #else
15 this−>d_j_dofs = this−>j_dofs ;
16 #e n d i f
17
18 #i f de f ined (RAJA_ENABLE_CUDA)
19 && de f ined (I_USE_CUDA)
20 R : : f o r a l l <R : : cuda_exec<128>>
21 (R : : RangeSegment (0 ,
22 this−>p a r t i c l e s . group [ 0 ] . n_par t i c l e s ) ,
23 [= ,∗ this ] RAJA_DEVICE ( int i_part ) { . } ) ;
24 #else
25 double d_x_old [ n_threads ∗ 3 ] ;
26 RajaVector2DType raja_x_old (d_x_old ,
27 n_threads , 3 ) ;
28 R : : f o r a l l <R : : omp_parallel_for_exec>
29 (R : : RangeSegment (0 ,
30 this−>p a r t i c l e s . group [ 0 ] . n_par t i c l e s ) ,
31 [& , this ] ( int i_part ) { . } ) ;
32 #e n d i f
33 }
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Listings 3.1 and 3.2 contain the highest level function regarding the parallel section. The
function operator_Hp1 from the class HS is called directly from the main loop when testing
the code. The only function required to be run before operator_Hp1 is the constructor of HS
to initialize most of the variables needed.

3.1 View
The first action taken by the operator_Hp1 function is to set values to zero on line 5. For
Kokkos it is written

5 this−>j_dofs_h ( i ) = 0 . 0 ;

and for RAJA
5 this−>j_dofs [ i ] = 0 . 0 ;

This introduces the View, the data type used by both Kokkos and RAJA to abstract the
location of the data.
Most of scientific codes spend a lot of time processing arrays of data. Because these computa-
tions often take a significant part of the computing time, programmers invest a lot in making
those operations as fast as possible. Such optimizations are tightly linked to the underlying
hardware, environment, language and programming model. As said earlier, optimal layouts can
be different depending on the hardware. Because low-level details can have such a high impact
on performance, porting a code optimized for a specific architecture is complicated. Porting a
code to a different architecture often means rewriting a significant amount of the code.

Abstracting the data type allows for the optimization of array management and access inter-
nally to relieve the programmer from this architecture-specific task. The optimal layout and
pad allocation for ideal alignment depending on the architecture can also be chosen.

Kokkos and RAJA have, in general, a different approach regarding the architecture-specific
decisions. On the one hand, Kokkos tries to have as many default settings as possible.
Meaning that when not specified, the settings for a View will be picked according to the fastest
architecture accessible. RAJA, on the other hand, has less default values and wants the user
to be aware of his choices.

A View contains only meta-data such as dimensions, sizes and layout plus a pointer to the
data. This pointer can be on host memory or on GPU device memory.

3.1.1 Memory allocation
When declaring a View, Kokkos allocates the memory on the architecture defined by the pro-
grammer or the default setting. The first parameter of a View, a string, is a name for Kokkos
to use when debugging. Accessing directly the View from the host code can result in an error
as the data may not be accessible from the CPU. Initializing a 1D View of size n in Kokkos,
with a secondary View for access on the Host, looks as follows:

1 K: : View<double∗> j_dofs ( " j_dofs " , n ) ;
2 K: : View<double∗ >:: HostMirror j_dofs_h = K: : create_mirror_view ( j_dofs ) ;
3 K: : deep_copy ( j_dofs , j_dofs_h ) ;
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In contrast, RAJA does not allocate memory. When initializing a View in RAJA, one more
parameter is needed: the pointer to the data, previously allocated by the user code.

A small MemoryManager code is given in RAJA’s example folder1 which uses the #ifdef
sections to allocate memory on CPU or GPU. Although it is in the example folder, it is not
part of the RAJA library. Initializing a 1D View of size n in RAJA works as follows:

1 double ∗ j_dofs = new double [ n ] ( ) ;
2 double ∗d_j_dofs = memoryManager : : a l l o c a t e <double>(n ) ;
3 #i f de f ined (RAJA_ENABLE_CUDA) && de f ined (I_USE_CUDA)
4 cudaMemcpy( d_j_dofs , j_dofs , n∗ s izeof ( double ) , cudaMemcpyHostToDevice ) ;
5 #else
6 d_j_dofs = j_dofs ;
7 #endif
8 R : : View<double , R : : Layout<1>> r_j_dofs = R : : View<double , R : : Layout<1>>
9 ( d_j_dofs , n ) ;

Both codes have a host View/array, j_dofs_h (Kokkos) and j_dofs (RAJA), which can be
used from the host side.

Memory Spaces

The Memory space defines where the data is stored. Depending on the hardware, it gives access
to high bandwidth memory, on-die scratch memory and non-volatile bulk storage. Kokkos also
provides access to UVM (Unified Virtual Memory, or Unified Memory), which allows access
to the data from both the host and the device by duplicating the data and synchronizing the
memory to keep the host copy of the device data updated and vice versa.

A View type with its memory space can be defined as follows.
1 Kokkos : : View<long>
2 Kokkos : : View<long , Kokkos : : HostSpace>
3 Kokkos : : View<long , Kokkos : : OpenMP>
4 Kokkos : : View<long , Kokkos : : CudaSpace>
5 Kokkos : : View<long , Kokkos : : CudaUVMSpace>

The first type, Kokkos::View<long>, will use the default memory spaces HostSpace, OpenMP
or CudaSpace, according to the highest priority architecture available. This will therefore match
the default execution space.

RAJA does not define Memory spaces with names as they do not allocate memory.

3.1.2 Kokkos’ mirror View
The memory pointer of a Kokkos View can, but should not be accessed directly. Only Kokkos
functions should be used to modify a View. So to set the values of a View e.g. from a text file,
plain memory allocated on the CPU is needed. This is accomplished by the mirror View.

The mirror View is a View with memory allocated on the CPU only. If the original View is
already on the host memory, the mirror will just copy the pointer to the View’s data. If the
View has memory on the GPU, the mirror view will allocate the same amount of memory on
the host.

1https://github.com/LLNL/RAJA/blob/develop/examples/memoryManager.hpp, accessed on 05/16/2018,
commit 3eb858d87acce64dcd03bede5b84dee87b10ced7
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Once the mirror View as been initialized with the right values, we do a deep copy to the
original View. The deep_copy function will check, in the case of a View and its mirror, if the
View has its data on the host or the device. If the memory is on the host, because the pointers
to the data are the same, nothing needs to be done. The View’s data has already been initialized
as it shares the same memory as the mirror View.

If the View has its data on the device, a host-to-device copy is made.
The three lines, View allocation, HostMirror initialisation and call to deep_copy allow efficient

View initialization regardless of the architecture used.
In Listing 3.1, lines 4-7, we are setting the mirror View to zero. In lines 8-9, we copy it to

the original View.

3.1.3 RAJA’s explicit memory allocation
RAJA does not have mirror Views. But the View’s data is accessible to the user as it is declared
by the user. So the memory management is very similar to what we would do with CUDA. A
host and a device array are initialized. Once the memory is set on the host array, it is copied
to the device using CUDA’s functions.

Overall, we are doing explicitly what Kokkos does implicitly with mirror Views and the
deep_copy function.

In Listing 3.2, lines 4-7, we are setting the host array to zero. In lines 8-16, we copy it to the
device’s array or we set both array pointers to the same value depending on the architecture.

3.2 Layout
In the case of the RAJA View as shown in section 3.1 one could ask what the View is useful
for if we already manipulate explicitly the plain old data array. Its main advantage is that the
View allows to abstract the indexing. This is less relevant for 1D data but the advantages of
the Layout abstraction become obvious starting from 2 dimensions.

Memory layouts specify how to map logical indices to address offsets. With different architec-
tures, appropriate Memory layouts are needed to optimize memory access patterns for a given
algorithm. Most notably, for a 2D array, if the CPU would require the rows to be stored con-
tiguously, the GPU may perform better with the columns stored contiguously. These differences
come from the design of the parallel architecture. To illustrate, we take an example of a 4-by-n
matrix. We used different colors where the computation of different rows shall be independent.
For both the CPU and the GPU, to obtain the best performance, the threads have to work on
independent tasks.

In Fig. 3.1, we illustrate the memory layout in the case of a CPU with 4 threads. Each colored
data represents a group of data with dependencies. Because each thread is independent, we
give them one row to work on. Each thread will process a row, element by element, so that at
any given time only one element per row is being processed. At the same time, cache lines are
not shared between different threads, which is important, see section 6.2.

On the GPU, we have warps of threads that are tightly linked. They are in groups of 32
threads, we represented them as groups of 4 in Fig. 3.2 for clarity. All threads of a warp
execute the same operation on different data. Even if less than 32 threads are needed warps use
32 threads. Masks are used to stop specific threads of a wrap from computing an operation.
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Because threads of a warp are synchronized and work on contiguous data, here we need adjacent
data in memory to be independent. Storing the matrix column by column gives the desired
layout as shown by the alternating colors.

threads

M4,n= b b b

1 2 3 4

memory b b b b

Figure 3.1: Illustration of data assignation for multi-threaded processing on the CPU. Indepen-
dent tasks need to be physically distant from each other in the memory so that each
thread gets contiguous data to work with. Same color for dependent data.

This difference in architecture is taken into account by Kokkos and RAJA, but RAJA requires
explicit choice of the Layout to match the architecture while Kokkos has a different default layout
for the CPU and the GPU.

The available Memory Layouts are LayoutRight, LayoutLeft and LayoutStride for Kokkos.
On RAJA, also a possibility with Kokkos, the Layout is defined only by the strides, with
LayoutRight (as defined for Kokkos) as default. LayoutLeft accesses the elements of an array
starting with the leftmost index. If we store a n by m matrix, with standard notations n being
the number of rows and m the number of columns, with a LayoutLeft the leftmost index, n, is
stored first meaning that values of the columns will be stored consecutively. This is illustrated in
Fig. 3.3. Following the same logic, the LayoutRight stores the rightmost index first. Our n by m
matrix will have consecutive rows values in the memory. See Fig. 3.4. The names LayoutRight
and LayoutLeft refer to the common names, row-major and column-major, respectively. The
stride for an array will be the distance in memory between two adjacent elements of the array.
For our n by m matrix with LayoutLeft, the strides will be (1, n). Elements only one row apart
will be consecutive in memory (stride of 1). Elements one column appart will be n entries apart.
For the our LayoutRight example, the stride is (m, 1).

This brings the last Memory Layout, LayoutStride. This gives the user the possibility of
defining the stride as (s1, s2, ...). LayoutStride makes the creation of a subview very simple. To
extract the 2 by 2 matrix M({2, 3}, {2, 3}) create from the second and third rows and columns
of our matrix M in Fig. 3.3, we have to go through the elements, M(2, 2), M(3, 2), M(2, 3)
and M(3, 3) as shown in Fig. 3.5. The consecutive elements are M(2, 2), M(3, 2) and M(2, 3),
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b b b

warp 0 warp 1 warp 0 warp 1

threads

M4,n= b b b

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

memory

Figure 3.2: Illustration of data assignation for multi-threaded processing on the GPU. Because
threads of a warp are tied and work best when memory adresses respect the threads
ordering, we want consecutive data in memory to be independent. On current
architecture warps regroup 32 threads. We illustrated 4 threads per warp for better
readability. Same color for dependent data.

M(3, 3). So the stride of the first index is s1 = 1. We can see in Fig. 3.5 with the dashed
line that M(3, 2) and M(2, 3) have one more element between them. So M(3, 3) is the third
element after M(3, 2) in memory. The stride of the second index is s2 = 3. Without allocating
memory, our subview is created by defining its size as 2 by 2, the address of its first element as
the address of M(2, 2) and the stride as (s1 = 1, s2 = 3).
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b b b b

b b b b

b b b b

M3,4 =

Figure 3.3: Representation of consectutive elements for a 3 by 4 matrix stored with LayoutLeft
(stride (1, 3)). This is the column-major format.

b b b b

b b b b

b b b b

M3,4 =

Figure 3.4: Representation of consectutive elements for a 3 by 4 matrix stored with LayoutRight
(stride (4, 1)). This is the row-major format.

b b b b

b b b b

b b b b

M3,4 =

Figure 3.5: Representation of consectutive elements for a 2 by 2 submatrix stored with Layout-
Stride.
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3.3 Traits
Kokkos adds a Traits abstraction to its View. Memory traits define how the memory is being
accessed in an algorithm. Different settings are available such as atomic access, random access
and streaming loads and stores. This attributes will allow the insertion of optimal load and
store operations in the implementation of the programming model. A compiler aware of the
specific access traits might therefore produce a more optimized code.

It this example we show how an array is set to have atomic access.
K: : View<double ∗ , K : : MemoryTraits<K: : Atomic>> j_dofs ;

If an atomic access is required for a variable, e.g. to avoid race conditions when other solutions
are not available, this memory traits are a convenient way of making sure the variable will never
be accessed simultaneously by different threads anywhere in the code.
The RandomAccess traits gives access to the texture cache on the GPU. The texture cache
is a read-only memory (initialized from the CPU beforehand) that can be more efficient than
global memory depending on the access pattern. On the CPU, this traits will have no effect
because such special memory does not exist. This reflects the idea of having default values and
a single source code. One can always specify a RandomAccess trait without worrying about the
consequences on other hardware.
Kokkos : : View<double ∗ , Kokkos : : RandomAccess> j_dofs ;

Kokkos may introduce optimizations in the future for random access on the CPU. This could
improve performance without the user noticing any changes to his existing code.

3.4 Execution space, pattern and policy
3.4.1 Execution pattern
For a better understanding, we will now explain lines 27 of Listing 3.1 and 20,28 of Listing 3.2.

27 K: : p a r a l l e l _ f o r ( po l i cy , ∗ this ) ;

20 R : : f o r a l l <R : : cuda_exec<128>>
28 R : : f o r a l l <R : : omp_parallel_for_exec>

Both Kokkos and RAJA use Execution patterns to call the parallel function. Here they are
K::parallel_for for Kokkos and R::forall for RAJA.

The execution pattern defines the basic parallel algorithm such as simple loops with paral-
lel_for (Kokkos) and forall (RAJA), reductions with parallel_reduce (Kokkos) and omp_reduce
(RAJA), cuda_reduce (RAJA). The reductions are set differently as RAJA relies on special re-
duction variables and Kokkos has an extra input parameter on parallel_reduce for the reduction.

Scans are also available for both Kokkos and RAJA but were not used in our project.
Kokkos’ pattern takes 2 parameters. First, the policy, which will be explained in the next

section, 3.4.2. Second, the content of the loop is defined by *this meaning that the class is used
as a functor. The operator() is used as body-function of the parallel_for. Using the operator()
as body of the parallel function is only possible with Kokkos. Another option, and the only
option in case of RAJA, is to use lambda functions.
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3.4.2 Execution policy
At line 19-24 of Listings 3.1 and line 20-23, 28-31 of Listing 3.2, the Execution policy of the
parallel section is defined.

18 auto p o l i c y = K: : TeamPolicy
19 <Hp1 , ExecSpace>
20 ( n_teams , n_threads )
21 . s e t_sc ra tch_s i ze
22 (1 ,K: : PerThread
23 ( shared_s ize ) ) ;

Kokkos first defines the Execution Policy: RangePolicy or TeamPolicy. The range policy
simply defines a range of indices over which the function will be called. The user has no control
over the order of execution or concurrency. It is not allowed to synchronize the threads.

The Team policy, used at line 18, adds features over the Range policy and is therefore more
complex. It adds hierarchical parallelism, and scratch pad memory.

The first template parameter, Hp1, of the TeamPolicy is optional and will be explained in
section 3.5. The second parameter, ExecSpace, defines the architecture running the code. It
can be Cuda, OpenMP, PThreads or just CPU serial. When multiple architectures are available
and enabled, the default architecture will be choosen with this ordering, Cuda > OpenMP >
PThreads > serial. If using the default execution space, the memory space will be set correctly
as Kokkos’ default values will match. Otherwise, the user has to make sure the memory space
is compatible with the execution space. Host memory space (CPU), not being accessible from
the Device (GPU), will not be compatible with Device execution space.

Here are the 6 execution spaces for Kokkos.
Kokkos : : DefaultExecut ionSpace
Kokkos : : S e r i a l
Kokkos : : Threads
Kokkos : : OpenMP
Kokkos : : Cuda

With the Team policy, one defines a number of Teams without size restriction and a number
of threads per Team limited by the hardware. The two values are passed as parameters of
TeamPolicy at line 20.

The Team policy introduces scratch pad memory and hierarchical parallelism, not available
with the simpler RangePolicy. As for CUDA’s shared memory, Kokkos’ scratch pad memory
size needs to be known prior to the parallel section.

It is either shared between threads of a Team or thread private. The total size of the Scratch
memory is defined before the parallel section.

It is a very important feature for a PIC application as each thread needs private variables
to compute updated particle positions, velocity, and so on. The impact of not having private
variables (not available with RAJA) will be discussed in the case of the RAJA code.

At lines 21-23 of Listings 3.1, we request scratch memory:
21 . s e t_sc ra tch_s i ze
22 (1 ,K: : PerThread
23 ( shared_s ize ) ) ;

The first parameter, 1, is the memory level. It can be 0 or 1. Memory level 0 is faster
but smaller. On GPU this allows to access the shared memory. The second parameter,
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K::PerThread(shared_size), defines if the memory is accessible to the thread only, PerThread(),
or shared to a team of threads, PerTeam(). The shared_size parameter sets the number of bits
to allocate, per thread or per team. Once it is specified, we can initialize a scratch View inside
the parallel loop. We demonstrate it here, with a code line extracted from the Hp1 function.

K: : View<long [ 3 ] , ExecSpace : : scratch_memory_space ,
K: : MemoryTraits<K: : Unmanaged>>
view_xi ( team_member . thread_scratch ( 1 ) ) ;

The variable view_xi is thread private and only exists inside the parallel section. The param-
eter 1 in the thread_scratch function specifies which memory level to access. It has to match
with the first parameter of the set_scratch_size function.

Lastly, the Team policy introduces hierarchical parallelism by assigning an execution pattern
to threads within a Team inside an execution pattern on the Teams. The most straight forward
example is a nested parallel_for. The first parallel for will be distributed among Teams and
the second parallel_for will be distributed to the Team’s threads. We can apply the same with
nested parallel_reduce or parallel_scan. More sophisticated behavior can be easily obtained
by nesting different execution patterns. The inner or outer loop can be a parallel_reduce while
the other is a parallel_for.

Although we presented RAJA’s “pattern” in section 3.4.1, RAJA does not really have a
“pattern”. But for the comparison to Kokkos, we presented the forall policy with Kokkos’
pattern. Kokkos calls the parameter of the pattern the “policy”. RAJA names both concepts
under policy.

20 R : : f o r a l l <R : : cuda_exec<128>>
21 (R : : RangeSegment (0 ,
22 this−>p a r t i c l e s . group [ 0 ] . n_par t i c l e s ) ,
23 [= ,∗ this ] RAJA_DEVICE ( int i_part ) { . } ) ;

28 R : : f o r a l l <R : : omp_parallel_for_exec>
29 (R : : RangeSegment (0 ,
30 this−>p a r t i c l e s . group [ 0 ] . n_par t i c l e s ) ,
31 [& , this ] ( int i_part ) { . } ) ;

The template parameter of the forall policy describes where the execution will occur. Line
20, cuda_exec, will execute on the GPU and line 28 omp_parallel_for_exec will execute on the
CPU using OpenMP. The first parameter of the policy is segment iteration policy, line 21-22
and 29-30. In our case, a RangeSegment starting at 0 with n_particles elements. This is similar
to Kokkos’ RangePolicy.

A feature that only RAJA provides is the definition of complex List segments, i.e. the indices
the loop will be ran on with can be defined from 0 to n − 1 (0, 1, ...,n-1). Or with constant
stride to get every second (0, 2, 4,...), third (0, 3, 6,...),... n-th number. But the list can also
contain arbitrary numbers (1, 2, 5, 7, 9). The list can also be defined with a concatenation of
the previously mentioned possibilities. A use case would be to have a mesh split in a number
of subsets in which the computation at each vertex is independent from the other vertex of the
same subset. This indices of each subset would be given to different lists and the parallel loop
will be called on each list.
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3.5 Parallel section
As introduced in section 3.4.1, there are different parallel operations such as parallel_for, par-
allel_reduce, parallel_scan for Kokkos. For RAJA there are, among others, forall and scan.
These operations are called collectively parallel dispatch for Kokkos. With these 3 operations,
“for loops” with independent iterations, reductions and prefix scans can be implemented. Cur-
rently the reduction loop supported on both CPU and GPU only covers scalar reductions.
Kokkos provides additional experimental solutions for vector reductions. It will also be dis-
cussed in more detail in section 5.1 as it is a key element of the GEMPIC algorithm and many
more algorithms.

3.5.1 Vector reduction on Kokkos
On RAJA we had to implement the reduction ourselves. However, on Kokkos we could use a
scatter_view from the experimental class. This type required two different definition for CPU
and GPU. But we expect Kokkos to add default settings to this type later as it is today still in
the Experimental section.

1 #i f de f ined (KOKKOS_ENABLE_CUDA)
2 typedef K: : Experimental : : ScatterView
3 <double ∗ , K : : LayoutLeft , ExecSpace , 0 , 0 , 1> ViewScatterType ;
4 typedef K: : Experimental : : Sca t t e rAcce s s
5 <double ∗ , 0 , ExecSpace , K: : LayoutLeft , 0 , 1 , 1> ViewScatterAccessType ;
6 #else
7 typedef K: : Experimental : : ScatterView
8 <double ∗ , Layout , ExecSpace , 0 , 1 , 0> ViewScatterType ;
9 typedef K: : Experimental : : Sca t t e rAcce s s

10 <double ∗ , 0 , ExecSpace , Layout , 1 , 0 , 0> ViewScatterAccessType ;
11 #endif

We defined two types: ViewScatterType, for the main variable, ViewScatterAccessType, to
access the ViewScatterType from each threads inside a parallel section. The ViewScatterAc-
cessType variable only exist inside the parallel section. First the main variable is initialized
with a View as parameter.

1 ViewScatterType s c a t t e r ;
2 this−>s c a t t e r = Kokkos : : Experimental : : c reate_scatter_view
3 < Kokkos : : Experimental : : ScatterSum >(this−>j_dofs ) ;

Then, from the parallel section, the ViewScatterAccessType variable is initialized
1 ViewScatterAccessType j_dof s_scatte r_acces s = j_dofs_scatter −>a c c e s s ( ) ;

We use the ViewScatterAccessType as a standard View inside the parallel section. Once the
parallel section is closed, the data needs to be gathered using the contribute function.

1 K: : Experimental : : c o n t r i bu t e ( hami l tonian . j_dofs , hami l tonian . scatter_view ) ;

Finally, j_dofs contains the reduction result. This type will behave differently on CPU and
GPU. The difference will be explained in section 5.1.

3.5.2 Functors and lambda functions
The parallel calls rely mostly on lambda functions, but a functor can also be used for Kokkos.
In any case, the inputs of the functions have to match the expected input parameters of the
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execution pattern and policy. This prohibits to pass any data as arguments. Therefore lambda
functions are much easier to work with on a small scale. Functors require all the data as
members.

Functors are easier to test and make for a more readable code for important functions. But
it brings one problem, what if multiple parallel functions need to be implemented? To answer
this, Kokkos uses an Execution Tag. The tag is an empty structure that is passed as the first
argument of the operator(). The tag is also passed as a template parameter of the Execution
Policy, which will then feed it to the operator() making it a compile-time decision. This gives
the parallel dispatch the ability to call one specific declaration of the operator(). This is used
at line 19 of Listing 3.1.

18 auto p o l i c y = K: : TeamPolicy
19 <Hp1 , ExecSpace>

. . . ;

The first template parameter, Hp1, is the Tag that will define which operator() to use.
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4 GEMPIC code analysis

4.1 Integration loop
The GEMPIC code (selalib3d3v) integrates the equations (2.30-2.33, 2.38-2.41, 2.60-2.71) using
a loop over time steps. At each iteration, the electric and magnetic fields are computed and
the particles are pushed according to the fields. The method uses the so called Strang splitting
[23], giving the loop shown in Fig.4.1.

Operator HB
t+ 1

2

Operator HE
t+ 1

2

Operator Hp3
t+ 1

2

Operator Hp2
t+ 1

2

Operator Hp1t+1

Operator HBt+1

Operator HEt+1

Operator Hp3t+1

Operator Hp2t+1

n ≤ #steps?

n+ = 1 Stop

No

Yes

Save current state as input

Save current state as output

Figure 4.1: Schematic of the time loop resulting from the Strang splitting of the equations (2.30-
2.33, 2.38-2.41, 2.60-2.71), as implemented in the GEMPIC code. The moments we
extract the variables to produce our benchmarks are shown with arrows.
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4.2 Performance profile
As stated by Amdahl’s law [1] the speed-up of a parallel program is bound by its percentage
of serial code. We are therefore interested in finding the most time consuming section of the
GEMPIC code to obtain the most significant improvements by parallelizing. The analysis on
the selalib3d3v code was performed using the gprof profiler for GNU FORTRAN. From the
analysis we obtained the five most time consuming functions of the code, shown in Tab. 4.1.

They match the hints that Dr. Katharina Kormann had given to us, the most time consuming
section of the code is pushing the particles and computing the contribution of each particle to
the mesh. Together they take 80-85% of the compute time.

We observe in the analysis that the OperatorHp2 and OperatorHp3 routines are taking each
around twice the time of the OperatorHp1. This is simply due to the Strang splitting that
computes one operator only once per time step. While all other operators are computed twice
over half time steps.

The performance when varying the time steps, number of particles or mesh size was evaluated
for our five functions.

In Fig. 4.2, we see the total time of the computation increasing significantly with the size
of the mesh but not our five functions’ execution time. For the increased mesh sizes, other
functions dominate the CPU time. As expected we can ignore the mesh size for the operator
Hp1 function.

In Fig. 4.3, we see that all the functions scale linearly with the number of particles as we
would expect for a loop going through each particle once.

In Fig. 4.4, we see all the functions scaling linearly with the number of time steps. This is
particularly important in a PIC simulation. Because of the computation of the contribution of
each particle to the mesh, there is a highly randomized access to the mesh data if the particles
are not sorted. PIC simulations starting with sorted particles will have an increasing time per
iteration as the particles lose their ordering. After verification, we can confirm that the particles
are never ordered, hence constant time per iteration is seen over the entire simulation.

The addCurrent functions are not ranked first as computationally intensive individually, but
together they are. The separation of the 3 functions comes from the Hamiltonian splitting.
These functions perform exactly the same task along a different axis. In C++, template pa-
rameters can be used so that a single function is written for the 3 different axis. The axis will
be picked according to the template parameters at compile time, hence adding no overhead to

Name Percentage
evaluateFieldSingleSpline3dFeec 30.43%
addCurrentUpdateVPrimitiveComponent3Spline3d 15.66%
addCurrentUpdateVPrimitiveComponent2Spline3d 15.56%
addChargeSingleSpline3d 9.67%
addCurrentUpdateVPrimitiveComponent1Spline3d 9.65%

Table 4.1: Top 5 functions sorted by the percentage of the total execution time the program
spent in each, obtained using the gprof FORTRAN profiler. This 3D3V simulation
runs on 1 core with 10000 time steps, 1 million particles and a mesh containing 1024
cells.
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Figure 4.2: Execution time of the five main functions depending on the mesh size. This 3D3V
simulation runs on 1 core with 100 time steps and 10000 particles.

the function.
They are all functions applied to one particle and belong to a “For all species, For all particles”

loop.
The addCurrent functions are called by the OperatorHp1, OperatorHp2 and OperatorHp3

functions, respectively. Again, the functions perform the same task for the 3 spatial axes. One
of the main tasks performed by these functions is to push the particles, update their position,
using their velocity. The OperatorHp1, 2, 3 are the functions running the “For all species, For all
particles” loops. Together with the two other function OperatorHE and OperatorHB (electric
and magnetic field) they form one time step iteration. To compute the electric and magnetic
fields, the contribution of all particles to the mesh are needed. In the FORTRAN code, the
particles are split over multiple processes that communicate using MPI. The contribution is
gathered at the end of each OperatorHp1, 2, 3 function.
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Figure 4.3: Execution time of the five main functions depending on the number of particles.
This 3D3V simulation runs on 1 core with 100 time steps and a mesh containing
1024 cells. The add Current Component 3 and 2 curves as well as add Current
Component 1 and add Charge Spline curves are overlapping in the plot.
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Figure 4.4: Execution time of the five main functions depending on the number of timesteps.
This 3D3V simulation runs on 1 core with 10000 particles and a mesh containing
1024 cells. The add Current Component 3 and 2 curves as well as add Current
Component 1 and add Charge Spline curves are overlapping in the plot.

29



4.3 C++ implementation
We consider the OperatorHp1 function up to the MPI call to be our test code for this project.
As seen in Fig. 4.1, all physical values are copied before and after the OperatorHp1 function.
Because not the entire code has been implemented in C++, text files are used as input and
output. Knowing the input and output of the FORTRAN code, we check the correctness of
the C++ implementation by comparing the results with the output file. Three time steps were
run. To obtain meaningful execution time and to debug easily, we vary the number of particles
between 100 and 1e7 and the mesh size from 128 cells to 1024. In a MPI-distributed simulation
on a supercomputer, having 1e7 particles per node is considered a large simulation, as it would
results in billions of particles overall, counting each process. Thus, our largest test case, that
we perform on a single node, is representative of a very heavy workload. In PIC simulations,
memory access can be optimized by ordering the particles such that particles close in space
will be close in memory. This is not implemented in the GEMPIC code. A Sobol sequence,
a low-discrepancy sequence, is used to initialize the particles so they are not sorted initially.
This allows us to use the first 3 frames as representative sample of a random iteration of the
simulation. During an entire run, there will be very little difference in the memory access
pattern for the particles as they will never be sorted.

The sorting of the particles is an important step of PIC simulations. In [4], the author obtains
around 50% improved performance from his implementation of the sorting algorithm in a PIC
simulation. Another way of managing the cache-trashing coming with unsorted particles is to
change the data structure used. For example, storing the relative position to the cells of the
particles serves as an automatic sorting system. The particles are directly accessed cells by cells
by the result of the data structure used. The implementation of the GEMPIC model being
mostly a proof of concept, the question of sorting the particles has not been addressed yet1.

1Dr. Kormann, personal communication.
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5 Implementation and usability review

In order to compare Kokkos to RAJA but also to see how they perform compared to architecture-
specific frameworks, we developed multiple versions of the same function Hp1 from the original
FORTRAN routine. These are the 5 different implementations:

C++ We first developed a standalone code by re-implementing the Hp1 function
from the GEMPIC FORTRAN code in C++. This code includes all the
necessary input/output functions to run the same computation as the FOR-
TRAN code. This test bench is also used as the baseline for the other codes
below.

OpenMP Extending from the C++ code, we implemented a parallelized version for the
CPU using OpenMP. The results obtained from this code in terms of perfor-
mance will serve as reference for Kokkos’ and RAJA’s CPU implementations.

Kokkos Getting this version of the code to work well took approximately two months
from installing the library, testing it, learning the different features, imple-
menting our section of the GEMPIC code and correcting all the small issues
related to performance, such as variables passed by value/reference.

RAJA The parallel implementation using RAJA was the next-to-last version imple-
mented. It is important to point out that RAJA was approached with the
knowledge acquired while implementing the Kokkos code. It was therefore
easier at first as most of the abstractions are the same as with Kokkos. How-
ever, some features we used in Kokkos, such as per thread scratch memory,
are lacking in RAJA.

CUDA Lastly, to have a relevant reference for Kokkos’ and RAJA’s GPU implemen-
tations, a CUDA version was implemented.

All codes have also had an algorithmic optimization compared to the FORTRAN implemen-
tation. As it will be explained, instead of computing the mesh index of the particles every time
they are called, we precompute them and store them in an array. The performance benefit will
be shown in chapter 6.

5.1 Kokkos
Kokkos provides a default execution space that will look for the available architectures in the
ordering mentioned previously. This is the first step for a very simple implementation of a
portable code. This default execution space relieves the user from thinking about to which
architecture he will deploy his code. Complex algorithms can of course have different parallel
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sections to use different execution spaces.

The first issue encountered was getting a member function to run in Kokkos’ parallel dispatch.
To do so, the operator() is used, as it is the only member function usable for Kokkos. It can be
used to implement the desired function or simply as a wrapper to call another member function.
The parallel dispatch takes the class as a functor, and therefore calls the operator() function by
default.

This removes the drawbacks of using lambda functions, allows for easier testing, and leads
to more readable code. But it introduces one problem, what if multiple parallel functions need
to be implemented? To answer this, Kokkos uses an Execution Tag. The tag is an empty
structure that is passed as first argument of the operator(). The tag is also passed as a template
parameter of the Execution Policy, which will then feed it to the operator() making it a compile-
time decision. This gives the parallel dispatch the ability to call one specific declaration of the
operator().

Another necessary element for our application is a vector reduction. This feature was a
little bit harder to find. The Kokkos documentation only, but extensively covers the case of
scalar reduction in the documentation1, examples and test files. This issue had already been
mentioned to the Kokkos team a year prior to the writing of this thesis. Now Kokkos provides
a ScatterView class under the Experimental namespace. The ScatterView class has a different
behavior on CPU and GPU.

On the CPU, the ScatterView class will duplicate its View and provide internally one View
to each thread. Each thread works on its View. For the user, it is only visible as a single
ScatterView. After the parallel section, the contribute function has to be called to compute the
reduction of all the internal Views.

On the GPU, the ScatterView does not duplicate its View. Duplicating the View to give one
copy to each thread removes race conditions, the undefined behavior occurring when two or
more threads are trying to modify the same variable at the same time. Race conditions can be
avoided by adding a rule to the access of the variable. A rule, the so-called atomic operation,
forces the processor to verify that there is no thread accessing the variable before modifying it.
The obvious drawback is the slowdown that can occur from restraining threads to access memory
when dealing with atomic operations. But nowadays, the atomic add operation is extremely
efficient on the GPU [12]. This makes the atomic operation in the case of a reduction, instead
of a variable duplication, more and more used.

The type ScatterView is templated with a value to specify if we want the duplication or the
atomic access but there are no default settings depending on the architecture. A typedef of
this type was used and separates the template settings for CPU and GPU with a #ifdef. Using
Kokkos, this is the only time two versions of a code section (2 lines) had to be implemented.

Lastly, we need scratch memory for each thread. With OpenMP, this is achieved simply
by starting the parallel section, before the “for loop” and declaring all the needed variables
there such that allocation occurs per thread. In CUDA using shared memory can produce
faster codes. Kokkos manages both cases with Views on their “scratch_memory_space” and an
“Unmanaged” Memory Traits. This gives access to PerTeam and PerThread memory. The total
size of the scratch memory inside a parallel loop needs to be known before the parallel dispatch

1https://github.com/kokkos/kokkos/wiki/Custom-Reductions:-Build-In-Reducers, accessed on 09/11/2018
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is launched, similarly to CUDA. Different memory levels with different size cap, corresponding
to L1 and L2 cache sizes, can be accessed on CPU and shared memory on the GPU.

To finish this user review of Kokkos, we can give two examples of interactions with the
developers. We opened two threads in Kokkos’ issue2,3 section, one concerning overheads on
parallel section when the functor contains a large std::vector and the second concerning issues
when switching from a Tesla K40m GPU [9] to a Tesla P100 GPU [7]. Multiple developers from
Kokkos provided guidance on solving the problems within less than 24 hours. For the overhead,
the reason is the copy of the functor by Kokkos when launching a parallel section using the
operator(). Using std::shared_ptr solved it. The issue that appeared on the P100 should have
already appeared on the K40m as it was due to a wrong memory management. We speculate
that the P100 with Compute Capability 6.0 has better error detection than the K40m with
Compute Capability 3.5.

5.2 RAJA
Once correct benchmarks for Kokkos on the CPU and the GPU had been obtained, we turned
towards the RAJA framework.

The first difference observed is that Kokkos tries to have default values depending on the
architecture. For simple tasks, omitting the template parameters will result in code working on
the CPU and the GPU depending on the compilation. RAJA does not implement such default
values and lets the user specify explicitly all the settings. This makes the user aware of what
is happening but also requires to duplicate every line of code to include a CPU and a GPU
version.

RAJA does not use functors for the parallel dispatch but only lambda functions. This was
not a big issue in our situation, it just requires to shape the code differently.

As for the Kokkos implementation, scratch memory is needed. RAJA has an implementation
of shared memory for the GPU. In November 2017, a new issue thread was posted discussing
writing an example of the Shared Memory for the GPU and the CPU using macros. Six month
later, it can be found as part of the examples provided by RAJA. They use shared memory in
solving the 2D wave equation. In this case, shared memory can be used to store the matrix
containing the values at each cell of the mesh. If we would use this implementation for our per
thread scratch memory, we would need an array of nthreads × ScratchMemorySizePerThread.
Each thread would be assigned one row (or column) to work with.

This is the most common solution. But passing the different arrays to our function instead
of using the lambda capture was not trivial. After not getting an answer on the issue thread4

of RAJA asking if this was the right way to implement scratch memory, we ended up using
regular Views. On the K40m GPU, the code ran faster than Kokkos’ version but much slower
on the P100 GPU.

Lastly, we modified RAJA’s source code slightly to make it work with our code design. We
now explain the code design to show where the problem comes from. Class A, a C++ class
named A, contains a member V of type View. In RAJA, the View type does not have a default
constructor. So when the constructor of A is called, the constructor of V should be in the

2https://github.com/kokkos/kokkos/issues/1615, accessed on 10/09/2018
3https://github.com/kokkos/kokkos/issues/1686, accessed on 10/09/2018
4https://github.com/LLNL/RAJA/issues/492, accessed on 10/09/2018
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initializer list. Not knowing the size of the View before the constructor of A has read the input
file, having V in the initializer list is impossible.

To remove this constraint, a simple empty constructor was added to the RAJA View source
file.
RAJA_INLINE RAJA_HOST_DEVICE constexpr View ( ) {}

The second modification was to remove the const type qualifier on the Layout variable from the
View structure.
layout_type /∗ cons t ∗/ l ayout ;

Removing it restored the operator= of the structure View.
The question concerning our modifications to the source code is still unanswered5.

In fairness to RAJA, we note that no benchmark will test every aspect of parallel program-
ming. In a side-by-side comparison, a library can be disadvantaged by the nature of the bench-
mark. In [18, 19], by working on a heat conduction problem, the authors tackle 2 of the “Dwarfs
of Parallelism” introduced in [2], which discuses a list of 13 high-level classes of problems that
try to capture a large variety of parallelism applications. This list includes dense and sparse
linear algebra, spectral methods, N-body methods, structured and unstructured grids. One of
the goals of this list is to establish a variety of benchmarks to evaluate parallel performance.
Because there is no application tackling every problem, each benchmark focuses on a few of
the Dwarfs. The heat convection problem deals with the two classes structured grid and sparse
linear algebra. Our application, a PIC model, although it come close to the N-body methods, it
does not quite fit in the list of 13 Dwarfs. This illustrates that no single benchmark can correctly
evaluate all aspects of parallel computing. Therefore, for completeness, we will briefly introduce
a feature of RAJA that is not required in our application. This is presented as an important
feature of the framework and indeed, Kokkos does not have it. Our remarks and conclusion
regarding Kokkos and RAJA only covers the features we used so RAJA may be evaluated and
judged differently on another benchmark.

RAJA is promoting its ability to do parallelization over a list of indices. Traditionally, the
indices are defined in the “for loop” for OpenMP or by the thread index in CUDA. The user
can also use a formula with the thread index to describe more complex behaviors. To parallelize
over even numbers, we would multiply by 2 the loop index and the loop index would be scaled
accordingly. With RAJA, a list of indices can be created and used as indices for the parallel
dispatch. Updating every even index of a vector, then updating the odd indices is simply done
by listing the indices beforehand and giving the list to the Execution Policy. This is commonly
referred to as indirect indexing. This interesting feature, not provided by Kokkos, is not used
by our application, hence we do not have any comparison on this.

5https://github.com/LLNL/RAJA/issues/508, accessed on 05/09/2018
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6 Performance benchmarks
In this chapter, we will first present the results obtained on the computer used to develop the
different codes. The node provides two Intel Xeon E5-2680 v2 @ 2.80GHz CPUs and two Tesla
K40m GPUs [9] (only one is used in our codes). This cluster also has P100 GPUs [7] with
IBM POWER8 processors. In section 6.2 the analysis and corrections presented were done on a
second cluster with an Intel Haswell Xeon E5-2698 v3 @ 2.30GHz CPU, because this cluster had
different debugging tools. For our last benchmark, we obtained the access to a third cluster and
its Intel Xeon Gold 6130 @ 2.10GHz CPU and two Tesla V100 GPUs [8] (only one is used in our
codes). This final benchmark provides the most relevant information regarding the expected
performance on present-day hardware.

Our codes utilize one CPU and one GPU of a single cluster node. We will use the following
names to denote the hardware used from each cluster:

Ivy-Kepler Single node with an Intel Xeon E5-2680 v2 @ 2.80GHz CPU and a NVIDIA
Tesla K40m GPU.

IBM-Pascal Single node with an IBM POWER8 processor and a NVIDIA Tesla P100
GPU.

Haswell-N Single node with an Intel Haswell Xeon E5-2698 v3 @ 2.30GHz CPU without
GPU.

Skylake-Volta Single node with an Intel Xeon Gold 6130 @ 2.10GHz CPU and a NVIDIA
Tesla V100 GPU.

6.1 Algorithmic optimization
We performed performance analysis and optimization on all codes within a limited time, going
from a few days to a couple of weeks, e.g. to understand and try different solutions for RAJA,
see section 6.2. So we acknowledge that performance could be improved although it should
already be representative of the performance one can obtain with the same amount of work on
the different libraries.

The test are done on an Ivy-Kepler. We also ran the GPU codes on IBM-Pascal.
Because of the algorithm we are working on, the parallelization seemed simple at first. The

loop over all particles is parallelized. The main computation of the algorithm is the particle-
to-mesh transfer for which a kernel function centered on each particle is computed at each
grid node. This requires the localization of the particles within the mesh. The high number
of modulo operations performed is the highest load of the program. Finding optimal data
structures for the particles is the subject of ongoing research (see e.g. [3]). One could store the
position on the mesh and the relative position of the particle within a cell. In our case, the code
originally computed the grid index every time it was needed.
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The FORTRAN code uses MPI to parallelize the workload. With 100000 particles on 100
CPUs, the simulation has a total of 10 million particles. We focus on one MPI process and use
3 time steps to test the performance and verify the solution. To get significant run times, we
scale the number of particles to 10 millions on one CPU with the original 16 by 8 by 8 mesh.
With this setting, the FORTRAN code runs in 7.5 seconds per iteration.

In Fig.6.1 we compare the log2 of the execution time as a function of number of CPU cores
for the different implementations. First we note the C++ implementations are about 2 times
slower than the FORTRAN one. With OpenMP, the speed-up stays very close to the ideal line
with a little degradation for 8 to 10 cores. Kokkos CPU is 15% slower than pure C++ with one
thread but scales perfectly, bringing its performance closer to OpenMP’s performances when
running on more than 4 cores.
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Figure 6.1: Log-log plot of the compute time as a function of number of cores. We compare
the performance of Kokkos on CPU and GPU to OpenMP, Cuda and RAJA on
GPU. The codes, with the original non-optimized modulo computation, were run
on an Intel Xeon E5-2680 v2 @ 2.80GHz and a NVIDIA Tesla K40m. Results for
the GPU are independent of the number of CPU cores and are placed arbitrarily on
the abscissa.

As said previously, the most expensive part of the code are the modulo operations computed
to get the grid position of each particle. Without changing the data structure, we optimized the
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code by rearranging the modulo computation and storing it in arrays. We replaced computation
by memory storage and reuse. The arrays are of the size of the 16 by 8 by 8 mesh. Instead
of computing the positions on the fly, we are now precomputing them for each particle. This
reduced the processing time by a factor of 2 for the C++ implementations but did very little
to the FORTRAN implementation.

In Fig.6.2, the “Opti” suffix means that we are looking at the code with the improved modulo
computations. The OpenMP code is still as fast as the serial code with 1 thread but the scaling
is slightly worse. Kokkos CPU on 1 thread is 15% slower compared to the serial code, but again,
scales perfectly bringing it very close to the performance of OpenMP around 6 to 10 cores. For
the GPU implementations, we are only comparing the optimized codes but used two different
graphics cards. The oldest, K40m gave results comparable to the 8 to 10 cores CPU codes, with
CUDA being faster than RAJA and Kokkos being the slowest.

Using the newer P100 GPU drastically changed the results. RAJA GPU is slightly faster
than the 10 cores CPU codes but is now the slowest of the GPU implementations. Compared
to the K40m, RAJA is 3.5 times faster. The second fastest implementation is CUDA with a
speed-up of 3.75x compared to the K40m. Kokkos has an impressive 7x speed-up compared to
the K40m performance placing its performance close to a fourth of the 10 cores CPU speed.

We did not manage to get as good results for RAJA CPU as for the rest of the codes. The
single thread performance are the same as with Kokkos but we have identified a false sharing
problem causing the code to not scale as one would expect, see section 6.2.

In [18, 19], the authors compare Kokkos, RAJA, and different standard parallel implementa-
tion languages such as OpenMP, CUDA, OpenACC and OpenCL. The comparison is done on a
simpler code. They used a simple heat conduction problem for the basis of their tests. Similarly
to us, they arrive with Kokkos and RAJA between 5% and 30% of OpenMP’s performance.

As in [18, 19], we compared RAJA, Kokkos and OpenMP implementations of the same code
and arrive at the same conclusion that those new performance portable framework are relatively
easy to use if all the features needed by a user are available. But it is up to the user to decide
if the slight reduction in performance with the performance portability framework compared
to architecture-specific frameworks is acceptable. The question is if one can tolerate a 15%
performance reduction for an easy CPU/GPU implementation.

Although 15% overhead is very high in the case of the GEMPIC code and plasma physics
simulations, it could be interesting to use Kokkos or RAJA as a first development step and
later rewrite the critical sections with specific architectures in mind. In that case, it would be
interesting to compare a complex code with multiple parallel sections in which Kokkos loops are
mixed with standard C++ data and OpenMP loops with Kokkos’ Views. This would bring an
important answer to the question, which part of Kokkos causes the overhead, the data types or
the parallel calls. Now that those libraries are available for an easy implementation of parallel
codes, can they be used as a first draft and replaced with traditional OpenMP/CUDA code at
the critical sections of the codes where a 15% performance hit is not acceptable? A future work
would be to provide an answer to this question.
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Figure 6.2: Log-log plot of the compute time as a function of number of cores. We compare the
performance of Kokkos and RAJA on CPU and GPU to OpenMP and Cuda. Both
non-optimized and optimized modulo computation are presented, the latter denoted
with Opti. The codes were run on an Intel Xeon E5-2680 v2 @ 2.80GHz, a NVIDIA
Tesla K40m and a NVIDIA Tesla P100. Results for the GPU are independent of
the number of CPU cores and are placed arbitrarily on the abscissa.

6.2 False sharing optimization
As seen in Fig. 6.2, RAJA on CPU has the worst scaling, which is due to bad memory access.
In Fig. 6.3 the performance of the 3 versions of the code are plotted. The first version was
implemented similarly to the OpenMP and Kokkos code, except for the per thread scratch
memory which was implemented using #thread ∗ n Views. The second version implements the
array with cache line alignment. The last version allocates the memory needed for each thread
as one contiguous memory block.

Using the LIKWID performance tool [24], we were able to identify the problem. The tests and
the results of the 3 RAJA codes were obtained on Haswell-N. Running a FALSE_SHARING
analysis revealed that the OpenMP code has 226MB of Local LLC hit with false sharing when
using 10 cores, the Kokkos code has 7MB. However, for the RAJA implementation, a much
larger value of 18GB was determined, indicating a severe performance penalty due to false
sharing.
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Figure 6.3: Log-log plot compute time as a function of number of cores. Three different versions
of the RAJA code are compared. The first, named RAJA, uses arrays for each
variables needing to be private for each thread. The second, named RAJA Cache,
adds cache alignment to the previous RAJA code. Finally, RAJA Pool uses a single
array as pool where each thread gets a full line to allocate variables contiguously.
Although far from the ideal scaling, only RAJA Pool presents a bit of scaling.

The Local LLC hit with false sharing refers to the amount of memory the processor had to
fetch from the Last Level Cache, the L3 cache on the Haswell architecture, because the cache
line from the L1 or L2 cache it was working with was also used by another core. Cache lines
are 64 bits long on x86_64 platforms.

In Fig. 6.4, we can see that Core 1 has in his L1 cache (x1, ..., x8) just like Core 2. Core 1 is
only modifying x1 and Core 2, x8. But when giving the result back to the L3 cache, both cache
lines (x1, ..., x8) cannot be accepted as one may have modified the values first. Let’s say Core 1
modified the values first. Then the computation done by Core 2 is unvalidated and Core 2 has
to copy the new (x1, ..., x8) from the L3 cache again.

Ideally, threads work on data that are far away physically, in comparison to the size of a
cache line, typically 8 doubles. So cache line interference is not common.

Our algorithm retrieves the position, velocity and charge of a particle from a large array. It
then works with local variables to compute the new state of the particle before updating the
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Figure 6.4: False sharing occurs when two threads having in their cache the same variables are
trying to write to them. There is a conflict when trying to apply the changes done
on the L1 cache back to the L3 cache, even if the variables modified by both cores
differe.

large array. With OpenMP, the local variables are defined as thread private and with Kokkos,
we use the per thread scratch memory. This is fine as the memory allocated to each thread is
allocated as one block.

The first version of the RAJA code used a simple #threads-by-3 View. The first index is
the thread number, the second index is the scratch data index, 3 in this example. Same for
the velocity, and all other local arrays. In the memory we have, next to each other, packages
of 3 variables accessed by different threads. When the first thread reads its vector 3, it copies
8 values in its cache. The 3 he is interested in, plus the vector 3 of its neighbor and 2 more
values. This will result in false sharing issues, significantly slowing down the computation and
the parallel scaling.

The first solution tried is known as cache alignment or padding. In order to avoid threads
copying neighbors values in its cache, ghost values are added between the interesting values.
Instead of having a #threads-by-3 View, we allocate a #threads-by-8 View where the first 3
values are used as before and the next 5 are never touched. They serve as padding to make sure
the core only copies the relevant elements into its cache, and not its neighbor’s vector as shown
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in Fig. 6.5.

L3 Cache

L2

L1

L2

x1, x2, x3, y1, ..., y5

x1, x2, x3, y1, ..., y5

x1, x2, x3, y1, ...y5

Core 1 Core 2

L1L1

x7, x8, x9, y6, ..., y10

x7, x8, x9, y6, ..., y10

x7, x8, x9, y6, ...y10

Figure 6.5: This illustrates how false sharing can be solved by adding a padding, yi variables,
to the variables of interest, xi. The padding will place the variables accessed by the
second core physically further away from the variables accessed by the first core,
thus making the line in each L1 cache not share any variable.

The performance of this code is named RAJA Cache in Fig. 6.4. Although it is better with
the padding, we still do not have scaling. This code has 6GB of Local LLC hit with false sharing
when using 10 cores. It is an order of magnitude bigger than for our OpenMP code.

A better solution is to mimic OpenMP and Kokkos: Allocate each thread’s local variables
as blocks. To do so, we regrouped all the memory needed per thread. Allocating the memory
contiguously per thread will remove any false sharing except for the 8 first and last values. This
implementation does show scaling over the 1 thread execution time, but it is still not perfect.

6.3 Performance results on state of the art hardware
In this section we provide a comparison of the different codes on the Ivy-Kepler, IBM-Pascal
and the Skylake-Volta computer, the latter with state of the art hardware, see Fig. 6.6.

First we will look at RAJA. We can see that the single core performance are the same on both
computers but the newer hardware actually performs worth with multiple cores. We can only
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interpret these results by saying that although we solved a part of the memory management
issue (see section 6.2), there is still some problems with the RAJA based implementation.
Next, comparing OpenMP on the two computers, we observe on average a 14% improvement on
Skylake-Volta. OpenMP presents some overhead going from 1 to 2 cores on both computers but
then scale almost perfectly all the way up to 10 cores and 16 cores for Ivy-Kepler and Skylake-
Volta, respectively. The results for Kokkos are similar, there is a good scaling and an average
of 10% improvement going from Ivy-Kepler to Skylake-Volta. The difference between OpenMP
and Kokkos also lowers as Kokkos is on average 16% slower than OpenMP on Ivy-Kepler and
only 10% slower on Skylake-Volta.

On the GPU side, it is important to note that the two GPUs are using different connectors.
The P100 is connected using the NVLink communication protocol by NVIDIA, with a transfer
rate of 20 GT/s, while the V100 is using the standard PCIe connector, with a transfer rate of
8 GT/s. The copying time is 2 time smaller with the NVLink. RAJA and CUDA produce very
little difference on the computation time between the P100 and the V100. The two codes are
not using shared memory which could partly explain the lack of improvement from one GPU to
the other. The transfer of the data to the host is 2 time faster on the P100, we therefore obtain
faster results on the P100, even when adding the computation time . Kokkos’ GPU result is
the only that improves from the P100 to the V100, about 40%.
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Figure 6.6: Log-log plot of the compute time as a function of number of cores. We compare the
performance of Kokkos and RAJA, on CPU and GPU to OpenMP and Cuda. The
codes, with the optimized modulo computation, were run on an Intel Xeon Gold 6130
@ 2.10GHz (Skylake) and an Intel Xeon E5-2680 v2 @ 2.80GHz (Ivy), a NVIDIA
Tesla P100 and a NVIDIA Tesla V100. Results for the GPU are independent of the
number of CPU cores and are placed arbitrarily on the abscissa. The copying time
on the same GPU for the different codes (e.g. RAJA V100 and Kokkos V100) is
similar but appears different due to the logarithmic scale.
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7 Summary and conclusions

This thesis presents a performance and usability assessment of two performance portability
libraries, Kokkos and RAJA. This work is motivated by the need of code abstraction between
different architectures. The heterogeneity of architectures in supercomputers makes it hard to
have a single code which is optimized for all platforms. Multiple solutions are being developed
today whose goal is to provide the user the ability to write single source code with architecture-
specific optimization at compile time. Here, we have investigated two prominent libraries,
Kokkos [11] and RAJA [16]. The two libraries are being considered for the development of an
optimized implementation of the GEMPIC model [17], and our work aims at providing valuable
information to decide which framework should be adopted. The current GEMPIC code relies
solely on MPI to distribute the workload on a supercomputer. We focused on the per-node
computation, comparing Kokkos and RAJA to standard OpenMP and CUDA implementations.

As described in Chapter 3, RAJA and Kokkos offer a very similar concept and level of
abstraction although they differ quite a bit when looking at specific implementations.

Kokkos offers data types usable in both CPU and GPU environments depending on C++
template values, i.e. compile time decisions. Kokkos tries to add default values for the largest
part of the parameters. If compiled with the default values, the code will be compiled for
the “fastest” architecture available. “Fastest” is defined by the following ordering, Cuda >
OpenMP > PThreads > serial. With the default parameters, the execution space, CPU or
GPU, of a parallel section will match the memory space, host memory or device memory,
respectively. This makes implementations much simpler for the user. Kokkos manages to hide
the CPU/GPU macro cases very well. The Kokkos project seems better documented and, from
our experience when interacting with the developers, more active than RAJA.

RAJA, similarly to Kokkos, also provides data types usable in both CPU and GPU envi-
ronments depending on C++ template values. But RAJA does not implement default values
for the template parameters depending on the architecture. This forces the user to specify the
template values inside #ifdef preprocessor branches, and therefore to write all CPU parame-
ters and GPU parameters explicitly, thus limiting the idea of a single source code for multiple
architectures. For this reason, RAJA forces us to have two sections in our code for CPU and
GPU compilation.

This comparison of the data management is a good representation of the overall experience
we have had using the two libraries. The approach of Kokkos to decide which settings to use
and to allow the user to not worry about it makes programming easier. Regarding the features
necessary to our application, vector reduction, scratch memory, etc..., Kokkos is also better
suited, as RAJA did not have some of these features.

Our focus is on the usability of Kokkos and RAJA as performance portability frameworks
for the future development of an optimized version of the GEMPIC [17] FORTRAN code.
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Five versions of the most expensive function Hp1 from the FORTRAN routine were developed
to compare Kokkos to RAJA and also see how they perform compared to architecture-specific
frameworks. We re-implemented the FORTRAN routine in C++, with a test bench to reproduce
the same computation. In addition, two versions were coded, one using Kokkos and another
using RAJA. Finally, an OpenMP and a CUDA version of the code were written to complete
our benchmarks with current architecture-specific frameworks.

The original code, as said in section 4.3, is a proof of concept and has not been optimized
yet. Although we applied a straight forward algorithmic optimization by precomputing and
storing values, we did not focus on the algorithm it self but rather the performance obtainable
on the same code with different parallel frameworks.

The performance comparison of each code, presented and analyzed in chapter 6, was done
on different hardware generations. We compared the computation time reduction from the
algorithmic optimization and observed a 2x speed-up, showing how important the algorithmic
optimization is regardless of the framework used as the same speed-up was observed on all the
5 codes.

Comparing different CPUs shows that OpenMP is faster than Kokkos and RAJA on all
generations. With Kokkos we observe about 10% overhead compared to OpenMP on the older
Ivy Bridge and 15% on the newer Skylake system. OpenMP and in particular Kokkos show a
virtually ideal parallel scaling up to 16 cores of a single CPU.

In section 6.2 we explain in detail the issue faced with RAJA’s CPU parallel scaling. We
encountered false sharing issues with the RAJA code that heavily impacted its performance.
False sharing is a difficult issue to deal with as it is not explicitly visible from the code, as for
example, a race condition is. The false sharing can only be identified once we know what we
are looking for. After successfully identifying the cause of RAJA’s bad scaling we worked on
two solutions. With the second solution described in section 6.2 we managed to improve the
results. From having zero improvement with multiple cores comparing to the serial code, we
managed to obtain some scaling. This is a first step as the scaling is not yet ideal, and we can
expect improvements if we continue to optimize the code.

The GPU comparison was done using a NVIDIA Tesla K40m, a NVIDIA Tesla P100
connected with NVLink and a NVIDIA Tesla V100 connected with PCIe. With a very limited
amount of time spent on the CUDA implementation, we created a baseline for a GPU code,
yet our CUDA implementation is faster than Kokkos only on the K40m. We suspect the data
management to be the reason of the slower CUDA code compared to Kokkos. The ordering
obtained in term of GPU performances overall is RAJA as the slowest, then CUDA and finally
Kokkos as the fastest on GPU.

Concerning the comparison of the CPU and GPU results, the Ivy Bridge CPU and Kepler
GPU computer, and the Skylake CPU and Volta GPU computer, give a good comparison
with hardware of the same generation. The best GPU result on the K40m is between the
performance of 4 to 5 cores of the Ivy Bridge CPU. We see a bigger improvement on the
GPUs when going to the newer generations than on the CPUs. On the Volta GPU, Kokkos
outperforms both Kokkos’ CPU implementation and the OpenMP implementation, making
Kokkos on a V100 the fastest code we have produced.
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With both the usability and performance assessment we have conducted, we now have
a global picture of how the 4 frameworks compare. Because RAJA’s performances are not
ideal, we can say that, looking at the usability, Kokkos would be our choice today. After
spending a similar, limited, amount of time on each of the 5 codes the fact is that RAJA is
the only code not scaling properly. Furthermore, with the restricted amount of time, we were
capable of delivering better performances with Kokkos than CUDA. Although this doesn’t
compare Kokkos to the perfect CUDA implementation, Kokkos on GPU requires very little
changes, if any, compared to Kokkos on CPU. For us, on the usability, Kokkos wins over CUDA.

This bring us to the conclusion that from our test with the GEMPIC model, we recommend
Kokkos over RAJA. Now, regarding the overhead of Kokkos CPU over OpenMP, it would depend
on the application and whether the few percent lost is worth the free GPU implementation. A
future work would be to answer the last paragraph of section 6.1 regarding the source of Kokkos’
overhead. A usage of Kokkos would be to develop codes easily for both CPU and GPU and
only implement critical sections with architecture-specific frameworks, e.g. having the critical
loop implemented with OpenMP, still using Kokkos’ View.
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