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1 Introduction

In this work we present two project’s which are based on three articles that
will be published. the first paper will present Pyccel a Fortran static compiler
for scientific High-Performance Computing. Pyccel was presented in the 11th
European Conference on Python in Science Euro-Scipy 2018, it was held on
August 31, it will also be presented in PyCon.DE 2018 & PyData Conference
on October 24 in Karlsruhe Germany. The second paper will present a Parallel
Kronecker solver using symbolic finite elements it is written and used in Python
it relies on Pyccel for accelerating its algorithms.
Pyccel is a static compiler for Python, Using Fortran as a back-end language, it
can also be viewed as a Translator as it translates the Python code to Fortran,
The goal behind developing Pyccel is to allow the user to go from a prototype
example written in subset of Python Language, toward a production code in
Fortran, without the need of rewriting the whole code, this will give the user
the advantage of writing an easy and understandable code in Python that takes
much less time in writing compared to a code written in Fortran or C/C++ and
it will have the performance of code written in Fortran after the translation,the
difference between Pyccel and the accelerating tools is that it provides an un-
derstandable translated code is that can be modified an used with other projects
in the targeted language, Pyccel can also be used in an embedded mode, inside
Python or IPython.
The main job in my master’s thesis was to introduce different functionalities into
Pyccel such as the oriented object programming, Functional Programming, sup-
port some decorators and add the support of different libraries such as MPI4PY,
BLAS, LAPACK, and FFTPACK. We also made different benchmarks that are
performed with some existing tools such as Pythran, Numba, Hope or Cython.
In addition, we present other examples that cannot be (fully) accelerated using
these tools, while Pyccel allows for a full conversion.
In future works, we will extend the functional paradigm with task-based paral-
lelism and cache-efficient algorithms for some specific patterns, we also intend
to support Parallel programming using GPU’s and also support different Lan-
guages other than Fortran like C/C++.
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For the second paper, we present a Python library that recognizes the Kro-
necker structure starting from a weak formulation.
The aim was to automatically generate a parallel code for the matrix-vector
product function in Python, which is then converted into Fortran using Pyccel.
In addition, solving the associated linear systems can be done using different
strategies according to the system in order to get an optimal fast solver.
The idea behind it is the same as Pyccel which consist of writing a symbolic
code using the Sympy library and generate after that a parallel python code for
the matrix assembly, the dot product and different direct solvers or precondi-
tioners that depends on the provided problem, Then the generated python code
is translated into Fortran using Pyccel.
Our aim is to have a direct link between the weak formulations defined in the
continuous space and their discrete versions. All the existing tools in the mar-
ket such as Fenics, FreeFem, ...etc, do not infer the properties of the associated
linear system to the discrete level. Our goal is not only to provide the assembly
procedure, which is generated automatically can be executed in parallel, but
also to construct an appropriate linear solver or a Preconditioner associated to
a continuous weak formulation.
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2 Symbolic Computation

Symbolic computation is an area of computer science that aims to automate a
wide range of the computation involved in mathematical problem solving, where
we manipulate mathematical expressions and other mathematical objects.
the uses for symbolic computation touches almost all different fields of mathe-
matics and science. its main use is calculations that are made by hand which can
be done more efficiently and accurately by symbolic calculations like calculating
derivatives, integrals, series and many other areas of mathematics.

2.1 Sympy

Sympy is a Python library for symbolic computations. It aims to become a full-
featured computer algebra system (CAS) while keeping the code as simple as
possible in order to be comprehensible and easily extensible. Sympy is written
entirely in Python.

computing the power series of a function: differentiation:

<<< from sympy import Symbol , cos
<<< x = Symbol ( ’ x ’ )
<<< e = 1/ cos ( x )
<<< pr in t e . s e r i e s (x , 0 , 10)

1 + x∗∗2/2 + 5∗x∗∗4/24 + 61∗x∗∗6/720 + 277∗x∗∗8/8064 + O( x∗∗10)

<<< from sympy import Symbol , d i f f , s in , exp
<<< x = Symbol ( ’ x ’ )
<<< f = s i n ( x )∗ exp ( x )
<<< d i f f ( f , x )

exp ( x )∗ s i n ( x ) + exp ( x )∗ cos ( x )

2.1.1 Advanced Expression Manipulation

here we are going to take a look of how the mathematical expression are repre-
sented in Sympy which will help us in the future to manipulate expressions in
Pyccel

Listing 1: Using Numpy for multiple precision

>>> from sympy import ∗
>>> x , y , z = symbols ( ’ x y z ’ )
>>> expr = 2∗∗x + x∗y
>>> s r ep r ( expr )
”Add(Pow( I n t e g e r ( 2 ) , Symbol ( ’ x ’ ) ) , Mul( Symbol ( ’ x ’ ) , Symbol ( ’ y ’ ) ) ) ”

this concept can help us later in calculating the Complexity of Program
which may help us in the future in making generating automatic code rather
than doing it manually as of right now.
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Figure 1: representation of an expression in Sympy

2.1.2 Code Generation in Sympy

In addition to symbolic calculations Sympy introduced a cool concept which is
code generation . Sympy provides us with functionalities to generate directly
compilable code from Sympy expressions to many other programing languages
such as C, C++, Fortran77, Fortran90, Julia, Rust and Octave/Matlab.
The Code Generation in Sympy is very limited to simple symbolic expression,
and what Pyccel does is take this concept and generalize it to be able to generate
much more complex symbolic expression so that we can use it later to translate
whole Python program .
to illustrate this concept we give this example of code generation in Sympy to
C language :

>>> from sympy . u t i l i t i e s . codegen import codegen
>>> from sympy . abc import x , y , z
>>> [ ( c name , c code ) , ( h name , c header ) ] = codegen (
. . . (” f ” , x+y∗z ) , ”C89” , ” t e s t ” , header=False , empty=False )
>>> pr in t ( c name )
t e s t . c
>>> pr in t ( c code )
#inc lude ” t e s t . h”
#inc lude <math . h>
double f ( double x , double y , double z ) {

double f r e s u l t ;
f r e s u l t = x + y∗z ;
r e turn f r e s u l t ;

}
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Abstract

We present a static compiler for Python, using Fortran as a backend language. The aim of Pyccel
is to allow the user to go from a prototype example, written in Python, toward a production code
in Fortran, without the need of rewritting the whole code. Pyccel can also be used in an embedded
mode, inside Python or IPython. Different benchmarks are performed with some existing tools such
as Pythran, Numba or Cython. In addition, we present other examples (using the Kronecker algebra)
than can not (fully) accelerated using these tools, while Pyccel allows for a full conversion.

Keywords: Python, HPC, Fortran, DSL, MPI, OpenMP, OpenAcc

1 Introduction

The Python language has gained a significant popularity as a language for scientific computing and data
science, mainly because it is easy to learn and provides many scientific libraries, including parallel ones.
However, Python interpreter/compiler does not perform any optimization and is not meant to write fast
codes. Therefor, different approachs have been proposed to accelerate computation-intensive parts of
Python codes. Cython [2] is among the standard tools to accelerate Python codes allowing the user to
call the Python C API by introducing a static typing approach. However, the low-level code depends
on the Python runtime to execute and no backward compatibilty is ensured. More recently Pythran [7]
allows to convert the dynamic Python code into a static C++ code while providing types as comments.
The Hope [1] library provides a JIT compiler to convert the Python code to C++, where the arguments
types are only known at the execution time. Numba[5] follows the same idea of bringing JIT compiling
to Python while generating machine code based on LLVM, which can run on either CPU or GPU. Both
Numba and Hope rely heavily on the use of simple decorators to instruct the Python package to compile
a given function. They also use the available type information at runtime to generate byte code. Another
completly different approach is given by PyPy[3], where a new a Python interpreter was written in a
restricted subset of the Python language itself (using an internal language called RPython). The aim of
PyPy is to provide speed and efficiency at runtime using a JIT compiler.
All the modern solutions to accelerate Python codes are based on C/C++ and so far nothing has been
based on the Fortran language. A drawback of using Fortran as a backend language is mainly the
lack of meta-programming. While modern scientific codes tend to use C++, mainly because of the
meta-programming paradigms, in many applications the main programming language remains Fortran.
It is the case for the Plasma Physics community where production softwares rely on years of legacy
codes, for which scientists developped specific expertises. Therefor, collaborations with mathematicians
is constrained by a huge time investment in code development which is not appropriate for prototyping
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new algorithms or numerical schemes. A mathematician dream would be to go instantly from a prototype,
written in high level language like Python, to a production code that can be shared with physicists, in
Fortran/C++ for example.
In order to simplify the process of going from a prototype to a production code, it is important that the
compiler allows the use legacy codes or some Python scientific libraries such as numpy, scipy (including
blas, lapack and fft), mpi4py, etc . . . Moreover, this should be presented in a user-friendly way while
ensuring that the new compiler is not difficult to maintain; it is then necessary to rely on some well
established python libraries.
On the other hand, Fortran is a computer language for scientific programming that is tailored for efficient
run-time execution on a wide variety of processors. Even if the 2003 and 2008 standards added major
improvements like OOP, Coarrays, Submodules, do concurrent, etc . . . they are not covered by all available
compilers. Moreover, the Fortran developer still suffers from the lack of meta-programming compared to
C++. Therefor, it becomes increasingly difficult for applied mathematicians and computational physicists
to write applications at the state of art while implementing complicated algorithms or (new) numerical
schemes.
For this purpose, Pyccel was designed to be used in two cases: (1) accelerate Python code by converting
it to Fortran and calling f2py, (2) generate portable HPC Fortran codes from a DSL using the Python
syntax. In order to achieve the second point, we developped an internal DSL for types and macros. The
later is used to map sentences based on mpi4py, blas or lapack (from scipy) onto the appropriate calls
in Fortran. Two other parsers for OpenMP and OpenACC were added too, allowing explicit parallelism
through the use of pragmas.
In this work, we present a new Fortran static compiler for Python. The aim of Pyccel is to allow
computational scientists to get a low level Fortran code from a (valid) Python code. It is completely
built on the top of Sympy. The input Python code is then viewed as a symbolic expression for which
we extended the associated Fortran printer and provided simple ways to use legacy codes and third
party Python libraries such as numpy, scipy and mpi4py. Extending the covered libraries is not difficult;
following the idea of Haskell’s [9] design, Pyccel is also written in Pyccel.
This paper is organized as the following: in Section 2, we describe the internal design of Pyccel, introduce
its standard library, the internal DSL and the parallel computing capabilities. In Section 3, we present
different examples of benchmarks and compare how Pyccel performs with respect to a selection of similar
existing tools.

2 Pyccel internal design

In this section, we shall explain the Pyccel workflow and give more details on how it handles legacy code,
OpenMP/OpenAcc, MPI and some third party Python libraries.

2.1 Pyccel workflow

Starting from a Python code, the full syntax tree (FST) is constructed using the redbaron [12] python
library. In opposition to the classical Asbtract Syntax Tree (AST), the FST is a tree representation of
the abstract syntactic structure of source code providing comments as nodes. Therefor, it is possible to
extend the Python language with additional syntax and semantic statements allowing for static typing,
OpenMP/OpenACC pragmas and types/macros instructions.

Syntax Analysis

Redbaron allows to check the Python syntax and raises an error for a non-valid Python code. Other
errors due to Pyccel limitations can also be raised, for example when using try/except.
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Figure 1: Pyccel workflow

During this stage, comments that start with ’#$’ are parsed using the internal DSL of Pyccel. We
distinguish between 3 cases:

- Accelerators: OpenMP and OpenAcc statements can be accessed using pragmas of the form ’#$
omp’ and ’#$ acc’

- Types Functions and class methods need associated headers to define their types.

- Macros This last feature allows Pyccel to map third libraries calls (like scipy.linalg.blas) to their
low level representations (Pyccel internal dsl).

At the end of this stage, Redbaron and Pragmas nodes are converted to Sympy nodes representing the
new AST.

Annotation and semantic analysis

The second step is to annotate the AST using the available information about types. Declared variables
are implicitly typed, while functions types are now available thanks to their headers. For functions that
return results, their types are infered automaticaly (but can still be provided). Notice that a function
can return multiple variables, but must have a fixed number of results. Another important remark is
that the header (+ results types) provides a type for a function
Source code 1 shows a typical definition of a Python function. Notice that the type of the result y is not
given since it is computed using the Inference Type process.
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1 # header func t i on decr ( i n t )
2 de f decr ( x ) :
3 y = x − 1
4 return y

Source Code 1: Example of function declaration

A function can have different interfaces (in the Fortran spirit). The source code 2 provides such an example
where, the decr function is now available for int and simple and double precision real numbers.

1 # th i s func t i on w i l l generate 3 func t i on s
2 #$ header func t i on decr ( i n t | double | f l o a t )
3 de f decr ( x ) :
4 y = x − 1
5 return y

Source Code 2: Example of function declaration

Remark 2.1 A function without argument and result, does not need a header.

In some cases, Pyccel needs to create symbolic variables that will not appear in the Fortran code. A
simple example is the following assignement rx = range(0, 10). Such a statement does not have an
equivalent in Fortran. However, Pyccel allows to manipulate it and use the variable rx in a loop.
At the end of this stage, the annotated AST is ready for code-generation.

Code generation

Since Pyccel AST is based on Sympy, writing the Fortran code generator can be done easily by extending
the Sympy fcode printer. At this point, and thanks to our type inference system, the generated Fortran
will compile without errors, except when using OpenMP/OpenAcc, for which we rely on the Fortran
compiler to check some semantic errors. Notice that the same approach can be extended in order to
generate code in other languages thanks to the different printers available in Sympy.

2.2 Pyccel Internal DSL

Types

In table 1, we give the correspondance between native numeric types in Python and Fortran. Floating
numbers are considered to be in double precision. Multiple precision will be described later in the sub-
section 2.8.

int int(kind=4)

float real(kind=8)

complex complex(kind=16)

bool logical

char character

str character(:)

Table 1: Correspondance between native numeric types in Python and Fortran
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Header files

Header files can be used to link against an existing library. These files must have the extension .pyh and
when parsed, they allow to expose functions or variables that are present in a given library. In source
code 3, we show how Pyccel provides the functions sdaxpy and ddaxpy from blas.

1 #$ header metavar module vers ion = ’3.8 ’
2 #$ header metavar i gno r e a t impor t=True
3 #$ header metavar l i b r a r i e s =’${BLAS LIBRARIES} ’
4
5 #$ header func t i on saxpy ( int , f l o a t , f l o a t [ : ] , int , f l o a t [ : ] , i n t )
6 #$ header func t i on daxpy ( int , double , double [ : ] , int , double [ : ] , i n t )

Source Code 3: Example of a header file, for BLAS

In code source 4, we show how one can import and call daxpy, in a DSL mode; this means that such a
code will not work in Python. The notion of macro will be used later to ensure a backward compatibility
with Python.

1 from pyccel . stdlib . internal . blas import daxpy
2 from numpy import zeros
3
4 n = 5
5 sa = 1.0
6
7 incx = 1
8 sx = zeros ( n )
9

10 incy = 1
11 sy = zeros ( n )
12
13 sx [ 0 ] = 1 .0
14 sx [ 1 ] = 3 .0
15 sx [ 3 ] = 5 .0
16
17 sy [ 0 ] = 2 .0
18 sy [ 1 ] = 4 .0
19 sy [ 3 ] = 6 .0
20
21 daxpy ( n , sa , sx , incx , sy , incy )

Source Code 4: daxpy example in a DSL mode usage

Meta-Variables

Pyccel provides the notion of meta-variables in orther to have more control when linking to legacy code.
In Tab. 2, we list the available meta-variables and their meaning.

Macros

In order to make Pyccel understand scipy.linalg.blas sentences, we introduced the notion of macros.
In source code 5, we give the implemetation of daxpy as a macro, allowing Pyccel to understand a subset
of scipy.linalg.blas statements.
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meta-variable meaning
module name module name for the generated code (example openmp → omp lib)
module version module version
ignore at import do not print the use statement, if True
libraries Environement variable for libraries to link to

Table 2: Pyccel meta-variables and their meaning

1 from pyccel . stdlib . internal . blas import daxpy as _daxpy
2
3 #$ header macro (y ) , daxpy (x , y , alpha=1, n=x . shape , incx=1, incy=1) := daxpy (n , alpha , x , ←↩

incx , y , incy )
4 b = daxpy ( a , b , alpha )

Source Code 5: Implementation of daxpy using macro DSL to make scipy.linalg.blas available in Pyccel.

2.3 Python/Pyccel statements

Pyccel covers most of Python statements, when using imperative programming. Simple statements are
comprised within a single logical line and are given in Tab. 3. In Tab. 4, we give the available compound
statements covered by Pyccel. These statements contain a group of other statements (simple or compoun).
try statement is not covered due since they are not suited for HPC applications, although they can be
implemented in Fortran. For the moment, async statements are not covered, but they may be useful in
the future.

assert limited
assignment 3
augmented assignment 3
pass 3
del 3
return 3
yield 7
raise 7
break 3
continue 3
import 3
global 7
nonlocal 7

Table 3: Available simple statements in Pyccel

if 3
for 3
while 3
try 7
funcdef 3
classdef 3
async with stmt 7
async for stmt 7
async funcdef 7

Table 4: Available compound statements in Pyccel

Oriented Object Programing

OOP is partially available in Pyccel. In source code 6, we define a class and its associated methods.
Polymorphism is not yet available, because of the current implementation of type inference algorithm
inheritence is also not available yet. Notice the use of the keyword method when declaring the function
type, in order to bound the method translate to the class Point. Fortran 2003 is then used to generate
the associated code.
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1 #$ header c l a s s Point ( pub l i c )
2 #$ header method i n i t ( Point , [ double ] )
3 #$ header method d e l ( Point )
4 #$ header method t r a n s l a t e ( Point , [ double ] )
5
6 c l a s s Point ( ob j e c t ) :
7 de f __init__ ( self , x ) :
8 self . x = x
9

10 de f __del__ ( self ) :
11 pass
12
13 de f translate ( self , a ) :
14 self . x = self . x + a
15
16 x = [ 1 . , 1 . , 1 . ]
17 p = Point ( x )
18
19 a = [ 0 . , 0 . , 0 . ]
20 a [ 0 ] = 3
21 p . translate ( a )
22 p r in t ( p . x )
23
24 b = p . x [ 0 ]
25 b = p . x [ 0 ] + 1
26 b = 2 ∗ p . x [ 0 ] + 1
27 b = 2 ∗ ( p . x [ 0 ] + 1 )
28 pr in t ( b )
29 c= p . x
30
31 p . x [ 1 ] = 2 .0
32
33 de l p

Source Code 6: Class definition and usage.

Decorators

Pyccel gives you the power to use some decorators in order to have some special functionalities,we here
offer four decorators types, sympy, python ,vectorize,inline and property for the OOP.

• types

the types decorator does the same work as a type header instead of writing a header you can use the
decorator types in order to have the same mechanisme.

1 @types ( i n t )
2 de f g1 ( x ) :
3 y = x+1
4 return y

Source Code 7: Examples of types decorator.
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• vectorize

the vectorize decorator allow us to extend a function that acts on a scaler argument to act on a vector

1 #$ header func t i on f ( i n t )
2 @vectorize ( z )
3 de f f ( z ) :
4 x= 5+z
5 return x

Source Code 8: Examples of vectorize decorator.

• sympy

the sympy decorator allow us to extend the notion of a lambda expressions where you can write complex
symbolic code using Sympy objects and as lambda expression these functions will not be generated only
after the call of Pyccel built-in function lambdify in addition to declaring its type.

1 @sympy
2 de f f2_sympy ( x ) :
3 #This func t i on must re turn a sympy expr e s s i on
4 #that depends on the arguments o f the func t i on
5 from sympy import diff
6 u = x∗∗2 + 2∗x
7 u_dx = diff ( u , x )
8 re turn u_dx

Source Code 9: Examples of sympy decorator.

• python

due to the limitations of Pyccel the python decorator gives you the freedom to write whatever Python
code you want and will be executed dynamically during the code generation process .

1 @python
2 de f f ( x ) :
3 x = [ None ]∗5
4 x = 5
5 x = 5 .
6 return x

Source Code 10: Examples of python decorator.
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• inline

the inline decorator gives us the option of inlining a function which will help in increasing the execution
time.

1 #$ header func t i on f ( i n t )
2 @inline
3 de f f ( t ) :
4 x = 5∗t
5 return x
6
7 m = f (5 )

Source Code 11: Examples of inline decorator.

• property

we also support the property decorator used in methods for classes in the Oriented Object programing
case.

1 #$ header c l a s s Shape ( pub l i c )
2 #$ header method i n i t ( Shape , double , double )
3 #$ header method area ( Shape ) r e s u l t s ( double )
4 #$ header method per imeter ( Shape ) r e s u l t s ( double )
5 #$ header method de s c r i b e ( Shape , s t r )
6 #$ header method authorName ( Shape , s t r )
7 #$ header method s c a l e S i z e ( Shape , double )
8
9 c l a s s Shape :

10
11 de f __init__ ( self , x , y ) :
12 self . x = x
13 self . y = y
14 self . description = ”This shape has not been de sc r ibed yet ”
15 self . author = ”Nobody has cla imed to make t h i s shape yet ”
16
17 @property
18 de f area ( self ) :
19 y = self . x ∗ self . y
20 return y
21
22 @property
23 de f perimeter ( self ) :
24 x = 2 ∗ self . x + 2 ∗ self . y
25 return x
26
27 de f describe ( self , text ) :
28 self . description = text
29
30 de f authorName ( self , text ) :
31 self . author = text
32
33 de f scaleSize ( self , scale ) :
34 self . x = self . x ∗ scale
35 self . y = self . y ∗ scale
36
37 rectangle = Shape ( 1 00 . , 4 5 . )
38 #f i nd i ng the area o f your r e c t ang l e :
39 p r in t ( rectangle . area )

Source Code 12: Examples of property decorator.
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2.4 Functional programming

Functional programming is partially covered by Pyccel. It allows for code manipulation, in opposition
to the source-to-source approach of Pyccel when dealing with imperative programming. One of the
main goals of adding this capability, is to provide different interpretations and then allow for task based
parallelism in the future. lambda expressions are then very useful, since they should have no side-effect
which is an important requirement to have automatic parallelisation.

Lambda expression

lambda expressions are small anonymous functions. They do not containt any assignement. One big
advantage of lambda expression is that they allow for currying functions with multiple arguments. The
later capability is still very limited in Pyccel and future work will be done to enhance it. In source code
13, we show different lambda expressions; Notice that the functions f1, f2 and g1 are treated as symbolic
functions and they can not be generated in Fortran. While the function m1 is exported after calling the
Pyccel built-in function lambdify in addition to declaring its type.

1 f1 = lambda x : x∗∗2 + 1
2 f2 = lambda x , y : x∗∗2 + y∗∗2 + 1
3 g1 = lambda x : f1 ( x ) ∗∗2 + 1
4
5 #$ header m1( double )
6 m1 = lambdify ( g1 )

Source Code 13: Examples of lambda expressions.

List Comprehensions

List Comprehensions gives us an easy way to create lists ,we only support list of integers, real, complex
numbers and tuples or lists we don’t support list Comprehensions inside list Comprehensions we also don’t
support if conditions but we allow the use of the ternary conditional operator as show in the example
below.

1 x = [ i∗j f o r i in range (1000) f o r j in range (0 , i , 2 ) f o r k in range (0 , 3 ) ]
2
3 y = [ 5 . ] ∗ 5 0
4
5 z = [ i∗j∗k1 f o r i in range (200) f o r j in range (0 , i , 2 ) f o r k1 in y ]
6
7 s = [ ( x1 , y1 , z1 ) f o r x1 in range (1 ,30) f o r y1 in range ( x1 , 3 0 ) f o r z1 in range ( y1 , 1000 ) ]
8
9 t = [ i i f i>5 e l s e 5 f o r i in range (1000) ]

Source Code 14: Examples List Comprehensions.

Iterators

Thanks to the use of magic methods and OOP, it is possible to define classes that behave like iterators.
In Python, this is simply done by implementing the methods iter and next . However, usage of
iterators is still very experimental in Pyccel and additional work should be done, especially since one may
use the yield statement, which is not supported yet in Pyccel.
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2.5 Error and Warning messages

A considerable work have been done to ensure that Pyccel works like traditional compilers. Errors and
warnings are returned by Pyccel depending on their severity. In addition, since Redbaron provides a
bounding-box notion, lines/columns are printed for some errors/warnings.

2.6 Use of legacy code

One of the main advantages of Pyccel compared to the existing accerators tools, is the capability of using
legacy code and importing them in different ways. Following the same idea that has been shown for
BLAS (source code 3), one can link to any existing library in C/Fortran. Notice that this is done at the
low level and does not rely on Python execution runtime.
In addition, one may implement Pyccel code (using the DSL mode) in order to have a better interface.
This approach has been used for FFTPACK.

2.7 Pyccel standard library

Pyccel standard library consists of a small subset of utilities from the Python standard library in addition
to blas, lapack, fftpack, mpi, openmp and openacc that are accessed through the DSL mode. Other
libraries may be added in the future.

Built-in types, functions and constants

Built-in types were already introduced in Tab. 1. Python functions are not fully covered and only those
marked in Tab. 5 are treated.

abs 3 delattr 7 hash 7 memoryview 7 set 7
all 7 dict 7 help 7 min 3 setattr 7
any 7 dir 7 hex 7 next 7 slice ?
ascii 7 divmod 7 id 7 object 7 sorted 7
bin 7 enumerate 3 input 3 oct 7 staticmethod 7
bool 3 eval 7 int 3 open 3 str 3
breakpoint 7 exec 7 isinstance 7 ord 7 sum 3
bytearray 7 filter 7 issubclass 7 pow 3 super 3
bytes 7 float 3 iter 7 print 3 tuple 3
callable 7 format 7 len 3 property 3 type ?
chr 3 frozenset 7 list 3 range 3 vars 7
classmethod 7 getattr 7 locals 7 repr 3 zip 3
compile 7 globals 7 map 3 reversed 3 import 7
complex 3 hasattr 7 max 3 round 3

Table 5: Available Python functions in Pyccel

Built-in Mathematical functions and constants

Python provides different mathematical functions through its standard library. These functions can be
imported from the math package. In tables 6, 7, 8, 9, 10 and 11 we show the available real functions.
Tab. 12 shows the available math constants.
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ceil 3 isclose 7
copysign 7 isfinite 7
fabs 7 isinf 7
factorial 7 isnan 7
floor 3 ldexp 7
fmod 3 modf 3
frexp 7 remainder 7
fsum 7 trunc 7
gcd 7

Table 6: Available Number-theoretic and representa-
tion functions in Pyccel

exp 3
expm1 7
log 3
log1p 7
log2 3
log10 3
pow 3
sqrt 3

Table 7: Available Power and logarithmic functions in
Pyccel

acos 3
asin 3
atan 3
atan2 3
cos 3
hypot 3
sin 3
tan 3

Table 8: Available trigonometric functions in Pyccel

acosh 3
asinh 3
atanh 3
cosh 3
sinh 3
tannh 3

Table 9: Available hyperbolic functions in Pyccel

degrees 3?
radians 3?

Table 10: Available angular conversion functions in
Pyccel

erf 3
erfc 3
gamma 3
lgamma 3

Table 11: Available special functions in Pyccel

pi 3
e 3
tau 7
inf 7
nan 7

Table 12: Available math constants in Pyccel
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itertools package

itertools was originaly inspired by ideas from APL, Haskell and SML. Functional programming relies
heavily on the use of iterators and exposing it will improve the capabilities of Pyccel. For the moment,
product is the only available function. Source code 17 shows an example of using product function from
itertools package.

Pyccel Internal libraries

Many HPC applications rely on the use of well established and optimized libraries like BLAS and LA-
PACK. Moreover, distribued computing is generaly based on MPI. In order to take into account these
kinds of dependencies, Pyccel was designed in such a way it makes it easy to use these libraries in an in-
ternal dsl mode. In addition, enriching them is straithforward using types and macros dsl. Since Python
provides good bindings for BLAS, LAPACK, MPI and FFTPACK (FFTW is not yet available in Pyccel)
that are easier to use than the low-level implementations, we decided to make Pyccel understands and
map high-level calls to the low-level ones, through the notion of macros. Tab. 13 lists the available
libraries through the internal dsl mode in Pyccel. Other libraries will be added in the future, such as the
Thrust [8] library.
In source code 18, we show how to call MPI in the dsl mode. Notice that such a code will not run using
Python, in which case, one needs to use the mpi4py package.

BLAS 3
LAPACK 3
MPI 3
OpenMP 3
OpenAcc 3
FFTPACK 3
FFTW 7

Table 13: Available internal libraries in Pyccel

2.8 Third party libraries

Thanks to the concept of macros, although it is limited, one can use third party libraries and still convert
the Python code to Fortran, using Pyccel. In the sequel, we describe the available features in this context.
These features will be extended in the future depending on the applications using Pyccel.

numpy

Numpy [11] is actually the standard package when dealing with N-dimensional arrays. It provides the
object ndarray and many useful and advanced functions. ndarray object is available in Pyccel as an
abstract node (an extension of the Basic class from Sympy).
Moreover, Pyccel covers Numpy multiple precision. In source code 16, we show how to create/declare
variables with different precisions using numpy. Multiple precision for numeric types is also available for
functions. In source code 15, we show a function that can operate on arrays with different precisions and
types. In addition to these types, some functions from Numpy and covered by Pyccel are described in
Tab. 15.
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int int(kind=4)

int32 int(kind=4)

int64 int(kind=8)

float real(kind=8)

float32 real(kind=4)

float64 real(kind=8)

complex complex(kind=16)

complex64 complex(kind=8)

complex128 complex(kind=16)

Table 14: Correspondance between numeric types in
Numpy and Fortran

zeros 3 sqrt 3
ones 3 asin 3
array 3 acos 3
empty 3 asec 3
zeros like 3 atan 3
ones like 3 acot 3
rand 3 acsc 3
sum 3 log 3
shape 3

Table 15: Available numpy functions in Pyccel

1 #$ header func t i on dec r ( i n t ∗4 | i n t ∗8 | i n t ∗4 [ : ] | i n t ∗8 [ : ] )
2 de f decr ( y ) :
3 y = y−1

Source Code 15: Function definition with different precisions and types

scipy

Scipy library [10] provides different mathematical algorithms and user-friendly functions built on the
Numpy package. Tables 16 and 17 show the available constants and functions from scipy. Notice that
due to the use of macros, BLAS and LAPACK calls must be used in-place, without creating new variables;
this is not a limitation for HPC applications, since the user should manage himself the memory usage.

pi 3

Table 16: Available scipy constants in Pyccel

scipy.linalg.blas 3
scipy.linalg.lapack 3
scipy.fftpack 3

Table 17: Available scipy functions/sub-packages in
Pyccel

mpi4py

mpi4py [4], provides Python bindings of Message Passing Interface (MPI) [6] standard allowing Python
codes to run in parallel on multiple processors.
In source code 21, we show a parallel implementation for matrix-matrix multiplication using mpi4py.mpi4py
uses the mecanimse of macros which provide us with a one on one mapping between mpi4py calls and
Fortran calls Which comes with certain limitations if the mpi4py call is much more complex ,like the
irecv method which need a buffer in Fortran while it doesn’t in mpi4py
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3 Examples and Benchmarks

In this section, we compare Pyccel to other available tools, such as: Hope, PyPy, Cython, Numba and
Pythran. Finally, we give a more complex example that is of interest in HPC: parallel dot and solve for
a Kronecker product matrix. Since it is involving different librairies in Python, the comparison will be
restricted to few tools. In order to address the portability of the generated code by Pyccel, we use both
gcc and intel to compile the Fortran code. In this case, the examples were only compiled with the flag
-O2.

3.1 Rosen der

This example tests how the compiler is accessing data in a 1d array, while computing an expression that
involves local terms (direct neighbors) whithin a for loop. In Tab. 18, we give the cpu time and the
resulting speedup for double precision. We notice that Pyccel (gcc) is two times faster than Pythran and
three times faster when using intel.

Tool Python Hope PyPy Cython Numba Pythran Pyccel-gcc Pyccel-intel
Timing (µs) 229.85 811.67 70.00 2.06 4.73 2.07 0.98 0.64
Speedup − × 0.28 × 3.28 × 111.43 × 48.57 × 110.98 × 232.94 × 353.94

Table 18: Rosen-Der (double precision): CPU time and speedup with respect to Python

3.2 Black-Scholes

We consider the Black-Scholes formula for European options. The closed form is used an evaluated for
106 strikes. In Tab. 19, we give the cpu time and the resulting speedup for double precision. As we can
see, Pyccel outperforms all existing tools, especially when using intel compiler.

Tool Python Hope PyPy Cython Numba Pythran Pyccel-gcc Pyccel-intel
Timing (µs) 180.44 9.27 1.55 309.67 3.0 1.1 1.04 6.56 10−2

Speedup − × 19.46 × 115.72 × 0.58 × 60.06 × 163.8 × 172.35 × 2748.71

Table 19: Black-Scholes (double precision): CPU time and speedup with respect to Python

3.3 Laplace

This example shows the perfomance on accessing a 2d array to solve the Laplace equation using second
order central Finite Differences (access to direct neighbors). In Tab. 20, we give the cpu time and the
resulting speedup for double precision. We notice that Pythran is better than Pyccel-gcc. The reason
is that Pythran is performing code optimizations. Unlike gcc, the intel version is more than twice time
faster than Pythran, without setting any optimization flags!!

Tool Python Hope PyPy Cython Numba Pythran Pyccel-gcc Pyccel-intel
Timing (µs) 57.71 745.27 1.51 7.98 6.46 10−2 6.28 10−2 8.02 10−2 2.81 10−2

Speedup − × 0.07 × 37.98 × 7.22 × 892.02 × 918.56 × 719.32 × 2048.65

Table 20: Laplace (double precision): CPU time and speedup with respect to Python
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3.4 Growcut

The GrowCut example is an image processing algorithm based on segmentation according to the similarity
of the adjacent pixels. In addition to using a 3d array, inner loops bounds are not fixed and may change
with respect to the outer loops. In Tab. 21, we give the cpu time and the resulting speedup for double
precision. In this example, we notice that Pyccel is only 1.3 time faster than Pythran.

Tool Python Hope PyPy Cython Numba Pythran Pyccel-gcc Pyccel-intel
Timing (s) 54.39 0.8 1.0 1.02 10−1 4.67 10−1 8.57 10−2 6.27 10−2 6.54 10−2

Speedup − × 63.75 × 54.28 × 532.37 × 116.45 × 634.32 × 866.49 × 831.7

Table 21: Growcut (double precision): CPU time and speedup with respect to Python

3.5 Kronecker product

This example implements the matrix-vector product for a matrix that is a Kronecker product of two
(stencil) matrices. In Tab. 22, we give the cpu time and the resulting speedup for double precision. We
notice that Pyccel (using intel compiler) is about 6 and 9 times faster than Cython and Pythran.

Tool Python Numba Hope Cython Pythran Pyccel-gcc Pyccel-intel
Timing (µs) 624.3 80.52 9.17 8.3 10−1 1.248 9.89 10−1 1.38 10−1

Speedup − × 7.75 × 68.08 × 751.89 × 500.3 × 631.1 × 4506.45

Table 22: Kronecker-product dot (double precision): CPU time and speedup with respect to Python for a matrix 100×100
and a padding of 10

3.6 Discussion

Figure 2: Speedup provided by different accelerator tools using double and single precision for the four considered exam-
ples.
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3.7 Parallel matrix-matrix multiplication

In the sequel, we present 3 implementations of the matrix-matrix multiplication using MPI, OpenMP
and OpenAcc. In Fig. 3, we plot the CPU time in seconds and the speedup on one single Node, for the
OpenMP implementation, on the LRZ cluster.

Figure 3: Matrix-multiplication results (using OpenMP) for (n,m,p) = (5000,7000,5000). (left)CPU time in seconds (right)
speedup on one Node (28 cores)
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4 Future work

• Functional programing

• Parallel computing

– OpenAcc

– Task based parallelism using OpenMP

• Code generation

• standard library: functools

• Third party libraries: fftw,

5 Conclusion

In this work, we presented a new static compiler for Python using Fortran as a backend language. We
presented different benchmarks for which Pyccel outperforms most of the existing solutions mostly relying
on c or c++. Although Pyccel does not perform any internal optimization on the generated code, the
time execution is better thanks to the well known fact that fortran compilers produce optimized machine
code. Pyccel is now used for different internal projects at the NMPP such as automatic code generation
for finite elements methods using a formal languague for variational formulations. Other applications
include a 4d parallel vlasov solver, GLT symbolic computation for BSplines and machine learning for
pdes. In future work, we will extend the fonctional paradigm with task based parallelism and cache
efficient algorithms for some specific patterns.
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Appendix: Python codes

1 from numpy import int , int32 , int64
2 from numpy import f l o a t , float32 , float64
3 from numpy import complex , complex64 , complex128
4
5 x1 = in t (6 )
6 x2 = int32 (6 )
7 x3 = int64 (6 )
8 y1 = f l o a t (6 )
9 y2 = float32 (6 )

10 y3 = float64 (6 )
11 z1 = complex (6)
12 z2 = complex64 (6 )
13 z3 = complex128 (6 )

Source Code 16: Using Numpy for multiple precision

1 from itertools import product
2
3 x1 = [1 , 2 , 3 ]
4 y1 = [4 , 5 , 6 ]
5
6 f o r i2 , j2 in product ( x1 , y1 ) :
7 p r i n t i2 , j2

Source Code 17: Example of using product function from itertools package.
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1 from pyccel . stdlib . internal . mpi import mpi_init
2 from pyccel . stdlib . internal . mpi import mpi_finalize
3 from pyccel . stdlib . internal . mpi import mpi_comm_size
4 from pyccel . stdlib . internal . mpi import mpi_comm_rank
5 from pyccel . stdlib . internal . mpi import mpi_comm_world
6 from pyccel . stdlib . internal . mpi import mpi_status_size
7 from pyccel . stdlib . internal . mpi import mpi_allreduce
8 from pyccel . stdlib . internal . mpi import MPI_INTEGER
9 from pyccel . stdlib . internal . mpi import MPI_PROD

10
11 # we need to de c l a r e these v a r i a b l e s somehow ,
12 # s i n c e we are c a l l i n g mpi subrout ine s
13 ierr = −1
14 size = −1
15 rank = −1
16
17 mpi_init ( ierr )
18
19 comm = mpi_comm_world
20 mpi_comm_size ( comm , size , ierr )
21 mpi_comm_rank ( comm , rank , ierr )
22
23 i f rank == 0 :
24 value = 1000
25 e l s e :
26 value = rank
27
28 product_value = 0
29 mpi_allreduce ( value , product_value , 1 , MPI_INTEGER , MPI_PROD , comm , ierr )
30
31 pr in t ( ’ I , p roce s s ’ , rank , ’ , have the g l oba l product value ’ , product_value )
32
33 mpi_finalize ( ierr )

Source Code 18: Calling MPI in a DSL mode usage

1 de f kron_dot_dense ( A , B , X ) :
2 n = A . shape [ 0 ] ; m = B . shape [ 1 ]
3 X_tmp = np . zeros_like ( X )
4 f o r i in range ( n ) :
5 f o r j in range ( m ) :
6 f o r k in range ( m ) :
7 X_tmp [ i , j ] += X [ i , k ]∗ B [ k , j ]
8
9 Y = np . zeros_like ( X )

10 f o r j in range ( m ) :
11 f o r i in range ( n ) :
12 f o r k in range ( n ) :
13 Y [ i , j ] += A [ k , i ]∗ X_tmp [ k , j ]
14 re turn Y

Source Code 19: Kronecker dot product using dense matrices

20



1 de f kron_dot_stencil ( starts , ends , pads , X , X_tmp , Y , A , B ) :
2 s1 = starts [ 0 ]
3 s2 = starts [ 1 ]
4 e1 = ends [ 0 ]
5 e2 = ends [ 1 ]
6 p1 = pads [ 0 ]
7 p2 = pads [ 1 ]
8
9 f o r j1 in range ( s1−p1 , e1+p1+1) :

10 f o r i2 in range ( s2 , e2+1) :
11 X_tmp [ j1+p1−s1 , i2−s2+p2 ] = sum( X [ j1+p1−s1 , i2−s2+k ]∗ B [ i2 , k ]
12 f o r k in range (2∗ p2+1) )
13
14 f o r i1 in range ( s1 , e1+1) :
15 f o r i2 in range ( s2 , e2+1) :
16 Y [ i1−s1+p1 , i2−s2+p2 ] = sum( A [ i1 , k ]∗ X_tmp [ i1−s1+k , i2−s2+p2 ]
17 f o r k in range (2∗ p1+1) )
18
19 return Y

Source Code 20: Kronecker dot product using stencil matrices
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1 de f dot ( my_A , my_B , my_C )
2 import numpy import floor , sqrt , dot , empty_like , zeros_like
3 from mpi4py import MPI
4
5 my_N = 3000
6 my_M = 3000
7
8 NORTH = 0
9 SOUTH = 1

10 EAST = 2
11 WEST = 3
12
13 de f pprint ( string , comm=MPI . COMM_WORLD ) :
14 i f comm . rank == 0 :
15 pr in t ( string )
16
17 comm = MPI . COMM_WORLD
18
19 mpi_rows = in t ( floor ( sqrt ( comm . size ) ) )
20 mpi_cols = comm . size // mpi_rows
21 i f mpi_rows ∗ mpi_cols > comm . size :
22 mpi_cols −= 1
23 i f mpi_rows ∗ mpi_cols > comm . size :
24 mpi_rows −= 1
25
26 pprint ( ”Creat ing a %d x %d proc e s s o r g r id . . . ” % ( mpi_rows , mpi_cols ) )
27
28 ccomm = comm . Create_cart ( ( mpi_rows , mpi_cols ) , periods=(True , True ) , reorder=True )
29
30 my_mpi_row , my_mpi_col = ccomm . Get_coords ( ccomm . rank )
31 neigh = [0 , 0 , 0 , 0 ]
32
33 neigh [ NORTH ] , neigh [ SOUTH ] = ccomm . Shift (0 , 1)
34 neigh [ EAST ] , neigh [ WEST ] = ccomm . Shift (1 , 1)
35
36 # Create matr i ce s
37 my_C = zeros_like ( my_A )
38 tile_A_ = empty_like ( my_A )
39 tile_B_ = empty_like ( my_A )
40 req = [−1]∗4
41
42 f o r r in range ( mpi_rows ) :
43 req [ EAST ] = ccomm . Isend ( tile_A , neigh [ EAST ] )
44 req [ WEST ] = ccomm . Irecv ( tile_A_ , neigh [ WEST ] )
45 req [ SOUTH ] = ccomm . Isend ( tile_B , neigh [ SOUTH ] )
46 req [ NORTH ] = ccomm . Irecv ( tile_B_ , neigh [ NORTH ] )
47
48 my_C += dot ( tile_A , tile_B )
49
50 req [ 0 ] . Waitall ( req )
51 comm . barrier ( )

Source Code 21: Matrix-matrix multiplication using MPI
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1 from numpy import zeros
2
3 n = 5000
4 m = 7000
5 p = 5000
6
7 a = zeros ( shape=(n , m ) )
8 b = zeros ( shape=(m , p ) )
9 c = zeros ( shape=(n , p ) )

10
11 #$ omp p a r a l l e l
12 #$ omp do schedu le ( runtime )
13 f o r i in range (0 , n ) :
14 f o r j in range (0 , m ) :
15 a [ i , j ] = i−j
16 #$ omp end do nowait
17
18 #$ omp do schedu le ( runtime )
19 f o r i in range (0 , m ) :
20 f o r j in range (0 , p ) :
21 b [ i , j ] = i+j
22 #$ omp end do nowait
23
24 #$ omp do schedu le ( runtime )
25 f o r i in range (0 , n ) :
26 f o r j in range (0 , p ) :
27 f o r k in range (0 , p ) :
28 c [ i , j ] = c [ i , j ] + a [ i , k ]∗ b [ k , j ]
29 #$ omp end do
30 #$ omp end p a r a l l e l

Source Code 22: Matrix-matrix multiplication using OpenMP
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Abstract
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1. Introduction

Discretizations of partial differential equations based on structured grids, allow to device fast solvers, under some
specific assumptions. For linear equations with constant coefficients, the involved matrices, using Finite Difference or
Finite Elements for example, can be described using the kronecker algebra; these matrices are in fact a sum of linear
combination of Kronecker product of 2 or 3 matrices (for 2d and 3d problems respectively).
In this work, we present a Python library that recognizes the Kronecker structure starting from a weak formulation.
The aim is to generate automatically a parallel code for the matrix-vector product function in Python, which is then
converted into Fortran using Pyccel. In addition, solving the associated linear systems can be done using different
strategies in order to get an optimal fast solver. In [1], such approach was used to provide a solver for Isogeometric
Analysis discretization of the quasi-neutral equation in a gyro-kinetic model, using the FFT in the angular direction.
In [2], the authors present a parallel implementation when using explicit time scheme, where in this case, they imple-
mented a fasst solver for the mass matrix (which is a Kronecker product of 1d mass matrices). Other strategies such
as the use of Sylvester equation was developed in [3]. Another application of such algorithms is the use of low rank
approximation to device preconditioners as in [4].

Remark 1.1. This work is still in progress, and only the matrix-vector product was implemented for the moment.
Solving the associated linear system is still a work in progress.

1.1. B-Splines
We start this section by recalling some basic properies about B-splines curves and surfaces.
For a basic introduction to the subject, we refer to the books [5].
A B-Splines family, (Ni)16i6n of order k, can be generated using a non-decreasing sequence of knots T =

(ti)16i6n+k.

B-Splines series
The j-th B-Spline of order k is defined by the recurrence relation:

Nk
j = wk

jN
k−1
j + (1 − wk

j+1)Nk−1
j+1 (1.1)

where,

wk
j(x) =

x − t j

t j+k−1 − t j
N1

j (x) = χ[t j,t j+1[(x) (1.2)

We note some important properties of a B-splines basis:

- B-splines are piecewise polynomial of degree p = k − 1,
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- Compact support; the support of Nk
j is contained in

[
t j, t j+k

]
,

- If x ∈ ]t j, t j+1[, then only the B-splines {Nk
j−k+1, · · · ,N

k
j } are non vanishing at x,

- Positivity: ∀ j ∈ {1, · · · , n} N j(x) > 0, ∀x ∈]t j, t j+k[,

- Partition of unity
∑n

i=1 Nk
i (x) = 1,∀x ∈ R,

- Local linear independence,

- If a knot ti has a multiplicity mi then the B-spline is C(p−mi) at ti.

2. Kronecker product

The kronecker product and its related properties prodive many examples of algorithms that combine intensive
computations with the use of low level libraries. For more details on this subject, we refer the reader to [? ] and the
references therein. For self-consistency of the paper, we shall give a brief recall of the properties used to implement
our examples.

Definition 2.1 (The vec operator). Let A = (ai j) ∈ Mn×m, the vec operator is defined as,

vecA =


A:,1
...

A:,m

 ∈ Rmn (2.1)

which is simply a vector composed by stacking all the columns of A. Where we denote A:, j the jth column of A.
We also define the inverse operator of vec by,

A = vec−1vecA (2.2)

Definition 2.2 (Kronecker product). Let A = (ai j) ∈ Mm×n and B = (bi j) ∈ Mr×s be two matrices. The Kronecker
product of A and B, denoted by A ⊗ B ∈ Mmr×ns, defines the following matrix:

A ⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB

 (2.3)

Proposition 2.1.

(A ⊗ B)vec(X) = vec(BXAT ) (2.4)

Proposition 2.2.

(A ⊗ B)−1 = A−1 ⊗ B−1 (2.5)

Using Eq. 2.5, we have (A ⊗ B)−1vec(Y) = A−1 ⊗ B−1vec(Y), therefor

Proposition 2.3.

(A ⊗ B)−1vec(Y) = vec(B−1YA−T ) (2.6)
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Algorithm 1 Kronecker product-dot (sequential) algorithm

1: procedure kron dot seq(A, B, x, y) . y = (A ⊗ B) x
2: xtmp ← mxm(x, B) . matrix-matrix multiplication
3: y← mxm(A, xtmp)
4: return y
5: end procedure

2.1. Algorithms and implementation

In the sequel, we present the serial and parallel algorithm and give there python implementations. Using 2.4, the
general form for the matrix-vector product is given in (algorithm 1) for the serial case. Its Python implementation is
given in (Source Code 4), when both A and B are dense matrices. In many applications such as numerical discretiza-
tions of partial differential equations, both A and B are banded matrices. In this case, one may use the LAPACK
xGBMV subroutines and its associated banded storage. Another way, is to use a Stencil format, as described in the
(Source Code 5).
For parallel computing, we use MPI cart and its associated subcomminicators to exchange the 1D data. Such algo-
rithms can not be implemented using the existing tools, while ensuring the backward compatibility with Python.

2.2. Results

We present here some comparison results between the timming of the assembly algrithme and the dot product of
both the 2d Stencil Matrix and the Kronecker Sum of 1d matrices.

1d ⊗ 1d 2d
Assembly (s) 0.076s 60.11s
Dot Product (s) 0.045s 0.168s

Table 1: Comparaison between Kronecker Sum and 2d Format
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3. SPL library

Figure 1: SPL workflow: starting from a bilinear form (right) one can discretize it giving the Spline spaces (left) perform the symbolic computation
of the GLT expression or evaluate it.

3.1. Symbolic bilinear forms using sympde
Following the [6] approach, a new library for (tensor) finite elements has been implemented, based on Sympy.

Although sympde will be presented in a future work, we introduce here the concept of BilinearForm that will be
used throughout the paper. Compared to UFL, the ambiguity between test and trial functions is solved by providing
the variables to a lambda-like expression.
Let M, A and S denote the mass, advection and stiffness matrices in 1d. The following code shows how one can define
the Laplace and a curl-div operators using sympde: Computing their Kronecker structure leads to:

S px ⊗ Mpy + Mpx ⊗ S py

for Laplace operator, and Σ11 (−α + β) Apx ⊗ Apy ⊗ Mpz (−α + β) Apx ⊗ Apz ⊗ Mpy

(−α + β) Apx ⊗ Apy ⊗ Mpz Σ22 (−α + β) Apy ⊗ Apz ⊗ Mpx

(−α + β) Apx ⊗ Apz ⊗ Mpy (−α + β) Apy ⊗ Apz ⊗ Mpx Σ33


for the Curl-Div operator, where we introduced the matrices

Σ11 = αMpx ⊗ Mpy ⊗ S pz + αMpx ⊗ Mpz ⊗ S py + βMpy ⊗ Mpz ⊗ S px

Σ22 = αMpx ⊗ Mpy ⊗ S pz + αMpy ⊗ Mpz ⊗ S px + βMpx ⊗ Mpz ⊗ S py

Σ33 = αMpx ⊗ Mpz ⊗ S py + αMpy ⊗ Mpz ⊗ S px + βMpx ⊗ Mpy ⊗ S pz

In the following example, we consider the 2d anisotropic diffusion problem

4



from sympde . core import grad , dot
from sympde . core import FunctionSpace
from sympde . core import TestFunction
from sympde . core import BilinearForm
from sympde . core import Domain

domain = Domain ( r ' \Omega ' , dim=2 )

V = FunctionSpace ( 'V ' , domain=domain )
U = FunctionSpace ( 'U ' , domain=domain )

v = TestFunction (V , name= ' v ' )
u = TestFunction (U , name= ' u ' )

a = BilinearForm ( (v , u ) , dot ( grad ( v ) , grad ( u ) ) )

Python Code 1: sympde model for the 2D Laplace operator

from sympde . core import dot , curl , div
from sympde . core import FunctionSpace
from sympde . core import VectorTestFunction
from sympde . core import BilinearForm
from sympde . core import Constant
from sympde . core import Domain

domain = Domain ( r ' \Omega ' , dim=3 )

V = VectorFunctionSpace ( 'V ' , domain=domain )

v = VectorTestFunction (V , name= ' v ' )
u = VectorTestFunction (V , name= ' u ' )

alpha = Constant ( ' a l p h a ' , real=True )
beta = Constant ( ' b e t a ' , real=True )

expr = alpha * dot ( curl ( v ) , curl ( u ) )
+ beta * div ( v ) * div ( u )

a = BilinearForm ( (v , u ) , expr )

Python Code 2: sympde model for the 3D curl-div operator

a(v, u) =

∫
Ω

κ‖(b · ∇v)(b · ∇u) + κI∇v · ∇udΩ, ∀u, v ∈ Vh

where b denotes the unit vector of the magnetic field, Ω is our 2D computational domain and Vh ⊂ H1(Ω). In
typical applications in plasma physics, we are interested in highly anisotropic configurations with

κ‖

κI
' 106 � 1. The

associated Kronecker structure as computed by our symbolic library is

κ‖b2
xMpy ⊗ S px + 2κ‖bxbyApx ⊗ Apy + κ‖b2

y Mpx ⊗ S py + κ⊥Mpx ⊗ S py + κ⊥Mpy ⊗ S px

The abstract model using sympde is

4. Conclusion and future work

The aim of this work is to have a direct link between weak formulations defined in the continuous space and
their discrete versions. Up to now, all the existing tools based on such approach, such as Fenics, Freefem, etc, do
not infere the properties of the associated linear system to the discrete level. Our goal is not only to provide the
assembly procedure, which is generated automaticaly and is parallel, but also to construct an appropriate linear solver
or preconditioner associated to a continuous weak formulation. Up to now, we were able to compute the Kronecker
structure for linear operators and with constant coefficients. In the future, we will extend this work so that it is possible
to recognize separable variable coefficients, construct a low rank approximation and generate an appropriate linear
solver using some predefined patterns such as the one based on FFT or Sylvester system.
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from sympy import Tuple
from sympde . core import grad , dot
from sympde . core import FunctionSpace
from sympde . core import TestFunction
from sympde . core import BilinearForm
from sympde . core import Domain
from sympde . core import Constant

domain = Domain ( r ' \Omega ' , dim=2 )

V = FunctionSpace ( 'V ' , domain=domain )
U = FunctionSpace ( 'U ' , domain=domain )

v = TestFunction (V , name= ' v ' )
u = TestFunction (U , name= ' u ' )

k_par = Constant ( ' \ kappa { \ p a r a l l e l } ' , real=True )
k_per = Constant ( ' \ kappa { \ pe rp } ' , real=True )

bx = Constant ( ' b x ' , real=True )
by = Constant ( ' b y ' , real=True )
b = Tuple ( bx , by )

expr = k_par * dot (b , grad ( v ) ) * dot (b , grad ( u ) ) +

k_per * dot ( grad ( v ) , grad ( u ) )
a = BilinearForm ( (v , u ) , expr )

Python Code 3: sympde model for the 2D anisotropic operator
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Appendix

Python codes

d e f kron_dot_dense (A , B , X ) :
n = A . shape [ 0 ] ; m = B . shape [ 1 ]
X_tmp = np . zeros_like ( X )
f o r i i n r a n g e ( n ) :

f o r j i n r a n g e ( m ) :
f o r k i n r a n g e ( m ) :

X_tmp [i , j ] += X [i , k ]*B [k , j ]

Y = np . zeros_like ( X )
f o r j i n r a n g e ( m ) :

f o r i i n r a n g e ( n ) :
f o r k i n r a n g e ( n ) :

Y [i , j ] += A [k , i ]* X_tmp [k , j ]
r e t u r n Y

Python Code 4: Kronecker dot product using dense matrices

d e f kron_dot_stencil ( starts , ends , pads , X , X_tmp , Y , A , B ) :
s1 = starts [ 0 ]
s2 = starts [ 1 ]
e1 = ends [ 0 ]
e2 = ends [ 1 ]
p1 = pads [ 0 ]
p2 = pads [ 1 ]

f o r j1 i n r a n g e ( s1−p1 , e1+p1+1) :
f o r i2 i n r a n g e ( s2 , e2+1) :

X_tmp [ j1+p1−s1 , i2−s2+p2 ] = sum ( X [ j1+p1−s1 , i2−s2+k ]*B [ i2 , k ]
f o r k i n r a n g e (2* p2+1) )

f o r i1 i n r a n g e ( s1 , e1+1) :
f o r i2 i n r a n g e ( s2 , e2+1) :

Y [ i1−s1+p1 , i2−s2+p2 ] = sum ( A [ i1 , k ]* X_tmp [ i1−s1+k , i2−s2+p2 ]
f o r k i n r a n g e (2* p1+1) )

r e t u r n Y

Python Code 5: Kronecker dot product using stencil matrices
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5 Conclusion and future work

The aim of this work is to make the transition easy from a prototype code to a
productive code.
By providing the Pyccel Compiler we were able to make that transition by trans-
lating the Python Code to an Understandable Fortran Code that competes
well with the existing tools, the next step is to support other languages like C,
C++, Lua, Julia, Rust and Octave/Matlab , so that we can have a Language-
independent code which is a new concept that has many benefits that we can
exploit.
Always in the same objective of simplifying the life of a programmer we intro-
duced the Library Fast and parallel Kronecker solvers using Automated Sym-
bolic Isogeometric Analysis to solve Partial differential equation in the same
spirit of FreeFem, Fenics and many other tools but it is more user friendly
and more efficient as it introduces many strategies to solve the associated Lin-
ear System by using the information provided by the Symbolic Isogeometric
Analysis, this work is still in progress and only the matrix-vector product was
implemented for the moment we will add Solving the exact associated linear
system in the future.

42


	Introduction
	Symbolic Computation
	Sympy
	Advanced Expression Manipulation
	Code Generation in Sympy


	Introduction (1)
	Pyccel internal design
	Pyccel workflow
	Pyccel Internal DSL
	Python/Pyccel statements
	Functional programming
	Error and Warning messages
	Use of legacy code
	Pyccel standard library
	Third party libraries

	Examples and Benchmarks
	Rosen der
	Black-Scholes
	Laplace
	Growcut
	Kronecker product
	Discussion
	Parallel matrix-matrix multiplication

	Future work
	Conclusion
	Introduction (2)
	B-Splines

	Kronecker product
	Algorithms and implementation
	Results

	SPL library
	Symbolic bilinear forms using sympde

	Conclusion and future work
	Conclusion and future work (1)

