NUMHYP 2011: main ideas evoqued in the discussion session

Laurent Gosse, IAC Roma

September 25, 2011

The audience made several contributions: the main ones were

- F. Bouchut proposed to quantify precisely "how better well-balanced schemes are"; one simple (and maybe too elementary) is to study the residues decay for boundary value problems which are known to stabilize correctly onto an asymptotic regime.
- F. Coquel emphasized the importance of "well-prepared initial/boundary data" when it comes to consider ambitious AP strategies, like for instance from Navier-Stokes toward simplified shallow water problems in order to avoid boundary or internal layers.
- J. Sainte-Marie also advocated a program for numerically passing from compressible Navier-Stokes to shallow water models.
- L. Gosse raised the question about defining the correct central notion (assuming it exists) between Well-Balanced and Asymptotic-Preserving: WB can be recast as a special AP process where time t is rescaled like t/ε and AP schemes can be straightforwardly derived starting from rigorous WB Godunov discretizations including non-conservative products. Care must be taken for infinite domains as travelling waves are not asymptotic profiles which enter naturally these numerical frameworks; the natural setup is probably the boundary value problem (which connects also to F. Coquel's remark).
- The panel (D. George for modelling, P. Noble for analysis, C. Pares for numerical analysis and computation, S. Jin for general expertise) stressed several directions of investigation under the supervision of S. Noelle.

They are reported in the following table:

David George	Pascal Noble	Carlos Parés	Shi Jin
Confinement inside hyper-	Handling complex steady-	Non-hydrostatic effects in	Implicit schemes with precon-
bolic theory: too restrictive	states (with general pressure	shallow water (modelling and	ditioning (cf. BGK penaliza-
or not ? (cf. dispersive terms	laws or Coriolis force) and	computational viewpoints)	tion of Boltzmann eqn)
as raised by P. Noble)	2-D problems		
Stiffness and relative impor-	Super-characteristic relax-	Undestanding nonlinear reso-	Problems with \neq time scales
tance of different terms (bal-	ations actually appear and	nance (relevance ?) and non-	(e.g. combustion)
ancing issues ?)	must be handled correctly	conservative products	
Modelling of multiphase flows:	Numerical challenge of han-	Noise in the data (continuity	singular limits of Vlasov eqn:
terra incognita ? Generally	dling high order (dispersive)	w.r.t. data), stochastic terms	for instance high-field limit
leading to non-hyperbolic pbs	partial differential terms		
	Asymptotic-Preserving (AP)		are Well-Balanced and
	from Navier-Stokes toward St-		AP both sides of the same
	Venant system		coin ? (writing $\partial/\partial(t/\varepsilon), t \to$
			0, for large time consistency)