Examen partiel d'Analyse Numérique du mardi 30 novembre 2004

Durée : 3h Notes de cours autorisées

Les deux problèmes sont indépendants

Problème I

On considère le système linéaire de n > 2 équations à n inconnues $(x_i; i = 1...n)$:

$$(\alpha + 2\beta)x_i - \beta(x_{i+1} + x_{i-1}) = f_i \quad 1 \le i \le n$$
 (1)

avec $\alpha \geq 0$ et $\beta > 0$, $\{f_i ; i = 1 \dots n\}$, x_0 et x_{n+1} des données.

- 1. Mettre le système sous la forme Ax = b avec $x \in \mathbb{R}^n$, $x = \{x_i ; i = 1 \dots n\}$, où A une matrice $n \times n$ symétrique et $b \in \mathbb{R}^n$ sont à déterminer.
- 2. En calculant:

$$(Ax, x) = \sum_{i=1}^{n} (Ax)_i x_i$$

Montrer que la matrice A du système (1) est symétrique, définie positive (indication on pourra poser pour faciliter les calculs $x_0 = x_{n+1} = 0$).

- 3. Indiquez une méthode directe de résolution du système (1) convergente (on citera un théorème assurant que la méthode est convergente).
- 4. On considère, pour $k = 1 \dots n$, les vecteurs x^k de \mathbb{R}^n définis par :

$$x^{k} = \left\{ x_{i}^{k} = \sin(\frac{i k\pi}{n+1}) ; i = 1 \dots n \right\}$$

Montrez que ces vecteurs sont orthogonaux deux à deux (pour le produit scalaire usuel de \mathbb{R}^n) et qu'ils constituent un base de \mathbb{R}^n . Indication : on pourra poser par prolongement $x_0 = x_{n+1} = 0$ et utiliser le fait que $\sum_{p=0}^{n+1} \cos(pa) = \Re(\sum_{p=0}^{n+1} \exp(ipa))$.

- 5. Montrez que le vecteur x^k est vecteur propre de la matrice A pour une valeur propre λ^k que l'on déterminera. En déduire toutes les valeurs propres de A et retrouvez que A est définie positive.
- 6. Calculez le rayon spectral $\rho(J)$ de la matrice d'itération J de la méthode de Jacobi appliquée à la résolution du système (1) (indication la matrice J à la même forme que la matrice A avec des coefficients α' et β' à déterminer). En déduire que la méthode de Jacobi est convergente.

7. On pose dans la suite A = D - E - F avec les conventions habituelles (D diagonale de A, E triangle inférieur, F triangle supérieur). Montrez que le polynôme caractéristique de la matrice d'itération \mathcal{L}_1 de la méthode de Gauss-Seidel s'écrit pour $\mu \neq 0$:

$$P_{\mathcal{L}_1}(\mu) = \frac{\mu^{\frac{n}{2}}}{\det(D - E)} \det(\mu^{-\frac{1}{2}}F + \mu^{\frac{1}{2}}E - \mu^{\frac{1}{2}}D)$$

8. Vérifiez que pour toute matrice tridiagonale A'=D'-E'-F' et $\rho\neq 0$ on a l'égalité :

$$\rho^{-1}F' + \rho E' - D' = R(F' + E' - D')R^{-1}$$

avec R la matrice diagonale de terme général $R_{i,i} = \rho^{i-1}$ pour $i = 1 \dots n$. En déduire que le déterminant de $\rho^{-1}F' + \rho E' - D'$ est indépendant de ρ pour $\rho \neq 0$.

9. Déduire des questions précédentes que le rayon spectral de la matrice d'itération de Gauss-Seidel est donné par :

$$\rho(\mathcal{L}_1) = \rho(J)^2$$

En déduire que la méthode de Gauss-Seidel est convergente.

10. Que peut-on dire de la vitesse de convergence des méthodes de Jacobi et Gauss-Seidel appliquées au sytème (1) quand n augmente? Quelle méthode vaut il mieux utiliser pour résoudre (1) quand n est grand?

Problème II

Soit A une matrice réelle, $n \times n$, symétrique, définie positive. Etant donnée une découpe en blocs de la matrice A, on lui associe la décomposition

$$A = D - E - F ,$$

où la matrice D est constituée des blocs diagonaux (carrés symétriques) de A, -E est la partie bloc-triangulaire strictement inférieure de A et -F, la partie bloc-triangulaire strictement supérieure de A, est la matrice transposée de -E ($F = E^t$).

- 1. Démontrez que D est symétrique, définie positive.
- 2. Montrez qu'il existe une matrice S symétrique, définie positive, telle que

$$S^2 = D$$

Indication : on pourra écrire, en le justifiant, $D = Q\Delta Q^t$, avec Δ matrice diagonale (par points) et Q matrice orthogonale.

Pour résoudre le système :

$$Ax = b$$
, b donné dans \mathbb{R}^n (2)

on considère la méthode itérative suivante qui, à partir de x_0 arbitraire, calcule la suite des x_k :

$$\begin{cases}
(D-E)x_{2k+1} = Fx_{2k} + b \\
(D-F)x_{2k+2} = Ex_{2k+1} + b
\end{cases}$$
(3)

3. Mettre la méthode itérative (3) sous la forme

$$x_{2k+2} = Bx_{2k} + c ,$$

Calculer B et c.

- 4. On pose : $L = S^{-1}ES^{-1}$ et $U = S^{-1}FS^{-1}$. Prouvez que I L est inversible et que L et $(I L)^{-1}$ commutent.
- 5. En déduire que

$$B = M^{-1}N$$
 avec $M = S(I - L)(I - U)S$ et $N = SLUS$.

- 6. Montrez que N est symétrique semi-définie positive.
- 7. Démontrez que la suite x_{2k} converge vers la solution du système (2).
- 8. En déduire que la méthode (3) est convergente.