Université Paris-Nord Institut Galilée Département de Mathématiques Année 2007-2008 MACS 3 & M2 Math-Info C. Basdevant

Corrigé de l'examen d'Analyse Numérique du mardi 13 novembre 2007

Durée : 3h Notes de cours autorisées Les trois problèmes sont indépendants

Problème I

On considère un pendule, dont le mouvement autour de la verticale dans un plan est décrit par l'angle $\theta(t)$. En supposant que l'angle reste faible $(\sin(\theta) \approx \theta)$, on peut utiliser le modèle linéarisé :

$$\begin{cases} \ddot{\theta} + k\theta = u \\ \theta(0) = \theta_0 \\ \dot{\theta}(0) = \theta_1 \end{cases}$$

avec k > 0. La fonction scalaire u(t) représente la commande du système qui est assujettie à la contrainte $|u(t)| \le 1 \,\forall t$.

On cherche à trouver la commande u qui ramène le pendule à sa position d'équilibre $(\theta(T) = 0, \dot{\theta}(T) = 0)$ en temps minimum.

- 1. Mettre l'équation d'état sous la forme d'un système différentiel du premier ordre.
- 2. Formez le Hamiltonien du système et l'équation de l'état adjoint.
- 3. Déduire du principe du minimum de Pontryaguine que la commande optimale est bang-bang.
- 4. Déterminez l'intervalle de temps entre deux commutations.
- 5. Déterminez les trajectoires du système dans l'espace des phases $(\theta, \dot{\theta})$ pour une commande en butée, en indiquant le sens de parcours et le temps de parcours.
- 6. Pour simplifier on suppose dans la suite que k=1. Construire les trajectoires qui atteignent la cible sans commutation, puis celles ayant au plus une commutation, deux commutations ,...
- 7. En déduire que la courbe de commutation est formée des demi-cercles de rayon 1, de centres (2n+1,0), $n \geq 0$, situés sous l'axe $\dot{\theta} = 0$, ainsi que des demi-cercles symétriques par rapport à l'origine, c'est à dire de rayon 1, de centres (-2n-1,0), $n \geq 0$, situés au-dessus de l'axe $\dot{\theta} = 0$.
- 8. Déterminez la loi de feedback du système.

Corrigé : Posons $x_1 = \theta$ et $x_2 = \dot{\theta}$, on se ramène alors au problème de contrôle en temps minimal :

$$\begin{cases} \dot{x_1} = x_2\\ \dot{x_2} = u - kx_1 \end{cases}$$

avec
$$|u| \le 1$$
, $J(u) = \int_0^T 1 dt$, $x_1(T) = x_2(T) = 0$.

Le Hamiltonien s'écrit $H(x_1, x_2, p_1, p_2, u) = 1 + p_1x_2 + p_2(u - kx_1)$, l'équation de l'état adjoint (p_1, p_2) est :

$$\begin{cases} \dot{p_1} = kp_2 \\ \dot{p_2} = -p_1 \end{cases}$$

d'où l'on tire $\ddot{p_1} = -kp_1$ puis :

$$\begin{cases} p_1 = \alpha \sin(\sqrt{k}t + \phi) \\ p_2 = \frac{\alpha}{\sqrt{k}} \cos(\sqrt{k}t + \phi) \end{cases}$$

avec α et ϕ des constantes. Les conditions de transversalité en T, avec $\eta = 0$ (la position est fixée) et τ quelconque (le temps est libre) donnent H(T) = 0 soit $1 + p_2(T)u(T) = 0$.

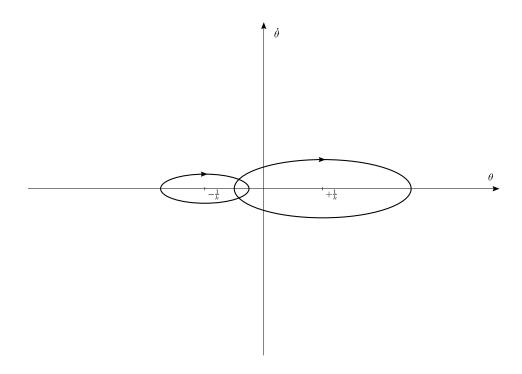


Fig. 1 – Trajectoires à commande constante dans l'espace des phases

Le principe du minimum de Pontryaguin nous dit que la commande optimale minimise à tout instant le Hamiltonien, on en déduit que $u_*(t) = -\text{signe}(p_2(t))$, la commande est donc bien bang-bang. D'après son expression trouvée plus haut p_2 change de signe avec une période de π/\sqrt{k} , l'intervalle entre deux commutations successives est donc de π/\sqrt{k} .

Pour étudier les trajectoires à commande constante u_c dans l'espace des phases $(\theta, \dot{\theta})$ posons $y_1 = x_1 - u_c/k$ et $y_2 = x_2$ ce qui donne le système

$$\begin{cases} \dot{y_1} = y_2 \\ \dot{y_2} = -ky_1 \end{cases}$$

d'où l'on tire $ky_1y_1 + y_2y_2 = 0$ et donc $ky_1^2 + y_2^2 = \text{constante}$ ce qui prouve que les trajectoires dans l'espace des phases sont des ellipses, toutes de même excentricité, centrées en $(u_c/k, 0)$. y_1 étant croissant quand y_2 est positif, on en déduit que ces ellipses sont parcourues dans le sens des aiguilles d'une montre (voir figure 1). De l'équation $\ddot{y_1} = -ky_1$ on déduit qu'on fait un tour d'ellipse en un temps $2\pi/\sqrt{k}$, et donc qu'entre deux commutations on n'en fait qu'un demi-tour.

Considérons le cas k=1. Les trajectoires de l'espace des phases qui atteignent sans commutation la cible $(\theta, \dot{\theta}) = (0,0)$ sont les demi-cercles de centres respectifs (1,0) et (-1,0) et de rayon 1 indiqués sur la figure 2. Ce ne sont que des demi-cercles car on n'a pu y rester au maximum que le temps π/\sqrt{k} et donc au maximum un demi-tour.

Remontons maintenant dans le temps une longue trajectoire arrivant sur la cible avec

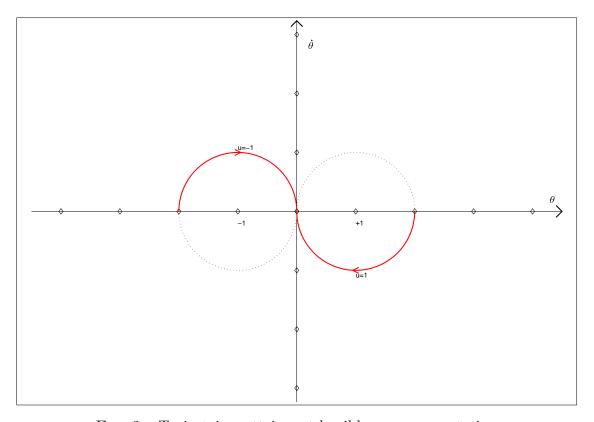


Fig. 2 – Trajectoires atteignant la cible sans commutation

 $u_* = 1$ (voir figure 3). La dernière commutation s'est produite en un point quelconque A_1 du demi-cercle de centre (1,0). La portion précédente de trajectoire devait être avec l'autre commande soit $u_* = -1$, et est donc constituée d'un demi-cercle de centre (-1,0) et passant par A_1 . L'avant dernière commutation s'est donc produite au point A_2 symétrique de A_1 dans la symétrie de centre (-1,0). La portion encore précédente de trajectoire était avec $u_* = 1$, et donc un demi-cercle de centre (1,0) passant par A_2 et arrivant au point A_3 symétrique de A_2 par rapport à (1,0) et lieu de l'ante-pénultième commutation, ... et ainsi de suite.

Les points de dernière commutation passant de la commande $u_* = -1$ à $u_* = 1$ sont sur le demi-cercle de centre (1,0) situé sous l'axe. Les points d'avant dernière commutation se déduisent des précédents par la symétrie de centre (-1,0), ils sont donc sur le demi-cercle de centre (-3,0) et de rayon 1. Les points d'avant avant dernière commutation se

déduisent des précédents par la symétrie de centre (1,0), ils sont donc sur le demi-cercle de centre (+5,0) et de rayon 1 et ainsi de suite. Et de même, mutadis mutandis, pour les points de dernière commutation passant de la commande $u_* = 1$ à $u_* = -1$. On en déduit que la courbe de commutation, lieu les points de commutation, est la courbe formée des demi-cercles de rayon 1, de centres (2n+1,0), $n \geq 0$, situés sous l'axe $\dot{\theta} = 0$, ainsi que des demi-cercles symétriques par rapport à l'origine, c'est à dire de rayon 1, de centres (-2n-1,0), $n \geq 0$, situés au-dessus de l'axe $\dot{\theta} = 0$.

En conclusion ceci montre que la loi de feedback consiste à prendre $u_* = -1$ si l'état du système est au dessus de la courbe de commutation et prendre $u_* = +1$ en-dessous.

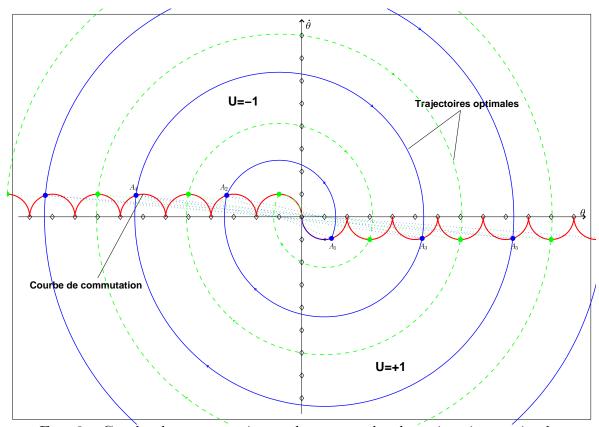


Fig. 3 – Courbe de commutation et deux exemples de trajectoires optimales

Problème II

L'objectif est de trouver T > 0 et la fonction $x(t), 0 \le t \le T$ formant une extrémale admissible de :

$$J(T,x) = \int_0^T (\dot{x}^2 + x^2) dt$$

sous la contrainte x(T) + T - 1 = 0.

On examinera deux approches possibles.

- 1. Par Euler, on fixe T et on fait varier $x \in H^1$, on trouve alors un maximum à $+\infty$ et un minimum pour $x_T = \frac{1-T}{\operatorname{ch} T} \operatorname{ch} t$.
- 2. On calcule alors $J(T, x_T)$ et en faisant varier T on trouve le maximum local $x(t) = 2 \operatorname{sh} T \operatorname{ch} t$ avec T l'unique solution de $\operatorname{sh} 2T + T = 1$. On trouve également deux minima à T = 0 et T = 1 avec J = 0.
- 3. Par Pontryaguin, on calcule le Hamiltonien, l'équation de l'état adjoint, et les conditions de transversalité en t=0 et d'autre part en T, en prenant garde que x(T) et T sont liés, et donc aussi η et τ !
- 4. La minimisation du Hamiltonien conduit à $\ddot{x}=x$ ce qui avec les conditions de transversalité donne l'extrémale x(t)=2 sh T ch t avec T l'unique solution de sh 2T+T=1.
- 5. Conclure que l'extrémale donnée par Pontryaguine n'est ni un minimum, ni un maximum.

Corrigé:

1. Minimisation dans $H^1(0,T)$ pour T fixé. La différentielle de J est

$$\frac{dJ}{dx}.h = 2\int_0^T (\dot{x}\dot{h} + xh)dt$$

On cherche un extremum pour x(T)=1-T fixé. J est une fonctionnelle α -convexe, sur un sous espace affine fermé, on est assuré qu'il existe un unique minimum et que le maximum est infini. L'équation d'Euler, condition nécessaire et suffisante de minimum, s'écrit

$$\frac{dJ}{dx}$$
. $h = 0$, $\forall h \in H^1(0,T)$ avec $h(T) = 0$

Une intégration par partie amène à

$$\dot{x}(0)h(0) + \int_0^T (x - \ddot{x})hdt = 0 \quad \forall h \in H^1(0, T) \text{ avec } h(T) = 0$$

d'où l'on déduit $\ddot{x} = x$ et $\dot{x}(0) = 0$, avec x(T) = 1 - T, ce qui donne la solution annoncée $x_T = \frac{1-T}{\operatorname{ch} T} \operatorname{ch} t$.

2. Un calcul simple amène à $J(T, x_T) = (1-T)^2 t h(T)$ et J' = (T-1)(sh(2T) + T-1). Cette dérivée est nulle en T_0 tel que $sh(2T_0) + T_0 - 1$ et en 1. On vérifie que $0 < T_0 < 1$ et le tableau de variation de J montre que $J(T, x_T)$ est minimum et nul en T = 0 et T = 1, maximum local en T_0 . On a donc trouvé un max min :

$$x_{T_0}(t) = \frac{sh(2T_0)}{ch(T_0)}ch(t)$$

3. Etude par le principe du minimum de Pontryguine. On pose $u = \dot{x}$, on est alors ramené au problème de contrôle : trouver $u \in L^2(0,T)$ et T qui minimisent J avec $\dot{x} = u$, $J(u) = \int_0^T (u^2 + x^2) dt$ sous la contrainte x(T) + T - 1 = 0.

Le Hamiltonien est $H(x, p, u) = u^2 + p^2 + pu$, l'équation de l'état adjoint $\dot{p} = -2x$. Les conditions de transversalité - en t = 0 : $\tau = 0$ (le temps est fixé), η est quelconque (x(0) est libre) soit p(0) = 0; en t = T : le temps T et la position x(T) sont libres mais liés par l'équation x(T) + T - 1 = 0, τ et η sont donc liés par l'équation tangente $\eta + \tau = 0$ on en déduit p(T) + H(T) = 0.

- 4. Le contrôle optimal minimise à tout instant le Hamiltonien, soit $2u_*(t)+p(t)=0$. On en déduit $2\dot{u}_*+\dot{p}=0$ ce qui combiné avec l'équation de l'état adjoint donne $\ddot{x}=x$. Avec p(0)=0 on déduit $\dot{x}(0)=0$ et donc $x(t)=\alpha ch(t)$. La constante α s'obtient en utilisant la condition de tranversalité en T, ce qui donne $\alpha=2sh(T)$, enfin T est donné par l'équation x(T)+T-1=0. En résumé on a trouvé : x(t)=2sh(T)ch(t) avec sh(2T)+T-1=0.
- 5. On est dans un cas où la minimisation du Hamiltonien donne une unique solution, mais cette solution n'est pas le minimum global du problème mais seulement un max min.

Problème III

On considère le problème \mathcal{P} :

$$\inf_{x(1)=\alpha} J(x) = \int_0^1 \left(\frac{x^2 + \dot{x}^2}{2} + |\dot{x}| \right) dt$$

- 1. Montrez qu'il y a existence et unicité de la solution de \mathcal{P} dans $H^1(0,1)$. Note : on montrera que la fonctionnelle est la somme d'une partie α -convexe continue et d'une partie convexe continue, et qu'on minimise sur un convexe fermé non vide de H^1 .
- 2. Résoudre le problème \$\mathcal{P}\$ par la méthode de Pontryaguin.
 Note: La condition de transversalité se pose uniquement en \$t = 0\$ et impose \$p(0) = 0\$ pour l'état adjoint \$p\$. La minimisation du Hamiltonien conduit à minimiser sur \$u\$ la quantité \$\frac{u^2}{2} + pu + |u|\$, on trouve pour le contrôle \$u(t) : -(p(t) + 1)\$, \$0, -(p(t) 1)\$ suivant que \$p(t)\$ est inférieur à \$-1\$, entre \$-1\$ et \$1\$, supérieur à \$1\$.
 On en déduit que pour \$t\$ petit, \$u(t)\$ est nul, \$x(t)\$ est constant et \$p(t)\$ est linéaire. Si \$|p(t)|\$ atteint \$1\$, alors \$\bar{x} = x \text{ On trouvera}\$:

$$x = c$$
 pour $0 \le t \le \frac{1}{|c|}$
 $x = c \operatorname{ch}(t - \frac{1}{|c|})$ pour $\frac{1}{|c|} \le t \le 1$

avec c tel que c ch $(1-\frac{1}{|c|})=\alpha$ et $\frac{1}{|c|}\leq 1$. Distinguer alors les cas $|\alpha|<1$ et $|\alpha|\geq 1$.

Corrigé:

1. Posons $J_1(x) = \int_0^1 \left(\frac{x^2 + \dot{x}^2}{2}\right) dt$ et $J_2(x) = \int_0^1 |\dot{x}| dt$. La fonctionnelle J_1 est α -convexe continue de $H^1(0,1)$ dans \mathbb{R} . On peut, soit dire que J_1 est proportionnelle au carré de la norme, soit calculer sa différentielle seconde : $J_1'(x).h = \int_0^1 \left(\dot{x}\dot{h} + xh\right) dt$, $J_1''(x).h.h = \int_0^1 \left(\dot{h}^2 + h^2\right) dt = ||h||^2$. La fonctionnelle J_2 est convexe continue de $H^1(0,1)$ dans \mathbb{R} . Elle est bien définie sur $H^1(0,1)$ car par l'inégalité de Schwarz $\int_0^1 |\dot{x}| dt \leq (\int_0^1 \dot{x}^2 dt)^2$. Elle est convexe car la valeur absolue est une fonction convexe positive. Elle est continue par l'inégalité triangulaire $||a| - |b|| \leq |a - b|$.

On en déduit que J est α -convexe continue.

L'ensemble $K = \{x \in H^1(0,1) \mid x(1) = \alpha\}$ est un sous-espace affine, donc convexe, fermé par application du théorème de trace et non vide.

Le problème \mathcal{P} admet donc une unique solution.

2. Pour appliquer la formulation de Pontryaguine on pose $\dot{x}=u$ et le problème devient : trouver la commande optimale u qui minimise $J(u)=\int_0^1\left(\frac{x^2+u^2}{2}+|u|\right)dt$ avec $\dot{x}=u$ et $x(1)=\alpha$.

Le Hamiltonien est $H(x, p, u) = \frac{x^2 + u^2}{2} + |u| + pu$ et l'équation de l'état adjoint $\dot{p} + x = 0$. En t = 1 le temps et l'état sont fixés, la condition de transversalité ne se pose donc qu'en t = 0 où l'état du système est libre ($\tau = 0$ et η quelconque) on a alors p(0) = 0.

Le principe du minimum nous dit qu'à tout instant la commande optimale minimise la Hamiltonien :

$$u_*(t) = \arg\min_{u} \left\{ \frac{x^2 + u^2}{2} + |u| + pu \right\}$$

Pour étudier la fonction $\phi(u) = u^2/2 + |u| + pu$ distinguons deux cas :

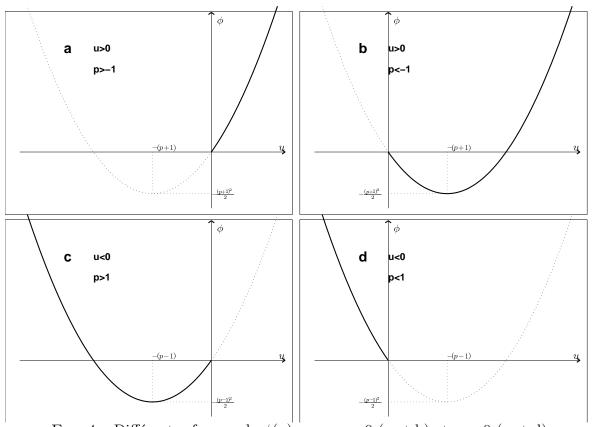
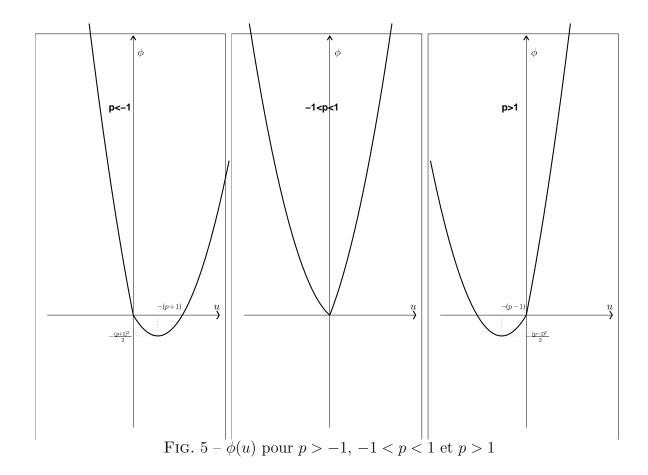


Fig. 4 – Différentes formes de $\phi(u)$ pour u > 0 (a et b) et u < 0 (c et d)

- Le cas $u \ge 0$, $\phi(u) = u^2/2 + (p+1)u$. Sa représentation est donnée sur les figures 4-a pour p+1>0 et 4-b pour p+1<0.
- Le cas $u \le 0$, $\phi(u) = u^2/2 + (p-1)u$. Sa représentation est donnée sur les figures 4-c pour p-1 > 0 et 4-d pour p-1 < 0.



A l'aide de ces quatre cas on peut construire ϕ sur \mathbb{R} en distinguant suivant la position de p par rapport à [-1,1], c'est ce qui est représenté sur la figure 5. On en déduit que le contrôle optimal $u_*(t)$ est -(p(t)+1), 0, -(p(t)-1) suivant que p(t) est inférieur à -1, entre -1 et 1, supérieur à 1.

Construisons maintenant la solution optimale du problème \mathcal{P} .

Comme p(0) = 0, $u_*(t)$ et donc $\dot{x}(t)$ est nul au voisinage de t = 0. Cela entraı̂ne que x(t) = c une constante, toujours au voisinage de t = 0. Mais $\dot{p} + x = 0$ avec p(0) = 0, donc p(t) = -ct, ceci tant que |p(t)| < 1, c'est à dire tant que t < 1/|c|. Au temps t = 1/|c|, |p| = 1 et donc $u_* = -(p+1)$ si c > 0, ou $u_* = -(p-1)$ si c < 0, mais dans les deux cas $\dot{u}_* = -\dot{p}$ et donc (puisque $u = \dot{x}$ et $\dot{p} + x = 0$) $\ddot{x} = x$, soit $x(t) = a \exp(t) + b \exp(t)$.

Maintenant, a, b et c sont à déterminer par les conditions x(1/|c|) = c, $\dot{x}(1/|c|) = 0$ et $x(1) = \alpha$. Les deux premières conditions donnent $x(t) = c \operatorname{ch}(t - \frac{1}{|c|})$, pour la troisième condition la constante c doit vérifier $c \operatorname{ch}(1 - \frac{1}{|c|}) = \alpha$ et $\frac{1}{|c|} \leq 1$. Discussion. On peut supposer $\alpha > 0$, sinon il suffit de changer le signe de c. En

Discussion. On peut supposer $\alpha > 0$, sinon il suffit de changer le signe de c. En posant y = 1 - 1/c, on est ramené à regarder l'intersection pour $0 < y \le 1$ de ch(y) avec $\alpha(1-y)$ ce qui donne l'existence et l'unicité de c si $\alpha > 1$; si $\alpha \le 1$ ces courbes ne se coupent pas et la solution du problème est $x(t) = \alpha \quad \forall t \in [0, 1]$.