Institut Galilée L2 SPI ATS Mathématiques 2010-2011

Epreuve de Mathématiques du 15 mars 2011

Durée: 3 heures.

Les exercices sont indépendants. Les téléphones portables et les documents ne sont pas autorisés. Les seules calculatrices autorisées sont celles de l'Institut Galilée

Exercice 1 — Soit A la matrice 2×2 :

$$A = \begin{pmatrix} 3 & -2 \\ 4 & -3 \end{pmatrix}$$

- 1) Déterminer une matrices P telle que $D = P^{-1}AP$ soit diagonale. Expliciter P^{-1} .
- 2) En déduire A^{50} et A^{51} .
- 3) On considère deux suites numériques (u_n) et (v_n) définies par récurrence :

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = 3u_n - 2v_n \\ v_{n+1} = 4u_n - 3v_n \end{cases}$$

vérifiant les conditions initiales :

$$u_0 = 1, \quad v_0 = -1$$

Calculer (u_n) et (v_n) selon la parité de n.

Exercice 2 — On considère la matrice :

$$A = \begin{pmatrix} -5 & 8 & 3 \\ -6 & 9 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

- 1) Calculer le polynôme caractéristique de A. Ce polynôme est-il scindé sur $\mathbb R$?
- 2) Quelles sont les valeurs propres de A?
- 3) Déterminer des bases des sous-espaces propres de ${\cal A}.$
- 4) La matrice A est-elle semblable à une matrice diagonale ?

Exercice 3 — On considère l'espace euclidien \mathbb{R}^3 muni du produit scalaire usuel.

- 1) Orthonormaliser par le procédé de Gram-Schmidt la base de \mathbb{R}^3 formée des vecteurs (2,0,1), (3,0,4) et (0,2,0).
 - 2) Calculer les coordonnées du vecteur (1, 2, 1) dans la base ainsi obtenue.
 - 3) Écrire la matrice de passage de la base canonique à la nouvelle base.
 - 4) Quelle est l'inverse de cette matrice?

Exercice 4 — On considère la matrice :

$$A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2} \\ -\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ -\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \end{pmatrix}$$

- 1) Calculer le polynôme caractéristique de A. Est-il scindé dans $\mathbb R$? Quel est le déterminant de A ?
 - 2) Montrer que A est une matrice orthogonale.
- 3) Montrer que A est la matrice d'une rotation dont on déterminera l'axe et la valeur absolue de l'angle.