CORRIGENDUM TO IMRN PAPER
"Maass Cups Forms with Quadratic Integer Coefficients"

(1) Remark: The icosahedral subgroup of $P G L_{2}(\mathbb{C})$ generated by the matrices in (2.7) lifts not only to a subgroup of $G L_{2}^{(1)}(\mathbb{C})$ but to $G L_{2}^{(2)}(\mathbb{C})$ as well. The trace field of the latter group is a degree 4 extension of \mathbb{Q}, given by adjoining the element

$$
\begin{equation*}
w=2 \Im(\epsilon)=\frac{i}{4} \sqrt{10-2 \sqrt{5}} \tag{1}
\end{equation*}
$$

One sees quickly that $\mathbb{Q}(w)$ contains $\mathbb{Q}(\sqrt{5})$ as its unique proper sufield over \mathbb{Q}. A cusp form π associated to an icosahedral Galois representation whose coefficients lie strictly in $\mathbb{Q}(\sqrt{5})$ is therefore prohibited from having a quadratic non-trivial central character. This clarifies why only those π whose central chacter was trivial presented an obstacle to the exclusion of $\mathbb{Q}(\sqrt{5})$ in the theorem.
(2) Overhaul of Section 3.3: We begin our corrections directly after equation number (3.3). We restrict our attention to the case when π has coefficients in $K=\mathbb{Q}(\sqrt{-2})$. If $\lambda_{\pi}(p)=$ $a+b \sqrt{-2}$, then in this setting we have $x=2 a$ and $y=a^{2}+2 b^{2}$. The following points are representable as $(x, y)=\left(2 a, a^{2}+2 b^{2}\right)$, where $a, b \in \mathbb{Z}$:

$$
\begin{equation*}
(0,0), \quad(\pm 2,1), \quad(0,2), \quad(\pm 2,3), \quad(\pm 4,4), \quad(4,6), \quad(6,9) \tag{2}
\end{equation*}
$$

and each lies on the vanishing locus of the polynomial

$$
T(x, y)=\left(y-\frac{1}{2} x\right)\left(y-\frac{1}{2} x-2\right)\left(y-\frac{1}{2} x-4\right)\left(y-\frac{1}{2} x-6\right) .
$$

All other points $\left(2 a, a^{2}+2 b^{2}\right)$, as can easily be checked, lie above the line $y=\frac{1}{2} x+6$, on which region T takes positive values. The mean value $I(T)$ should therefore be nonnegative. On the other hand, we may compute the identities

$$
\begin{gather*}
I(y)=1, \quad I\left(y^{2}\right)=2, \quad I\left(y^{3}\right)=5, \quad I\left(y^{4}\right)=14 \\
I\left(x^{2}\right)=2, \quad I\left(x^{4}\right)=16, \quad I\left(x^{2} y\right)=4, \quad I\left(x^{2} y^{2}\right)=10 \tag{3}
\end{gather*}
$$

and observe that $I(P(x, y))=0$ if P is odd in x and the degree of $P(x, x)$ is less than or equal to 4 . We use linearity in I and the vlues in (3) to calculate that

$$
\begin{aligned}
I(T(x, y)) & =I\left(y^{4}-2 x y^{3}-12 y^{3}+\frac{3}{2} x^{2} y^{2}+18 x y^{2}+44 y^{2}\right. \\
& \left.-\frac{1}{2} x^{3} y-9 x^{2} y-44 x y-48 y+\frac{1}{16} x^{4}+\frac{3}{2} x^{3}+11 x^{2}+24 x\right)=-4 .
\end{aligned}
$$

This produces the desired contradiction.

