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1 Introduction

Let W be the space of weight-zero cuspidal automorphic forms of level N on GL(2) over

Q. For each n such that (n,N) = 1, denote by T(n) the nth Hecke operator, and by T the

algebra over C which they generate. If B = {fi} is a W-basis of simultaneous eigenvectors

of T , then for each fi ∈ B let λfi
(n) be the eigenvalue of T(n) at fi, normalized so as to

lie in the interval [−2, 2] under the Ramanujan conjecture. A striking result of Sarnak [9]

says that if the L-series,

L(s, f) =

∞∑
n=1

λf(n)n−s, (1.1)

of an eigenform f ∈ B has integral coefficients, then f must be of Galois type. The proof

utilizes the functorial transfers for the second and third symmetric powers on GL(2) es-

tablished, respectively, by Gelbart and Jacquet in [2] and by Kim and Shahidi in [4]. The

condition on the integrality of the coefficients would follow from the stronger supposi-

tion that a one-dimensional invariant subspace V of W exists upon which T acts as in-

tegral scalars. Stating the theorem in this way, we might try to extend the implication to

higher-dimensional T-invariant integral subspaces V. The L-series coefficients of any f

in such an n-dimensional subspace V would lie as integers in a number field of degree n

over Q, although conversely it is not true that all forms in W having this latter property

necessarily belong to V. The more general result would again state that the f ∈ V are of

Galois type. We accomplish this extension for a two-dimensional V using the techniques

of [9] and the remaining fourth symmetric power transfer established by Kim in [3].
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Let V be a two-dimensional T-invariant irreducible subspace of W admitting a

basis with respect to which the operators in T can be realized as 2 × 2 matrices with

rational integer entries. If this subspace is irreducible, upon diagonalization these ma-

trices have entries in the integer ring of a quadratic extension K of Q. Thus, if f ∈ V is

a simultaneous eigenvector of T , its L-series has quadratic integer coefficients. As in [9],

we seek to prove that the form f is of Galois type. In this paper, we show that in fact

this can be done, provided the quadratic field K is not Q(
√

5). This single exception can

be explained by observing that, if f is attached through the Artin conjecture to an even

icosahedral Galois representation with trivial central character, its coefficients lie as in-

tegers in Q(
√

5). Without higher symmetric power transfers at our disposal however, it

is impossible for our method of proof to fully distinguish the analytic properties of its

L-function. Henceforth, the subspace V will be such that its Hecke eigenvalues do not lie

in the field Q(
√

5).

Theorem 1.1. Let V ⊂ W be as above. Then V comprises forms associated to a Galois

representation of either dihedral, tetrahedral, or octahedral type. In particular, V has

Laplacian eigenvalue 1/4 and satisfies the Ramanujan conjecture at every finite place.

�

It should be remarked that with the strength of full functoriality, from which

follow the conjectures of Ramanujan and Sato-Tate, this result becomes transparent, for

a finite number of eigenvalues in an interval cannot be continuously equidistributed. The

advantage of theorems of this type is that they give partial progress toward Ramanujan

in an altogether different manner than improving local bounds on the Satake parameters.

Indeed, a finite number of functorial lifts, along with their cuspidality conditions, suffice

for proving that those automorphic forms which satisfy a certain integrality condition

on their coefficients must also satisfy the Ramanujan conjecture.

2 Preliminaries

2.1

Let ρ be an irreducible two-dimensional complex Galois representation of a number field

F over Q. For each prime p, unramified in F, let Frobp denote the Frobenius class at p.

Then the partial Artin L-function is defined on a suitable right half-plane as

L(s, ρ) =
∏
p

det
(
1 − ρ

(
Frobp

)
p−s

)−1
=

∏
p

(
1 − λρ(p)p−s + ωρ(p)p−2s

)−1
, (2.1)
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the product being taken over all unramified primes. If the numbers λρ(p) lie in a totally

real or purely imaginary number field, then from the unicity of ωρ, it follows that ω2
ρ = 1.

The image of ρ must therefore lie in

GL(m)
2 (C) :=

{
g ∈ GL2(C) | (det g)m = 1

}
, for m = 1 or 2. (2.2)

By explicitly constructing all subgroups of GL(m)
2 (C) having quadratic integer traces,

we discover in this section which trace fields can actually occur in the setting of our

problem.

Klein, in [6], has classified all finite subgroups of PGL2(C). We lift them to sub-

groups of GL(m)
2 (C), requiring additionally that the traces be quadratic integers. For di-

hedral subgroups of PGL2(C), the condition of a quadratic determinate already ensures

rational integrality of the traces. These lifts are

U2 =

{
±
[
1 0

0 1

]
,±
[
i 0

0 −i

]
,±
[
0 i

i 0

]
,±
[

0 1

−1 0

]}
⊂ GL(1)

2 (C),

V2 =

{
±
[
1 0

0 1

]
,±
[
1 0

0 −1

]
,±
[
0 1

1 0

]
,±
[

0 1

−1 0

]}
⊂ GL(2)

2 (C),

(2.3)

both of which have image in PGL2(C) equal to the Klein four group D2; and

U3 =

{
±
[
1 0

0 1

]
,±
[
0 i

i 0

]
,±
[
−i i

0 i

]
,±
[

0 1

−1 1

]
,±
[
1 −1

1 0

]
,±
[
i 0

i −i

]}
,

V3 =

{
±
[
1 0

0 1

]
,±
[
0 1

1 0

]
,±
[
−1 1

0 1

]
,±
[

0 1

−1 1

]
,±
[
1 −1

1 0

]
,±
[
1 0

1 −1

]} (2.4)

in GL(1)
2 (C) and GL(2)

2 (C) respectively, both having an image in PGL2(C), the order-6 dihe-

dral group D3. Now let ζ8 = 1 be a primitive 8th root of unity. The group

U4 =

{
1√
2

[
ζr ζs

−ζs ζr

] ∣∣∣ r, s ∈ {1, 3, 5, 7}

}
∪ U2 ⊂ GL(1)

2 (C) (2.5)

has image in PGL2 isomorphic to A4, the group of tetrahedral rotations. The trace field

for both the dihedral and tetrahedral groups is evidently Q.
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For brevity, we give the generating matrices for the remaining groups. Let ζ again

denote a primitive 8th root of unity. The matrices

(
ζ ζ

−ζ ζ

)
,

(
ζ 0

0 ζ

)
,

(
0 1

−1 0

)
(2.6)

generate an octahedral subgroup of PGL2(C). This group lifts to a finite subgroup of

GL(1)
2 (C) and GL(2)

2 (C) with traces lying as integers in the field Q(
√

2). Finally, we let ε ∈ C

satisfy ε5 = 1 and set p = (ε4 − ε)/
√

5, q = (ε2 − ε3)/
√

5. Then the following matrices

generate an icosahedral subgroup of PGL2(C):

(
ε3 0

0 ε2

)
,

(
0 1

−1 0

)
,

(
p q

q −p

)
. (2.7)

One could look at [1, page 73] for the derivation of this fact. This group lifts to a finite

subgroup of GL(1)
2 (C) with traces lying as integers in the field Q(

√
5).

2.2

Retaining the notation of the introduction, we let {f, g} be a basis of V of simultaneous

eigenvectors for T with eigenvalues λf(n) and λg(n) for every n prime to N. Though a pri-

ori the field of definition of λf(n) and λg(n) may depend on n, it can easily be seen that

one quadratic field K contains them all. For, with respect to the integral basis, T embeds

in the matrix algebra M2(Z) as a commutative subalgebra. As such, it is isomorphic ei-

ther to Z or Z(
√

d). In the first case, the eigenforms have rational integer coefficients, and

by the work of Sarnak [9], they must be of either dihedral or tetrahedral type. We there-

fore restrict our attention to the latter case, when f �= g, and denote by K = Q(
√

d) the

smallest field containing the coefficients.

The integrality of T(p) implies that λg(p) = λf(p) ′, the Galois conjugate within

K. We therefore write f ′ in place of g. Now, associated to f (resp., f ′) is a weight-zero ir-

reducible cuspidal automorphic representation π (resp., π ′) on GL2(A), with A the adele

ring of Q. The partial L-function of π on the complex right half-plane Re(s) > 1 is given by

L(s, π) =
∏
p�N

det
(
1 − App−s

)−1
=

∏
p�N

(
1 − λπ(p)p−s + ωπ(p)p−2s

)−1
, (2.8)

where Ap is the matrix of Satake parameters at the prime p, and ωπ is the central char-

acter of π. By the same arguments given in Section 2.1 applied to Galois representations,

the central character ωπ of π is quadratic.
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2.3

We proceed as in [9], demonstrating successively that noncuspidality of each symmet-

ric power lift, together with quadratic integrality of its L-series coefficients, implies the

theorem. The arguments in [9] for the second and third symmetric powers when the coef-

ficients were rational integers apply here, making all necessary changes, when the coef-

ficients are quadratic integers. Thus, when sym2π is noncuspidal, π is monomial, by [2,

Theorem 3.3.7]. Using [7], we show that π corresponds to a dihedral representation of the

Weil group, which, since it has quadratic integer coefficients, must have a finite order.

When sym3π is noncuspidal, Kim and Shahidi in [5, Proposition 3.3.8] show that π corre-

sponds to a tetrahedral representation ρ of the Weil group. By the integrality assumption

on its coefficients, it follows that ρ descends to a Galois representation. Finally, if sym4π

is noncuspidal, π corresponds to an octahedral representation ρ of the Weil group, [5,

Proposition 3.3.8]. Since ρ has a finite image in GL2, it is properly a Galois representa-

tion, and again the theorem follows in this case.

2.4

What remains, and what we intend to disprove, is the case when all three symmetric

power lifts, sym2π, sym3π, and sym4π, are cuspidal. The cuspidality of these lifts will be

the working hypothesis for the remainder of this paper.

The partial L-function L(s, symkπ) is defined on a suitable right half-plane as

L
(
s, symkπ

)
=

∏
p�N

det
(
1 − symk

(
Ap

)
p−s

)−1
. (2.9)

Let χ be the character of the representation symk on GL2. Then we have

−
d

ds
logL

(
s, symkπ

)
=

∑
n≥1

∑
p

χ
(
An

p

)
(log p)p−ns. (2.10)

We will write the above equation as

−
d

ds
logL

(
s, symkπ

)
=

∑
p

λπ(p)(log p)p−s + R(k)(s), (2.11)

where

R(k)(s) =
∑
n≥2

∑
p

χ
(
An

p

)
(log p)p−ns. (2.12)
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All the above sums over primes are, and henceforth will be, implicitly taken over those

not dividing the level.

Lemma 2.1. On Re(s) ≥ 1,

−
d

ds
log L

(
s, symkπ

)
=

∑
p

λsymkπ(p)(log p)p−s + O(1) (1 ≤ k ≤ 8). (2.13)
�

Proof. We first demonstrate that the inner sum in R(k)(s) converges. Accordingly, set

W(k)
n (X) =

∑
p≤X

χ
(
An

p

)
(log p)p−ns. (2.14)

Taking the absolute values, we obtain

∣∣W(k)
n (X)

∣∣ < ∑
p≤X

∣∣χ(An
p

)∣∣(log p)p−nσ, (2.15)

where σ = Re(s). Now, the coefficient χ(An
p) can be written as an integral polynomial in

both λπ(p) and ωπ(p), with λπ(p) appearing in the leading term to the power nk. Thus

∣∣χ(An
p

)∣∣� ∣∣λπ(p)
∣∣nk

, (2.16)

from which we get

∣∣W(k)
n (X)

∣∣�ε

∑
p≤X

∣∣λπ(p)
∣∣nk

p−nσ+ε. (2.17)

A summation by parts affords

∑
p≤X

∣∣λπ(p)
∣∣nk

p−nσ+ε �ε

∑
p≤X

Snk(p)p−nσ−1+ε, (2.18)

where we have denoted

Snk(X) =
∑

m≤X

∣∣λπ(m)
∣∣nk

. (2.19)

From the general theory of Rankin-Selberg integrals applied to the function L(s, sym4π×
sym4π), both factors being cuspidal by assumption, we deduce a bound for the eighth

moment

∑
n≤X

∣∣λπ(n)
∣∣8 ≤ CX, (2.20)
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for some positive constant C. Combining this with the bound on the Hecke eigenvalues

|λπ(p)| ≤ 2p1/9, obtained by Kim and Shahidi in [4], we have

Snk(X) ≤ max
m≤X

∣∣λπ(m)
∣∣nk−8 ∑

m≤X

∣∣λπ(m)
∣∣8 �ε X(nk+1)/9+ε. (2.21)

From this it follows that, as long as k ≤ 8, the sum in (2.18) converges on the region

σ ≥ 1. With these restrictions on k and s, the inner sum of R(k)(s) converges, and we

write, switching the order of summation,

R(k)(s) =
∑

p

p−8/9
∑
n≥2

(
p−1/9

)n
=

∑
p

(
p10/9 − 1

)−1
. (2.22)

This sum converges and the lemma is proved. �

Directly from our cuspidality assumption, we know that for integers 1 ≤ k ≤ 4,

the function L(s, symkπ) is invertible at s = 1. In fact, we can establish, through Rankin-

Selberg factorization (cf. [4]) that L(s, symkπ) is invertible at s = 1 for the extended range

of 1 ≤ k ≤ 8. This, along with Lemma 2.1, implies the following identity:

lim
M→∞

1

M

∑
p≤M

λsymkπ(p) log p = 0 (1 ≤ k ≤ 8). (2.23)

2.5

We would like to obtain a result for Rankin-Selberg products of automorphic forms sim-

ilar to that of Lemma 2.1. Throughout this section, we will denote by Π any one of the

following tensor product representations on GL(m+1)(n+1):

symmπ × symnπ, symmπ × symnπ ′, symmπ ′ × symnπ ′, (2.24)

when 1 ≤ m,n ≤ 4. If Ap and Bp, for p � N, are the respective diagonal matrices of

Satake parameters at the prime p for the factors in Π, then the partial L-function L(s, Π)

is defined on Re(s) > 1 by

L(s, Π) =
∏
p�N

det
(
1 − Π

(
Ap ⊗ Bp

)
p−s

)−1
. (2.25)

If we let χ denote the character of the representation symm ⊗ symn, then upon taking the

logarithmic derivative we get

−
d

ds
logL(s, Π) =

∞∑
j=1

∑
p

χ
((

Ap ⊗ Bp

)j)(log p)p−js. (2.26)
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We write the above equation as

−
d

ds
logL(s, Π) =

∑
p

λΠ(p)(log p)p−s + R(m,n)(s), (2.27)

where

R(m,n)(s) =
∑
j≥2

∑
p

χ
((

Ap ⊗ Bp

)j)(log p)p−js. (2.28)

The proof of the following lemma mimics exactly that of Lemma 2.1.

Lemma 2.2. On Re(s) ≥ 1, if Π is a representation in (2.24) with 1 ≤ m,n ≤ 4, then

−
d

ds
log L(s, Π) =

∑
p

λΠ(p)(log p)p−s + O(1). (2.29)
�

When the two factors in the Rankin-Selberg product are contragredient, the L-

function has a simple pole at s = 1, and is invertible there otherwise. We conclude from

Lemma 2.2 that for any representation Π in (2.24), with 1 ≤ m, n ≤ 4,

lim
M→∞

1

M

∑
p≤M

λΠ(p) log p =


1, if the factors in Π are contragredient,

0, otherwise.
(2.30)

2.6

To make use of these quantities, we calculate some linearity relations. Denote by Pn(x)

the polynomial sending the trace of a matrix in GL(2)
2 (C), with determinant ωπ, to the

trace of its nth symmetric power. In particular,

λsymnπ(p) = Pn

(
λπ(p)

)
,

λsymmπ×symnπ ′(p) = Pm

(
λπ(p)

)
Pn

(
λπ ′(p)

)
.

(2.31)

The coefficients of each Pn lie in Z[ωπ], where ωπ is a symbol satisfying ω2
π = 1. The

following relations hold:

P1(X) = X, P2(X) = X2 − ωπ, P3(X) = X3 − 2ωπX,

P4(X) = X4 − 3ωπX2 + 1, P5(X) = X5 − 4ωπX3 + 3X,

P6(X) = X6 − 5ωπX4 + 6X2 − ωπ, P7(X) = X7 − 6ωπX5 + 10X3 − 4ωπX,

P8(X) = X8 − 7ωπX6 + 15X4 − 10ωπX2 + 1.

(2.32)
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From identity (2.23), we have

lim
M→∞

1

M

∑
p≤M

Pm

(
λπ(p)

)
log p = 0 (1 ≤ m ≤ 8), (2.33)

and from identity (2.30), assuming 1 ≤ m, n ≤ 4,

lim
M→∞

1

M

∑
p≤M

Pm

(
λπ(p)

)
Pn

(
λπ ′(p)

)
log p =


1, if π ′ 
 π̃,

0, otherwise.
(2.34)

The obvious equalities hold for Rankin-Selberg products symmπ× symnπ and symmπ ′×
symnπ ′.

We now have the tools with which to eliminate, case by case, the potential trace

fields of the automorphic π afforded by the hypothesis of the theorem.

3 K-imaginary quadratic

3.1

We first treat the case when K is an imaginary quadratic extension of Q, say K = Q(
√

−d),

for some square-free positive integer d. The complex conjugate representation π = ⊗pπp

of π is an irreducible cuspidal automorphic representation of GL2 over Q, which is given

locally by the complex conjugate of the Satake parameters for πp. As the central charac-

ter ωπ is unitary, we have π̃ = π. On GL2, there is an isomorphism π̃ 
 π⊗ω−1
π , and in the

present context, ω−1
π = ωπ. For those primes p at which ωπ(p) = 1, the Satake param-

eters, and thus the Hecke eigenvalues, are real, being equal to their complex conjugate.

Likewise, for p at which ωπ(p) = −1, the Hecke eigenvalues are purely imaginary, being

the negative of their complex conjugate. In the complex plane, the coefficients of π lie in

R ∪ iR.

We are fortunate in this setting to have a convenient description of the represen-

tation π ′. The field K is imaginary; the Galois action is therefore complex conjugation,

and we have π ′ 
 π̃. We also observe that from the condition that π is not equal to π ′, the

representation π is not self-dual, and the central character is therefore nontrivial.

Throughout the remainder of this section, we will write π̃ in place of π ′. The fol-

lowing relationships will be used in later calculations:

(i) π and sym3π are not self-dual;

(ii) sym2π and sym4π are self-dual;

(iii) ωπ is nontrivial.
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3.2

Let S be the subspace of R[x] generated by monomials whose degrees are even and no

greater than 8. Elements in S can be considered as functions from R ∪ iR to R. Define a

linear form I on S by

I(T) = lim
M→∞

1

M

∑
p≤M

T
(
λπ(p)

)
log p, (3.1)

for T ∈ S. We calculate I on the standard basis of S by applying linearity to the relations

between powers of the trace of a matrix and the traces of its symmetric powers. The poly-

nomials Pn defined in Section 2.6, the nontriviality ωπ, and identity (2.33), provide the

following values for I:

I(1) = 1, I
(
x2
)

= 0, I
(
x4
)

= 2, I
(
x6
)

= 0, I
(
x8
)

= 14. (3.2)

If K = Q(i), consider the polynomial T(x) = −(x2 − 1)(x2 − 4)(x2 + 1)(x2 + 4).

As a real-valued function, T is negative at x = 0, zero at all other K-integral points in

[−2, 2]∪ [−2i, 2i], and negative elsewhere in R∪iR. The mean trace I(T) accordingly should

be nonpositive. Using the identities of (3.2), however, we compute that I(T(x)) = I(−x8 +

17x4 − 16) = 4. This contradiction eliminates the possibility that K = Q(i).

If K = Q(
√

−d), for d ≥ 3, then set T(x) = −x2(x2−1)(x2−4)(x2+3). The polynomial

T vanishes at all integer points in [−2, 2], and is negative outside of this interval. On the

K-integral points in [−2i, 2i], the value of T is zero when d = 3, and negative when d ≥
5. Furthermore, T is negative outside of this interval in iR. The mean trace I(T) should

therefore be nonpositive. Once again, however, we obtain a contradiction by computing

with the identities of (3.2) the value I(T(x)) = I(−x8 + 2x6 + 11x4 − 12x2) = 8.

3.3

Now, when K = Q(
√

−2), the above setting for the linear form I does not produce a contra-

diction. The critical distance d on the imaginary axis beyond which a polynomial T(x) =

−x2(x2 −1)(x2 −4)(x2 +d) must have a root, in order to have a positive mean, is d = 11/5—

a distance small enough to eliminate all fields Q(
√

−d), d ≥ 3, but too great to eliminate

Q(
√

−2). Similarly, the critical distance d within which a polynomial T(x) = −(x2−1)(x2−

4)(x2 + d)(x2 + 4d) must have a root, in order to have a positive mean, is approximately

1.452—a distance small enough only for Q(i). For Q(
√

−2) then, it is necessary to make

use of the Galois structure afforded by the hypothesis of the theorem. In a two-variable
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setting that registers π̃, as well as π, all quadratic imaginary fields can be eliminated at

once, as we will see.

Let K = Q(
√

−d) for d ≥ 1. For each prime p � N, let Tr(p) = λπ(p) + λπ ′(p) and

Nm(p) = λπ(p)λπ ′(p) be the trace and norm in Z of the coefficients, as elements in K.

Then, for T(x, y) in S = R[x, y], set

I(T) = lim
M→∞

1

M

∑
p≤M

T
(
Tr(p), Nm(p)

)
log p, (3.3)

for T ∈ S. The linear form I is evaluated at points (x, y) in the standard Z2 lattice in R2

such that x = Tr(p) and y = Nm(p). Dropping the dependence on p, if λπ = a + b
√

−d,

then when x = Tr = 2a, we have y = Nm = a2 + db2 ≥ a2 = (1/4)x2. Only those lattice

points on or above the parabola y = (1/4)x2 can possibly be represented as trace × norm

of the coefficients. Set

T(x, y) =

(
y −

1

4
x2

)
(y − 1)3. (3.4)

The function T vanishes on the parabola y = (1/4)x2. Within it, T is zero on the line y = 1,

and strictly positive above it—a region which for every quadratic imaginary field in-

cludes all points (Tr(p), Nm(p)). Accordingly, T should always have a nonnegative mean.

We compute however, using the values

I(y) = 1, I
(
y2
)

= 2, I
(
x2
)

= 2, I
(
x2y

)
= 4,

I
(
y3
)

= 4, I
(
x2y2

)
= 8, I

(
y4
)

= 20, I
(
x2y3

)
= 48,

(3.5)

that I(T(x, y)) = −3/2 < 0, which gives the desired contradiction.

4 K-real quadratic

4.1

Next, we consider the case when K is a real quadratic extension of Q. Let S be the real

vector space generated by polynomials in two variables x and y of the form

xi, i ≤ 8; yj, j ≤ 8; xiyj, 1 ≤ i, j ≤ 4. (4.1)
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Define a linear form I on S by

I(T) = lim
M→∞

1

M

∑
p≤M

T
(
λπ(p), λπ ′(p)

)
log p, (4.2)

for T ∈ S.

We assume for the moment that sym2π 
 sym2π ′, and then evaluate I at any poly-

nomial T ∈ S using identity (2.34). This assumption will be in effect until Section 4.3. For

brevity, in the list that follows, we give only the nonzero values of I for those monomials

in S needed in the analysis:

I(1) = 1, I
(
x2
)

= I
(
y2
)

= 1, I
(
x2y2

)
= 2,

I
(
x4
)

= I
(
y4
)

= 2, I
(
x6
)

= 5, I
(
x8
)

= 14.
(4.3)

From sym2π 
 sym2π ′, we deduce that λπ(p) = ±λπ ′(p) for every p. As one eigenvalue is

the Galois conjugate of the other, either λπ(p) ∈ Z or
√

dλπ(p) ∈ Z. Thus in the x, y-plane,

all coefficient pairs (λπ(p), λπ ′(p)) lie on the line y = x, or y = −x. Set

Tε(x, y) = (y − x)2
(
x2 + y2 − 4 − ε

)
, (4.4)

for ε ≥ 0. When d ≥ 3, the polynomial Tε is nonnegative on all possible coefficient pairs

as long as ε ≤ 2. Indeed, when K = Q(
√

3), the coefficient pairs off the line y = x lie

at distance at least
√

6 from the origin. (This is the closest any off-diagonal coefficient

pair can be to the origin, for in the case that K = Q(
√

5), any K-integer that is plus or

minus its Galois conjugate has trivial denominator.) Thus, having as a factor in Tε, the

equation for a circle of radius at most
√

6 ensures nonnegativity for the value of Tε at

all possible coefficient pairs. Accordingly, Tε should have zero mean-trace. We compute,

however, using the identities of (4.3), that for ε > 0, I(Tε) < −2ε. Thus for d ≥ 3, we have

obtained a contradiction.

4.2

Now, when d = 2, the above arguments do not produce a contradiction, for then ε = 0

gives I(Tε)=0. This is well so, for as the explicit matrix realization of Section 2.1 showed,

Q(
√

2) is precisely the case which occurs for automorphic π coming from octahedral Ga-

lois representations. In this case, we construct the subspace V of the theorem, along with

its integral basis, as follows. Let ρ be an even octahedral representation of the absolute

Galois group of Q. The image of ρ in GL(2)
2 (C) is given in Section 2.1. By composing ρ with
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the nontrivial Galois automorphism of Gal(Q(
√

2)/Q), which acts entrywise on the image

of ρ, we obtain the Galois conjugate octahedral representation ρ ′. The results of Lang-

lands [8] and Tunnell [10] produce corresponding cuspidal automorphic representations

(π,Hπ) and (π ′, Hπ ′) of GL2 over Q preserving L-functions. Moreover, π is weight-zero

since ρ is even. If f ∈ Hπ and f ′ ∈ Hπ ′ are eigenfunctions of the Hecke subalgebra T , then

we take V = C{f, f ′}. A basis of V with respect to which T acts by integral matrices is

{(f + f ′)/2, (f − f ′)/2
√

2}.

The symmetric power L-functions of an octahedral π are invertible at s = 1 for

all powers up to the seventh, but have a pole there at the eighth. In order to rule out the

existence of a nonoctahedral π, the polynomial producing the contradiction must be able

to distinguish between the two by picking up the behavior of L(s, sym8π) at s = 1. The

degree of the polynomial should accordingly be at least 8. We set

T(x, y) = x2
(
x2 − 1

)(
x2 − 2

)(
x2 − 4

)
. (4.5)

The seven vertical lines in the vanishing locus of T coincide with the coefficient pairs

which satisfy the Ramanujan conjecture. The assumption that sym2π 
 sym2π ′ ensures

that all other coefficient pairs lie to the left or right of these vertical lines. In those two

regions, the polynomial T is positive. With these considerations, it should follow that the

mean trace of T is nonnegative. We compute, however, using the identities of (4.3), that

I(T) = −1. This contradiction eliminates the possibility that the π of our hypothesis can

be non-Galois. Finally, we check that if π corresponded to an octahedral Galois represen-

tation, the value I(x8) would be 15, I(T) would be 0, and no contradiction then occurs.

4.3

We now go through similar arguments under the complementary assumption that

sym2π �= sym2π ′. This changes the value of I(x2y2) listed in (4.3) from 2 to 1. We take

K = Q(
√

d) where d �= 5. If the Ramanujan conjecture holds, the only points (λπ(p), λπ ′(p))

which contribute to the value of I are those for which both coordinates are bounded in

absolute value by 2. Those that are also K-integral lie either on the diagonal y = x, as

with (0, 0), (1, 1), (−1,−1), (2, 2), and (−2,−2); or off the diagonal and at distance from the

origin no less than 2, as with (
√

2,−
√

2) and (−
√

2,
√

2), when K = Q(
√

2). Set

T(x, y) =
(
x2 + y2 − 4

)
(y − x)2. (4.6)
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The polynomial T is nonnegative in the region bounded away from the circle centered at

the origin of radius 2, and also on all Ramanujan points enumerated above. The mean

I(T) should therefore be nonnegative. However, using the identities of (4.3), we compute

that I(T) = −2, a contradiction.

5 The exceptional field Q(
√

5)

Up to this point, we have proven the theorem when the coefficient field is any quadratic

extension of Q except Q(
√

5). This case must remain outstanding for reasons we now set

forth.

If ρ is an even icosahedral representation of the absolute Galois group of Q, with

trivial central character, then its range in GL2(C) is described in Section 2.1 and we can

form the Galois conjugate ρ ′ by composing ρ with the nontrivial element in Gal(Q(
√

5)/

Q). To ρ and ρ ′ are associated, through a conjectural Artin correspondence, cuspidal au-

tomorphic representations (π,Hπ) and (π ′, Hπ ′) both of which are irreducible constit-

uents of W if f ∈ Hπ and f ′ ∈ Hπ ′ are eigenfunctions of the Hecke algebra T , the subspace

V = C{f, f ′} admits the basis {(f + f ′)/2, (f − f ′)/2
√

5} with respect to which the Hecke

operators act as integral matrices.

The symmetric power L-functions of f, being equal to those of ρ, are invertible at

s = 1 for all powers up to the eleventh, and have a pole there at the twelfth. This prop-

erty serves to test whether a given automorphic form is Galois, for any Maass cusp form

whose coefficients are integers in Q(
√

5) could not possibly correspond to an icosahe-

dral Galois representation if its symmetric power L-functions were invertible at s = 1

for all powers up to and including the twelfth. This latter property would presumably

hold, via Rankin-Selberg factorization, if there existed symmetric power functorial lifts

up through the sixth, and if under every one of these lifts the given form was actually

cuspidal. As we have at present only functorial lifts up to the fourth power, and from

this, knowledge of the form’s symmetric power L-functions only up to the eighth, those

Maass forms which, conjecturally at least, are of icosahedral Galois provenance are ef-

fectively indistinguishable from those which are not. This explains why in the theorem

no claims are made about forms with quadratic integer coefficients inside Q(
√

5).
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