ADAMS OPERATIONS IN TOPOLOGICAL HOCHSCHILD
HOMOLOGY

GREGORY GINOT

ABSTRACT. The aim of this paper is to define and study Adams operations on
topological Hochschild homology. They are analogous to the standard Adams
operations defined in Hochschild homology of a ring. We compare them with
classical operations and prove that they are compatible with the product struc-
ture and the standard Bokstedt spectral sequence.
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Adams operations on the Hochschild (co)homology of a commutative algebra
were first defined by Gerstenhaber and Schack [13] and Loday [20]. These opera-
tions, often called A-operations, yield an algebraic structure, due to Grothendieck,
called a v-ring. They proved to be very usefull in Hochschild and cyclic homology
theory. For instance they provide a nice spliting of Hochschild homology groups by
(higher) André-Quillen ones in characteristic zero. In the general case they induce
an interesting filtration closely related to other well known theories such as Harri-
son homology. Moreover most of these results extend to the cyclic homology of a
commutative algebra and its variants.

In the mid 1980’s, Bokstedt (following ideas of Goodwillie) defined and studied
topological Hochschild homology TH H (F) of a functor F' with smash product ([2],
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[3]) mainly to extend standard Hochschild homology to the case of rings up to
homotopy. Later on, Bokstedt, Hsiang and Madsen [4] defined topological cyclic
homology, a topological generalisation of negative cyclic homology. These theories
have been intensively studied and applied for computations of algebraic K-theory.

Since the pioneering work of Bokstedt, many constructions of categories of spec-
tra equipped with smash product having nice associative and commutative prop-
erties at the space level (and not only the homotopy level) have arised, see [12],
[24], [31], [21], [29] for example. The aim was to provide a good setting for “brave
new algebras” | that is to say topological generalisations of algebraic constructions
to homotopy ring spaces. The main goal of this paper is to extend the standard
algebraic A-operations in Hochschild homology to topological Hochschild homology
in this context, to study some of their properties and compare them with their
classical level. Loday [20] construction of Adams operations makes sense not only
for commutative algebras but also for any functor F' from the category of finite
sets to the category of modules over a commutative ring k. McCarthy [23] gave a
geometric description of Loday’s A-operations which we follow to define analogous
operations ®* on topological Hoschild homology.

It is to be noted that many constructions of topological Hochschild homology are
avalaible in many competiting categories of structured spectra. Each of them have
their own advantages. For example, Bokstedt’s topological Hochschild homology
construction is, so far, the only one that leads to a nontrivial topological cyclic
homology theory. On the other hand, the very natural model in the category of
S-algebras given in [12] leads to relative version of topological Hochschild homology
(that is over a “ground ring” which is not the sphere spectrum) generalizing the
algebraic ones. Thus it is important to have Adams operations for the different
models that are equivalent when pasing to stable homotopy groups.

In the first three Sections we work in the framework of I'-spaces and S-algebras
first introduced by Segal [31] and developped in [21], [29]. Tt is a very quick way to
get a strict monoidal symmetric category homotopy equivalent to (connective) ring
spectra. For example Eilenberg-Mac Lane spectra are easy to define in this cate-
gory. Moreover we mainly work with Bokstedt initial T"H H model for topological
Hochschild homology in these sections. There is two main reasons for that: first
it is the model which leads to topological cyclic homology and we hope that the
Adams operations we build can be generalized to that context someday. Moreover
this situation has been widely studied and is wellsuited in the context of linear
categories and Mac Lane homology; we use this in subsections 3.3, 3.4 . More
precisely, in Section 1 we make some recollections on S-algebras. In Section 2 we
build the Adams operations shows that they are multiplicative and start studying
the induced 4-ring structure on homotopy groups. In section 3 we compare these
operations with standard operations on Hochschild homology of discrete rings and
with some operations introduced by McCarthy in Mac Lane homology. There is a
classical spectral sequence, originally due to Boktedt,

HH.(H.(A, F,)) = H.(THH(A), F,)

computing the topological Hochschild homology. We show that it is a spectral
sequence of y-rings. It gives both a way to compute Adams operations and an
additionnal structure that should respect this usefull spectral sequence. Also we
give the construction of operations on the thh model of [12] in order to state relative
results.

A very different category of ring spectra was constructed in Elmendorff, Kriz,
Mandell and May monograph [12]: the category of S-modules. In section 4, we give
Adams operations on the thh model in this category. It is the model which is the
closer from the algebraic standard complex computing Hochschild homology for flat
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rings. We also show that another classical spectral sequence from [12] computing
7« (thh(A)) is a spectral sequence of 4-rings. The Harrison homology is related
to the filtration of the Hochschild homology induced by the Adams operations.
Adams operations on the thh-model lead to a definition of topological Harrison
homology which is related to topological Hocshchild homology in a way similar
to the algebraic relationship. Finally we compare our constructions to the one
introduced by McClure, Schwinzl and Vogt on the model A @ S*.

An important feature of the various constructions of both, strict monoidal sym-
metric categories of ring spectra and models for topological Hochschil homology
is that they give the same result when passing to homotopy. The Appendix A
is dedicated to recall this result in details together with the fact that our various
Adams operations constructions give the same result in the homotopy category.
For convenience of the reader we have recall a few basic facts about 5-rings in
Appendix B.

The author would like to thank the University of Oslo for its support and espe-
cially John Rognes who spent a lot of time answering all his questions and Morten
Brun as well.

Notations: For the remainder of the paper we let Fin be the the category of finite
sets ky = {0,1,...,k}, k> 0 and any maps. Following Segal [31], we let T be the
category of finite pointed sets ky = {0,1,...,k}, k> 0 and pointed maps i.e. maps
fixing 0 (actually, this category is the opposite of Segal’s one). We use the notation
A for the usual simplicial category and Simp’ will be the category of simplicial
pointed sets (also called spaces). Given a simplicial object X, in a category, we
denote |X| its geometric realisation.

The category Top will be the category of compactly generated topological spaces
(see [25]) and we will denote A the standard r-simplex with based point.

The capital letter K will usually stands for a field and the letter & for a com-
mutative unital ring. Additionally, for any field K or commutative ring & and
spectrum X, we will denote H,(X, K), H.(X, k) the spectrum homology H K. (X)
and Hk.(X).

Throughout the paper we shall make no distinctions between the expressions
“X-operations” and “Adams operations”. A-operations on a ring without unit I are
a family of operations (®* : I — I)k >0 that induce a structure of a 7-ring on 7. We
refer to [1], [15] and [18] for definitions and properties of A-rings and have collected
a few definitions and results about them in appendix B.

When a, b are objects of a category C, C(a, b) is the set of morphims from a to b.

1. A FEW FACTS ABOUT I'-SPACES AND S-ALGEBRAS

I'-spaces were first studied by Segal [31] (but our treatment is based on [21],
[29]). A T-space X is a functor X : T' — Simp’. We write I'sp for the category
of T-spaces. The underlying space of X is X(14). The category T' admits inner
operations V (wedge sum), A (smash product) defined by k4 V €4 = (k + £)4+ and
ky Ay = (k€) 4 (with lexicographic order).

A T-space X naturally extends into a functor Simp’ — Simp’. It will still be
denoted by X (and PX in the appendix; the only place where confusion could
arise). First, X induces a functor X : Sets’ — Simp’ (where Sets’ stands for the
category of all pointed sets and pointed maps) defined by

X(F) = colim X (k4).

k‘+—>E
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Next, if K € Simp’, we let X (K) € Simp’ be the simplicial space whose p-simplices
are
X(K)p = X(Kp)p.

For L € Simp’, there is a natural application X (K)A L — X (K A L). Taking K
to be the m-sphere 5™, we see that X induces a connective spectrum X (S) : n —
X (S™). By definition, the homotopy groups of X are the homotopy groups of this
spectrum, that is

i (X) = m(X(S)) = co}limﬁk+nX(S”).

The smash product of two I'-spaces X, Y was defined by Lydakis [21] as the
following I'-space:

XANY = <k+ — colim X(my) /\Y(n+)) .

m+/\n+—>k+
There is a particular I'-space (called the sphere T-space) S: T' < Simp’ defined by
k’+ — (Tl — ]f+)

The induced extension Simp’ 8, Simp’ is the identity and the associated spec-
trum is the sphere spectrum n — S™.

The category (I'sp, A, S) is a symmetric monoidal category for the smash product.
A S-algebrais a monoid in this category; hence a S-algebra is a I'-space A together
with an associative product g : A A A — A and a compatible unit n : S — A. The
S-algebra A is said to be commutative if poT = p (where T is the twist morphism).
This means that the following diagram is commutative for all &, £ > 0

Aky) NA(Ly) 5 Ak ALy)
Tl A(T)
AUl NA(ky) 5 Aty ARy

where T" : ky ALy — €4 A k4 is the isomorphism exchanging the two ordering
relations.

Notice that a S-algebra A also induces a connective functor with smash product
(see [2] for example). For all K, L € Simp’, there is a natural product A(K) A
A(L) = A(K A L) and the associated spectrum is a ring-spectrum.

Given a S-algebra A, a left A-module is a I'-space M together with an action
AANM — M. A right A-moduleis a I'-space M together with an action MAA — M.
The coequalizer map

MANAANZ=MAN-—->MAsN

in the category I'sp of yields a smash product for a left A-module N and right
A-module M, denoted by M Ag N, for which A is a unit. Moreover when A is
a commutative S-algebra, the categories of left and right modules are isomorphic
so that we can simply speak of A-modules. In that case, we denote by A-mod
the category of A-modules. This category is symmetric. We call A-algebras the
monoids in the symmetric monoidal category (A-mod, A4, A). We will also need to
consider bimodules. Such is a left A-module M together with a compatible right
action of A.

2. ADAMS OPERATIONS ON BOKSTEDT MODEL T H H(A)

2.1. Preliminaries on THH (A). We will follow Bokstedt [2]. Howewer, as we
mainly deal with commutative S-algebras, we use Brun’s indexing category which
is more convenient to handle products and the operations we will construct in this
framework (because the concatenation on the indexing categories J(k) is strictly
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commutative). This does not change the homotopy type by Bokstedt [2] approxi-
mation lemma, see 2.1 below.

Following Brun [6], we denote J the category of finite subsets of {1,2,...} with
morphims the maps which are injective. We still denote « V y the (disjoint) union
of two elements z,y of J. For k > 1, let J(k) be the subcategory of J* consisting of
tuples of mutually disjoint subsets. We identify the sphere S' with the simplicial
set A#/@A}*_ where A}I_ is the standard 1-simplex and 3A}+_ is its boundary. We
denote + its base point. For y € J, the “y”-sphere is the simplicial set

SY = Simp'(y v {0}, S1)/{a./+ € ax(y), k > 1}.

More generally, for = (2o, ..., 24) € J(¢ + 1), we set ST = S%o A .. A S%a,

Consider a S-algebra A with associative product . For an object z = (zq, ..., #4) €
J(q+1), we define G(A, z) to be the I'-space ky — G(A, z)(ky), where G(A, z)(k4)
is the simplicial mapping space, that is to say the set whose p-simplices are given
by

G(A, 2)p(ky) = Simp' (S°° A . A STt AAR 5 TS|A(ST) A A A(S?) A kyl)
where TSis the singular complex functor. Henceforth we will simply write Map(—; —)
for the simplicial mapping space. When no confusion may occur, for € J(q¢ + 1)
we will simply write S¥ = S%° A ... A 5% and AMNHL(S7) for

A(STYNA(ST) A N A(ST).
With these notations, G(A, z) could be written as
k4 — Map(S®; AMTH(S") Aky).

This defines a functor  — G(A, ) from J(q + 1) to T-spaces.

There is a cyclic I'-space THH (A)« = (¢ —» THH(A),) defined (c¢f. [2], [3], [6]
by

THH(A), = aljlé);glflr; G(A, z).

The cyclic structure of TH H(A). is given by faces d; : THH(A), = THH (A)n—1,
degeneracies s; : THH(A), - THH(A),_1 and cyclic permutations ¢ : THH(A), —
THH(A),. The map ¢ is induced by the cyclic permutation

r:Jn+1) — J(n+1)
(g, ..., zn) = (Tn, 20, Tn_1).
There is a functor 9; : J(n+ 1) — I™ given by
. ) (o, Er i Vg, x,) ifi<n
Oi (o, ..., &n) = { (2o V 20, 21, ..., Tn) ifi=n.
The map d; : THH(A), - THH(A)n—_1 is the map induced by
di - G(A, z) = G(A, 8(x))
defined, for every map f € G(A, z) and i < n, by
di(f) = 1da(s=o)a..aa(s=i-1) A p A ldg(s=it1)n na(sen) © f OV
where «; is induced by the isomorphism S%iV¥i+1 = §%i A S%i+1 For § = n,
El;(f) = ( Aidg(se2)a. pa(sen-1y) 0to foyioT

Degeneracies are defined in a similar way. We denote THH (A) = |THH(A).|
the geometric realisation of TH H (A)..

Now if M is a bimodule with left action £ : AA M — M and right action
r:MAA— M, there is a simplicial I'-space TH H (A, M). obtained by replacing
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the first factor A(S*°) by M(S*°) in the definition of THH (A).. We will write
THH(A, M) for its simplicial realization. Precisely

THH(A, M)q = hocolim G(A4, M, z)
z€J(q+1)

where G(A, M, z) is the T-space defined by
G(A, M, z)(ks) = Map(S® ; M(S°) A A(S®*)... N A(S®9) A ky).

The simplicial structure is the same except for Zl:(f), c%(f) which have to be
replaced by

El;(f) = (g A idA(Szz)/\.../\A(S”n—l)) otofomyor,
do(f) = (r Aidagsesy A .. A A(ST*=1)) o .
Of course, if M is the canonical bimodule A, then THH (A, M), = THH (A)«. The

use of bimodules different from A is needed in Section 3.3.

We finish by recalling Bokstedt fundamental approximation Lemma [2].1.5 (also
see [6].2.5.2).

Lemma 2.1 (Béksdedt). If F' : C — Simp' is a functor from a monoidal category
to simplicial pointed sets such that the unit for the monoidal structure is an initial
object and every morphism ¢; — ¢o in FiC is A(i)-connected, then the inclusion
map

F(c) = hocolim F
ceC

is A(i) — l-connected.

This lemma in particular implied that the TH H(A) model using the indexing
category J is weakly equivalent to the one using the category I, see [6].4.5. We
recall the argument here because it applies to any monoidal category and to the
“limits of a mapping space like” functor used in Proposition A.6. Recall that 7
is the full subcategory of J with objects ny,n € N. There is a functor é(A, -):
J(g+ 1) x I7%1 — T'sp given by

ky > G(A z,y) = Map(S® x SY; A(S ASY)A ... A(S%% A SYa) Aky)
and simplicial natural transformations
THH(A)y —  hocolim é(A, z,y) </<7+ + hocolim Map(SY; ATt (SY) A k.,.))
(z,y)€J(g+1)xTa+? yelatl

induced by the inclusions J9*t! — J(q + 1) x [9t1 < [9%1. The approximation
lemma 2.1 implies that the two natural transformations are weak equivalences hence
the equivalence between T'H H (A) and Bokstedt model.

2.2. McCarthy’s operations ¢*. Recall that there is a functor sd, : A — A (the
edgewise subdivision functor) defined by

sdr([n]) = [n]U[nr]U...U[n] (r factors).

When X is a simplicial I'-space (a fortioria cyclic one) we denote sd, (X) = X osd,.
We identify the simplex A:_"_l with the r-fold join of Ai_l with itself. There is a
map D, :| sd,(X)|—| X | induced by
Xrn—l X Ai_l — Xrn—l X A:n_l
(2, u) = (%@ ...@ %) (rfactors)
which is a homeomorphism (c¢f. [4] Lemma 1.1).

We now recall the construction of a natural system from McCarthy [23]. Such
is a topological analog of a y-ring. A natural system on X is a family of simplicial
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maps (¢ : sdg(X) — X)g>o such that ¢ = %, ¢! = id and the diagram (2.2.1) is
commutative up to homotopy

sdyy ()2 sd,(x) (22,1

@
X.

For the remainder of the paper we will denote ®" the composite map ®" =| ¢" |
oD 1. A natural system is said to be cyclicif ¢7,_; 0t =topl ;. A map of natural
system is a simplicial transformation f : X — Y that commutes with the family
(¢")k>0 up to homotopy:

k

sdk(X)L>X

Sdkfl lf
k

There exists a functor © : A°? — T' (cf. [20]) which is the identity on the objects
and satisfies O(f)(i) = j if there exists j such that f(j — 1) < i < f(j) and is 0 if
not. Henceforth a I'-space is considered a simplicial space by ©. This functor ©
obviously factors through the category Fin of finite sets.

McCarthy [23] gave a “universal”construction of natural systems T-spaces as
follows. We define a family of applications ¢}, € Homp(rn 4+ r — 1, n) by setting
¢ (p) = p modulon + 1.

Lemma 2.2. (McCarthy [23]) If X is a T'-space (respectively a Fin-space), then
the familly (X o ¢l) defines a natural system (resp. a cyclic one).

fFX=2Xo 0,Y = Y 0O are simplicial spaces associated to I'-spaces through
the functor ©, they both have natural system by the previous lemma. Assume
there is a simplical map f : X — Y induced by a map f of I'-spaces. Then
fo(Xogl)=(Youl)of and we get the following easy but usefull Lemma to
compare natural systems.

Lemma 2.3. Let X = )?o@, Y =Yo0O be simplicial spaces factorizing through the
category U'. If f : X = Y 1s the transformation induced by a natural transformation

f:X =Y then f is a map of natural systems (with the natural systems from 2.2
on X andY ).

2.3. Operations for commutative S-algebras. We have seen that, for any S-
algebra, there exists a functor THH (A) : A — TI'sp. We wish to apply lemma
2.2 to define A-operations on TH H(A) when A is commutative. So we need to prove
that in that case there exists a factorisation for TH H (A) : A°? — T'sp through Fin,
ie.
o . TA

THH(A) = A°? —— [yp —= ['sp.
Lemma 2.4. Such a factorisation exists if A is a commutative S-algebra. If more-
over M is a symmetric A-bimodule, then there is a factorisation

® (4, M)
THH(A,M) = A? ——=T ——> " T'sp.

———

Proof: On objects we define T'(A), = THH(A),. For a morphism § : [n] — [m]
and a map

FoSTNLNANSTNAE = A(ST) A LANA(ST) Ny
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we wish to construct a map
8(f) : SN ASY NAR = A(SYA LNASY™) Ny

For 0 < i < m, define y; = z;, V... V 2;, when §71(3) = {i1,...,4x} and y; = 04 if
§71(i) = 0. We denote by k; the cardinality of the set §=1(i). We write z} for z;,.
Let m be the unique permutation that reindexes zg V ...V z, in the form

zyValVv..vel V..val V..Vl .

Then §(f) is the composite map

SYON L ASIm A AL —5 ST LA SR A LA ST A AE
T ST L ASTANAR Ly A(STO) A LA A(ST) A ky
ST A(STOA A SR ) A A A(STS A A ST ) Aky
— A(SY)YA L ANA(SY™) A kg

This construction is compatible with the morphisms of the category J(q + 1).

We have to prove that this functor is well defined and that the desired factori-
sation holds. In particular we have to check that ©(dy) = ©(d;), where dg, d; are
the two morphisms [1] — [0] in A°. Let f be a map :

STONSTEAAL — A(STO) AN A(STY) Aky.
We denote x the subset zgV 21 = 21 V g. The map do(f) is the composite map
ST AAR = 8% ASTUAAR EN A(STOYNA(ST) ANky — A(STONSTY) Aky.
With the notations of section 1, di(f) is the composite map
STAAR = ST A ST AAR T A(STO) A A(ST) ARy
L A(ST) A A(ST) A ky — A(S™ A STO) A ky.

Denoting i, j the two canonical identifications i : S¥0 A §¥1 5 §eoVer — gz 4 .
ST A ST 5 §21Vee — §% we have and 1" = j o i~! the resulting identification
SEoVEL o GT1VTo we see that the following diagram (2.4.1) is commutative for all
maps f when A is commutative :

Soovar A AR L 4(S70) A A(ST) Ay —L A(STH) A A(STO) A ky (2.4.1)

| |
A(T")

A(S%0 A ST A ky ———> A(S®Y A ST) Aky
40 lA(j)
A(ST) N kg

Hence do(f) = d1(f). Checking the other simplicial identities is done in an analo-
gous way and relies on the commutativity of the “concatenation” functor in J(r).

o~

Defining T'(A, M), = THH(A, M), on objects, the previous construction ap-
plies mutatis mutandis to the case of a bimodule. The symmetry condition gives
that the analog of diagram 2.4.1 is commutative. d

Remark :  We will see later on that a reciprocical assertion holds if we use a
different model for topological Hochschild homology 3.1.
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The lemma implies that there is a cyclic natural system * : sdp THH(A). —
THH(A). and operations ® =: |p*|o D™1 : THH(A) — THH(A). The same is
true for THH (A, M) without the cyclic property. As in [23], there is an explicit
description of the ¢ operations. A r-simplex in (sd,(7'H H(A))),—1 is given by a
chain

X0 X' L X" =2 = (0, oy Bg(n4l)—1)
where each X* € J(¢n) together with a map
foST A LASTa=t AAR - A(STO)A LA A(STe=t) A kg
Writing S° A ... A S%a(»-1 as a “matrix”
S¥o S*1 N

S%@-1n  S%(g-Drt1r | GTan-1

such a map has a “matrix form”

(Sx(”_l)’ﬂ) 0<i<q—1 A Aﬂ L) (A(Sx(n—l)lﬂ)) o<i<q—1 A ky.
0<j<n—1 0<j<n—1
With this notation, for 0 < i < n — 2, faces of sd,(T"HH(A))
S¥o .. SFVTiH e SFnen
: U o A AY
S%ao .. §%uVTauyr | G§%anoa
A(STe) ... A(STiVEi) oo A(SERT)
dif . . .
— | L L Nky.
A(STa0) .. A(STaVTas) L A(STan-1)

(with ¢; = (¢ — 1)n + i) are given by multiplications of the adjacent columns and
degeneracies by the insertion of a column of unit maps. The “last face” operator

dn—1 1s given by first cyclically rotating the last column and then multiplying it
with the first one.

Lemma 2.5. With this presentation of (sdg (T HH (A)))n—1, operations ¢* are given

by
S¢eo 5% v SFnmt
: : L AAL
S%a-1)n  ST(@-1)n4+1 | STan-1
A(S%0) A(ST) oo A(SERT)
+ | z L Aky
A(Sx(q—l)n) A(sx(q_l)n+1) . A(qun—l)

u\ A(ng\/xnvmVx(q_l)n) A m/\A(an_1Vx2n_vm\/an_1)
where the last map s the iterated multiplication followed by identification of spheres.

Proof: Formally the proof is analogous to the computation in [23] Section 5. O

There are operations ®* = ¢* o Dk_1 on THH(A, M) thanks to Lemma 2.2 and
Lemma 2.4. Recalll that to every y-ring (R, ®*) we can associate a natural filtration
(see [15] , [18] or the appendix B) F,Y R defined by

FYX = (47 (z1)..9" (z5) ; 1, ..,2s € Rand p1 + ... + ps > p)
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where 4% = Zfz_ol(—l)i(ki_i)@k_i. The notation (yi...y,) stands for the abelian

group generated by monomials y;...y,.

Theorem 2.1. Let A be a commutative S-algebra and M a symmetric A-bimodule.

i): The abelian group m (THH (A, M)) equipped with the trivial multiplication
and the operations ®* is a A-ring.
ii): For every commutative ring k, the A-ring structure induces a canonical fil-

tration F = Flm.(THH(A,M)) on n.(THH(A, M)) and also a filtration
F) = FYH(THH(A, M), k) on H,(THH(A, M), k) with

Fy = n (THH(A)),  F) = H.(THH(A,M),k).
iii): One has F)) ,(H,(THH(A),K)) =0 if K is a field.
iv): For the field Q of rational numbers there is a natural decomposition
T(THH(A, M) @ Q=) (THH(A,M),Q)® ...®n" (THH (A, M),Q).

A stronger result than iii) is obtained in Corollary 3.3 after the study of these
operations in the case of discrete rings.

Proof:
i): It follows from Lemma 2.4 that the operations ®* define a natural system on
THH(A, M). The definition of a natural system implies that the following
diagram (2.1.1) is commutative

| THH(A,M) | <2 | sd, THH(A, M) | ——> | THH(A, M) |  (2.1.1)

D, D,
Dys

|sdroTHH(A, M) | 5% | sd, THH(A, M) |

.

| THH(A, M) |

and we finally have ®" ®°* = ®" on m,. As ©° is trivial and ¢! is the identity,
this implies that (. (THH (A, M)),0, (®*)k>0) is a A-ring.

ii): The filtration Fy is the canonical decreasing filtration associated to the
A-ring structure on m, (THH (A, M)). There is also a A-ring structure on

H.(THH(A, M), K) (the proof is analogous to (7)) that induces the filtration

F}Y. The statement that F}', F]' are the whole y-rings is a standard result of
y-rings with trivial multiplication theory [1].4.1.

iii): Tt is well known that the skeleton filtration on TH H (A, M) induces a con-
verging spectral sequence (cf. [3] or [27] for a published version)

G2, = HH,(H.(A, K), H(M,K)), = H,y (THH(A, M), K),

where, for a graded ring R. and R.-bimodule M,, HH,(R., M.)s; means the
subgroup of the Hochschild homology H H,(R., M,) generated by tensors of
total degree s in M, ® R%*.

More precisely, since there is a well-known stable homotopy equivalence [2]
(it is a corollary of approximation Lemma 2.1)

THH(A M), ZANAN..ANA (r+ 1 factors),
the term G' of the skeleta filtration spectral sequence is

Gy, = H.THH(A M), K)



ADAMS OPERATIONS IN TOPOLOGICAL HOCHSCHILD HOMOLOGY 11

and Kunneth’s theorem implies
G,lqy* = H.(THH(A,M),,K) = H,(M,K) ® Ho(A, K)®".

The cyclic structure of THH(A) induces the structure of a cyclic space
q — H.(A K)®L  This cyclic structure is the one defining the standard
Hochschild complex Cy (H. (A, K), H.(M, K)) as a K-algebra. The simplicial
structure induced on H.(M, K) ® H.(A, K)®* by the simplicial structure of
THH(A, M) is exactly the one defining the standard Hochschild complex. Tt
is known [20] that C. (B, M) factors through the T'-abelian group

L(B,M)= (g~ M ® B%).

With this identification, the induced operations ®F on the level 1 of the spec-
tral sequence G,lﬂy* = H.(THH(A, M),, K) are defined by

(Cu(Ho(A K), Ho(M,K))ogl)o DSt

McCarthy [23] Example 3.8 has proved that these operations coincide up
to the sign (—1)*~! with Loday’s standard operations A* on the Hochschild
complex (ef. [20]). Then it follows from [20], Theorem 3.5 that

Fpy2(HH, (Hs;(A,K))) = 0 when r < n.

Consequently, for » + s < n, one has Fyio(HH,(H (A, K))) = 0 and we
finally get F)) ,(H,(THH(A, M), K)) =0 see B.2.

iv): The theory of A-rings ([15] , [18]) implies that, when k& = Q, there is a
decomposition in eigenspaces of the Adams operations

ma(THH(A,M))© Q=P ri(THH (A, M),Q).
i>1

But, as m, (THH(A,M)) @ Q = H,(THH(A, M),Q), the conclusion is an

immediate consequence of #ii).

O
Remark : (1) In particular Theorem 2.1 holds for M = A, that is for TH H(A).

(2) The property ii) of Theorem 2.1 in fact holds for any homology theory E.
(the proof is the same).

(3) Let X be any spectrum. We denote by [X, THH(A)] the group of ho-
motopy classes of spectra maps X — THH(A)., There is a product THH(A) A
THH(A) =5 THH(A) (see section 2.4) inducing a ring structure on [X, TH H (A)]..
Mimicking [18], Section 5, one can prove that the operations ®* induce a A-ring
structure on [X,THH(A)].. Moreover the ring structure is trivial when each X, is
a co-H-space.

2.4. Ring structure and Adams operations. Product structures on THH (A)
have been first studied by Hesselholt and Madsen ([14]). Here we still follow
Brun’s presentation ([6]). When A is a commmutative S-algebra, then the T-
space THH(A) naturally becomes an S-algebra, i.e. there exist a product m :
THH(A)ATHH(A) - THH(A).
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Theorem 2.2. Let A be a commutative S-algebra. The following diagram is com-
mutative for allk > 0 :

THH(A) NTHH(A) 2—> THH(A)

<I>k/\<1>kl l@"

THH(A) NTHH(A) Z— THH(A).

Proof: Tt is enough to check that the following diagram (2.2.1) is commutative for
all k,r > 1.

my.

THH(A), ANTHH(A), THH(A), (2.2.1)

Dk/\DkT DkT

sde THH(A), Asde THH(A), —+"" 5 o, THH(A),

v"/\wkl vkl

THH(A), NTHH(A), o

For the upper square of the diagram, the commutativity follows easily from the
naturality of D.. The product m (see [6]) is given by the composition

m : hocolim G (A, z) A hocolim G(A, y) LN hocolim  G(A,z) AG(A,y)
z€J(r) yeJ(r) (z.y)€T(r)xJ(r)

#,  hocolim G(A, ).
z€J(r)

The map 7 is induced by the smash product of I'-spaces. The map pu is defined
as follows. There is a product map j : J(r) x J(r) — J(r) which sends the
tupple ((mo, ceos®ro1), (Yo, -y y,«_l)) to (mo\/(N—{—yo), .. .x,_l\/(N—}—y,_l)) where
N = max(zg,...,2,—1). There is a map i : G(4,2) A G(A,y) = G(A,j(z,y))
which, to any map
F:STANSYNAT — A(ST)NA(SY) A sy,
associates the composite map
SrovNHva A A STaVNRU A A D ST ASY AN
Ly A(ST) A AA(ST) AL
SN A(SYTY A sy

AUy (groviiamoy A

A A(er_1VN+yr_1) Asy
where T is the identification of sphere induced by j. This map induces a map

f:  hocolim G(A,z) AG(A,y) = hocolimG(A4, z).
(z,y)eJ(r)xJ(r) z€J(r)

The maps i clearly commutes with ®* (for all £ > 0). Hence, the commutativity of

the lower square of (2.2.1) will follow from the commutativity of the diagram

sdit

SdkTHH(A)k A SdkTHH(A)k SdkTHH(A)r

w"/\wkl w"l

THH(A), ATHH(A)y - THH(A)y




ADAMS OPERATIONS IN TOPOLOGICAL HOCHSCHILD HOMOLOGY 13

which is a consequence of the commutativity of the S-algebra A as in the proof of
Lemma 2.4. g

When passing to homology, Theorem 2.2 implies that 7. (T HH(A)) has a second
ring structure compatible with the Adams operations (which are related to the
trivial multiplication on m.(TH H (A))). With the notation of the appendix B, we
have.

Corollary 2.6. (m.(THH(A)), ", m) is a multiplicative y-ring.
Remark : Of course, m. (T HH(A)) can be replaced by the homology E. (T H H (A))

for any spectrum E in Corollary 2.6; we are particularly interested in £ = HK.

3. DISCRETE RINGS

In this section we specialize to the important case where the S-algebra come
from a ring.

3.1. Operations on the model thh®(A, M). Schwede [29] proved that the cate-
gory of S-algebra is a cofibrantly generated model category. This property enables
to build a model for topological Hochschild homology mimicking the standard com-
plex in algebra following the ideas of [12]. The main advantage is that it leads to
a definition of relative topological Hochschild homology which relates nicely to the
classical algebraic Hochschild homology of discrete rings as we will see and need in
the next subsection 3.2.i1). The main drawback here is the lack of explicit cofibrant
S-algebras. In this subsection, we build Adams operations for this model.

Suppose given (for the remainder of the section) a commutative S-algebra L and
a cofibrant commutative L-algebra B (i.e. a I'-space together with a commutative
product g : BAL B — B and a unit n : L — B). When the cofibrancy condition
for B is not satisfied, then one replace B by a cofibrant approximation CB = B.
There exists a cyclic L-module tth(B)* such that

thh(B), = B :(a+1)
for all ¢ > 0 and the structural maps are the faces

&= A AT si0<i<qg—1,
Tl pAidioTsii=g,

degeneracies s; = id? A nA id?=*! and the permutation ¢ on the ¢ + 1 factors of
tth(B)q. We denote tth(B) the geometric realisation oftth(B)*. Theorem 2.2
of [29] implies that the functor B ~ thhl(B) preserves weak equivalences (using
the arguments of [12].1X.2). The results of section 2.3 extend without difficulty to
thht(B)

Lemma 3.1. There exists a factorisation of thh™(B) of the form

tth(B)* AP 2, Fin t(—B; Tsp
if and only if B is commutative.

Proof: If B is commutative, the proof is analogous to the proof of Lemma 2.4.

o

In particular, the functor thh(B) is given by thh(B),, = thh*(B),. For any map
d : [n] = [m], we define o as the permutation which sends the ordered set {0, ..., n}
to {59, .. .,jgu,j%, .. .jél, oo JT g} where for 0 <4 < m, we denote §71(0) =
{5, .. "jli,} (if it is not empty). Let n(d) be the number of nonempty subsets of
the form 6=1(4),0 < i < m.



14 GREGORY GINOT
Then the induced map & : thh’(B),, — thh™(B),, is the composite

thh™(B)n —Z5 thh™ (B)n(s) —= thh" (B)m,.

The map @ is the composite of the permutation covering o followed by the the
wedge of the iterated multiplications g*: : BAt*: — B. The map 7 is given by
composition with the wedge of the unit map 5 : L — B for each i such that §=1(4)
is empty.

The reciprocical assertion follows from the fact that the two maps

notwist

BALB-% B, and BA,B"Z5"B

should be equals. a

Theorem 3.1. Suppose given a cofibrant commutative L-algebra B. The opera-
tions

®* = (thh™(B) o ¢*) o D! : thh™(B) — thh*(B)
induce a structure of A-ring on m.(thh’(B)) equipped with trivial multiplication.

Proof: Lemma 4.1 and Lemma 2.2 imply that the operations ¢* = (thh(B) o ¢*)
define a (cyclic) natural system on thhl (B, N) (I'HHL (B, N)). The remainder of
the proof proceeds as for Theorem 2.1.(i). d

Remark :  We have already seen in the proof of Theorem 2.1 that a classical
computation of Bokstedt implies that each level of the simplicial spaces TH H,(A),
thhy(A) are stably equivalent. It is a result of Shipley [32] in the category of
symmetric spectra that both model are homotopy equivalent. In Appendix A we
show that both models are equivalent upon passing to homotopy categories as ~-
rings and that it is true in various categories of structured ring spectra.

3.2. Adams operation for discrete rings. Let R be a discrete ring. There is a
natural [-space H R defined by

ky = R®...® R (k factors)
HR: .
(f ky = £4) — HA(f)(a1,...,ax) = (b1, ..., b)) with b; = (Z): a;.
F(i)=J
The space HR is called the Eilenberg-Mac Lane T'-space associated to R. The
product map R ® R — R and the unit ¥ — R give a S-algebra structure on HR
which is commutative when R is.

We define the topological Hochschild homology of the ring R to be the space
THH(HR), often simply denoted THH(R). When HR is a L-algebra, with L a
commutative S-algebra, we also write thhl (R) for the I-space thh®(C(H R)) with
C a cofibrant replacement functor, that is the model introduced in section 3.1 for
the (relative) topological Hochschild homology .

There exist operations A* and ®* = (—1)¥~1\* (known as A-operations) defined
on the Hochschild homology group of a commutative algebra (cf. [20], [19], [23]).
Given a commutative flat k-algebra R, there exist well known isomorphims ([12]
in the category of S-modules for example) m,(thh*(HR)) = HHE(R) where
H H*(R) is the Hochschild homology of R in the category of k-algebra. The follow-
ing theorem extends this into a 4-ring isomorphism. Recall that, for R graded, we
denote HHEF(R), the Hochschild homology groups where s is the internal degree
and r the homology degree.
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Theorem 3.2. i): For a discrete commutative ring R which contains Q) the
following diagram s commutative for all n > 1

T (THH(HR))®Q — HH,(R)
T (THH(HR))®Q — HH,(R).

ii): Suppose R is a flat commutative k-algebra where k is a commutative ring
with unit. Then the following diagram is commutative for alln > 1 :

T (thh"*(R)) = HH,(R)
(I)k \L \L (I)k
T (thh"*(R)) =5 HH,(R).

iii): If A is a commutative S-algebra and K is any field, then there is a converg-
ing spectral sequence of multiplcative y-rings

G2, = HHEX (H (A, K)); = Hops(THH(A), K)

such that the operations ®* induced on the term ny* coincide with the stan-
dard A-operations on the Hochschild homology. The same result holds with
thh(A) instead of THH(A).

Proof: We proceed as in the proof of Theorem 2.1.iii). The space TH H (A). is the
cyclic I'-space ¢ — THH(A),. It is well known ([2]) that the filtration of TH H (A)
by its skeleta gives rise to a first quadrant spectral sequence converging towards
H,+s(THH(A), K) (for any field K) whose first term is

Gr.=H.(A K)ot

We have seen that the induced cyclic structure is Hochschild standard one and that
the operations ®* induced on the Hochschild complex C,(H. (A, K)) coincide with
the usual ones of [20]. The same holds for thh(A). = C(A)"*+! because C(A) — A
is a weak equivalence. This proves (iii).

Now, if A = HR with Q C R, one has Ho(HR,Q)) = R® @Q = R and
H,(HR,Q) = 0 for n > 1. Hence the spectral sequence collapses and we have
HH,(R) = HH2(R) = H,(THH(HR),Q). But, since R contains Q, we get

m(THH(HR)) ® Q= H,(THH(R),Q) = HH,(R)

which proves (i).

Finally, there is a simplicial map f : thh®*(R), — H(R@”“*"'l) given by the
composite

C(HR)/\Hk*+1 —y HRMNHK*HL H(R@k*‘*‘l).

which is a Fin-map when R is commutative. The right map above folows from [29].1.2
and universal property of the smash product over Hk. Hence by Lemma 2.3, f
commutes with the operations ®* when passing to m,. When R is a flat k-algebra,
there is an isomorphism H RM#x7+1 = [J RO«+1 (¢f [28],[29]). Therefore the map
e Gi,* — Hi,* at the level 1 of the spectral sequences coming from the skeleta
filtrations of thth(R)* and H(R‘g”‘*‘H) is an isomorphism. Moreover it is an
algebra map. Thus Gi,* is

Gi,o = R® ...Q% R (r + 1 factors) and G;S =0ifs>1
and we have the y-ring map f. : 7, (thh#*(R)) — H H,(R) is an isomorphism. O

Ezample : Bokstedt [3] proved that 7, (THH(Z/p)) = Z/p when n is even and is 0
for n odd. We now compute the operations ¢* acting on 7. (T H H(Z/p)). The proof
of Bokstedt relies on the fact that TH H(Z/p) is an Eilenberg-Mac Lane spectrum

and the analysis of the spectral sequence Gi* of theorem 3.2.(iii) converging to
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H.(THH(Z/p), F,), where F, denotes the field with p elements. In fact, for all
g > 0, there is equivalence

HF, N\THHy(Z/p) = HF, A (HF,)""" = (HF, N HF,) Agr, (HF,)"!
hence (by [28].12.2) the spectral sequence takes the form
G?, = HH.(H.(HF,, F,)) = H.(HF,, F,) ©g, =.(THH(Z/p)).

It is well known that H,(H F,, F,) is the symmetric graded Z/p-algebra on genera-
tors (£;)i>1 of degrees 20 —1if p = 2 and (&;)i>1, (7j)j>0 of respective degree 2p’ —2,
2p7 — 1. Bokstedt shows that in the case p = 2, the spectral sequence collapses at
level Gi,* and that, for p odd, the term G7°, is generated by the elements dr; in
HH(H(HF,, Fy)) = Qu,ur, r,) (the module of Kahler differential).

But the standard Adams operations A* on Hochschild homology acts on dr; €
HH,(H.(HF),,F,)) by multiplication by k. Then Theorem 3.2.(iii) insures that
the operation A* acts on ma, (T'H H(Z/p)) by multiplication by k¢t +¢«=) where
the c; are the digits of the unique decomposition n = ept + .. .cz(n)pié(n) of n in

base p. Moreover Fl+,,,+cl(n)+2ﬂ'2n(THH(Z/P)) =0.

3.3. The case of I'-simplicial abelian groups. As this section deals with dis-
crete rings and their Eilenberg-Mac Lane S-algebras, it is of interest to restrict one’s
attention to I'-spaces that factor through functors I' — s Ab (where s.Ab stands for
the category of simplicial abelian groups), that is to say to I'-simplicial abelian
groups (see [6], [9] for details). Henceforth we denote the category of I'-simplicial
abelian groups by I's.Ab. The Eilenberg-MacLane functor H : s Ab — I'sp factors
through the forgetful functor U : I'sAb — I'sp to give a functor H : s Ab — ['sAb.
The category (FS.Ab, ®, HZ) is symmetric monoidal with unit HZ. An HZ-algebra
is a monoid in this category. When R is a commutative ring, /7R is a commutative
H7Z-algebra.

Proposition 3.2. Let A be an HZ-algebra and M a A-bimodule. Then the filtra-
tion induced by the operations ®* on m,(THH (A, M)) satifies

Flyma(THH(A, M)) = 0.

n

Proof: Taking a functorial replacement functor if necesseray, we can assume A
takes flat values. Replacing smash product by tensor product in the definition of
THH gives an algebraic analogous theory for HZ-algebras (cf. [6], [9].IV.1.3) as
follows. The I'-simplicial abelian group AG(A, M, z), x € J(¢+ 1), has n-simplices
given by :

AG(A, M, 2)(ky) = sAb (Z(S™)®... @ Z(ST)AAL; M(S%)®...0 A(S%) @7 (ky))

whith Z(X) = Z[X]/Z#. For a commutative HZ-algebra A and a bimodule M, we
define
HH"(A, M), = hocolim AG(A, M, x),
z€J(gq+1)
where the colimit is taken in simplicial abelian groups. It gives a simplicial-T's.4b
object with the same simplicial structure maps than those of THH (A, M). The

proof of Lemma 2.4 can be mimicked to show that there is a factorisation of the
Z
functor Acp ZEAM) I'sAb through I[P :

. o HH"(A,M)
HH™A, M) = AP T I's.Ab.
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Hence Lemma 2.2 gives Adams operations @ on HHZ(A, M). Tt is well known
(see [9].1V.1.3.3 for example) that the inclusion

M(ST)A . AA(ST) A ky > M(S™) @ ... ® A(S™) @ Z(ky)

induces an equivalence TH H (A, M) = MZ(Z(A), M). Tt is straightforward from
Lemma 2.3 to check that the previous map commutes with A-operations.

For any ky € T, @%(A,M)(kq_) is a [-simplicial abelian group. Therefore,
Loday’s explicit combinatorial operations A* [20] (lying in Z[X,]) are defined on
M?(A, M). But the computations in [23] Section 3, Lemma 2.5 and [23] 3.9 imply
that Loday’s A\¥ operations coincide (up to a sign) with the previous operations ®*
defined on HH”(A, M). Then the combinatorial computation in [20] Theorem 3.9
(also see [19] 6.4.5) yields the desired result. O

Remark :

1. The Proposition 3.2 applies to A = HR and M = HR, with R a (simplicial)
ring, hence the result holds for m,TH H(HR).
2. The Proposition 3.2 holds with 7, replaced by any homology theory FE..

Corollary 3.3. For any S-algebra A, the following identities hold:
Fl(m(THH(A)) = mo(THH(A)),  Fam(THH(A)) = 0.

Proof: First equality has already been seen. By results of Dundas, Goodwillie
and McCarthy [9].IV.1.4, we know that there exists an equivalence

THH(A) = holim THH((A)s)
SeP—-0
where P is the set of finite partitions of {1,2,...} and each S-algebra (A)s is equiv-
alent to an Eilenberg-Mac Lane T'-space H(R)g for some simplicial ring (R)s.
The construction of the S-algebra (A)s is based on the iteration of the adjunc-
tion A — UZ(A). As already seen in the proof of Theorem 3.2, the A-operations
are compatible with the two functors U and Z(—). Hence, thanks to B.2 it suffices
to prove the result for each H(R)g which follows from Proposition 3.2. g

3.4. Comparison with Mac Lane homology. It is known from Pirashvili and
Waldhausen [27] that, for any discrete ring R, there is an isomorphism 7. (T H H (R)) =
HML(R, R) where HML (R, R) is the Mac Lane homology of the ring R. Recall that
for any objects ¢, d of a category C, we use the notation C(c,d) for the set of mor-
phism from ¢ to d in C.

Let Pr be the additive category of finitely generated projective modules over
the commutative ring R. The Mac Lane homology of R is the homology of the
simplicial module

9+ = Dg(R) = EB Pr(co, cq)
Coé—Cré—4+Cq
with faces and degeneracies defined as for the Hochschild complex (¢f. [17]). McCarthy
defined A-operations on Mac Lane homology in [23], Section 6 in the following way:
let 77 be a linear functor from Py to Pg such that, for any pq, - ,p, € Pr, we
have

T (p1,..\pr)=P1Q...Q Py and T"(R,...,R) = R.
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We denote 7 a natural isomorphism 7" — 7" o t where t(p1,...,pr) = (Pr, ..., P1)-

Now, for any = (fo,......,. .. fr(g—1)) € 8dr (D«(R))g—1 (with f; € Pr(ci,ci—1) , let
define
A (for ooy frig-1) =

(TOTr(fOJ"'1f(7‘—1)q)JTr(f11'~':f(r 1)q ) r(fq 1y--- 1fqr 1))
These maps define a natural system on D, (R) (see [23]), hence yield Adams oper-
ations ®* on HML (R, R).

Theorem 3.3. There is a commutative diagram

HML(R, R) —=> m.(T'HH(HR))

wl Jo

HML(R, R) —=> . (THH(HR)).

Proof: The map A" : sd, Dy (R) = D.(R) above also induces a natural system on
the simplicial abelian group with g-simplices
q
CPy(R) = @ Pr(co,cq) ® ®Z (Pr) (i, ci—1).
Coé—C14—+Cq i=1
Again the faces and degeneracies are defined as for Hochschild homology. There
is a map a : Dy(R) = CP.(R) sending ¢g < --- ¢ ¢4 to its class in CPy(R);
it induces an isomorphism in homology (c¢f. [10].1 and [17].1). By construction, «
commutes with the maps A”.
Topological Hochschild homology can be defined for any ['-simplicial category C
(see [9].IV for example). The definition is like the one for topological Hochschild
homology of a S-algebra with A(S%°) A --- A A(S"%) replaced by the coproduct

V' Cleo,cq)(57) A+ AC(eq, cq-1)(S57%)

co,...,cq€C
in the definition of G(A, ) (Section 2.3).

We denote P}, the I'-simplicial category with the same objects as Pr and mor-
phism P} (¢, d)(k+) = Pr(c, \/k d). We denote Z(S%) = Z(5*°) @ ... ® Z(S%9), from
[9].1V.2.4 and [7].IV, we know that there is a simplicial abelian group R(R) with
g-simplices Rq(R) given by

q
holim sAb | Z(S%); €D Ph(co,cq)(57) @ RVZ (P) (ci,¢i-1)(S™) © —

v€J(g+1) co,...,cq€EPR i=1
and equivalences

CP(R) = R(R) «— THH(HPg). (3.3.1)
The last map is similar to the equivalence HHZ(Z(I:]R), HR) = THH(HR) in the
proof of Proposition 3.2 noticing that there is a homotopy equivalence HPg(c, d) =
Pl(c,d) [8]. Moreover by Morita equivalence and [9].1V one has TH H(HPg) =
THH(R) = HHZ(Z(HR, HR)) (the last isomorphism has already been seen in the
proof of Proposition 3.2). The natural system A\* above yields a natural system on
R.(R) such that CP(R) = R(R) is a y-ring map. This natural system is defined,
for « € J(kq) and

kg—1

P = D Phleo crg-1)(57) @ Q) Z (PR) (ei,cim1) (57 ©

co,---,Ckq—1€EPR i=1
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by A% (f) is the composite
Z(S%) — Z(STOA- ASTEDa) @@ Z(STaT A A STRe)

kg—1
L P Phleocre-1)(5) @ R) Z (P) (i, cim1) (5%
co,.--,Ckq—1€EPR i=1

5 D Phro o, ehon)g) T (Egm1, o igm1)) (S0 -00)

co,--,Ckq—1EPR

— 7;,(1_1 (R)

with S%iwir = S%a A A S%ir . We are left to give a y-ring equivalence between
HH*(Z(HR, HR)). and R.(R) .

Recall that a ['-abelian group HHZ(Z (HR), HR) has been defined in the proof
of Proposition 3.2. The ring R is a projective module over itself. Thus, there is a
map

HHZ(HR), HR) - R(R).
This map # is an equivalence by the left equivalence of (3.3.1), Morita equiv-
alence of THH(HR) (see [11], 2.5) and the equivalence HHZ(Z(HR),HR) >~
THH(R)[9).IV. The formula above for the natural system A% applied to the free
rank one module R and the formula of Lemma 2.5 for the natural system ¢* defined

in Proposition 3.2 imply that the map £ is also a map of natural systems. Thus
the result. d

4. ADAMS OPERATIONS IN THE CATEGORY OF S-MODULES

There exist other strict monoidal categories of symmetric spectra in which several
definitions for topological Hochschild homology are possible. In this section we
show how our previous results can be done in the category of S-modules build by
Elmendorff, Kriz, Mandell and May [12]. Moreover we compare our constructions
with some of their results. The objects of the category S — mod of S-modules
are much more complicated to describe than the T-spaces and we refer to [12] for
definitions and notations. The letter S (not to be confused with S) stands for the
representant of the sphere spectrum in this category. The category S — mod has a
very rich structure: it is a symmetric monoidal topologically enriched closed model
category. We denote S — alg the subcategory of monoids. Unlike the I'-spaces, the
homotopy category of S — mod is equivalent to the homotopy category of spectra
(without connectivity condition). Moreover Eilenberg-Mac Lane spectra can be

build as cell S-modules.

4.1. The thh!(B)-model. First we give the thh-model (as in section 3.1) for the
category S—mod. It is more efficient as there are more explicit cofibrant S-modules
(like the cell S-modules). This model was first studied in [12] Section IX.2. Suppose
given (for the remainder of the section) a g-cofibrant commutative S-algebra L and
a g-cofibrant commutative L-algebra B (i.e. p: BAL B — B, n: L — B). This
condition ensures that the construction respects weak equivalences of S-modules.
Let N be a B-bimodule with structure maps £ : BAL N -+ N, r: NALr B = N.
There exists a simplicial L-module thh” (B, N), such that

thh™(B,N), = N A B":1
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for all ¢ > 0 and the structural maps are the faces

I ApAIdT sil<i<g—1,
di=< £AidYoTsii=q,
rAid? sl =0,

and degeneracies s; = id? A nA i+ If N = B, tth(B)* = tth(B,B)* is
cyclic thanks to the permutation action ¢ on the ¢ 4+ 1 factors of tth(B)q. We
denote thhl (B, N) the geometric realisation of thh’ (B, N).. The results of section
2.3 can be made stronger without difficulty for thh’(B).

Lemma 4.1. There exists a factorisation of thh™(B) of the form

tth(B)* CAP 2 pin! t(—B; Isp

if and only if B is commutative. If B is commutative, there exists a factorisation

——

(B.Y)

thhE (B, N), : A% -2 Fin’ "25) Tsp

if and only if N s symmetric.

Proof: The proof of Lemma 3.1 applies verbatim. g

Theorem 4.1. Suppose given a commutative L-algebra B and a symmetric B-
module N. The operations

®* = (thh™ (B, N) o ¢*) o D;;' : thh* (B, N) — thh* (B, N)

induce a structure of A-ring on m.(thh™ (B, N)) equipped with trivial multiplication.
This structure is compatible with the S-algebra structure on thhl (B) when N = B.

Proof: Lemma 4.1 and Lemma 2.2 imply that the operations ¢* = (thh(B) o ©*)
define a natural system on tth(B, N), cyclicif N = B. The remainder of the proof
proceeds as for Theorem 2.1.(i). There is a structure of commutative S-algebra
on thh® (B, N) [12].X.2.2 induced by the fact that ¢ thth(B) is a simplicial
commutative S-algebra when B is commutative. Corollary 4.7 below implies that
this product makes (7, (thh™ (B, N)), (®*)k>0, *) a multiplicative y-ring. It is also
easy to see that map ¢* : sdxthhL(B) — thhL(B) commute with the product by
straightforward formal computation. d

Remark :  The results of sections 2.3, 3.2 for THH apply to thh(B, M) when B
and M model connective spectrum thanks to the result of Appendix A. For more
general S-algebras, the results of [12] Section X.2 enable to mimick the proofs of
3.2, 2.1 to get similar statements. We list below the only difference:

1. Given any field K, the ~-ring filtration induced by Theorem 4.1 satisfies
F(H,(thh® (B, N), K)) = H,(thht (B, N), K) and there is an induced split-
ting

o (thh™ (B, M)) © Q = P =" (thh™ (B, N), Q).
n>0
Howewer the vanishing property for Fj, 12 are no longer true in general.

2. Suppose R is a flat commutative k-algebra where k is a commutative ring with
unit and M a R-bimodule (all of them discrete, non-graded). Then there is
an isomorphism of (multiplicative if M = R) ~-rings

T (thh*(HR, HM)) = HHY(R, M).
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3. If B is a commutative S-algebra, N a B-bimodule and K is any field, then
there is a spectral sequence of -rings

G}, =HHF(H.(B,K),H.(N,K)), = H,4,(thh"(B,N), K).

Howewer the spectral sequence is no more concentrated in the first quadrant

(but first half-plane).

There are other spectral sequences converging to m.(thhl(R, M)) [12] Theo-
rem X.1.6 which we prove to be y-rings spectral sequences.

Proposition 4.2. Let B be a cofibrant commutative L-algebra, N a B-bimodule
and assume that B, is L.-flat, then there is a spectral sequence of (multiplicative if
N = B) y-rings

HHE(B., N.) = m.(thh™ (B, N)).
When L = Hk with k a discrete ungraded commutative ring, then there is an
isomorphism of multiplicative y-rings HH*(A, M) = m, (thh*(HA, HM)).

Proof: Theorem X.1.6 and X.2.6 of [12] give all the result but the y-rings compat-

ibility assertion. Let B® = B Ay B the envelopping L-algebra of B. The spectral

sequence is obtained in the following way ([12].IV.5). Given a free B{-resolution of

b ds ds do
=N =P —Fy— B, =0

one build wedges K, of p+ s spheres (one for each basis element of F, of degree s)

and, inductively, cofiber sequences

FK, % M, 5 M,y 5 SFK,

starting with My = B and where F is the free B®-modules functor. The sequence
is such that m.(M,) = YPKer(dp_1), j« and k. realizes the canonical inclusion
and epimorphism on X*F, and i, is trivial in m,. This yields an exact cou-
ple B} . = mpiq(N Age FKp), D) o = mpiqq1(N Ape Mpy1) whose term E? s
Torﬁiq(N*, B,). Consider the Bar construction of B as a L-algebra. It is a simpli-
cial B®-module B (B) = B A, B"* Ap B weakly equivalent to B. The algebraic
Bar construction gives a simplicial resolution B2 (B.) = B. ®r, B®%* @, B,
of B, as a B, ®p, Bi,-module. By the flatness hypothesis it is a flat resolution,
hence N, ®p: B{" computes Torﬁiq(N*,B*). Let f: Fu — B2 (B.) be a map of
resolutions. Lemma [12].X.2.4 ensures that thht (B, N). = N Age B2 (B). The
skeletal filtration of B2 (B) yields an exact couple

F*l* : F*l*
K /
i

1
G*,*

Wiph G;l;,q = mg(N Ape BJ"(B)) and, denoting sB," the image of VOSJ'SP BT (B) x
Al in |B{(B), Fplyq = my(N Ape sBy"). The map f : Fi. — B{"(B) and the
freeness properties of F, yields a map FK, — EPBZ‘,”(B). Starting with M; —
YFKy — B§"(B) = XsB§", by induction and cofiber sequences arguments we get
maps M1, — XsB," inducing a map of exact couples (D} ,, Ef ) — (FI,,GL,).
Hence there is a map of spectral sequences £}, — G, which, by flatness hy-

pothesis, is the isomorphism Torﬁg(B*,B*) ~ HH;;(M*, B,) at the level 2. The
statement now follows from the fact that G, is a spectral sequence of y-rings.
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This has been checked, for the skeletal filtration, in the proofs of Theorem 2.1 and
3.2 for example. a

4.2. Topological Harrison homology. In the algebraic setting, the Adams op-
erations ¢" acting on the Hochschild complex C. (A, A) induces a filtration on this
complex whose weight 1-term gives the standard complex computing the Harrison
homology. In this part, we give a topological analog of this situation. In what
follows, B is a cofibrant commutative L-algebra.

The simplicial structure yields an augmentation thh’(B). EEIN thht(B)y =
which is a map of L-algebras. We denote I(B), the following homotopy pullback

[(B). —'>thh*(B), (4.1)

L

pt%B

in the Reedy category of simplicial L-algebras, that is to say the homotopy fiber of
J. We write p : I(B)« A I(B)x — I(B)« the multiplication.

Definition 4.3. The topological Harrison homology tharl(B). of a commutative
L-algebra B is the homotopy pushout

iou

I(B)« AI(B)y — thh™(B).

| lp

pt ———— thar’(B).
We denote tharL(B) its realization.

This definition mimicks the algebraic construction. When L = Hk, B = HR we
have an analog of Theorem 3.2. Write I(R) for the augmentation complex

0 — I(R) — CK(R) — R—0
where CX (R) is the standard Hochschild complex of the K-algebra R. Let C HarX (R)
be the standard Harrison complex of R and Har®(R) its homology. There is a
al
natural complex morphism C¥(R) Y C Har*(R) identifying C Har®(R) with the
quotient of the Hochschild complex by I(R).I(R) (where the product is the shuffle
product). See [19].IV.2 for example.

Proposition 4.4. Let K be a field and R a commutative K -algebra. There is a
commutative diagram

. (thhHE (H R)) —X— =, (thar® (HR))

El lg

HHE(R) — 255 [ark(R).

Proof: The map CX(R) — R is a fibration and p# is a cofibration. The iso-
morphism of algebras m,(thh?E(HR)) = HHX(R) and the homotopy fiber se-
quence 4.1 ensures that 7, (I(HR)) = H.(I(R)). Moreover the Eilenberg-Zilber
theorem identifies the product on m,(I(HR)) with the one induced by the shuffle
product on H,(I(R)) through this isomorphism. Thus the sequence

[(HR) A I(HR) %> thh 5 (H R) —> thar "X (H R)
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gives that m, (thar X (H R)) is isomorphic to the Harrison homology groups HarX (R).
g

Let E, be a homology theory, we say that a simplicial S-module X is E,-proper
if there is a proper S-module Y and a E.-equivalence between Y and X, see Defi-
nition [12].X.2.1.

Proposition 4.5. If B is a commutative S-algebra, K a field and I(B) is HK.-
proper, there is a converging spectral sequence

G?, = Har,(H.(A, K))s = H,1(thar® (A), K).
Proof:  As cofibrations are preserved by pushout, the simplicial spectra tha(B)

which is the pushout
X, ——=thh®(B).

|

pt ———=tha(B).

is proper. Here X, is a proper H K.-approximation of I(B) A I(B) obtained from
the one of I(B) by wedge and Kiinneth Theorem. The induced map tha(B) —
thar®(B) is a H K.-equivalence. Hence, skeleta filtration yields a strongly converg-
ing spectral sequences

E} = Hy(tha(B),, K) = H,4,(tha(B), K) = H,,(thar®(A), K)

and Hy(X,, K) = H,45(X,K) see [12].X.2.9. By hypothesis, H;(X,, K) =
H(I(B) A I(B),K). Thus a proof similar to the one of Proposition 4.4 applied
to the cofiber sequence defining tha(B) ensures that the term Ei,* of the spectral
sequence computing H, (thar®(A), K) is
gl o~ CHar,(H«(B,K),H.(B,K))ifp>0
px 0ifp=20

Hence the second term of the spectral sequence is isomorphic to the Harrison ho-
mology Har,(H.(B, K)). d

Ezample : We want to compute m,(thar® (HF,)). We proceed as in the example
following Theorem 3.2. We detail the case p = 2. Let J, be the simplicial spectrum
defined by Jo = * and J,»1 = lT{Fp’\"“’1 with simplicial structure induced by the
multiplication and unit map. It is a proper spectrum by [12].VII.7.5. Tts asssociated
spectral sequence collapses at level 2 as for the skeleta filtration of thh®(HZ/p)
see [3]. Hence Hy(J,K) = H.(I(H«(HF,, Fy))) = H.(I(HF,), F,). Thus I(HF,)is
HF, -proper. By Proposition 4.5, the skeleta filtration induces a spectral sequence

Harro(H(HF,, Fy)) = H.(thar®(HF,), F,) = H.(HF,, F,) ® m.(thar® (HF,)).
But for A = Z/p, H.(A, F,) is graded polynomial, hence Harr,(Hy(A, F,)) = 0
for p > 2 and the spectral sequence collapses. Hence, the topological Harrison
homology group of Z /2 are
Toi(thar® (Z/2)) = Z/2 for i >0 and 7, (thar®(Z/2))=0if n # 2'.
In the case of a prime p > 2, a similar computation using that H.(thh®(HF,), F,)
is generated by the elements dr; (see the example after Theorem 3.2) yields
ﬁzpl_l(tharS(Z/p)) = 7r2pl(tharS(Z/p)) =Z/pfori>0

and 7, (thar®(Z/p)) = 0 if n # 2p' — 1 or 2p’.

In the algebraic setting, the Harrison homology is closely related to the weight

1 part of the natural filtration on Hochschild homology coming from the 5-ring
structure. From the topological point of view we have.
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Corollary 4.6. Let B be a commnutative L-algebra.

i): There is a natural system on tharl(B) such that p : thh'(B) — tharl(B)
1s a map of natural system.

ii): Let B be a connective commutative S-algebra, K a field and I(B) is HK.-
proper. Then FJ H.(thar®(B),K) = 0. In particular

p(F3 H,(thh®(B),K)) = 0.

Remark :  The result of 4.6.ii) obviously holds for thar®(HR) by proposi-
tion 4.4.1.

Proof:

i): The constant simplicial L-algebra B and the map j : thhl(B). — B obvi-
ously factor through the category Fin. Thus m.(B) has a canonical y-ring
(with trivial multiplication) structure which satisfies F\s,m.(B) = 0. More-
over j is a map of natural system. As diagram 4.1 is homotopy cartesian,
there is an induced natural system * : sd;I(B) — I(B). Similarly the ho-
motopy pushout thar’(B) admits a natural system such that p is a map of
natural system.

ii): By Proposition 4.5, there is a first quadrant spectral sequence

G}, = Harf(H.(B,K))s = H,y,(thar®(B), K).

It is a spectral sequence of 7-rings because p is a map of natural system.
The Adams operations induced on Harf (H,(B, K)) are induced by Loday’s
ones on HH,(H.(B,K)) via the epimorphism p*8 : HH,(H.(B,K)) —
HarE(H.(B,K)). Hence FyHarX(H.(B,K)) = 0 implies the result by
Proposition B.2.

O

Remark : 1t is possible to define topological Harrison homology in the same way in
any symmetric monoidal category of spectra. The method of Appendix A ensures
that the constructions of thar®(B) in the categories of ['-spaces, symmetric spectra
and S-modules are equivalent.

4.3. The B ® S'-model. Now we turn attention to the B ® S'-model which was
first introduced by McClure, Schwénzl and Vogt [24]. We show that our construc-
tion on thhl(B) is compatible with the maps introduced in [24] (even without
looking at homotopy category as in the Appendix A). We the use it to give a new
proof of the multiplicativity of Adams operations on thh®(B).

The categories of commutative S-algebras or L-algebras (in the sense of [12]) is
tensored (see [24]) over the category of topological spaces. This means that, for all
commutative L-algebras A, B, there are natural homeomorphisms

Homp(A® S*, B) = Top(S*, Homy (A, B))

where Homg stands for the set of morphisms in the category of commutative S-
algebras.
Let B be a L-algebra. There exists a natural isomorphism of L-algebras (see [12].X.3)

thhl(B) = B® S

Precisely, there is a simplicial isomorphism thh% (B), = B®S! (cf. [24], [12]) which
induces the isomorphism thh’(B) = B ® S* after realisation. Here, we identify S’
with the simplicial set A(1)./JA(1). where A(1)s is the standard 1-simplex and
JA(1). is its boundary.
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The maps % : ST — S k> 0, defined by
Wk (2imt) = g2imkt,

induce Adams operations, denoted id ® ¥*, on B ® S* (cf. [24]).
Theorem 4.2. The following diagram is commutative

B® S! —=>thh®(B)

idew* l lqﬂ‘
B® St —thh™(B).

Proof: We have to prove that the diagram (4.2.1) below is commutative

thil(B)<—=— Bo Sl <——2" Bo|S! |<—2—Be|S!| (42.1)
TD;C TDk Tid@Dk
| sdgthhE (B). | <—— |sdx B ® St | B® | sdyS! | gk
lv" lwk lid@p"
thh'(B) <————B& S' < ——Bo | Sl |<— Ba|s!].

The left squares of (4.2.1) commute by naturality of D and transfer of structure.
The middle rectangle is commuting in view of [24], Proposition 4.3. Finally, a
computation analogous to [23], Lemma 1.4 insures the commutativity of the right
rectangle of (4.2.1). O

Theorem 4.2 give a new proof of the compatibility with the product structure
when B is indeed cofibrant.

Corollary 4.7. The operations ®* commute with the product on thh™(B).

Proof: The product on B ® S! is induced by the composite (see [24])
BoSYABeS) S Boe((stus) <Y pe st
where f:S' U S! — S! is the codiagonal map. It is easy to check that
Fo(WrUuTF) =TFo f
Hence the following diagram is commutative :
(BoSHA(BoS) 2 —>Bo (St ush) ™ . gog
id@\If"/\id@\If"l id@(\If"u\Il’“)l lid@@"

(BoSYA(BeS)E =B (S'us) s pgst.

APPENDIX A.

This appendix is devoted to show why our different constructions are equivalent.
It is now well known that the various approach to a category of structured ring
spectra are Quillen equivalent [26], [30]. In any of these categories there are few
possible models for topological Hochschild homology of a monoid. It is folklore re-
sult, partially dispatched in several papers, that these constructions are equivalent.
We recall here how [26], [30] imply that the constructions we use for topological
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Hochschild homology are equivalent and show in addition that the Adams opera-
tions we built coincide. Hence, in practice, one can always choose the more suitable
model to deal with a particular case without restrictions. More precisely, we inves-
tigate the equivalences between the T'"H H and thh-model in 3 simplicial sets-based
model categories for spectra and 4 topological spaces based ones.

Many symmetric monoidal categories of spectra are categories of diagram spec-
tra [26]. We first deal with them before turning attention to the S-modules of [12].
Let D be either the category ¥ of symmetric groups, W of pointed spaces homeo-
morphic to a finite CW complex or T' the opposite of Segal category [31]. Let DTop
be the category of functors from D to spectra over based compactly generated topo-
logical spaces. Recall from [26].III that D-spectra are the same than D-spaces and
D-functors with smash product for D = I', W. We use this identification without
further comment henceforth. For D = I', ¥, we note Dsp the category of functors
from D to spectra over based simplicial sets. A simplicial analog of WTop is the
category Ssp of simplicial functors [22], that is functors from the category of based
finite simplicial sets to pointed simplicial sets. One notice that Xsp is the category
of symmetric spectra of the fundamental paper [16].

In the first part of [26], it is stated that there are adjoint pair of functors

P:TTop = WTop: U, P:XYXTop=WTop: U

where U are lax monoidal forgetful functors and [P are their left adjoint strong
monoidal prolongation functor.

Theorems 0.4, 0.5 and 0.6 in [26] asserts that the adjunction P : XTop &
WTop : U induces a Quillen equivalence of their underlying categories of monoids
and also, for any monoid W € WTop between the categories of W-modules (resp.
W-algebras) and UW-modules (resp UW-algebras). For any cofibrant monoid
R € XTop, there are also Quillen equivalences between the categories of R-modules
(resp. R-algebras) and PR-modules (resp P R-algebras). The relevant model cate-
gories structures here are the stable ones.

Remark :  actually, the adjunction between XTop and WTop in [26] factored
through the category of orthogonal spectra and there are Quillen equivalences be-
tween the relevant categories built from monoids. Every result below concerning
YTop can be striaghtforwardly translated to orthogonal spectra and related to
Y Top, the proofs going on mutatis mutandis.

There is also an absolute stable model structure on WTop [26] section 17 and
the identity WTop — WTop is a left adjoint of a Quillen equivalence between the
stable structure and the absolute stable structure. We will also denote (U, P) the
functors of these Quillen equivalence.

When the category WTop is equiped with its absolute model structure, the ad-
junction P: T'Top &2 WTop : U yields connective Quillen equivalence between the
categories of W-modules (resp. W-algebras) and UW-modules (resp UW-algebras)
and, for any cofibrant monoid R € I'T'op, between the categories of R-modules

(resp. R-algebras) and PR-modules (resp P R-algebras), see [26] 0.11, 0.12, 0.13.

The thh® (B, N) model of sections 3.1 and 4.1 makes sense without a change in
any cofibrantly generated symmetric monoidal model category of spectra. It is also
possible to define the classical Bokstedt functor TH H (A, M) for a monoid A in Dsp
and a A-bimodule M (see [32] for D = X). Howewer, as we want our models to
have Adams operations for A commutative, we have to work with J as an indexing
category. The definition given in section 2.3 for D = I' can be done for D = ¥ and
Ssp with the following slight modification in the definition of G(A, M, z):

e For Ssp, G(A, z) is made a simplicial functor by the formula
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G(A, M, z)(X) = Map(S*, M(S™) AN A(S* A A(S"*) A X)
where Map is the simplicial mapping space.
e For D = X, and A a monoid in Xsp, we denote by A(SY) the prolungation P A

applied to the CW-complex SY (y € J) and we made G(A,z) a symmetric
spectrum by the formula

G(A, M, z), = Map(S®, M(S%°) A A(S®*) A ... A(S%2) A S™).
If o = {1,...,n0},...24 = {1,...,nq}, we remark that this coincide with
the definition of [32].Section 4.
Of course, the change of index category from I to J does not change the weak
homotopy type by the approximation Lemma 2.1.

Replacing the simplicial mapping space by the topologized one in the definition
of G(A, z) yields a topological Hochschild homology functor ¢ la Békstedt in T'Top,
¥ Top and WTop as above.

We first compare diagram spectra of topological spaces and simplicial sets when
D =T%or X. Let GR : Simp’ = Top’ : TS be the adjunction between the
Geometric Realization and the Total Singular complex functors. These functors
applied levelwise induce adjoint functors on the categories of D-spectra and their
various subcategories of rings and modules with GR being strong monoidal. The-
orem 19.5 of [26] ensures that these functors induce Quillen equivalences between
the categories of R-modules and GR R-modules when R is a monoid in the category
of symmetric spectra or I'-spaces based on simplicial sets.

Proposition A.1. Let B be a cofibrant monoid in X8 or in I'sp. The functor GR
yields an isomorphism
o : GRthhB (A, M) = thh®®B (GR A, GR M)

for any cofibrant B-algebra A and A-bimodule M which is a morphism of v-rings
if A 1s commutative and M symmetric. It is also multiplicative if M = A.

Proof: First, GIR is Quillen left adjoint, hence preserves cofibrant and cofibrant
replacement. Moreover, as GR is a strong monoidal, it induces a simplicial isomor-
phism
Qy : G}R(M ABAAB - AB A) =~ GRM Agre GRA Agrs - Agre GRA.

Hence there is a natural isomorphism o : GRthh®(A, M) = thh®®*P (GR A, GR M).
As Ais commutative, M symmetric and GIR preserves these symetries, the simplicial
morphism a, factors through the category I'. By Lemma 2.3 this implies that «
is a y-ring map. When M = A, the multiplicativity property is straightforward to
check. d

As the geometric realization is functorial and left adjoint there are natural iso-
morphisms of simplicial objects

(g GRTHH(A,M),) = (¢~ THH(GRA,GRM),)
for the categories I' and ¥. Again, when A is commutative and M symmetric, it
factors as an isomorphism of I'-object and we have:
Proposition A.2. Let A be a monoid in Xsp or in I'sp and M a A-module. The
functor GIR yields an isomorphism
o:GRTHH(A,M)=THH(GRA,GRM),

which is a morphism of v-rings if A is commutative and M symmetric, multiplica-

tive if M = A.
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We will now give analogs of propositions A.1, A.2 for Ssp and WTop (with its
absolute stable model structure). Let V be the category with objects the pointed
finite simplicial sets and maps V(K., L.) the geometric realization of the usual
simplicial mapping spaces Map(K,, L.). Recall from [26] 19.11 that there is a
diagram of Quillen equivalences

GR P
Ssp VTop WTop
TS U
H»T lm PT lm
GR
Yisp YTop
TS

with P being monoidal left adjoints and U lax monoidal and right adjoints.

Proposition A.3. Given a commutative monoid R in Ssp, A a R-algebra and M
a A-bimodule there are natural isomorphisms

PGRthhR (A, M) = thhTCER(PGRA, PGRM) if A, R are cofibrants,
PGRTHH (A, M) = THH(PGRA, PGRM)

which are y-ring maps if A is commutative and M symmetric, multiplicative if

M = A.

Proof: The composite functor PGR is a Quillen left adjoint and strong monoidal.
Mimicking the proofs of propositions A.1, A.2 yields the result. O

Remark : Recall from section 1 the well known natural prolongation functor from
I-spaces to endofunctors of pointed simplicial sets. In particular the prolongation
functor P : I'sp — Ssp which identifies I'-spaces with special kinds of simplicial
functors [22].5.8. It has the obvious restriction functor as right adjoint and is
strong monoidal. We have a diagram of adjoint pairs

GR P
Ssp VTop WTop
TS U
!
GR
I'sp I'Top
TS

which is commutative for the right adjoints, hence commutative up to isomorphism
for the left adjoints. The top and bottom lines are Quillen equivalences by [26]
Theorem 19.11, Theorem 19.4 and the right one is a connective Quillen equivalence
(aka a Quillen pair inducing an equivalence on the homotopy categories of connec-
tive objects). Moreover direct inspection shows that the functor U : Ssp — T'sp
preserves fibrations and acyclic fibrations. Therefore one has the following result.

Proposition A.4. There is a connective Quillen equivalence P : T'sp = Ssp : U
with P strong monoidal.

Having related the topological Hochschild homology functor between simplicial
based and topological based diagram categories, we turn to the comparison of this
functor between D-spaces and D’-spaces.

Proposition A.5. Given any commutative monoid B in DTop or Dsp, R a B-
algebra and M a R-bimodule, then there are natural isomorphisms

PthhB(R, M) = thh"B(PR,PM) for cofibrant monoids B and R
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and PTHH(R,M)=THH(PR,PM).
These isomorphims are y-ring map if R is commutative, M symmetric and multi-
plicative if M = R.

Proof:  The functors P are strong monoidal and preserve cofibrants (they are
left Quillen adjoint), hence as in the proof of A.1 we get the statement for the
thh-model.

As the functors P are left adjoint, they commute with colimits and we are
left to consider the simplicial object PG4 (A4, M, ). For any ¢ > 0, G4(A, M, z)
is the D-object obtained from the simplicial (resp. topological) mapping space
Map(S®, PM(S%°) AP A(S%9)) by prolongation. Moreover, by definition, the simpli-
cial sets (resp. topological spaces) PM (S*°) and P A(S*¢) are exactly the same than
M (S%°) and A(S®¢). The natural isomorphism g : PTHH(R,M)= THH(PR,PM)
follows. If in addition R is commutative and M symmetric, the transformation g
becomes a I'-natural transformation and we conclude as for A.1. d

We now compare the Adams operations between the T'H H model and the thh
one in any diagram categories. Shipley [32] 4.2.8 has shown the equivalence in the
category Ysp. From her result we get the next proposition.

Proposition A.6. Let D be T, X, W (resp. I',X,S) and R be a cofibrant monoid
in DTop (resp. Dsp) and M a R-bimodule, then there is a natural isomorphisms
in the homotopy category HoDTop (resp. HoDsp)

thh(R,M)=THH (R, M)
of v-rings if R i1s commutative and M symmetric, multiplicative if M = R.

Proof:  As Quillen equivalences give equivalences of homotopy categories, the
propositions A.1,A.2, A.3 and A.6 shows that it is enough to prove the result in
one category. We do it for HoXsp.

We know from Shipley [32] Theorem 4.2.8 that for a cofibrant commutative
monoid R and M a R-bimodule, there is a zigzag of stable equivalences between
thh(R, M) and THH (R, M). This zigzag is induced by the following zigzag of
simplicial symmetric spectra:

RMNGHD Ly p(RAADY Ly AL (RAEHD) L DAY EL p(rAEHY)
together with T'H H (R), —% D(RMN*+1)).

The functors L, M and D are defined in [32] section 3 (replacing the index
category I by the category J in the definitions whenever it is necessary):

e [ is the fibrant replacement functor,
e DX = (DX, )nen is the symmetric spectrum

DY) = Dol M5, X(57) 1.5,

e M X is the symmetric spectrum M (X), = hocolljimMap(Sy,X(Sy A S™)).
yEe

The simplicial functor M A R™* factors through the category I hence M A RM*,
L(M A R™), ML(M A R"*), DL(M A R"*) and D(M A R"*) inherit Adams op-
erations and the previous zigzag is a zigzag of ~v-rings by naturality thanks to
Lemmas 2.2 and 2.3. The only difficulty is for the transformation D — M with
our indexing category J. But the compatibility is direct by inspection of the prol-
ungation functors.

Denoting p : J** — J the concatenation, the map ©, is the composition

hocolim G(R, M, z) — hocolim G((M A R u(z)) — D(M A R"Y).

zeJatl zeJatl
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The arguments of the proof of proposition 2.2 shows that ©, is a 5-ring map
whenever R is commutative and M symmetric, multiplicative if M = R. As the
zigzag with index category 1 is a zigzag of weak equivalences, see [32] Theorem
4.2.8, application of the approximation lemma 2.1 yields that the same is true with
index category J. The result in HoXsp is then immediate. a

Finally we bring in the category of S-modules of [12] in our comparison. It
was proved by Schwede in [30] section 5 that there exists a Quillen equivalence
A:Xsp =S S —mod: ¥ (with A strong monoidal) inducing equivalences between
the categories of monoids and the categories of modules over cofibrant symmetric
ring spectra. The relevant model structures are the positive ones for symmetric
spectra which are Quillen monoidal equivalent to stable ones with the identity Id
as strong monoidal left adjoint see [30], [26] section 14. Mimicking the proof of
proposition A.5H we get

Proposition A.7. Given any commutative cofibrant monoid B in Ysp, R a cofi-
brant B-algebra and M a R-bimodule, there are natural isomorphisms

AthhB(R, M) = thk*B(AR,AM),  1d (thh®(R, M)) = thh"P)(1d (R) ,1d (M))
which are y-ring maps if R is commutative, M symmetric, multiplicative if M = R.

The category Xsp is tensored over topological spaces too, hence there is a R® S*
model for the topological Hochschild homology in Y.sp as in section 4.3.

Corollary A.8. Giwen any commutative cofibrant monoid B in Ysp there is a
natural isomorphism of y-rings AB ® S' 2 AB® S*.

Proof: As A is left adjoint it commutes with colimit hence:
[A(B® SH)| = A|B® Sl =A(B®S') and
AB®S' = |[AB® S| = |[A(B® S))|
by proposition A.7. g

Combining the previous results of this appendix we had the following “meta” corollary

Corollary A.9. The various models describing the y-rings structure of topological
Hochschild homology of a commutative monotd in a category of structured ring
spectra and a symmetric bimodule are isomorphic in homotopy categories.

Remark : In any symmetric monoidal closed model category of spectra, one can
simply define topological Hochschild homology as the derived object C(M)A 4400 A
with C(M) a cofibrant replacement of M as a A A A°?-module. We hav not consid-
ered them because we have no model for the Adams operations on it. Nevertheless
the proofs of A.1, A.2, A.3 shows that the previous prolungation functors IP and A
induced isomorphisms for this model which are already known to be equivalent to
the thh-model ones (see [12].1X.2, [32] Section 4).

APPENDIX B.

In this appendix we recall a few results and notations about -rings. We refer
to [15], [18] for detailed treatment.

Adams operations on a ring R are a family (gok)kzo of self maps R — R satis-
fying various relations of compatibility with the ring structure of R. We are only
interested in the case of a ring with the zero mutliplication, the one relevant for
the algebraic Hochschild complex see [20]. Moreover we follow the “more geomet-
ric” sign convention introduced in [23]. In this context we can make the following
definition:
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a family of set maps (¢* : R — R)p>0 on a ring R with trivial multiplication
gives to R a structure of v-ring if

a): 30 =0 and ¢! =1id,

b): A (»l+y)—s0 (@ )+s0 (y) for any k > 0, ,z,y € R,

c): pf(ph) = ¢*¢ for any k,1 > 0.
We will also write that the maps (gok)kzo are Adams operations for the ring with
trivial multiplication R.

To every y-ring (R, ®*) we can associate a natural filtration (see [15] , [18]) FJR
(n > 0) defined by

FYX = (4" (z1)..97" (2s) ; #1,..,2s € Rand py + ...+ ps > p)

where 4% = Zfz_ol(—l)i(ki_i)(l)k_i. The notation (yi...y,) stands for the abelian
group generated by monomials y;...y,. This filtration has the property that, for
n>1,if z € FJR, then ¢*(z) = —k" "'z modulo F, R

When the ring R admits another (non-trivial in general) product structure we
will say that a family of Adams operations (gok)kzo makes R a multiplicative y-ring
(with trivial mutliplication) if (R, ¢*) is a y-ring with trivial multiplication and
the maps ¢* are ring maps for the second multiplication. The standard example is
the Hochschild cochain complex with the maps A* of [20] together with the shuffle
product. In this paper, a y-ring structure for a spectra X means a v-ring structure
on m,(X) (with trivial multiplication). If X is a ring spectra, this structure is
multiplicative if the multiplication of X induced a multiplicative y-ring structure
on me(X).

A spectral sequence of y-rings is a spectral sequence EJ, for which each level
EZ, is a v-ring with Adams operations (cpq’k)kzo and with the property that the
operations (p?+1*);5q are induced by the operations (¢?%),>o when passing to
homology. It converges as a ~v-ring if the abutment has a 5-ring structure which
is the one of EJS on the associated graded. Let C. = FyCyx D F1Cs D ... be a
filtred complex endowed with Adams operations ¢* which are complex maps and
assume @F F,Cy C FyC, for any k,q > 0. As the differential is compatible with the
maps ", the homology of C is also a y-ring with structures self-maps given by the
homology of the ¢*. Moreover the associated graded of C, inherit a structure of
~-ring and we have.

Lemma B.1. Let C be a complex endowed with Adams operations ¢* compatible
with the differential. Given any filtration of C. compatible with the Adams op-
erations, the associated spectral sequence Ef, = H.(C) is a spectral sequence of

y-rings.
Similarly an exact couple

—'>Dr

\/

of y-rings where i, j, k are y-rings maps gives a spectral sequence of v-rings.
Vanishing conditions for the natural filtration F7 of a v-ring on the pieces of a
spectral sequence of v-rings can be transfered to the abutment in some cases.

Proposition B.2. Let E} , = Hyyq be a converging bounded below spectral se-
quence of y-rings. Assume that

Vn > 03M,, > 0 such that Vm > My, @pyq=n I, E;5, = 0.
Then, for all m > M, one has I} H, = 0.
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Proof: Write H,Ep) for the filtration of H, corresponding to the spectral sequence.
Assume z € H and [2] is its class in ES° If z € F}) H, then for all k> 1, one

has rr

©*(2) = k™2 modulo F) o H,.
and then [z] € FEr, _p for all k > 1, hence is trivial by hypothesis. It implies
that z € H,(Lp_l) and by induction one get the statement. O
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