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Abstract. The main purpose of this article is to develop an explicit derived
deformation theory of algebraic structures at a high level of generality, en-
compassing in a common framework various kinds of algebras (associative,
commutative, Poisson...) or bialgebras (associative and coassociative, Lie,
Frobenius...), that is algebraic structures parametrized by props.

A central aspect is that we define and study moduli spaces of deformations
of algebraic structures up to quasi-isomorphisms (and not only up to isomor-
phims or ∞-isotopies). To do so, we implement methods coming from derived
algebraic geometry, by encapsulating these deformation theories as classifying
(pre)stacks with good infinitesimal properties and derived formal groups. In
particular, we prove that the Lie algebra describing the deformation theory of
an object in a given ∞-category of dg algebras can be obtained equivalently
as the tangent complex of loops on a derived quotient of this moduli space by
the homotopy automorphims of this object.

Moreover, we provide explicit formulae for such derived deformation prob-
lems of algebraic structures up to quasi-isomorphisms and relate them in a
precise way to other standard deformation problems of algebraic structures.
This relation is given by a fiber sequence of the associated dg-Lie algebras
of their deformation complexes. Our results provide simultaneously a vast
generalization of standard deformation theory of algebraic structures which is
suitable (and needed) to set up algebraic deformation theory both at the ∞-
categorical level and at a higher level of generality than algebras over operads.

In addition, we study a general criterion to compare formal moduli problems
of different algebraic structures and apply our formalism to En-algebras and
bialgebras.
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Introduction

Deformations of algebraic structures of various kind, both classical and homo-
topical, have played a central role in mathematical physics and algebraic topology
since the pioneering work of Drinfeld [17, 18] in the 80s as well as the work of
Kontsevich [58, 59] or Chas-Sullivan [13] in the late 90s. For instance, in classical
deformation quantization, a star-product is a deformation of the commutative alge-
bra of functions to an associative algebra while a quantum group is a deformation
of the cocommutative bialgebra structure of a universal envelopping algebra.

In most applications, one consider deformations of algebraic structures up to
some equivalence relations, usually called gauge equivalences. In particular, differ-
ent gauge equivalences on the same algebraic structure lead to different deformation
theories. This data is organized into a moduli space of deformations whose con-
nected components are the gauge equivalence classes of the deformed structure.
Their higher homotopy groups encode (higher) symmetries which are becoming in-
creasingly important in modern applications. By the Deligne philosophy, now a
deep theorem by Lurie [67] and Pridham [80] such a moduli space is equivalent to
the data of a homotopy Lie algebra.

The emergence of derived/higher structures techniques allows not only to con-
sider general moduli spaces of deformations (derived formal moduli problems), but
also to consider deformations of algebraic structures more general than those given
by Quillen model categories of algebras over operads. In particular, it allows to
consider bialgebraic structures, that is algebras over props, in high generality.

The main goal of this paper is to exploit these techniques to prove several new
results about deformation theory of algebraic structures. In particular, we seek to
provide appropriate extension of classical algebraic deformation theory simultane-
ously in two directions:

(1) By considering very general kinds of algebraic structures parametrized by
props, which are of crucial importance in various problems of topology,
geometry and mathematical physics where such structures appear;

(2) By considering derived formal moduli problems controlling the deforma-
tion theory of algebras in the ∞-category of algebras, that is up to quasi-
isomorphism, contrary to the setting of standard operadic deformation the-
ory which considers deformations up to ∞-isotopies (see § 0.2 below and
section 5,6.1, 6.2 as well for detailed comparison and examples)1.

Both directions require to work out new methods:
(1) by getting rid of the standard use of Quillen model structures to describe

model categories of algebras, which does not make sense anymore for alge-
bras over props: one has to work directly at an ∞-categorical level.

(2) by replacing the classical gauge group action and classical deformation func-
tors by appropriate derived moduli spaces of algebraic structures and de-
rived formal groups of homotopy automorphisms.

We now explain in more details the motivations and historical setting for our
work in § 0.1 and then our contributions and main results in § 0.2.

1for instance, algebraic structures up to quasi-isomorphisms form precisely Kontsevich setting
encompassing deformation of functions into star-products in the analytic or algebraic geometry
context as well as for smooth manifolds, where it boils down to ”up to isomorphism“
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0.1. Motivations. As already mentioned, many algebraic structures of various
types play a key role in algebra, topology, geometry and mathematical physics.
This is the case of associative algebras, commutative algebras, Lie algebras, and
Poisson algebras to name a few. All these kinds of algebra share a common feature,
being defined by operations with several inputs and one single output (the asso-
ciative product, the Lie bracket, the Poisson bracket). The notion of operad is a
unifying approach to encompass all these structures in a single formalism, and has
proven to be a very powerful tool to study these structures, both from a combinato-
rial perspective and in a topological or dg-context2. The first historical examples, of
topological nature, are the operads of little n-disks discovered in the study of iter-
ated loop spaces in the sixties. Algebras governed by (versions of) these operads, as
well as their dg-cousin formed by (shifted) Poisson algebras and their deformation
theory play a prominent role in a variety of topics such as the study of iterated loop
spaces, Goodwillie-Weiss calculus for embedding spaces, deformation quantization
of Poisson manifolds and Lie bialgebras, factorization homology and derived sym-
plectic/Poisson geometry [58, 59, 66, 69, 12, 29, 28, 36, 44, 48, 55, 60, 71, 79, 85, 92].

However, algebraic structure governed by operations with several inputs and sev-
eral outputs also appear naturally in a variety of topics related to the same fields of
mathematics. Standard example are associative and coassociative bialgebras and
Lie bialgebras, which are central in various topics of algebraic topology, represen-
tation theory and mathematical physics [17, 18, 5, 26, 27, 38, 74, 75]. Here the
formalism of props, which actually goes back to [70], is the convenient unifying
framework to handle such structures. Props plays a crucial role in the deformation
quantization process for Lie bialgebras, as shown by Etingof-Kazdhan ([26], [27]),
and more generally in the theory of quantization functors [23, 76]. Props also ap-
pear naturally in topology, for example the Frobenius bialgebra structure on the
cohomology of compact oriented manifolds coming from Poincaré duality, and the
involutive Lie bialgebra structure on the equivariant homology of loop spaces on
manifolds, which lies at the heart of string topology ([14],[15]) and are also central
in symplectic field theory and Lagrangian Floer theory by the work of Cielebak-
Fukaya-Latsheev [16]. Props also provide a concise way to encode various field
theories such as topological quantum field theories and conformal field theories,
and have recently proven to be the kind of algebraic structure underlying the topo-
logical recursion phenomenom, as unraveled by Kontsevich and Soibelman in [61]
(see [9] for connections with mathematical physics and algebraic geometry).

A meaningful idea to understand the behavior of these various structures and,
accordingly, to get more information about the mathematical objects on which
they act, is to organize all the possible deformations of a given structure into a
single geometric object which encapsulates not only the deformations but also an
equivalence relation between these deformations. That is, to define a formal mod-
uli problem. Such ideas goes back to the pioneering work of Kodaira-Spencer in
geometry and the work of Gerstenhaber on associative algebras and Hochschild
cohomology. In the eighties supported by Deligne and Drinfeld, a groundbreak-
ing principle emerged, asserting that any formal moduli problem corresponds to
a certain differential graded Lie algebra which parametrizes algebraically the cor-
responding deformation theory. The deformations correspond to special elements

2where the strict algebraic structure are no longer invariant under the natural equivalence of
the underlying object and need to be replaced by their homotopy enhancement
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of this Lie algebra called the Maurer-Cartan elements, and equivalences of defor-
mations are determined by a quotient under the action of a gauge group. This
principle had major applications among which one can pick deformation theory of
complex manifolds, representation spaces of fundamental groups of projective va-
rieties in Goldman-Millson’s theory, and Kontsevich deformation quantization of
Poisson manifolds.

The theory of “classical” or “underived” formal moduli problems was not suf-
ficient to made this principle completely precise and had several limitations (like
impossibility to consider weak equivalences or getting non equivalent dg-Lie alge-
bras describing the same moduli problem)

These difficulties were solved by considering higher structured geometric moduli
problem using ∞-category theory and derived algebraic geometry. The appropriate
formalism is then the theory of derived formal moduli problems, which are simplicial
presheaves over augmented artinian cdgas satisfying some extra properties with
respect to homotopy pullbacks (a derived version of the Schlessinger condition).
Precisely, Lurie and Pridham [66, 80] proved that (derived) formal moduli problems
and dg Lie algebras are equivalent as ∞-categories.In fact, a given formal moduli
problem controlling the infinitesimal neighbourhood of a point on a moduli space
corresponds to a dg Lie algebra called the deformation complex of this point.

In this paper, we use rather systematically these ideas of derived formal moduli
problems and derived techniques to study deformation theory of algebraic struc-
tures. In particular, we give a conceptual explanation of the differences between
various deformation complexes appearing in the literature by explaining which kind
of derived moduli problem each of these complexes controls. A key part of our study
is that we study algebras over very general props and that we consider moduli spaces
of deformations of algebraic structures up to quasi-isomorphisms.

0.2. Main results. We study moduli spaces of algebraic structures and formal
moduli problems controlling their deformations. In the differential graded setting,
algebraic structures are deformed as algebraic structures up to homotopy. A con-
venient formalism to deal with such at a high level of generality, encompassing
not only algebras but also bialgebras, is the notion of (dg-)properad [94]. Briefly,
to any complex X, on can associate its endomorphism properad EndX(m,n) =
Hom(X⊗m, X⊗n). Then, given a properad P , a P -algebra structure on X is given
by a properad morphism

P → EndX .

There are several possible natural notions for defining deformations of (possibly
homotopy) algebraic structures and we consider and compare several of them.

A standard (pr)operadic approach to define a deformation complex of those struc-
ture is as follows. Given a properad P , the notion of homotopy P -algebra (or
P -algebra up to homotopy) can be defined properly by considering cofibrant reso-
lutions of properads. That is, by considering P∞-algebra where P∞ is a cofibrant
resolution of P in the model category of properads. To any P∞-algebra structure
ψ : P∞ → EndX on a complex X, there is a formal moduli problem P∞{X}ψ

controlling the deformation theory of the properad morphism ψ. The associated
deformation complex is an explicit dg Lie algebra noted gψP,X . This is a rather
standard approach.
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However, we can also construct a derived formal moduli problem controling the
deformation theory of a P∞-algebra A directly in the ∞-category P∞−Alg of P∞-
algebras (with quasi-isomorphisms as weak equivalences). This is not the same as
deforming the morphism ψ (in a way precised below, the Maurer-Cartan elements
are the same in both cases but the gauge equivalence relation differs).

To set up the appropriate framework for such a deformation theory, we introduce
in Section 2 the notion of derived prestack group, which can be thought as a family
of homotopy formal groups parametrized by a base space and apply this formalism
to the deformation theory of algebras over properads. Briefly, one associates to A
its derived prestack group of homotopy automorphisms which is the ∞-functor

GP (A) : CDGAK → E1−Alggp(Spaces)
R 7−→ hautP∞−Alg(ModA)(A⊗R)

where hautP∞−Alg(ModA)(A ⊗ R) is the ∞-group of self equivalences of A ⊗ R in
the ∞-category of A-linear P∞-algebras.Taking homotopy fibers over augmented
Artinian cdgas, we obtain a derived formal group (see Section 2.2):

̂GP (A)id(R) = hofib(GP (A)(R)→ GP (A)(K))
whose values at an augmented Artinian cdga R is the space of R-deformations of
A. Precisely, we prove

Theorem 0.1 (See Theorem 2.22). The simplicial presheaf GP (A) defines a grou-
plike E1-monoid object in the ∞-category of infinitesimally cohesive simplicial ∞-
presheaves. In particular ̂GP (A)id is a derived formal group.

By the equivalence between derived formal groups and derived formal moduli
problems, these deformations are parametrized by a dg Lie algebra Lie( ̂GP (A)id).

Two natural questions arise from these constructions.
• First, can we relate the classical deformation theory of the morphism ψ :
P∞ → EndX , controled by gψP,X , to the deformation theory of (X,ψ) in
P∞ −Alg, controled by Lie( ̂GP (X,ψ)) ?
• Second, is there an explicit formula computing Lie( ̂GP (X,ψ)) for general
P and (X,ψ) ?

The answer to the first question is the following natural homotopy fiber sequence
relating these two deformation complexes :

Theorem 0.2 (See Theorem 2.26). There is a fiber sequence of L∞-algebras

gψP,X −→ Lie( ̂GP (X,ψ)) −→ Lie(haut(X))
where Lie(haut(X)) is the Lie algebra of homotopy automorphisms of X as a com-
plex.

To illustrate concretely how this fiber sequence explains the difference between
gψP,X and Lie( ̂GP (X,ψ)), let us start with the following observation. One should
note that the deformation complex gψP,X does not give exactly the usual cohomology
theories of algebras. As a motivating example, let us consider the case of the
Hochschild cochain complex of a dg associative algebra A which can be written as
Hom(A⊗∗, A). This Hochschild complex is bigraded, with a cohomological grading
induced by the grading of A and a weight grading given by the tensor powers A⊗•.
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It turns out that the classical deformation complex gψAss,A is Hom(A⊗>1, A) and in
particular misses the summand Hom(A,A) of weight 1; which is precisely the one
allowing to consider algebras up to (quasi-)isomorphisms.

The Lie algebra gψP,X can be described very explicitly in terms of a convolution
algebra associated to the properad P∞ (Proposition 1.14). In section 4, we provide
a similar properadic description of the Lie algebra of the formal moduli of homotopy
automophisms ̂GP (X,ψ). To do so, we use the “plus” construction gψ

+

P+,X which
is a functorial construction to modifying any dg-Prop to get the right cohomology
theory.This gives us an explicit model of the deformation complex of (X,ψ) in the
∞-category of P∞-algebras up to quasi-isomorphisms and thus answers the second
question:

Theorem 0.3 (See Theorem 4.18). There is an equivalence of L∞-algebras

Lie( ̂GP (X,ψ)) ≃ gψP,X ⋊h End(X) ≃ gψ
+

P+,X .

Note that the middle term of this equivalence exhibits Lie( ̂GP (X,ψ)) as a ho-
motopical semi-direct product of gψP,X with the Lie algebra End(X) of endomor-
phisms of X (equipped with the commutator of the composition product as Lie
bracket). This is proved in Section 3 where we reinterpret the deformation com-
plex Lie(hautP∞−Alg(X,ψ)) as the tangent Lie algebra of a homotopy quotient of
P∞{X} by the ∞-action of haut(X).

To summarize, the conceptual explanation behind this phenomenon is as follows.
On the one hand, the L∞-algebra gψP,X controls the deformations of the P∞-algebra
structure over a fixed complex X, that is, the deformation theory of the properad
morphism ψ. On the other hand, we built a derived formal group ̂hautP∞

(X,ψ)
id

whose corresponding L∞-algebra Lie( ̂hautP∞
(X,ψ)

id
) describes another derived

deformation problem: an R-deformation of a P -algebra A in the ∞-category of
P∞-algebras up to quasi-isomorphisms is a an R-linear P∞-algebra Ã ≃ A ⊗ R
with a K-linear P∞-algebra quasi-isomorphism Ã⊗RK ∼→ A. The later L∞-algebra
admits two equivalent descriptions

Lie( ̂hautP∞
(A)

id
) ≃ gφP,X ⋉hol End(X) ≃ gφ

+

P+,X

where the middle one exhibits this moduli problem as originating from the homo-
topy quotient of the space of P∞-algebra structures on X by the homotopy action of
self-quasi-isomorphisms haut(X), that is, deformations of the P∞-algebra structure
up to self quasi-isomorphisms of X, and the right one encodes this as simultaneous
compatible deformations of the P∞-algebra structure and of the differential of X.
We will go back to this in full details in Sections 3 and 6.

Returning to the Hochschild complex example, we now see the role of the weight
1 part Hom(A,A). Indeed, in the case of a an associative dg algebra A, the com-
plex gψ

+

Ass+,A
∼= Hom(A⊗>0, A)[1] computes the reduced Hochschild cohomology of

A, where the right hand side is a sub-complex of the standard Hochschild cochain
complex shifted down by 1 equipped with its standard Lie algebra structure.The
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complex gψAss,A ∼= Hom(A⊗>1, A)[1] is the one controlling the formal moduli prob-
lem of deformations of A with fixed differential3, where the right hand side is the
subcomplex of the previous shifted Hochschild cochain complex where we have
removed the Hom(A,A) component4.

In addition, in Section 2, we prove a general criterion to compare formal moduli
problems induced by algebras :

Theorem 0.4 (see Theorem 2.27). Let F be an equivalence of presheaves of ∞-
categories

F : P∞ −Alg
∼−→ Q∞ −Alg.

Then F induces equivalences of of derived formal moduli problems

P∞{X}ψ ≃ Q∞{F (X)}F (ψ)

(and their associated formal groups) where F (ψ) is the Q∞-algebra structure on the
image of (X,ψ) under F .

In Section 5, we apply our machinery to derived deformation theory of n-shifted
Poisson algebras (that is Poisson algebras with a Poisson bracket of degree 1− n)
and En-algebras:

Theorem 0.5 (See Corollary 5.7). (1) The Tamarkin deformation complex5 [87]
controls deformations of A in Poisn,∞−Alg[W−1

qiso], that is, in homotopy dg-Poisn-
algebras up to quasi-isomorphisms. It is thus equivalent to the tangent Lie algebra
gψ

+

Pois+
n ,A

of GPoisn(A).
(2) For n ≥ 2 the Tamarkin deformation complex of A is equivalent, as an L∞-

algebra, to the En-tangent complex of A seen as an En-algebra via the formality of
En-operads.

To the best of the authors knowledge, the proof that this complex is indeed a
deformation complex in the precise meaning of formal derived moduli problems
is new, as well as the concordance with the L∞-structure induced by the higher
Deligne conjecture (which provides an En+1-algebra structure on the En-tangent
complex of an En-algebra). We also prove that the deformation complex gψPoisn,A
of the formal moduli problem Poisn∞{A}

ψ of homotopy n-Poisson algebra struc-
tures deforming ψ is given by the L∞-algebra CH

(•>1)
Poisn

(A)[n], which is a further
truncation of CHPoisn(A)[n].

3Thus, when A is an ordinary, non dg, vector space, the complex g0
Ass,A parametrizes the

moduli space of associative algebra structures on A, while g0+

Ass+,A
parametrizes the moduli space

of asociative algebra structures up to isomorphism of algebras
4there is also a third complex, the full shifted Hochschild complex Hom(A⊗≥0, A)[1), which

controls not the deformations of A itself but the linear deformations of its dg category of modules
ModA [57, 79]

5which we denote CH(•>0)
P oisn

(A)[n] since it is the part of positive weight in the full Poisson
complex [11]
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Concerning bialgebras, we obtain the first theorem describing precisely why (a
suitable6 version of) the Gerstenhaber-Schack complex

C∗
GS(B,B) ∼=

∏
m,n≥1

Homdg(B⊗m, B⊗n)[−m− n]

is the appropriate deformation complex of a dg bialgebra up to quasi-isomorphisms
in terms of derived moduli problems:

Theorem 0.6 (See Theorem 5.9). The Gerstenhaber-Schack complex is quasi-
isomorphic to the L∞-algebra controlling the deformations of dg bialgebras up to
quasi-isomorphisms:

C∗
GS(B,B) ∼= gφ

+

Bialg+
∞,B
≃ Lie( ̂hautBialg∞

(B)
id

).

Note that our theorem 0.3 implies that the L∞-algebra structure induced on
C∗
GS(B,B) contains as a sub L∞-algebra the Merkulov-Vallette deformation com-

plex [73].
Finally, in Section 6, we give an overview and comparison of various (derived

or not) deformation problems of algebraic structures arising in our work and the
litterature.

Remark 0.7. A natural candidate for the deformation ∞-functor of a P∞-algebra
A in the∞-category of P∞-algebras (localized with respect to quasi-isomorphisms)
is defined as follows. One associate, to any augmented artinian dg algebra R, the
simplicial nerve NwP∞ − Alg(ModR) of the subcategory of weak equivalences of
P∞-algebras in R-modules. The augmentation R→ K induces a simplicial map

NwP∞ −Alg(ModR)→ NwP∞ −Alg(ChK).
The evaluation of the classifying presheaf of deformations of A on an augmented
artinian dg algebra R is the homotopy fiber of the map above at the base point
A. In other words, it is the formal completion ̂NwP∞ −AlgA of the functor R 7→
NwP∞ − Alg(ModR) at A. We detail its construction and properties in Section
2.3. In the operadic setting, such a functor has been studied by Hinich in [49].

The space ̂NwP∞ −AlgA(R) is homotopy equivalent to the maximal∞-subgroupoid
of the ∞-category P∞ − Alg(ModR)[W−1

qiso] generated by R-linear P∞-algebras B
such that B ⊗R K ≃ A. So it encapsulates the whole deformation theory of A in
the ∞-category P∞ − Alg[W−1

qiso] as we can think of it, that is, an R-deformation
of A is an R-linear P∞-algebra whose restriction modulo R is quasi-isomorphic to
A, and equivalences between R-deformations are defined by compatible R-linear
quasi-isomorphisms whose restriction modulo R is homotopic to IdA. However, in
general, such a simplicial presheaf does not provide a derived formal mod-
uli problem. Even in the operadic case, one needs A and P to be non-positively
graded to describe it as the nerve of dg Lie algebra (see [49, Section 4.3]).

The relationship between this classifying presheaf of algebras and the derived
formal group of homotopy automorphisms in the neighbourhood of the identity is
given by

̂hautP∞
(A)id = Ω∗ ̂NwP∞ −AlgA

6there are several closely related versions of the Gerstenhaber-Schack, depending on how we
truncate them
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where Ω∗ is the loop space for pointed functors as explained in Section 2. By the
general formalism explained in Section 2 we have

T ̂haut
P∞

(A)id
= Lie(L( ̂NwP∞ −AlgA))

where L is the completion of ̂NwP∞ −AlgA in a derived formal moduli problem.
Another way to state this is that in general ̂NwP∞ −AlgA is a 1-proximate moduli
functor in the sense of [66].

0.3. Further applications and perspectives. A first major application appeared
earlier in our preprint [46], where some of the results of the present article were
announced. Our article provides complete proofs of these results and add some new
ones as well. In [46], we use them crucially to prove longstanding conjectures in
deformation theory of bialgebras and En-algebras as well as in deformation quanti-
zation. We prove a conjecture stated by Gerstenhaber and Schack (in a wrong way)
in 1990 [38], whose correct version is that the Gerstenhaber-Schack complex forms
an E3-algebra, hence unraveling the full algebraic structure of this complex which
remained mysterious for a while. It is a “differential graded bialgebra version” of
the famous Deligne conjecture for associative differential graded algebras (see for
instance [85] and [58]). The second one, enunciated by Kontsevich in his celebrated
work on deformation quantization of Poisson manifolds [59] in 2000, is the formal-
ity, as an E3-algebra, of the deformation complex of the symmetric bialgebra which
should imply as a corollary Drinfeld’s and Etingof-Kazdhan’s deformation quanti-
zation of Lie bialgebras (see [17], [26] and [27]). We solve both conjectures actually
at a greater level of generality than the original statements. Moreover, we deduce
from it a generalization of Etingof-Kadhan’s celebrated deformation quantization
in the homotopical and differential graded setting.

The new methods developed here to approach deformation theory and quan-
tization problems have several possible continuations. In particular, we aim to
investigate in future works how our derived algebraic deformation theory could be
adapted to provide new deformation theoretic approach, formality statements and
deformation quantization of shifted Poisson structures in derived algebraic geome-
try. This problem can help understand quantum invariants of various moduli spaces
of G-bundles over algebraic varieties and topological manifolds, which are naturally
shifted Poisson stacks.

Moreover, our framework for derived algebraic deformation theory shall also be
useful to study deformation problems related to the various kinds of (bi)algebras
structures mentionned in this introduction, occuring in mathematical physics, al-
gebraic topology, string topology, symplectic topology and so on.

Acknowledgement. The authors wish to thank V. Hinich, S. Merkulov, P. Safra-
nov and T. Willwacher for their useful comments. They were also partially sup-
ported by ANR grants CHroK and CatAG and the first author benefited from the
support of Capes-Cofecub project 29443NE and Max Planck Institut fur Mathe-
matik in Bonn as well.

Notations and conventions

The reader will find below a list of the main notations used at several places in
this article.
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• We work over a field of characteristic zero denoted K.
• We work with cochain complexes and a cohomological grading and denote
ChK the category of Z-graded cochain complexes over K.

• Let (C,WC) be a relative category, also called a category with weak equiv-
alences. Meaning C is a category and WC its subcategory of weak equiva-
lences. The hammock localization (see [20]) of such a category with respect
to its weak equivalences is denoted LH(C,WC), and the mapping spaces of
this simplicial localization are noted LH(C,WC)(X,Y ).

• We will note L(M) the∞-category associated to a model categoryM, that
is the coherent nerve of its simplicial localization.

• Given a relative category (M,W ), we denote by M [W−1] its∞-categorical
localization. Further, we will write NW for the coherent nerve of the
subcategory of weak-equivalences W .

• Several categories of algebras and coalgebras will have a dedicated notation:
cdga for the category of commutative differential graded algebras, dgArt for
the category of Artinian cdgas, dgCog for the category of dg coassociative
coalgebras and dgLie for the category of dg Lie algebras.

• Given a cdga A, the category of A-modules is noted ModA. More generally,
if C is a symmetric monoidal category tensored over ChK, the category of
A-modules in C is noted ModA(C).

• Given a dg Lie algebra g, its Chevalley-Eilenberg algebra is noted C∗
CE(g)

and its Chevalley-Eilenberg coalgebra is noted CCE∗ (g).
• More general categories of algebras and coalgebras over operads or proper-

ads will have the following generic notations: given a properad P , we will
note P −Alg the category of dg P -algebras and given an operad P we will
note P − Cog the category of dg P -coalgebras.

• Given a properad P , a cofibrant resolution of P is noted P∞.
• When the base category is a symmetric monoidal category C other than
ChK, we note P −Alg(C) the category of P -algebras in C and P −Cog(C)
the category of P -coalgebras in C.

• Algebras over properads form a relative category for the weak equivalences
defined by chain quasi-isomorphisms. The subcategory of weak equivalences
of P −Alg is noted wP −Alg.

• Given a properad P and a complex X, we will consider an associated con-
volution Lie algebra noted gP,X which will give rise to two deformation
complexes: the deformation complex gφP,X controling the formal moduli
problem of deformations of a P -algebra structure φ on X, and a variant
gφ

+

P+,X whose role will be explained in Section 3.
• We will consider various moduli functors in this paper, defined as simpli-

cial presheaves over Artinian augmented cdgas: the simplicial presheaf of
P∞-algebra structures on X noted P∞{X}, the formal moduli problem of
deformations of a given P∞-algebra structure φ on X noted P∞{X}φ, and
the derived prestack group of homotopy automorphisms of (X,φ) noted
hautP∞

(X,φ). The derived prestack group of automorphisms of X as a
chain complex will be denoted haut(X). More generally, when we extend a
simplicial set Q into a simplicial presheaf over Artinian cdgas, we will use
the underlined notation Q for that extension.
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1. Formal moduli problems and algebraic structures

Formal moduli problems arise when one wants to study the deformation the-
ory of an object in a category, of a structure on a given object, of a point in a
given moduli space (variety, scheme, stack, derived stack). The general principle
of moduli problems is that the deformation theory of a given point in its formal
neighbourhood (that is, the formal completion of the moduli space at this point) is
controlled by a certain tangent dg Lie algebra.

However, if one does not work in a derived geometric/higher categoricla context,
there are several well known issues with this principle:

• Lie algebras which are not quasi-isomorphic can nevertheless describe the
same moduli problem (a famous example is the deformation theory of a
closed subscheme, seen either as a point of a Hilbert scheme or as a point
of a Quot scheme). Even worse, their is no systematic recipe to build a Lie
algebra out of a moduli problem;

• Deformation problems for which the equivalence relation is given by weak
equivalences (say, quasi-isomorphisms between two deformations of a dg
algebra) do not fit in the framework of classical algebraic geometry (that
is, deformations which manifests a non trivial amount of homotopy theory);

• There is no natural interpretation of the obstruction theory in terms of the
corresponding moduli problem.

To overcome these difficulties encountered when working in underived deformation
theory, in particular in the correspondence between deformation functors and dg
Lie algebras, one has to consider moduli problems in a derived setting. The rigorous
statement of an equivalence between (derived) formal moduli problems and dg Lie
algebras was proved independently by Lurie in [66] and by Pridham in [80]. In this
paper, what we will call moduli problems are actually derived moduli problems.

1.1. Formal moduli problems and (homotopy) Lie algebras. We start by
an overview of the notion of formal moduli problem and relevant L∞-algebras.

Definition 1.1. Formal moduli problems are functors F : dgArtaugK → sSet from
augmented Artinian commutative differential graded algebras to simplicial sets sat-
isfying the following conditions:

(1) The functor F preserves weak equivalences (that is, quasi-isomorphisms of
cdgas are sent to weak equivalences of simplicial sets);

(2) There is a weak equivalence F (K) ≃ pt;
(3) The functor F is infinitesimally cohesive: Given any (homotopy) pull-

back diagram A′ //

��

A

��
B′ // B

in dgArtK such that the induced maps π0(A)→

π0(B) and π0(B′)→ π0(B) are surjective, the induced diagram

F (A′) //

��

F (A)

��
F (B′) // F (B)

is a (homotopy) pullback in sSet.
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Remark 1.2. Condition (3) is a derived version of the classical Schlessinger condition
introduced in [66] and developped in [67] The notion of (infinitesimally) cohesive
generalizes to any functor from connective dg-commutative algebras to sSet. In that
general setting functors satisfying condition (3) in Definition 1.1 are called cohesive,
while infinitesimally cohesive stands for those functors satisfying this condition only
when the the maps π0(A) → π0(B) and π0(B′) → π0(B) are further required to
have nilpotent kernels. For Artinian cdgas, the latter condition is automatic and
therefore infinitesimally cohesive and cohesive are the same. We stick to the longer
name to recall that special property of the Artinian context.

The value F (K) corresponds to the point of which we study the formal neigh-
bourhood, the evaluation F (K[t]/(t2)) on the algebra of dual numbers encodes
infinitesimal deformations of this point, and the F (K[t]/(tn)) are polynomial defor-
mations of a higher order, for instance.

Formal moduli problems form a full sub-∞-category noted FMPK of the ∞-
category of simplicial presheaves over augmented Artinian cdgas. By [66, Theorem
2.0.2], this ∞-category is equivalent to the ∞-category dgLieK of dg Lie algebras.
Moreover, one side of the equivalence is made explicit, and is equivalent to the nerve
construction of dg Lie algebras studied thoroughly by Hinich in [47]. The homotopy
invariance of this nerve relies on nilpotence conditions on the dg Lie algebra. In the
case of formal moduli problems, this nilpotence condition is always satisfied because
one tensors the Lie algebra with the maximal ideal of an augmented Artinian cdga.

In patcice it is oftten convenient to work with homotopy Lie algebras, that is,
L∞-algebras, rather than strict dg-Lie algebras:

Definition 1.3. (1) An L∞-algebra is a graded vector space g = {gn}n∈Z equipped
with maps lk : g⊗k → g of degree 2−k, for k ≥ 1, satisfying the following properties:

• lk(..., xi, xi+1, ...) = −(−1)|xi||xi+1|lk(..., xi+1, xi, ...)
• for every k ≥ 1, the generalized Jacobi identities

k∑
i=1

∑
σ∈Sh(i,k−i)

(−1)ϵ(i)lk(li(xσ(1), ..., xσ(i)), xσ(i+1), ..., xσ(k)) = 0

where σ ranges over the (i, k − i)-shuffles and

ϵ(i) = i+
∑

j1<j2,σ(j1)>σ(j2)

(|xj1 ||xj2 |+ 1).

It is standard that the above definition is equivalent to the following:
(2) An L∞-algebra structure on a graded vector space g = {gn}n∈Z is exactly

the data of a coderivation Q : Sym•≥1(g[1]) → Sym•≥1(g[1]) of degree 1 of the
cofree cocommutative coalgebra Sym•≥1(g[1]) such that Q2 = 0.

The bracket l1 is in particular a differential that makes g a cochain complex.
The dg-coalgebra of (2) is called the reduced Chevalley-Eilenberg chain complex of
the L∞-algebra g, denoted CCE∗ (g). The dg-algebra C∗

CE(g) obtained by dualizing
the dg coalgebra of (2) is called the (reduced) Chevalley-Eilenberg cochain algebra
of g.

Definition 1.4. A L∞ algebra g is filtered if it admits a decreasing filtration
g = F1g ⊇ F2g ⊇ ... ⊇ Frg ⊇ ...
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compatible with the brackets: for every k ≥ 1,

lk(Frg, g, ..., g) ∈ Frg.

We require moreover that for every r, there exists an integer N(r) such that
lk(g, ..., g) ⊆ Frg for every k > N(r).

A filtered L∞ algebra g is complete if the canonical map g → limrg/Frg is an
isomorphism.

In particular a nilpotent L∞-algebra is complete and, if m is the augmentation
ideal of an Artinian CDGA, then g ⊗m is also complete for any L∞-algebra g.

The completeness of a L∞ algebra allows to define properly the notion of Maurer-
Cartan element:

Definition 1.5. (1) Let g be a complete L∞-algebra and τ ∈ g1, we say that τ is
a Maurer-Cartan element of g if∑

k≥1

1
k! lk(τ, ..., τ) = 0.

The set of Maurer-Cartan elements of g is noted MC(g).
(2) The simplicial Maurer-Cartan set is then defined by

MC•(g) = MC(g⊗̂Ω•),

, where Ω• is the Sullivan cdga of de Rham polynomial forms on the standard
simplex ∆• (see 7.5 and [84]) and ⊗̂ is the completed tensor product with respect
to the filtration induced by g.

The simplicial Maurer-Cartan set is a Kan complex, functorial in g and preserves
quasi-isomorphisms of complete L∞-algebras. The Maurer-Cartan moduli set of g
is MC(g) = π0MC•(g): it is the quotient of the set of Maurer-Cartan elements of
g by the homotopy relation defined by the 1-simplices. When g is a complete dg
Lie algebra, it turns out that this homotopy relation is equivalent to the action of
the gauge group exp(g0) (a prounipotent algebraic group acting on Maurer-Cartan
elements), so in this case this moduli set coincides with the one usually known for
Lie algebras. We refer the reader to [98] for more details about all these results.
We also recall the notion of

Definition 1.6 (Twisting by a Maurer-Cartan element). . The twisting of a com-
plete L∞ algebra g by a Maurer-Cartan element τ is the complete L∞ algebra gτ
with the same underlying graded vector space and new brackets lτk defined by

lτk(x1, ..., xk) =
∑
i≥0

1
i! lk+i(τ, ..., τ︸ ︷︷ ︸

i

, x1, ..., xk)

where the lk are the brackets of g.

Let us explain briefly why Lurie’s equivalence [66, Theorem 2.0.2] lifts from the
∞-category of dg Lie algebras dgLie to the ∞-category of L∞-algebras L∞ −Alg.
Let p : L∞

∼→ Lie be the cofibrant resolution of the operad Lie encoding L∞-
algebras. This morphism induces a functor p∗ : dgLie→ L∞−Alg which associates
to any dg Lie algebra the L∞-algebra with the same differential, the same bracket
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of arity 2 and trivial higher brackets in arities greater than 2. This functor is a
right Quillen functor belonging to a Quillen equivalence

p! : L∞ −Alg ⇆ dgLie : p∗,

since p is a quasi-isomorphism of Σ-cofibrant operads (see [31, Theorem 16.A]).
Quillen equivalences induce equivalences of the ∞-categories associated to these
model categories. Therefore, we have a commutative triangle of ∞-categories

L∞ −Alg
ψ̃

&&
dgLie

p∗

OO

ψ
// FMPK

where ψ maps a Lie algebra to its nerve functor, and ψ̃ maps an L∞-algebra to its
Maurer-Cartan space defined as dgArtaugK ∋ R 7→ MC•(g ⊗ mR) (where mR is the
maximal ideal of R).

The maps p∗ and ψ are weak equivalences of ∞-categories (the model of quasi-
categories is used in [68], but actually any model works). By the two-out-of-three
property of weak equivalences, this implies that ψ̃ : L∞ −Alg → FMPK is a weak
equivalence of ∞-categories.

Definition 1.7. Let F be a formal moduli problem. We denote F 7→ LF ∈
L∞ −Alg an inverse of the equivalence ψ̃ : L∞ −Alg → FMPK.

To conclude, let us say a word about formal deformations. Although the ring
of formal power series in one variable K[[t]] is not Artinian, given a formal moduli
problem F , one can properly define the notion of formal deformation, or deforma-
tion over K[[t]], by setting

F (K[[t]]) := lim
i
F (K[t]/ti).

(where we consider a homotopy limit in the ∞-category of simplicial sets). Let us
note gF the dg Lie (or L∞) algebra of F via the Lurie-Pridham correspondence.
By [93, Corollaire 2.11] (or [66]), there is an natural weak-equivalence

F (K[[ℏ]]) ≃ Map(K[−1], gF )

where K[−1] is the one dimensional Lie algebra concentrated in degree 1 with trivial
Lie bracket. Here Map denotes the derived mapping space in the∞-category of dg
Lie algebras, which can be explicited in the corresponding model category by taking
a cofibrant resolution of K[−1]. We refer the reader to [93, Section 1.1] for example,
to see an explicit construction of such a cofibrant resolution. The main point of
interest for us here, is that the space of Lie morphisms from such a resolution is
equivalent to the space of Maurer-Cartan elements in formal power series without
constant terms, that is

F (K[[t]]) ≃MC•(tgF [[t]]).

This means that formal deformations of a point can be explicitely described in
terms of the corresponding Lie algebra.
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1.2. Moduli spaces of algebraic structures and their formal moduli prob-
lems. We now explain a first (prop)eradic approach to moduli of algebraic struc-
tures.

Moduli spaces of algebraic structures were originally defined by Rezk as simplicial
sets, in the setting of simplicial operads [81]. This notion can be extended to
algebras over differential graded props as follows (see [98]):

Definition 1.8. Let P∞ be a cofibrant prop and X be a complex. The moduli
space of P∞-algebra structures on X is the simplicial set P∞{X} defined by

P∞{X} = MorProp(P∞, EndX ⊗ Ω•),

where the prop EndX ⊗ Ω• is defined by

(EndX ⊗ Ω•)(m,n) = EndX(m,n)⊗ Ω•

and Ω• is the Sullivan cdga of the standard simplex ∆• (see 7.5).
Given a cofibrant properad P∞ and any properad Q, we will denote

MapProp(P,Q) := MorProp(P,Q⊗ Ω•)

the mapping space of properads morphisms.

Indeed, the aritywise tensor product (−)⊗ Ω• forms a functorial simplicial res-
olution in the model category of dg props [98, Proposition 2.5]. This simplicial set
enjoys the following key properties, see [98]:

Proposition 1.9. (1) The simplicial set P∞{X} is a Kan complex and

π0P∞{X} = [P∞, EndX ]Ho(Prop)

is the set of homotopy classes of P∞-algebra structures on X.
(2) Any weak equivalence of cofibrant props P∞

∼→ Q∞ induces a weak equiva-
lence of Kan complexes Q∞{X}

∼→ P∞{X}.

We can extend the moduli space of P∞-structure to a simplicial presheaf by base
change from K to any Artinian cdga.

Definition 1.10. Let P∞ be a cofibrant properad and X be a complex. We define
a simplicial presheaf P∞{X} : dgArtaugK → sSet by the formula

P∞{X} : A ∈ dgArtaugK 7→ P∞ ⊗A{X ⊗A}ModA

where P∞ ⊗ A{X ⊗ A}ModA is the mapping space of dg props in A-modules
Map(P∞ ⊗A,EndModA

X⊗A ) and EndModA
X⊗A is the endomorphism prop of X ⊗A taken

in the category of A-modules.

In other words, P∞{X}(A) is the simplicial moduli space of P∞-algebra struc-
tures on X ⊗ A in the category of A-modules. Indeed, since ModA is tensored
over ChK, on can make P∞ act on A-modules either by morphisms of dg props in
A-modules from P∞⊗A to the endomorphism prop defined by the internal hom of
ModA, or by morphisms of dg props from P∞ to the endomorphism prop defined
by the external hom of ModA. See for instance [98, Lemma 3.4].

By Proposition 1.9, the simplicial set P∞{X}(A) classifies P∞⊗A-algebra struc-
tures on X ⊗ A. However, the simplicial presheaf P∞{X} is not a formal moduli
problem, since P∞{X}(K) is in general not contractible.
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Definition 1.11. The formal moduli problem P∞{X}ψ controlling (a certain type
of) formal deformations of a P∞-algebra structure ψ : P∞ → EndX on X is defined,
on any augmented Artinian cdga A, as the homotopy fiber
(1.1) P∞{X}ψ(A) = hofib(P∞{X}(A)→ P∞{X}(K))
taken over the base point ψ, the map being induced by the augmentation A→ K.

The moduli spaces of algebraic structures and its associated formal moduli prob-
lem are encoded by L∞-algebras according to Lurie - Pridham Theorem. We now
explain how those L∞-structures can be described explicitly using dg-properads
following [72] and [98].

Cofibrant resolutions of a properad P can always be obtained as a cobar con-
struction Ω(C) on some coproperad C (which is usually the bar construction or the
Koszul dual if P is Koszul). Given a cofibrant resolution P∞ := Ω(C) ∼→ P of P and
another properad Q, one constructs the convolution dg Lie algebra HomΣ(C,Q):

Definition 1.12. Let C be an augmented coproperad and Q be a properad. Their
associated convolution dg Lie algebra is the dg K-module

HomΣ(C,Q)
of morphisms of Σ-biobjects from the augmentation ideal of C to Q endowed with
the differential induced by the internal ones of C and Q. It is equipped with the
Lie bracket given by the antisymmetrization of the convolution product.

This convolution product is defined similarly to the convolution product of mor-
phisms from a coalgebra to an algebra, using the infinitesimal coproduct of C and
the infinitesimal product of Q.

The total complex HomΣ(C,Q) is a complete dg Lie algebra. More generally,
if P is a properad with minimal model (F(s−1C), ∂) ∼→ P for a certain homotopy
coproperad C (see [72, Section 4] for the definition of homotopy coproperads), and
Q is any properad, then the complex HomΣ(C,Q) is a complete dg L∞ algebra
(which is not a dg-Lie algebra in general).

The simplicial mapping space of morphisms P∞ → Q is computed by the con-
volution L∞-algebra HomΣ(C,Q) thanks to the following theorem:

Theorem 1.13. (cf. [98, Theorem 2.10,Corollary 4.21]) Let P be a dg properad
equipped with a semi-free resolution P∞ := (F(s−1C), ∂) ∼→ P and Q be a dg
properad. The simplicial presheaf

Map(P∞, Q) : A ∈ dgArtaugK 7→MapProp(P∞, Q⊗A)
is equivalent to the simplicial presheaf

MC•(HomΣ(C,Q)) : A ∈ dgArtaugK 7→MC•(HomΣ(C,Q)⊗A)
associated to the complete L∞-algebra HomΣ(C,Q).

Note that by [97, Corollary 2.4], the tensor product MC•(HomΣ(C,Q) ⊗ A)
does not need to be completed because A is Artinian. In order to get a fromal
moduli problem, we also consider the simplicial presheaf

MCfmp• (HomΣ(C,Q)) : A ∈ dgArtaugK 7→MC•(HomΣ(C,Q)⊗mA),
where mA is the maximal ideal of A. This presheaf is a formal moduli problem
associated to HomΣ(C,Q). In the case where Q = EndX , Theorem 1.13 implies
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that the the simplicial presheaf MC•(HomΣ(C,EndX)) is equivalent to P∞{X}
(definition 1.10).

This theorem applies in particular to the case of a Koszul properad, which in-
cludes for instance Frobenius algebras, Lie bialgebras and their variants such as
involutive Lie bialgebras in stSS:DefALgStructClassicring topology. It applies also
to more general situations such as the properad Bialg encoding associative and
coassociative bialgebras, which is homotopy Koszul [72, Proposition 41].

We now describe the L∞-algebra structure encoding this formal moduli problem.
It is given by twisting the convolution Lie algebra as follows. The twisting of
HomΣ(C,EndX) by a properad morphism ψ : P∞ → EndX is often called the
deformation complex7 of ψ, and we have an isomorphism

gψP,X = HomΣ(C,EndX)ψ ∼= Derψ(Ω(C), EndX)

where the right-hand term is the complex of derivations with respect to ψ [73,
Theorem 12].

Proposition 1.14. The tangent L∞-algebra of the formal moduli problem P∞{X}ψ

is given by
gψP,X = HomΣ(C,EndX)ψ.

Proof. Let A be an augmented Artinian cdga. By Theorem 1.13, we have the
homotopy equivalences

P∞{X}ψ(A) ≃ hofib(MC•(gP,X)(A)→MC•(gP,X)(K))
= hofib(MC•(gP,X ⊗A)→MC•(gP,X))
≃ MC•(hofibL∞(gP,X ⊗A→ gP,X))

where hofibL∞(gP,X ⊗ A → gP,X) is the homotopy fiber, over the Maurer-Cartan
element ψ, of the L∞-algebra morphism gP,X ⊗ A → gP,X given by the tensor
product of the augmentation A → K with gP,X . This homotopy fiber is nothing
but gφP,X ⊗mA, where mA is the maximal ideal of A, so there is an equivalence of
formal moduli problems

P∞{X}ψ ≃MCfmp• (gψP,X).

By Lurie’s equivalence theorem, this means that gψP,X is the Lie algebra of the
formal moduli problem P∞{X}ψ. □

2. Derived formal groups of algebraic structures and associated
formal moduli problems

In this section, we explain how the theory of formal moduli problems is related
to derived formal groups, and how this allows to state the correspondence between
formal groups and Lie algebras at a higher (and derived) level of generality. This
correspondence is suitable for us to define a natural deformation problem of ho-
motopy P -algebras structures on a complex X up to quasi-isomorphisms and to
understand how it relates to those associated moduli space of algebraic structures
from section 1.2.

7Proposition 1.14 belows justifying the name, though of course one has to be careful about
which kind of deformation it encodes
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Definition 2.1. Let C be a stable ∞-category. We denote by MongpE1
(C) the

∞-category of grouplike E1-monoids in C, that is the subcategory of grouplike
objects in the∞-category of E1-algebras in C equipped with the cartesian monoidal
structure. here an E1-monoid G is said to be grouplike if the two canonical maps
(µ, πi) : G×G→ G×G (induced by the multiplication µ : G×G→ G and the the
two canonical projections π1, π2 : G×G→ G) are equivalences.

A group object of C is an object of MongpE1
(C).

Example 2.2. Loop spaces provide the main source of examples of group objects in
topology (which are also called H-groups in this particular setting). A topological
monoid M is said to be grouplike if π0M is a group, and since any grouplike topo-
logical monoid is equivalent to a loop space, grouplike topological monoids model
group objects in the∞-category of topological spaces in the sense of Definition 2.1.
The same holds true for grouplike simplicial monoids, which model group objects
in the ∞-category of simplicial sets and will be especially useful for us to study
homotopy automorphisms of algebras.
2.1. Generalities on derived formal groups. First, let us remark that the cat-
egory of formal moduli problems is pointed. In fact, we have :
Lemma 2.3. Let SPshpt((dgArtaugK )op) be the full sub-∞-category of SPsh((dgArtaugK )op)
consisting of those ∞-functors F from augmented dg Artinian algebras to simplicial
sets such that F (K) is contractible. This ∞-category is pointed.

Proof. Let us first note pt the ∞-functor sending any augmented Artinian cdga to
the simplicial set generated by a single vertex. Now let R and R′ be two augmented
Artinian cdgas, let us write ηR, ηR′ for their respective unit morphisms and ϵR, ϵR′

their respective augmentations. Let f : R → R′ be a morphism of augmented
Artinian cdgas. A morphism of augmented Artinian cdgas commutes with units,
so the diagram

pt(R) ∼ //

=
��

F (K)

=
��

F (ηR) // F (R)

f

��
pt(R′) ∼ // F (K)

F (ηR′ )// F (R′)
commutes as well, hence we get a unique morphism of ∞-functors pt→ F . A mor-
phism of augmented Artinian cdgas commute with augmentations, so the diagram

F (R)

f

��

F (ϵR) // F (K)

=
��

∼ // pt(R)

=
��

F (R′)
F (ϵR′ )// F (K) ∼ // pt(R′)

commutes as well, hence a unique morphism F → pt. □

Consequently, one can form the pointed loop space functor as the homotopy
pullback
(2.1) Ω∗F := pt×hF pt
in SPshpt((dgArtaugK )op). Let us note that since dgArtaugK and sSet are pre-
sentable, the ∞-category of pointed ∞-functors is presentable as well. There-
fore SPshpt((dgArtaugK )op) is a presentable pointed ∞-category, and FMPK is a
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presentable pointed sub-∞-category of it. Therefore the universal property of ho-
motopy pushouts makes Ω∗F into a group-like E1-monoid in simplicial presheaves
(see 2.5.(1) below).

Moreover, the inclusion
i : FMPK ↪→ SPshpt((dgArtaugK )op)

commutes with small homotopy limits, and since small homotopy limits in SPshpt((dgArtaugK )op)
are determined pointwise, we have proved

Lemma 2.4. For any derived formal moduli problem F and any augmented Ar-
tinian cdga R, we have (Ω∗F )(R) ∼= ΩηRF (R) where the base point of F (R) is
given by the morphism F (ηR) : pt ≃ F (K)→ F (R) induced by the unit ηR of R.

The base point of F (R) corresponds to the “trivial R-deformation” of the unique
point of F (K). It is important to mention that FMPK is presentable [66, Remark
1.1.17] and that the inclusion of FMPK in pointed∞-functors admits a left adjoint
(applying the ∞-categorical adjoint functor theorem)

L : SPshpt((dgArtaugK )op)→ FMPK

making a simplicial presheaf canonically into a formal moduli problem. When F
is a formal moduli problem, then LF ∼= F , otherwise LF is the (best) formal
moduli problem approximating the pointed ∞-functor F . The functor L is hard
to understand explicitely in general, but is related to the (standard) pointwise
classifying space functor, in the sense that we have a natural equivalence
(2.2) L(BΩ∗F ) ∼= LF

where B is given by applying objectwise the classifying space functor from E1-
monoids in spaces to spaces.

The loop space functor enjoys the following properties (as a consequence of
Lurie’s work [66], see for example [8, Proposition 2.15] for a proof):

Proposition 2.5. (1) Let C be a pointed presentable ∞-category. The pointed
loop space ∞-functor lifts to a (∞-categorical) limit preserving functor

Ω∗ : C →MongpE1
(C)

where MongpE1
(C) (1.4) is the ∞-category of grouplike E1-monoids in C.

(2) In the case C = FMPK, the loop space functor is an equivalence.

Definition 2.6. A derived formal group is an object of MongpE1
(FMPK), that is a

group object in the stable pointed ∞-category of formal moduli problems.

By proposition 2.5.(2), the functor Ω∗ has a left adjoint
(2.3) Bfmp : MongpE1

(FMPK) −→ FMPK.

The functor Bfmp is obtained as a generalized bar construction given by the real-
ization of a simplicial object in derived formal moduli problems, hence a homotopy
colimit corresponding to a classifying space ∞-functor for derived formal groups
(see [8, Lemma 2.16] and [69, Remark 5.2.2.8]). Composing equivalence (2) with
Lurie’s equivalence theorem [66] result into the equivalence

MongpE1
(FMPK) ∼= FMPK ∼= L∞ −Alg

between the ∞-category of dg-Lie algebras and derived formal groups.
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This equivalence is an analogue to the classical correspondence between for-
mal/algebraic/Lie groups and Lie algebras. This equivalence holds true not only in
the commutative case but also for iterated loop spaces and noncommutative moduli
problems, see [8, Proposition 2.15].

Remark 2.7. Note that Bfmp is not defined pointwise by the standard classifying
space. If it was so, then, given a formal moduli problem F , for any Artinian cdga R,
there would be an equivalence BΩηRF (R) ≃ F (R), which would imply that F (R)
is connected. This is not the case, since F (R) is equivalent to the nerve of the
dg Lie algebra LF ⊗mR (where LF is the dg Lie algebra of F via Lurie-Pridham
correspondence), and the connected components of the later are the equivalence
classes of Maurer-Cartan elements of LF .

The tangent complex of a formal moduli problem F has a canonical Ω-spectrum
structure. Indeed, for any integer n, one has a homotopy pullback of augmented
Artinian cdgas

K⊕K[n]

��

// K

��
K // K⊕K[n+ 1]

where K ⊕ K[n] is the square zero extension of K by K[n]. Such a square satisfies
the conditions required to apply the infinitesimal cohesiveness property of F , and
moreover F (K) is contractible, hence inducing a weak equivalence of simplicial sets

F (K⊕K[n]) ∼→ pt×hK⊕K[n+1] pt ≃ Ω∗F (K⊕K[n+ 1]).
We recognize here the structure of an Ω-spectrum TF , whose associated complex
is TF , the tangent complex of F (at its unique points). Now, recall that the
pointed loop space functor for formal moduli problems is determined pointwise by
the standard pointed loop space, so TΩ∗F ≃ ΩTF , which means that
(2.4) TΩ∗F

∼= TF [−1]
for the corresponding complexes.

Remark 2.8. Since (Ω∗F )(R) ≃ ΩηRF (R) (lemma 2.4), the derived formal group of
a formal moduli problem F seems to retain, for any R, only the informations about
the connected component of the trivial R-deformation. However, all the information
of the deformation problem is in fact contained here, since its tangent complex gives
the dg Lie algebra controling it. To understand how this is possible, let us remind
that by infinitesimal cohesiveness of F we have, for example, equivalences

F (K⊕K[n]) ≃ Ω∗F (K⊕K[n+ 1])
which means that the space of K⊕K[n]-deformations is equivalent to the space of
self-equivalences of the trivial K⊕K[n+1]-deformation. For example, deformations
over the algebra of dual numbers K[t]/(t2) are recovered as loops over the trivial
K[ϵ]/(ϵ2)-deformation with ϵ of degree 1.

More generally, if F is a pointed ∞-functor such that Ω∗F is a derived formal
group (e.g. a 1-proximate moduli problem in the sense of [66, Definition 5.1.5], see
also cite[Lemma 2.11]BKP), then

TΩ∗F ≃ TLF [−1].
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This comes from [66, Lemma 5.1.12]. In other words, The derived formal group
Ω∗F controls the deformations parametrized by the formal moduli completion of F .

Note that many functors are not representable by a derived stack via Lurie’s rep-
resentability theorem [67], but produce nethertheless derived formal moduli prob-
lems when restricted to Artinian cdgas, so one can associate a Lie algebra to them
without any representability condition.

Example 2.9. A case of interest for us is when F is an infinitesimally cohesive (in
the sense of [67, Definition 2.1.1]) simplicial ∞-presheaf over (dgArtaugK )op. That
is a simplicial presheaf preserving weak equivalences and satisfying the derived
Schlessinger condition ( 1.1), but such that F (K) is not (necessarily) contractible.
Then one can nethertheless attach to any K-point x ∈ F (K) a derived formal moduli
problem F̂x by setting

F̂x(R) = hofibx(F (R)→ F (K)),

where the map is induced by the augmentation R → K of the Artinian cdga R
(see the proof of 2.11). Thus, one attaches to any x ∈ F (K) a derived formal
group by taking the pointed loop space of the construction above. Hence, such a
F parametrizes a family of derived formal moduli problems over F (K).

2.2. Derived prestack group and their tangent L∞-algebras. We will now
study families of derived formal groups, which we call derived prestack groups.
These are analogues of Lie groups but in the context of infinitesimally cohesive
prestacks instead of manifolds. In particular, they have an associated L∞-algebra
given by their tangent space at the neutral element.

Let us denote by SPshinfcoh∞ ((dgArtaugK )op) the ∞-category of infinitesimally
cohesive∞-functors on dgArtaugK with values in simplicial sets. Here we note SPsh
for simplicial presheaves and infcoh for the infinitesimal cohesiveness of the cor-
responding ∞-functors. We can consider its ∞-category of group objects (Defini-
tion 2.1); that is we introduce the following definition:

Definition 2.10. A derived prestack group is a group object in the ∞-category
SPshinfcoh∞ ((dgArtaugK )op). More precisely, the ∞-category of derived prestack
groups is MongpE1

(SPshinfcoh∞ ((dgArtaugK )op)).

The relevance of the definition is given by the following

Lemma 2.11. Let G be a derived prestack group. For any x ∈ G(K), the comple-
tion

Ĝx :=
(
R 7→ hofibx

(
G(R)→ G(K)

))
is a formal derived group.

Proof. The map G(R)→ G(K) is induced by the augmentation R→ K of R. Since
the homotopy fiber is an∞-limit, it preserves the infinitesimally cohesive condition
and weak equivalences. By definition, the homotopy fiber computed for R = K is a
point and therefore Ĝx is a formal moduli problem according to definition 1.1. □

In other words, a derived prestack group G is a family of derived formal groups
parametrized by G(K). In what follows, we will by especially interested in the
formal completion at the neutral element. The pointed loop space construction
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commutes with homotopy fibers, so for any F ∈ SPshinfcoh∞ ((dgArtaugK )op) and
any x ∈ F (K), we have

̂(ΩxF )e = Ω∗F̂x.

Hence the derived formal group associated to the derived prestack group ΩxF by
completion at the constant loop is the derived formal group corresponding to the
formal moduli problem F̂x.
Remark 2.12. One cannot expect the formal completion of any derived stack at a
point to produce a derived formal group and a corresponding tangent Lie algebra,
because of the lack of cohesiveness. However, any derived Artin stack (that is,
geometric for smooth morphisms) is in particular cohesive, see for instance [65,
Corollary 6.5] and [67, Lemma 2.1.7].

To legitimate constructions we are going to use in the next section, it is worth
mentionning the following properties of infinitesimally cohesive simplicial presheaves:
Lemma 2.13. (1) The∞-category SPshinfcoh∞ ((dgArtaugK )op) is stable under small
limits.

(2) If C and D are two equivalent∞-categories, the∞-categories SPshinfcoh∞ (Cop)
and SPshinfcoh∞ (Dop) are equivalent as well.
Proof. (1) Follows from the definition of infinitesimally cohesive ∞-functors [67,
Remark 2.1.11].

(2) This is just a particular case of an equivalence of ∞-categories of sheaves
induced by an equivalence of their ∞-sites, here with the discrete Grothendieck
topology. □

Definition 2.14. (Tangent Lie algebra of derived groups)
• Let Ĝ be a derived formal group (2.6). Its tangent homotopy Lie algebra is

Lie
(
Ĝ
)

:= L
Bfmp

(
Ĝ
) ∈ Lie∞ −Alg

where Bfmp is the equivalence (2.3) and L(−) the one of 1.7.
• Let G be a derived prestack group (2.10). Its tangent homotopy Lie algebra

is
Lie(G) := Lie(Ĝ1)

where Ĝ1 is the formal completion at the unit of G (2.11).
The following result shows that the tangent at the identity of a derived prestack

group inherits a canonical structure of homotopy Lie algebra (which completely
determines it if it is actually a derived formal group).
Proposition 2.15. Let G be a derived prestack group.

(1) There is an equivalence of underlying complexes Lie(G) ∼= (TG)1 between
its Lie algebra and its tangent space at 1.

(2) If F is a formal moduli problem and G ∼= ΩF , then Lie(G) = LF .
(3) For any point x in G(K), (TG)x ∼= (TG)1.

Proof. By Proposition 2.5 and (2.4) we have equivalences of complexes
T
Ĝ1
∼= TΩBfmpĜ1

∼= T
BfmpĜ1

[−1] ∼= L
BfmpĜ1

where the first equivalence follows from the fact that ΩBfmp is equivalent to the
identity, the second equivalence from 2.4 and the third equivalence from Lurie’s
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result [67] asserting that the underlying complex of the Lie algebra LF of a for-
mal moduli problem F is equivalent to TF [−1]. The first claim follows then from
Definition 2.14.

The second claim follows from the fact that ΩBfmp is the identity and Lemma 2.4,
using the sequence of equivalences

Lie(ΩF ) = LBfmpΩF ∼= L

and that BfmpΩ is equivalent to the identity.
To conclude, since G is a grouplike monoid object, the map G → G induces by

multiplication by x is an equivalence which proves the last statement. □

Example 2.16. Easy examples of derived prestack groups G are given by infinites-
imally cohesive ∞-functors

G : dgArtaugK → Ω-Spaces
where Ω-Spaces is the∞-category MongpE1

(Top) of grouplike E1-monoids in spaces,
i.e., group objects in topological spaces. By May’s recognition principle, the latter
are (weakly) equivalent to loop spaces, hence the terminology. Our examples of
interests will take place in the∞-category of grouplike simplicial monoids sMongl as
a model for MongpE1

(Top) (i.e. we use the equivalence between the model categories
of topological spaces and simplicial sets and strictification to model Ω-Spaces). As
we explained, a derived prestack group G gives rises to a family of derived formal
groups parametrized by G(K).

In the next section we will focus the formal neighourhood of the identity in
homotopy automorphism groups, and see how this formalism applies to homotopy
automorphisms of algebras over properads.

2.3. Prestacks of algebras and derived groups of homotopy automor-
phisms. We now define our second type of moduli of algebraic structures build
on automorphisms of the structure.

First we recall that the self equivalences of an object in an∞-category are canon-
ically a group object in space (as in example 2.16). When the ∞-category comes
from a model category, strict models for those self equivalences are given by simpli-
cial monoids of homotopy automorphisms. We refer the reader to [36, Section 2.2]
for a detailed account on simplicial monoids of homotopy automorphisms in model
categories and to [19, 20, 21] for the generalization to homotopy automorphisms in
the simplicial localization of any relative category.

Definition 2.17. Let X be a chain complex. Let P be a properad, P∞ a cofibrant
resolution of P , and (X,ψ : P∞ → EndX) be a P∞-algebra structure on X.

• We denote haut(X) the derived prestack group of homotopy automorphisms
of the underlying complex X taken in the model category of chain com-
plexes8. It is defined by

dgArtaugK ∋ A 7→ hautModA(X ⊗A),
where hautModA is the simplicial monoid of homotopy automorphisms in
the category of A-modules.

8Precisely we consider the projective model structure
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• We define hautP∞
(X,ψ) to be the derived prestack group associated to the

automorphisms of (X,ψ)9 in the ∞-category P∞ −Alg[W−1
qiso]:

dgArtaugK ∋ A 7→ IsoP∞−Alg(ModA)[W−1
qiso

]
(
X ⊗A,X ⊗A

)
where, for any ∞-category C, we write IsoC for the space of maps in the
underlying maximum ∞-groupoid of C.

Note that, since X is cofibrant (like any chain complex over a field) and (−)⊗A
is a left Quillen functor, the homotopy automorphisms haut(X) above are exactly
the self quasi-isomorphisms of X ⊗ A. We prove in Theorem 2.22 below that
hautP∞

(X,ψ) is indeed a derived prestack group.
Let us describe more precisely this derived group: consider the presheaf of ∞-

categories over CDGAopK defined by
P∞ −Alg : CDGAK → Cat∞

R 7−→ P∞ −Alg(ModcofR )[W−1
qiso]

where Cat∞ is the ∞-category of ∞-categories. Here ModcofR is the subcate-
gory of cofibrant R-modules in the projective model structure. Let us take then
the maximal sub-∞-groupoid of P∞ − Alg(ModcofR )[W−1

qiso] for each R, getting
an ∞-groupoid valued presheaf. Then, the based loop space at a point (X,ψ)
is exactly hautP∞

(X,ψ). An explicit construction for this is given by, for any
cdga R, the Dwyer-Kan simplicial loop groupoid [22] of the quasi-category P∞ −
Alg(ModR)[W−1

qiso]. Then the Kan complex of paths from (X ⊗ R,ϕ⊗ R) to itself
in this simplicial loop groupoid is a model for hautP∞

(X,ψ)(R) (this is similar to
example 2.16).

We now describe a “point-set” model for the construction of those (∞-categorical)
derived groups of P∞-algebras automorphisms. First, we introduce a related and
useful construction.
The presheaf of Dwyer-Kan classification spaces. The assignment

A 7→ wP∞ −Alg(ModcofA ),
where the w(−) stands for the subcategory of weak equivalences and cof for cofi-
brant A-modules, defines a weak presheaf of categories in the sense of [1, Definition
I.56]. It sends a morphism A → B to the functor − ⊗A B. which is symmetric
monoidal, hence lifts at the level of P∞-algebras. This is not a strict presheaf, since
the composition of morphisms A→ B → C is sent to the functor (−)⊗A B ⊗B C,
which is naturally isomorphic (but not equal) to (−)⊗AC. This weak presheaf can
be strictified into a presheaf of categories. Applying the nerve functor to this then
defines an ∞-groupoid.

Definition 2.18. We denote
(2.5) NwP∞ −Alg : A 7→ NwP∞ −Alg(ModcofA )
for the simplicial presheaf of Dwyer-Kan classification spaces given by the above
construction, that is the coherent nerve of the presheaf of categories induced by the
subcategory of weak-equivalences in P∞ −Alg.

9that is, the automorphisms or weak self-equivalences of (X,ψ) in this ∞-category
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We also denote

(2.6) NwChK : A 7→ModcofA

the simplicial presheaf of quasi-coherent modules of [89, Definition 1.3.7.1].

The loop space on NwP∞ −Alg based at a P∞-algebra (X,ψ) is then the stric-
tification of the weak simplicial presheaf

Ω(X,ψ)NwP∞ −Alg : A 7→ Ω(X⊗A,ψ⊗A)NwP∞ −Alg(ModcofA ).

Lemma 2.19. The pointwise loop space defined above is pointwise equivalent to the
loop space functor in the projective model category of simplicial presheaves, where
we consider simplicial presheaves with values in pointed simplicial sets.

Proof. The pointed loop space functor on the projective model category of simplicial
presheaves SPsh(C) on a model category C is defined on any simplicial presheaf
F as the homotopy pullback pt×hF pt. In the model category setting, a homotopy
pullback is computed as the limit of a fibrant resolution of the pullback diagram
in SPsh(C)Iinj , where I is the small category {• → • ← •} and inj means that
we consider this diagram category equipped with the injective model structure.
Moreover, we have a Quillen equivalence

SPsh(C)Iproj ⇆ SPsh(C)Iinj
where SPsh(C)Iproj is the projective model category of I-diagrams and the adjunc-
tion is given by the identity functors. In particular, this implies that every fibrant
resolution in SPsh(C)Iinj is a fibrant resolution in SPsh(C)Iproj . In the projective
model structure SPsh(C)Iproj , fibrations are the same as in the projective model
category of functors Fun(C × I, sSet)proj . So a fibrant resolution in SPsh(C)Iinj is
pointwise a fibrant resolution in sSetIinj . Moreover, limits in SPsh(C) are deter-
mined pointwise. This implies that the pullback of a fibrant resolution of a pullback
diagram in simplicial presheaves is given, pointwise, by the pullback of a fibrant
resolution of a pullback diagram in simplicial sets. That is, the homotopy pullback
defining the loop space functor for simplicial presheaves, when valued at a given
object of C, gives the homotopy pullback defining the loop space functor for pointed
simplicial sets. □

Homotopy automorphism presheaves as loops over the presheaf of Dwyer-Kan clas-
sification spaces. In the case of an operad O, there is an easy model for hautO∞

.
Indeed, in that case, O∞-algebras inherits a canonical model category structure
and hautO∞

is the ∞-functor associated to a simplicial presheaf given by the sim-
plicial monoid of homotopy automorphisms of (X,ψ) in the model category of
O∞-algebras. That is the simplicial sub-monoid of self weak equivalences in the
usual homotopy mapping space MapO∞−Alg(X,X) (see for instance [52, Chapter
17]). Thus this weak simplicial presheaf is

A 7−→ hautO∞(X ⊗A,ψ ⊗A)ModA

where hautO∞(X ⊗ A,ψ ⊗ A)ModA is the simplicial monoid of homotopy auto-
morphisms of (X ⊗ A,ψ ⊗ A) ∈ O∞ − Alg(ModcofA ). Note that by definition,
this homotopy automorphism are computed by taking a cofibrant resolution of
(X ⊗ A,ψ ⊗ A) to get a cofibrant-fibrant object (all algebras are fibrant), and
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then considering weak self-equivalences of it. Our simplicial presheaf is then its
strictification (see [1, Section I.2.3.1]).

In the case of a general properad P , there is no model category structure anymore
on the category of P∞-algebras. However, we can still define the simplicial monoid
LHwP∞ −Alg(X,ψ) of homotopy automorphisms in the simplicial or hammock
localization (with respect to quasi-isomorphisms) of P∞-algebras, following Dwyer-
Kan [20, 21]. Note that by [21], in the case when P∞ − Alg is a model category
(that is, P is an operad), we have a homotopy equivalence

hautP∞
(X,ψ) ≃ LHwP∞ −Alg(X,ψ)

(taking the model category construction for the left side of this equivalence), so the
two constructions agree. In both cases, these are models of the pointed loop space
Ω(X,ψ)NwP∞ −Alg on the simplicial presheaf of Dwyer-Kan classification spaces:

Lemma 2.20. Let P∞ be a cofibrant prop. Then hautP∞
(X,ψ) is equivalent to

A ∈ dgArtaugK 7−→ Ω(X⊗A,ψ⊗A)

(
NwP∞ −Alg(ModcofA )

)
.

Further, haut(X) is equivalent to

A ∈ dgArtaugK 7−→ ΩX⊗A

(
NwModcofA

)
.

Proof. This comes from the fact that, for any relative category (C,W ) and any
object X of C, the connected component of X inNW is equivalent to the classifying
space BLW (X,X). Therefore there is an equivalence LW (X,X) ≃ ΩXNW of
simplicial monoids. Hence we can define the presheaf of homotopy automorphisms,
or self-weak equivalences, hautP∞

(X,ψ) is equivalent to the following simplicial
presheaf

hautP∞
(X,ψ) : A ∈ dgArtaugK 7−→ Ω(X⊗A,ψ⊗A)NwP∞ −Alg(ModcofA ).

The proof for haut(X) is similar. □

Prestacks of algebras. We will now prove that what we called the derived group of
automorphisms of an algebra is indeed a derived prestack group. As a first step,
we need the following version of Rezk’s homotopy pullback theorem [81] :

Proposition 2.21. Let P∞ be a cofibrant prop and X be a chain complex. The
forgetful functor P∞ −Alg → ChK induces a homotopy fiber sequence

P∞{X} → NwP∞ −Alg → NwChK
of simplicial presheaves over augmented Artinian cdgas (see 2.18 for the notations).

Proof. We explain briefly how [99, Theorem 0.1] can be transposed in the context
of simplicial presheaves of cdgas. The identification of the homotopy fiber of the
forgetful map

NwP∞ −Alg → NwChK
with the simplicial presheaf P∞{X} follows from the two following facts. First,
we can identify it pointwise with Map(P∞ ⊗A,EndModA

X⊗A ), where EndModA
X⊗A is the

endomorphism prop of X ⊗ A in the category of A-modules. This comes from the
extension of [99, Theorem 0.1] to A-linear P∞-algebras, which holds true trivially
by replacing chain complexes by A-modules as target category in the universal
functorial constructions of [99, Section 2.2] (A-modules are equipped with exactly
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the same operations than chain complexes which are needed in this construction:
directs sums, suspensions, twisting cochains). Second, for any morphism of cdgas
f : A→ B, the tensor product (−)⊗A B induces an isomorphism of simplicial sets

Map(P∞ ⊗A,EndModA
X⊗A ) ∼= Map(P∞ ⊗B,EndModB

X⊗B )
fitting in a commutative square

Map(P∞ ⊗A,EndModA
X⊗A )

∼= //

(−)⊗AB
��

P∞{X}(A)

f

��
Map(P∞ ⊗A,EndModA

X⊗A )
∼= // P∞{X}(B)

(see for instance [98, Section 3]) so that we get a morphism of homotopy fiber
sequences

P∞{X}(A) //

��

NwP∞ −Alg(ModA) //

(−)⊗AB
��

NwModA

(−)⊗AB

��
P∞{X}(B) // NwP∞ −Alg(ModB) // NwModB .

□

Theorem 2.22. The simplicial presheaf hautP∞
(X,ψ) is a derived prestack group

in the sense of Definition 2.1010.
In particular ̂hautP∞

(X,ψ)id is a derived formal group.

Proof. First, recall that hautP∞
(X,ψ) is equivalent to Ω(X,ψ)NwP∞ −Alg, and

that we already know it is a presheaf with values in grouplike simplicial monoids,
hence a group object in simplicial presheaves. Second, we use the simplicial presheaf
version of Rezk’s pullback theorem [81] for algebras over properads, that is, the
homotopy fiber sequence

P∞{X} → NwP∞ −Alg → NwChK
of simplicial presheaves over augmented Artinian cdgas, taken over the base point
X given by Proposition 2.21. This homotopy fiber sequence induces a homotopy
fiber sequence

Ω(X,ψ)NwP∞ −Alg → ΩXNwChK → P∞{X}

hence the fiber sequence
hautP∞

(X,ψ)→ haut(X)→ P∞{X}.

(by Lemma 2.20). Now we combine this result with Lemma 2.13(1) to deduce
that hautP∞

(X,ψ) preserves weak equivalences and is infinitesimally cohesive. For
this, we just have to check that the two right-hand terms of the fiber sequence
satisfy these properties and use that this homotopy fiber sequence is in particular
a pointwise homotopy fiber sequence. Concerning haut(X) this is already known
from see [66, Section 5.2], and concerning P∞{X} this follows from its isomorphism
with the Maurer-Cartan simplicial presheaf in Theorem 1.13.

10that is an object of Mongp
E1

(SPshinfcoh
∞ ((dgArtaug

K )op))
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In particular, ̂hautP∞
(X,ψ)id is a derived formal group. Note that we could

have directly proved this last statement by taking the formal completion of the
fiber sequence above (that is, the componentwise homotopy fiber of this diagram
over each appropriate base point), and then apply Lemma 2.13(1) to ̂haut(X)id
(which is a formal derived group) and ̂P∞{X}

φ
(which is a derived formal moduli

problem). □

Remark 2.23. The classification space NwP∞ −Alg decomposes as a coproduct of
the classifying spaces of homotopy automorphisms of P∞-algebras

NwP∞ −Alg ∼=
∐

[Y,ϕ]∈π0NwP∞−Alg

BhautP∞−Alg(Y, ϕ)

where [Y, ϕ] ranges over quasi-isomorphism classes of P∞-algebras. Restricting the
homotopy pullback of Proposition 2.21 to the connected component Bhaut(X) of
the base space, we get a homotopy pullback

P∞{X}

��

// ∐
[Y,ϕ],Y≃X BhautP∞−Alg(Y, ϕ)

��
pt
� � // Bhaut(X)

where the coproduct
∐

[Y,ϕ],Y≃X ranges over P∞-algebras so that Y ≃ X as com-
plexes. So Rezk homotopy pullback theorem and its version above tells us that∐

[Y,ϕ],Y≃X BhautP∞−Alg(Y, ϕ) can be seen as a homotopy quotient of P∞{X} by
the action of haut(X). From a deformation theoretic perspective, this means that at
a “tangent level”, the deformation theory of ψ : P∞ → EndX corresponds to defor-
mations of the P∞-algebra (X,ψ) which preserves the differential of the underlying
complex X, whereas the deformations associated to hautP∞−Alg(X,ψ) deform the
differential as well (that is, it takes into account the action of haut(X) on P∞{X}).
We are going to see in Section 3 how to formalize properly this idea.

Remark 2.24. Let us explain the relationship between the classifying presheaf of
algebras and the derived formal group of homotopy automorphisms in the neigh-
bourhood of the identity. Recall the construction

hautP∞
(X,ψ) : A ∈ dgArtaugK 7−→ Ω(X⊗A,ψ⊗A)NwP∞ −Alg(ModcofA ),

from which we deduce

̂hautP∞
(X,ψ)id = Ω∗ ̂NwP∞ −Alg(X,ψ)

where Ω∗ is the loop space for pointed functors as explained in Section 2. Using
the decomposition of the nerve of weak equivalences into classifying spaces of ho-
motopy automorphisms pointed out in Remark 2.23, we see moreover that for any
augmented Artinian cdga R, there is a decomposition

̂NwP∞ −Alg(X,ψ)(R) ∼=
∐

[Y,ϕ]|(Y,ϕ)⊗RK≃(X,ψ)

BhautP∞−Alg(ModR)(Y, ϕ).
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Equivalently, ̂NwP∞ −Alg(X,ψ)(R) is homotopy equivalent to the maximal ∞-
subgroupoid of the∞-category P∞−Alg(ModR)[W−1

qiso] generated by R-linear P∞-
algebras (Y, ϕ) such that (Y, ϕ)⊗R K ≃ (X,ψ), that is

̂NwP∞ −Alg(X,ψ)(R) ∼= P∞ −Alg(ModR)[W−1
qiso]×hP∞−Alg(ChK)[W−1

qiso
] {(X,ψ)}.

The space ̂NwP∞ −Alg(X,ψ) encapsulates the whole deformation theory of (X,ψ)
in the∞-category P∞−Alg[W−1

qiso] as we can think of it, that is, an R-deformation
of (X,ψ) is an R-linear P∞-algebra whose restriction modulo R is quasi-isomorphic
to (X,ψ), and equivalences between R-deformations are defined by compatible R-
linear quasi-isomorphisms whose restriction modulo R is homotopic to Id(X,ψ).
This is the natural generalization, to the differential graded setting, of classical
deformations of degree zero algebras. Although it is not clear that such a construc-
tion provides a derived formal moduli problem, one can however associates to it
the derived formal group hautP∞

(X,ψ) via a loop space construction, and by the
general formalism explained in Section 2 we have

T ̂hautP∞
(X,ψ)id

= Lie(L( ̂NwP∞ −Alg(X,ψ)))

where L is the completion of ̂NwP∞ −Alg(X,ψ) in a formal moduli problem. An-

other way to state this is that in general ̂NwP∞ −Alg(X,ψ) is 1-proximate in the
sense of [66].

Remark 2.25. In the special case of operads acting on algebras concentrated in
degree 0, we can say more. Let A be a P -algebra in vector spaces whose underlying
vector space is of finite dimension, then by [89, Prop.2.2.6.8], the classifying presheaf
NwP −Alg is actually a derived 1-geometric stack, which implies by [65, Corollary
6.5] and [67, Lemma 2.1.7] that its restriction to dgArtaugK is infinitesimally cohesive.
Consequently ̂NwP −Alg

A
is already a derived formal moduli problem in this case

and
Lie
( ̂hautP (A)id

) ∼= Lie( ̂NwP −Alg
A

)
by Proposition 2.15.

In the special case where P is a non-positively graded dg operad and A a non-
positively graded dg algebra, this classifying presheaf is not known to be a derived
geometric stack, nevertheless it is homotopy equivalent to the nerve of the tangent
complex of A according to [49, Theorem 2.3.4].

This Lie algebra recovers in particular various known deformation complexes in
the litterature, once one has an explicit formula to compute it, as we are going to
detail in Section 5.

2.4. The fiber sequence of deformation theories. We now relate precisely
the two moduli problems of algebraic structures, that is those governed by the
mapping space P∞{X} and the homotopy automorphisms space hautP∞−Alg(X,ψ)
(Definitions 2.17 and 1.10).

Theorem 2.26. There is a homotopy fiber sequence of derived prestack groups

ΩψP∞{X} → hautP∞−Alg(X,ψ)→ haut(X),
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hence a homotopy fiber sequence of derived formal groups
̂ΩψP∞{X} → ̂hautP∞−Alg(X,ψ)id → ̂haut(X)id,

and equivalently of their associated L∞-algebras

gψP,X → Lie(hautP∞−Alg(X,ψ))→ Lie(haut(X)).

Proof. Recall (see (2.1)) that the pointed loop space functor is defined on any
simplicial presheaf F as the homotopy pullback pt ×hF pt. It thus commutes with
homotopy fibers, and in particular the loop space∞-functor commutes with fibers in
the ∞-category of simplicial presheaves. In the fiber sequence of Proposition 2.21,
we choose ψ as the base point on the left, (X,ψ) in the middle, and X on the
right. Since fibers in the ∞-category of presheaves valued in simplicial monoids
are determined in the underlying∞-category of simplicial presheaves, applying the
pointed loop space ∞-functor with respect to these base points, we deduce a fiber
sequence of derived prestack groups

ΩψP∞{X} → hautP∞−Alg(X,ψ)→ haut(X)

(using that Ω ◦B ≃ Id). Hence, we get a fiber sequence of derived formal groups
̂ΩψP∞{X} → ̂hautP∞−Alg(X,ψ)id → ̂haut(X)id

(using that ΩF̂x ≃ Ω̂xF for an infinitesimally cohesive ∞-functor F and x ∈ F (K),
and in particular that Ĝe ≃ ΩB̂G for a derived prestack group G). The corre-
sponding fiber sequence of Lie algebras aasociated to this formal derived problems
identifies with the desired one

gψP,X → Lie(hautP∞−Alg(X,ψ))→ Lie(haut(X))

by Lemma 2.20 and using equivalence (2.4) □

2.5. Equivalent deformation theories for equivalent (pre)stacks of alge-
bras. In derived algebraic geometry, an equivalence between two derived Artin
stacks F and G induces a weak equivalence between the tangent complex over a
given point of F and the tangent complex over its image in G [89]. We now prove
similar statement about the tangent Lie algebras of our formal moduli problems of
algebraic structures.

Recall the presheaf of categories given by the ∞-functor

P∞ −Alg : CDGAK → Cat∞

R 7−→ P∞ −Alg(ModR)[W−1
qiso]

where Cat∞ is the ∞-category of ∞-categories.
The idea is that [99, Theorem 0.1] implies that the formal moduli problem

P∞{X}ψ is “tangent” over (X,ψ) to the Dwyer-Kan classification space of the
∞-category of P∞-algebras (see 2.3).

More precisely, recall that F : P∞ −Alg
∼−→ Q∞ −Alg being an an equivalence

of presheaves of ∞-categories means that, for every augmented Artinian cdga A,

F (A) : P∞ −Alg(ModA)[W−1
qiso]

∼−→ Q∞ −Alg(ModA)[W−1
qiso].

is an equivalence of ∞-categories. Relying on our previous results, we prove:
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Theorem 2.27. Let F be an equivalence of presheaves of ∞-categories

F : P∞ −Alg
∼−→ Q∞ −Alg.

Then F induces an equivalence of fiber sequences of derived formal moduli problems

P∞{X}ψ

∼

��

// Bfmp ̂hautP∞−Alg(X,ψ)
Id(X,ψ)

∼
��

// Bfmp ̂haut(X)IdX

=

��

Q∞{F (X)}F (ψ) // Bfmp ̂hautQ∞−Alg(F (X,ψ))
Id(X,ψ)

// Bfmp ̂haut(X)IdX

where F (ψ) is the Q∞-algebra structure on the image of (X,ψ) under F (and Bfmp
is given by 2.3). Equivalently, F induces an equivalence of fiber sequences of the
associated L∞-algebras

gψP,X

∼
��

// Lie(hautP∞−Alg(X,ψ))

∼

��

// Lie(haut(X))

=

��
g
F (ψ)
Q,F (X)

// Lie(hautQ∞−Alg(F (X,ψ))) // Lie(haut(X))

.

Proof. Let F : P∞ −Alg → Q∞ −Alg be an equivalence of presheaves of ∞-
categories. We have a commutative triangle

P∞ −Alg
F //

U◦F $$

Q∞ −Alg
U

zz
ChK

.

Applying the loop space functor (2.1) at the appropriate base points we get the
commutative triangle

Ω(X,ψ)P∞ −Alg
∼ //

''

ΩF (X,ψ)Q∞ −Alg

ww
ΩXChK

.

But a based loop space at a point of an∞-category is the homotopy automorphims
grouplike monoid of this point, so that this triangle is actually the triangle of derived
prestack groups

hautP∞−Alg(X,ψ) ∼ //

((

hautQ∞−Alg(F (X,ψ))

vv
haut(X)

.
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By Theorem 2.26, we get the equivalence of homotopy fiber sequences of derived
prestack groups

ΩψP∞{X}

��

∼ // ΩF (ψ)Q∞{F (X)}

��
hautP∞−Alg(X,ψ) ∼ //

((

hautQ∞−Alg(F (X,ψ))

vv
haut(X)

.

hence an equivalence of homotopy fiber sequences of the corresponding derived for-
mal groups obtained by completion at the appropriate base points. This equivalence
of fiber sequences gives an equivalence of fiber sequences of the corresponding Lie
algebras by the Lurie-Pridham equivalence theorem. □

Remark 2.28. There is also a “strict” version of this theorem. Let us consider a
morphism of weak presheaves of relative categories, that is, given for each cdga A
by a morphism of relative categories

F (A) : (P∞ −Alg(ModA),Wqiso)→ (Q∞ −Alg(ModA),Wqiso).

Let us suppose that F induces an equivalence of presheaves of classification spaces

NwF : NwP∞ −Alg
∼−→ NwQ∞ −Alg.

By [96, Section 3.3], this means that F induces an equivalence of weak presheaves
of ∞-categories as in Theorem 2.27. Then, we can mimick the proof of Theo-
rem 2.27 as follows: we replace the presheaves of ∞-categories by these presheaves
of classification spaces, t ake based loop spaces which gives back the homotopy
automorphisms as well, and apply Theorem 2.26.

3. The tangent Lie algebra of homotopy automorphims

The goal of this section is to make Theorem 2.26 more precise, by proving that
Lie(hautP∞−Alg(X,ψ)) is a semi-direct product, in a homotopical sense, of the
two extremal terms of the fiber sequence, and that the later term is nothing but
End(X) = HomChK(X,X) equipped with the commutator of the composition prod-
uct. This is actually the transposition, at the Lie algebra level, of a homotopy action
of haut(X) on P∞{X} that we mentionned in Remark 2.23. In a few words, the
tangent Lie algebra of homotopy automorphisms takes into account the action of
the automorphisms of the complex X on the Maurer-Cartan elements of gψP,X , that
is, on the space of P∞-algebra structures on X. In Section 4, we will further provide
an explicit description in properadic terms of that homotopy Lie algebras.

3.1. Homotopy representations of L∞-algebras and a relevant applica-
tion. Recall (1.3) that the structure of a L∞-algebra g is encoded by a (cohomog-
ical degree −1) coderivation Qg of square zero on Sym•⩾1(g[1]). Dualizing this
coderivation induces an augmented cdga structure on

C∗
CE(g) := Hom(Sym•(g[1]), k)
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which is called the Chevalley-Eilenberg cochain algebra of g; we denote ε the aug-
mentation. For any graded module N , Hom(Sym•(g[1]), N) inherits similarly a
structure of graded C∗

CE(g)-module.

Definition 3.1. Let (g,Qg) be a L∞-algebra and (M,dM ) ∈ ChK.
A homotopy representation of an L∞-algebra g on M is a derivation D of square

zero and (cohomological) degree 1 on C∗
CE(g,M) := Homdg(Sym•(g[1]),M) such

that M D→ CCE(g,M) ε→ M is equal to the inner differential dM of the complex
M . The fact that D is a derivation means precisely that it satisfies the following
Leibniz relation: for f ∈ CnCE(g), Φ ∈ C∗

CE(g,M), one has

(3.1) D(f · Φ) = Qg(f) · Φ + (−1)nf ·D(Φ).

Example 3.2. A particular case of homotopy representation is the standard notion
of representation, given by a (dg-) Lie algebra morphism g → End(M) and the
standard Chevalley-Eilenberg cochain complexes. This generalizes easily to any
L∞-algebra g and L∞-morphism g → EndChK(M,M).

Definition 3.1 is equivalent to the data of a L∞-algebra structure on g ⊕ M ,
that is a coderivation of square zero on Sym•⩾1((g ⊕M)[1]) that vanishes on the
coideal spanned by Sym•⩾2(M) and whose restriction to Sym•⩾1(g[1]) and M are
respectively Qg and the inner differential of M (followed by the canonical inclusions
of these complexes in Sym•⩾1((g ⊕ M)[1])). In other words it is a square zero
extension by M of the L∞-algebra structure of g.

Example 3.3 (semi-direct product). If h is a dg-Lie algebra, any dg-Lie algebra
homomorphism g → Der(h) induces an action of g onto CCE∗ (h) as the coderivation
extending the g-action on h. Similarly, if h and g are L∞-algebras and given
an L∞-algebra morphism φ : g → Der(h), we obtain a homotopy representation
of g on CCE∗ (h). The coalgebra structure of CCE∗ (h) then yields respectively a
cocommutative dg-coalgebra and a cdga structure on

(3.2) CE∗(g, h) := CCE∗
(
g, CCE∗ (h)

)
, CE∗(g, h) := C∗

CE

(
g, C∗

CE(h)
)
.

The augmentations yield a cofiber sequence of cdgas

C∗
CE(g)→ CE∗(g, h)→ C∗

CE(h),

which is dual to a fiber sequence of dg-cocommutative coalgebras

CCE∗ (h)→ CE∗(g, h)→ CCE∗ (g),

which is equivalent to a fiber sequence of L∞-algebras

h→ g ⋉f h→ g

forming a split extension of g by h. The semi-direct product g ⋉f h is the direct
sum g⊕ h equipped with the L∞-algebra structure coming from the differential on
the coalgebra CE∗(g, h) = Sym

(
g[1]⊕ h[1]

)
.

Example 3.4. In particular the adjoint action ad : g → Der(g) of a L∞-algebra g
on itself yields the semi-direct product g ⋊ad g.
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Semi-direct product of L∞-algebras will appear in the construction of the dia-
gram of equivalence of fiber sequences below

gφP,X
∼ //

��

gφP,X
∼ //

��

gφP,X

��
gφ

+

P+,X

∼ //

��

gφP,X ⋉f End(X) ∼ //

��

Lie(hautP∞
(X,φ))

��
End(X) ∼ // End(X) ∼ // End(X)

where the homotopy semi-direct product in the middle is defined in the next sec-
tion 3.2. It turns out that this semi-direct product is the tangent incarnation of
the non trivial action of haut(X) on the moduli space P∞{X} at a topological
level. Taking this action into account in the deformation theory of (X,φ) means,
on the one hand deforming the P∞-algebra structure with compatible deformations
of the differential (equivalence of the middle fiber sequence with the left one), on
the other hand deforming (X,φ) in the ∞-category of P∞-algebras (equivalence of
the middle fiber sequence with the right one).

The plan is as follows. First, we construct two equivalences of fiber sequences of
derived groups fitting in the diagram

ΩφP∞{X}
∼ //

��

ΩφP∞{X}
∼ //

��

ΩφP∞{X}

��
Ωφ+P+

∞{X}
∼ //

��

Ω[φ](P∞{X}//haut(X)) ∼ //

��

hautP∞
(X,φ))

��
haut(X) ∼ // haut(X) ∼ // haut(X)

,

where P∞{X}//haut(X) is the appropriate homotopy quotient in the ∞-category
of infinitesimally cohesive ∞-presheaves over (dgArtaugK )op. Secondly, the desired
fiber sequence of L∞-algebras is induced by this diagram (taking, as usual in this pa-
per, completions at identities to get equivalences of fiber sequences of derived formal
groups). Finally, we identify the homotopy quotient Lie(Ω[φ](P∞{X}//haut(X)))
with gφP,X ⋉f End(X).

3.2. ∞-actions in infinitesimally cohesive presheaves. In this section, the
ambient ∞-category is SPshinfcoh∞ ((dgArtaugK )op) and derived prestack groups are
precisely the group objects (see 2.1) in it. This is a particular case of infinitesimally
cohesive ∞-topos, where the theory of principal ∞-bundles developped in [77, 78]
fully applies. In this setting, the general notion of ∞-action of a group object G in
an ∞-category on another object X provides a homotopy quotient11 X//G. This
homotopy quotient comes naturally equipped with a homotopy fiber sequence

X → X//G→ BG

11which is the same as the quotient in ∞-stack
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with fiber X associated to the universal G-principal ∞-bundle • → BG. The map
X//G → BG is the classifying morphism of the action of G on X. This is an
analogue of the usual quotient stack by a group stack action of [45].
Remark 3.5. When G is presented by a simplicial presheaf in grouplike simplicial
monoids (which is a model for derived prestack groups), the homotopy quotient
X//G is computed by the geometric realization of the simplicial action groupoid

· · ·G×G×X →→→ G×X ⇒ X.

(see for example [54] in the case of group actions in simplicial presheaves).
Let G be a group object in SPshinfcoh∞ ((dgArtaugK )op), i.e., a derived prestack

group.
Proposition 3.6. For any X equipped with an ∞-action of a derived prestack
group object G, there is a fiber sequence of homotopy Lie algebras

Lie(Ω∗X)→ Lie(Ω∗(X//G))→ Lie(G)
Proof. Since the loop space is an homotopy pullback, the fiber sequence

X → X//G→ BG

yields a fiber sequence of derived groups
Ω∗X → Ω∗(X//G)→ G

hence the desired fiber sequence of tangent Lie algebras by 2.14. □

We still consider an object X with an ∞-action of a derived prestack group G.
Recall the completion of a derived prestack group 2.11.
Lemma 3.7. Assume that there exists a section of the (induced) projection map

̂Ω∗(X//G)x
π→ Ĝ1, that is a derived formal group morphism s : Ĝ1 → ̂Ω∗(X//G)x

such that π ◦ s is equivalent to the identity. Then there is an equivalence of L∞
algebras

Lie
(
Ω∗(X//G)

) ∼= Lie(Ω∗X) ⋊ Lie(G)
and the fiber sequence of proposition 3.6 identifies with the semi-direct product one.
Proof. The Lie algebra functor (2.14) depends only on the associated formal group
at the base point. Therefore it gives a L∞-morphim Lie(G) Lie(s)−→ Lie

(
Ω∗(X//G)

)
.

Composing with the adjoint action of the latter, we obtain a morphism ad◦Lie(s) :
Lie(G) → Der

(
Lie
(
Ω∗(X//G)

))
. Since this is a map of Lie algebras, and s

is a section of π, the induced action of Lie(G) on Lie
(
Ω∗(X//G)

)
restricts to

ker(π) ∼= Lie(Ω∗X). Therefore we get an induced L∞-algebra map Lie(G) →
Der

(
Lie(Ω∗X)

)
which defines the homotopy Lie algebra semi-direct product (3.3).

It follows that the morphism
Lie(Ω∗X) ⋊ Lie(G) ∋ (x, y) τ7→ x+ s(y) ∈ Lie

(
Ω∗(X//G)

)
is a L∞-algebra map and that we have a commutative diagram of fiber sequences

Lie(Ω∗X) // Lie(Ω∗X) ⋊ Lie(G)
Lie(π)//

τ

��

Lie(G)

Lie(Ω∗X) // Lie
(
Ω∗(X//G)

) Lie(π) // Lie(G)
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of L∞-algebras. The equivalence now follows from the 2 out 3 property. □

3.3. The Lie algebra of homotopy automorphisms as a semi-direct prod-
uct. The goal of this section is to prove (and makes sense of) the formula below:

Lie(hautP∞−Alg(X,ψ)) ≃ Lie(Ω[φ](P∞{X}//haut(X))) = gψP,X ⋊h End(X).

To do so, we will interpret Lie(hautP∞−Alg(X,ψ)) as the tangent Lie algebra of a
homotopy quotient of P∞{X} by the ∞-action of haut(X).

An explicit model of the homotopy quotient is given by a homotopy version
of the well known Borel construction, suitably adapted for simplicial presheaves
over cdgas. In [54], the Borel construction is given by the classifying space of the
translation groupoid associated to the action of a sheaf of groups G on a sheaf X,
that is EG×G X. We adapt this construction to the case of an ∞-action.

Let P a cofibrant prop, and Nw(Ecf )∆[−]⊗P the bisimplicial set defined by
(Nw(Ecf )∆[−]⊗P )m,n = (Nw(Ecf )∆[n]⊗P )m, where the w denotes the subcategory
of morphisms which are weak equivalences in E . We get a diagram

P{X} //

��

diagN fw(Ecf )∆[−]⊗P

��

∼ // diagNw(Ecf )∆[−]⊗P Nw(Ecf )P∼oo

��
pt // N (fwEcf ) ∼ // N (wEcf )

,

where the fw denotes the subcategory of morphisms which are acyclic fibrations in
E . The crucial point here is that the left-hand commutative square of this diagram
is a homotopy pullback, implying that we have a homotopy pullback of simplicial
sets (see [98, Theorem 0.1])

P{X}

��

// N (wChPK )

��
{X} // NwChK.

Therefore P∞{X} can be identified with the homotopy fiber

P∞{X} //

��

diagN fwChP⊗∆•

K

��
{X} // N fwChK ∼ NwChK.

.

The main goal of this section is to prove the following result which identifies the
homotopy quotient of ∞{X} by automophisms of the underlying cochain complex:

Theorem 3.8. Let X be a cochain complex and ϕ : P∞ → EndX be a prop
morphism. There exists a commutative square

EhautK(X)×hautK(X) P∞{X}
∼ //

π
����

diagN fwChP⊗∆•

K

��
BhautK(X) ∼ // NwChK|X
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where π is a Kan fibration obtained by simplicial Borel construction and the hori-
zontal maps are weak equivalences of simplicial sets, inducing an equivalence

Ω[φ]
(
EhautK(X)×hautK(X) P∞{X}

) ∼→ Ω(X,φ)

(
diagN fwChP⊗∆•

K

)
≃ Ω(X,φ)NwChP∞

K

of derived prestack groups.

For this aim, we need to define the action of hautK(X) on P∞{X}. First, let us
recall some homotopical properties of props under base change of cdgas:

Lemma 3.9. (1) Any cdga A induces a Quillen adjunction

(−)⊗A : Prop(ChK) ⇄ Prop(ModA) : U
between the model category of K-linear dg props and the model category of
A-linear dg props, where (−)⊗A is the aritywise tensor product by A and
U is the forgetful functor.

(2) Any morphism of cdgas u : A→ B induces a Quillen adjunction

u∗ := (−)⊗A B : Prop(ModA) ⇄ Prop(ModB) : u∗

between the model category of A-linear dg props and the model category
of B-linear dg props, where u∗ is the classical restriction functor sending
any B-module to the same underlying complex with the A-module structure
induced by u and the tensor product defining u∗ is the aritywise tensor
product of a prop by a cdga.

(3) For any complex X and for any chain morphism f : X → Y , the functor
u∗ induces well defined prop morphisms

EndModA
X⊗A → EndModB

X⊗B

EndModA
f⊗A → EndModB

f⊗B

where End(−)ModA and End(−)ModB denotes respectively the endomor-
phism prop in the category of dg A-modules and in the category of dg B-
modules.

(4) Given a cofibrant dg prop in K-modules P∞ and a complex X, the functor
u∗ induces also a well defined simplicial map of Kan complexes

P∞ ⊗A{X ⊗A} → P∞ ⊗B{X ⊗B}

where the left hand side and right hand side mapping spaces are taken re-
spectively in the model category of A-linear dg props and in the model cat-
egory of B-linear dg props.

Proof. Recall that ModA is a cofibrantly generated symmetric monoidal model
category whose fibrations and weak equivalences are those induced by the forgetful
functor to complexes (so degreewise surjections and quasi-isomorphisms) and tensor
product is defined for any pair of A-modules M and N by the coequalizer

A⊗M ⊗N ⇒M ⊗N →M ⊗A N

whose pair of arrows are defined by the A-module structures of M and N .
Claim (1) is [98, Lemma 3.4].
Let u : A→ B be a morphism of cdgas. It induces an adjunction

u∗ := (−)⊗A B : ModA ⇄ModB : u∗
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in which the right adjoint u∗ preserves obviously fibrations and weak equivalences,
so that it forms actually a Quillen adjunction. The left adjoint is a strong symmetric
monoidal functor via the natural isomorphisms

M ⊗A N ⊗A B ∼= (M ⊗A B)⊗B (N ⊗A B)
for M,N ∈ ModB and the right adjoint is a lax monoidal functor via the natural
maps u∗(M)⊗Au∗(N)→ u∗(M⊗BN). An adjunction between a strong symmetric
monoidal left adjoint and a lax monoidal right adjoint suffices to lift this adjunction
at the level of props

u∗ := (−)⊗A B : Prop(ModA) ⇄ Prop(ModB) : u∗.

Fibrations and weak equivalences of dg props are defined by the forgetful functor
from props to N×N-indexed collections of complexes, so these are respectively arity-
wise surjections and aritywise quasi-isomorphisms. The right adjoint preserves such
morphisms, so the adjunction above forms actually a Quillen adjunction finishing
claim (2).

The first morphism of claim (3) follows directly from the fact that u∗ is strong
symmetric monoidal. The second one is induced by the first one, considering that
the endomorphism prop of a morphism f : X → Y is given by the pullback

EndModA
f⊗A

//

��

EndModA
Y⊗A

(f⊗A)∗

��
EndModA

X⊗A (f⊗A)∗

// HomModA
XY

where HomModA
XY is the sequence of complexes {HomModA((X ⊗ A)⊗Am, (Y ⊗

A)⊗An)}m,n∈N and the morphisms (f ⊗ A)∗ and (f ⊗ A)∗ are defined in each ar-
ity (m,n) respectively by postcomposing with (f ⊗ A)⊗n and precomposing with
(f ⊗A)⊗m. The morphism

Endf⊗A → Endf⊗B

then follows by applying the pullback functor to the morphism of diagrams

EndModA
X⊗A

��

HomModA
XY

oo //

��

EndModA
Y⊗A

��
EndModB

X⊗B HomModB
XY

oo // EndModB
Y⊗B

induced by u∗.
To prove (4), we first need to observe that u∗ is compatible with the simpli-

cial structure of the mapping spaces, thus defines a simplicial functor between the
corresponding simplicially enriched categories. For this, we recall from the gen-
eral definition of simplicial mapping spaces in model categories combined with [98,
Proposition 2.5] that in the model category of A-linear dg props, the simplicial
mapping space between two props P and Q is given by

MapProp(ModA)(P,Q) = MorProp(ModA)(P,Q⊗A (A⊗ Ω•))
with a simplicial structure induced by the simplicial cdga A ⊗ Ω•. We apply this
to the particular case P = P∞⊗A and Q = EndModA

X⊗A . The functor u∗ induces, for
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every n, an application
MorProp(ModA)(P∞ ⊗A,EndModA

X⊗A ⊗A (A⊗ Ω•))
→ MorProp(ModB)((P∞ ⊗A)⊗A B, (EndModA

X⊗A ⊗A (A⊗ Ω•))⊗A B)
= MorProp(ModB)(P∞ ⊗B, (EndModA

X⊗A ⊗A B)⊗B (A⊗ Ω•))⊗A B)
= MorProp(ModB)(P∞ ⊗B, (EndModB

X⊗B ⊗B (Ω• ⊗B))
which is compatible with the simplicial structures of A ⊗ Ω• and B ⊗ Ω•, hence
defines a simplicial map

P∞ ⊗A{X ⊗A} → P∞ ⊗B{X ⊗B}.
To conclude, for these mapping spaces to be Kan complexes it is sufficient to prove
that the source is cofibrant and the target is fibrant. The source of each mapping
space is cofibrant thanks to (1) (since P∞ is cofibrant in K-linear dg props). Dg A-
modules are all fibrant because fibrations of A-modules are defined by the forgetful
functor and every complex over a field is fibrant. Moreover, fibrant A-linear dg
props are the aritywise fibrant ones, so every A-linear dg prop is fibrant. This
concludes the proof. □

These compatibilities allow us to get the functoriality, up to homotopy, of the
∞-action we are going to consider below.

First, let us point out that we have a natural equivalence haut(X) ≃ fhaut(X),
where fhaut(X) is the simplicial submonoid of haut(X) whose vertices are the
self acyclic fibrations X ∼→ X. This equivalence is simply given by the functorial
factorization properties of the underlying model category (which replace functorially
any weak equivalence by a weakly equivalent acyclic fibration), implying that every
self-weak equivalence of X is in the connected component of a self acyclic fibration
of X (recall that every complex over a field is both fibrant and cofibrant, so X is
already a fibrant-cofibrant object).

Second, we can transfer P∞-algebra structures along acyclic fibrations, hence a
map

haut(X)× P∞{X} → P∞{X}
(f, ψ) 7−→ Rf∗ψ

as follows. We associate to f its equivalent acyclic fibration Rf . Let EndRf be the
dg prop associated to the morphism Rf . It is defined by the coreflexive equalizer

EndRf (n,m) = Eq
(
Hom(X⊗n, X⊗m)×Hom(Y ⊗n, Y ⊗m) ⇒ Hom(X⊗n, Y ⊗m)

)
where the maps are given by either postcomposition or precomposition by Rf . Note
that EndRf has a natural prop structure and two canonical prop maps Rf∗, Rf

∗

to EndX and EndY . We get a lifting

(3.3) 0 //

��

EndRf

Rf∗

��

Rf∗ // EndX

P∞
ψ
//

;;

EndX

since, by [33, Lemma 7.2], the right vertical morphism is an acyclic fibration in the
model category of dg properads, and P∞ is cofibrant.
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With a slight abuse of notation we note Rf∗ψ the composite

(3.4) P∞ −→ EndRf
Rf∗−→ EndX .

Moreover, given two homotopy automorphisms f and g, the lifts obtained by
R(g◦f)∗ψ = (Rg◦Rf)∗ψ and Rg∗(Rf∗ψ) are homotopy equivalent by contractibil-
ity of the space of lifts in the commutative square above, giving the compatibility
up to homotopy with the composition in haut(X).

Lemma 3.10. The map (3.4) induces an ∞-action of the derived prestack group
haut(X) on P∞{X}.

Proof. We have to explain why such lifts gives an action at the simplicial level,
then why this action is functorial in order to induce the desired action at the level
of simplicial presheaves. For this, first recall that we use the fibrant replacement
functor f 7→ Rf to only consider acyclic fibration. We use the base change proper-
ties of Lemma 3.9. Indeed, the lift P∞ −→ EndRf induces for any Artinian cdga
A a lift P∞ ⊗A −→ EndModA

Rf such that for any morphism of cdgas u : A→ B, we
have a commutative diagram

(3.5) P∞ ⊗A //

u∗

��

EndModA
Rf

u∗

��
P∞ ⊗B // EndModB

Rf

Note that for any cdga A, the category ModA is a cofibrantly generated symmetric
monoidal model category satisfying the limit monoid axioms [33, Section 6.6], so
that [33, Lemma 7.2] still applies to A-linear P∞-structures in ModcofA . Further,
the extension Rf : X⊗A→ X⊗A is an acyclic fibration between cofibrant-fibrant
objects of ModA. And by the assertion (1) of 3.9, the endomorphism prop maps
EndModA

Rf

Rf∗

−→ EndModA
X⊗A are still a cofibrations (all modules are already fibrant).

Now, for any n ∈ N, we work in the model category Prop(ModΩn) and apply
this Lemma to the particular case A = Ωn. Recall that:

- the n-simplices of fhaut(X) are determined by self acyclic fibrations of
X ⊗ Ωn in Ωn-modules;

- the set of n-simplices of P∞{X} satisfies the natural isomorphism

P∞{X}n = MorProp(P∞, EndX ⊗ Ωn) ∼= MorProp(ModΩn )(P∞ ⊗ Ωn, EndModΩn )
X⊗Ωn )

identifying n-simplices with Ωn-linear P∞-structures on X ⊗ Ωn,
so building our action at the level of n-simplices amounts to make the set of self
acyclic fibrations of X ⊗ Ωn (as an Ωn-module) act on MorProp(ModΩn )(P∞ ⊗
Ωn, EndModΩn )

X⊗Ωn ) by the same formula as in the case n = 0 above.
We are now interested by the compatibility of our lifts with base changes along

morphisms of cdgas. The construction above, written in the particular case A = Ωn,
works exactly the same for any cdga A. Let A→ B be a any morphism of cdgas. Let
fA : X⊗A→ X⊗A an acyclic fibration in the model category of A-modules. Under
the base change functor (−)⊗AB and the fibrant replacement functor, this gives a
self acyclic fibration R(fA⊗AB) of X⊗B in the model category of B-modules and
the diagram (3.5) above ensures the compatibility of those lifts with the base change
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functor (lifted to the model categories of props). Further, by contractibilty of the
space of lifts in the diagram (3.3), we get equivalences R(g◦f)∗ψ = (Rg◦Rf)∗ψ and
Rg∗(Rf∗ψ). The compatibility of theses lifts with base changes along morphisms
of cdgas explains both :

- faces and degeneracies of the simplicial structures under consideration are
given by base changes along morphisms of cdgas defined by the cosimplicial
structure of Ω• ;

- the naturality of the action with respect to morphisms of cdgas is its com-
patibility with the corresponding base change functors.

Thus, we get an ∞-action of haut(X) on P∞{X} in simplicial presheaves over
artinian cdgas. □

With this ∞-action we start the proof of Proposition 3.8.

Proof of Propoposition 3.8. First we construct the commutative diagram

EhautK(X)×hautK(X) P∞{X} //

π
����

diagN fwChP⊗∆•

K |X

��
BhautK(X) // NwChK|X

in the following way:

((fk, ..., f0), φ : P∞ ⊗∆k → EndX) //

π=p∗
hautK(X)

��

((Xϕ) ∼→ (X, fk.φ)... ∼→ (X, (fk ◦ ... ◦ f1).φ))

forget
��

(fk−1, ..., f0) // (X fk−1→ ...
f0→ X)

where the left vertical map is the projection associated to the Borel construction and
the right vertical map forgets the P∞ ⊗∆k-algebra structure. The top horizontal
map transfers the P∞ ⊗ ∆k-algebra structure on X along the sequence of quasi-
isomorphisms given by fk, ..., f0 and the bottom horizontal map is just an inclusion.
It is clear by definition of faces and degeneracies in the simplicial structures involved
that these four maps are simplicial.

It remains to prove that the two horizontal maps are weak equivalences. For
the bottom arrow, it follows from the work of Dwyer-Kan [21] which identifies
the connected components of the classification space of a model category with the
classifying complexes of homotopy automorphisms Bhaut(X).

For the top arrow, we have a morphism of homotopy fibers over X

P∞{X} //

=
��

EhautK(X)×hautK(X) P∞{X}

��

// BhautK(X)

∼
��

P∞{X} // diagN fwChP⊗∆•

K
// NwChK|X
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inducing another morphism of homotopy fibers

Ω[φ]
(
EhautK(X)×hautK(X) P∞{X}

)
//

��

hautK(X)

∼

��

// P∞{X}

=

��
Ω(X,φ)

(
diagN fwChP⊗∆•

K

)
// ΩXNwChK|X // P∞{X}

taken over the base point φ. □

Proposition 3.11. For any chain complex X, the tangent Lie algebra Lie(haut(X))
of haut(X) is equivalent to End(X) = HomChK(X,X) equipped with the commu-
tator of the composition product as Lie bracket.

Proof. This follows from Lurie-Pridham correspondence applied to the formal mod-
uli problemBhaut(X). Recall (Definition 2.14) that Lie(haut(X)) = Lie( ̂haut(X)id)
Further, ̂haut(X)id is the based loop space (i.e. the automorphsims) of ObjDefoX :
dgArtaugK → sSet, the deformation object functor of X of [66, Section 5.2]. The
latter is a 1-proximate formal moduli problem in the sense of [66, Section 5.1] with
associated formal moduli problem denoted L(ObjDefoX). By [8, Lemma 2.11],
there is an equivalence of formal moduli problems

(3.6) ̂haut(X)id ∼= Ω
(
ObjDefoX

) ∼=−→ Ω
(
L(ObjDefoX)

)
.

Using this equivalence (3.6) with Proposition 2.15 then shows that
Lie(haut(X)) ∼= LL(ObjDefoX).

By [66, Theorem 5.2.8, Theorem 3.3.1], the Lie algebra associated to L(ObjDefoX)
is precisely HomChK(X,X) with its (dg-)Lie algebra structure. □

We deduce:

Proposition 3.12. There is an equivalence of homotopy fiber sequences of Lie
algebras

gφP,X
//

∼
��

Lie(hautP∞−Alg(X,ψ)) //

∼
��

End(X)

∼
��

gφP,X
// Lie(Ω[φ](P∞{X}//haut(X))) // End(X)

Proof. By Proposition 3.8, we have a morphism of homotopy fiber sequences

P∞{X} //

=
��

EhautK(X)×hautK(X) P∞{X}

��

// BhautK(X)

∼
��

P∞{X} // diagN fwChP⊗∆•

K
// NwChK|X

.

Applying the based loop functor we get an equivalence of homotopy fiber sequences
of derived groups, since we also have, by Proposition 3.8, that the map

Ω[φ]
(
EhautK(X)×hautK(X) P∞{X}

) ∼→ Ω(X,φ)

(
diagN fwChP⊗∆•

K

)
≃ Ω(X,φ)NwChP∞

K
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is an equivalence. Taking the formal completions at the appropriate base points
and applying the Lie-algebra∞-functor combined with Proposition 3.11, we obtain
the desired equivalence of homotopy fiber sequences of Lie algebras. □

As we have already seen, the forgetfull functor mapping P∞-algebras to their
underlying complexes induces a morphism of the homotopy automorphisms derived
prestack groups of both categories.

Lemma 3.13. Let (X,ψ) be a P∞-algebra. The forgetful derived formal group
morphism

̂hautP∞−Alg(X,Ψ)id −→ ĥaut(X)id
has a section in derived formal groups.

Proof. By Lemma 2.20, since being group-like is a property, it is sufficient to con-
struct a E1-monoid morphism

(3.7) ΩX⊗R

(
NwChR

)
−→ Ω(X⊗R,ψ⊗R)

(
NwP∞ −Alg(ModcofR )

)
of simplicial presheaves which is a section of the forgetful morphism. Then, by
applying the homotopy fiber functor over the identities we get a section of the
forgetful derived formal group morphism. Since we are taking loop spaces at
X ⊗ R and (X ⊗ R,ψ ⊗ R), we can restrict the considered spaces respectively
to the connected component (NwChR)X⊗R of X ⊗ R and the connected compo-
nent NwP∞−Alg(ModcofR )(X⊗R,ψ⊗R) of (X ⊗R,ψ⊗R). We search for a pointed
map

(NwChR)X⊗R → NwP∞ −Alg(ModcofR )(X⊗R,ψ⊗R)

(where the base points are respectively X⊗R and (X⊗R,ψ⊗R) whose composite
with the forgetful map is the identity, so that applying the pointed loop space
functor gives us the map 3.7.

For simplicity, we will use the description of props as strict small symmetric
monoidal dg categories and morphisms of props as symmetric monoidal dg functors.
Let us note Fun⊗

dg(−,−) for the category of symmetric monoidal R-dg functors be-
tween dg categories with symmetric monoidal natural dg transformations. The cat-
egory of P∞⊗R-algebras whose underlying complex is X ⊗R can then alternately
be described as Fun⊗

dg(P∞⊗R,EndX⊗R) : one checks that such a natural transfor-
mation is defined by a collection of maps {τ(n) : (X⊗R)⊗n → (X⊗R)⊗n}n∈N and
that, by strict monoidality and by its compatibility with the functors, it is uniquely
determined by the data of the morphism τ(1) : X ⊗ R → X ⊗ R compatible with
the P∞-algebra structures. The prop morphism ψ ⊗R then defines a functor, and
the precomposition by ψ ⊗R induces a functor of R-dg categories

(ψ ⊗R)∗ : Fun⊗
dg(EndX⊗R, EndX⊗R)→ Fun⊗

dg(P∞ ⊗R,EndX⊗R)

(precomposition of a natural transformation τ : F → G by a functor H gives still
a natural transformation τ ◦H : F ◦H → G ◦H), hence the simplicial map

NwFun⊗
dg(EndX⊗R, EndX⊗R)→ NwFun⊗

dg(P∞⊗R,EndX⊗R) ↪→ NwP∞−Alg(ModcofR ).

This map sends IdEndX⊗R to (X ⊗R,ψ⊗R), so it sends the connected component
of IdEndX⊗R in the simplicial nerve into NwP∞ − Alg(ModcofR )(X⊗R,ψ⊗R). The
connected component of IdEndX⊗R is Bhaut(X). Indeed, by strict monoidality, a
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natural weak self-equivalence of the identity functor IdEndX⊗R is uniquely deter-
mined by a self weak equivalence of X ⊗ R and vice-versa. Finally, the composite
with the forgetful map is obviously IdBhaut(X) because (ψ ⊗ R)∗ does not change
nor the underlying complex X ⊗R neither its chain self-weak equivalences. □

Remark 3.14. Another way to build a section is to consider the composite map
ΩidEndX{X} → ΩψP∞{X} → hautP∞(X,ψ)

where the first map is the looping of the precomposition by ψ between the sim-
plicial mapping spaces and the second map is the looping of the map induced by
Rezk’s homotopy pullback theorem. Then, one notices that EndX{X} is, for each
cdga R, the nerve NwFun⊗

dg(EndX⊗R, EndX⊗R) considered in the proof above, so
ΩidEndX{X} is ΩidNwFun⊗

dg(EndX , EndX) = ΩidBhaut(X) = haut(X).

Now we can state properly our result. Recall that gψP,X is the L∞-algebra en-
coding the formal moduli problem P∞{X}ψ.

Theorem 3.15. There is an equivalence of L∞-algebras

Lie(hautP∞−Alg(X,ψ)) ∼= gψP,X ⋊h End(X).

Proof. Using the hautK(X) action (Lemma 3.10) and proposition 3.11, we can
identify the fiber sequence of Theorem 2.26 with

gφP,X
// Lie(hautP∞−Alg(X,ψ)) // End(X).

The result is then a direct consequence of Proposition 3.12 once we identify the
(homotopy) Lie algebra Lie(Ω[φ](P∞{X}//haut(X))) with the semi-direct product
gψP,X ⋊h End(X). By Lemma 3.7, lemma 2.20 and the commutativity of the right
square of the diagram of Proposition 3.8, we only need to find a section of the
formal group morphism associated to the derived prestack group map defined, on
any artinian R, by

hautP∞−Alg(X,ψ)(R) ∼= Ω(X⊗R,φ)NwChP∞
R

−→ ΩX(NwChR|X) ∼= haut(X)(R).
This is given by Lemma 3.13. □

4. An explicit model via the operad of differentials

We now provide an explicit formula to express the Lie algebra structure of the
homotopy automorphisms of a P∞-algebra, which is crucial to consider deformation
complexes of algebraic structures which also encode compatible deformations of the
differential. For this, we use a construction originally due to Merkulov [75], which
gives a conceptual explanation of how one can express the deformation theory inside
P∞−Alg as deformations of a P∞-algebra structure in the (pro)peradic sense plus
compatible deformations of the differential, and formalizes properly Remark 2.23.

Precisely, Theorem 3.15 express the Lie algebra structure of the homotopy au-
tomorphisms of a P∞-algebra as a semi-direct product involving the standard op-
eradic deformation complex of P∞-algebras. In the next two subsections we actu-
ally express the semi-direct product explicitly as an L∞-algebra gψ

+

P+,X , obtained
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as a Maurer-Cartan twisting of a convolution L∞-algebra involving a “plus con-
struction” for properads. The use of the + construction to deform usual deforma-
tion complex of morphism of properads also appear as a crucial part in Merkulov-
Willwacher study of quantization functors [76].

4.1. The operad of differentials. We start by recalling the following definition
of Merkulov [75].

Definition 4.1. Let P be any dg properad with presentation P = F(E)/(R) and
differential δ. We define P+ to be the dg-properad with presentation F(E+)/(R)
and differential δ+ where the Σ-biobject E+ is defined by

E+(1, 1) = E(1, 1)⊕K[1] and E+(m,n) = E(m,n).

In other word we add to E a generating operation u of degree −1, with one input
and one output. The differential δ+ is modified so that its restriction to E is still
δ and further

δ+(u) = u⊗ u ∈ E(1, 1)⊗ E(1, 1).

The role of the generator u is thus to twist of a complex X when we consider a
P+-algebra structure on X. The following is proved in [75] (and also follows from
the argument of 4.4).

Lemma 4.2. The construction P 7→ (P )+ is an endofunctor (−)+ : Prop→ Prop
of the category of dg-properads.

Further, properad morphisms φ+ : P+ → End(X,d) for a given complex X
with differential d corresponds to properad morphisms P → End(X,d−φ+(u)) for
X equipped with the twisted differential d− φ+(u).

In particular, if X is a graded vector space then P+-algebra structures on X
equip X simultaneously with a P -algebra structure and a compatible differential.

Let us reinterpret this construction by defining the following operad:

Definition 4.3. The operad of differentials Di is the quasi-free operad Di =
(F(E), ∂), where E(1) = Kδ with δ a generator of degree −1, E(n) = 0 for n ̸= 1
and ∂(δ) = δ ◦ δ is the operadic composition ◦ : Di(1)⊗Di(1)→ Di(1).

We will do an abuse of notation and still note Di the properad freely generated
by this operad.

Lemma 4.4. Let (V, dV ) be a complex.
(1) A Di-algebra structure ϕ : Di→ EndV on V is a twisted complex (V, dV −δV )

where δV is the image of the operadic generator δ under ϕ.
(2) A morphism of Di-algebras f : (V, dV − δV ) → (W,dW − δW ) is a chain

morphism f : (V, dV ) → (W,dW ) which satifies moreover f ◦ (dV − δV ) = (dW −
δW ) ◦ f (it is a morphism of twisted complexes).

Proof. (1) The morphism ϕ is entirely determined by the image of the generator δ.
Since

Di(1)→ Hom(V, V )
is a morphism of complexes, its compatibility with the differentials reads

ϕ(∂(δ)) = dV ◦ δV + δV ◦ dV
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which gives the equation of twisting cochains
δ2
V = dV ◦ δV + δV ◦ dV ,

hence
(dV − δV )2 = d2

V + δ2
V − dV ◦ δV − δV ◦ dV = 0.

(2) A Di-algebra structure on V is given by a morphism Di(V ) → V , and a
Di-algebra morphism f : V → W is a chain morphism fitting in the commutative
square

Di(V )
Di(f) //

��

Di(W )

��
V

f
// W

.

Since a Di-algebra structure is determined by the image of the generator δ via
Di(1)⊗ V → V , this amounts to the commutativity of the square

Di(1)⊗ V
Di(1)⊗f//

��

Di(1)⊗W

��
V

f
// W

,

which is exactly saying that f is a morphism of twisted complexes. □

Remark 4.5. Let us note that Di is a non-positively graded quasi-free operad, but
not a cofibrant operad. Indeed, to be a retract of a relative cell complex in the
model category of dg operads, it needs a filtration Di lacks of (and the same holds
true for the corresponding dg properad). By [73, Corollary 40], quasi-free properads
(F(E), ∂) endowed with a Sullivan filtration are cofibrant, and any properad admits
a resolution by such. A Sullivan filtration (inspired by the Sullivan filtrations of
rational homotopy theory) is an exhaustive increasing filtration (Ei)i≥0 such that
E0 = {0}, the maps Ei → Ei+1 are split dg-monomorphisms of Σ-modules and
∂(Ei) ⊂ F(Ei−1). In the case of the properad generated by the operad Di, the
Σ-module of generators is reduced to E(1, 1) = Kδ, so there is no other possibility
of filtration than the trivial one given by E0 = {0} and E1 = E, which is not a
Sullivan filtration since ∂(E) ̸= {0}. Neither the operad nor the properad Di are
cofibrant, they are only Σ-cofibrant.

The only effect of the plus construction on the cohomology of a properad P is to
add a new generator of arity (1, 1) to H∗P whose square is zero. That will imply
the next lemma.

Lemma 4.6. If φ : P → Q is a quasi-isomorphism of properads, then the induced
map φ+ : P+ → Q+ is a quasi-isomorphism.

In other words,the endofunctor (−)+ : Prop→ Prop preserves weak equivalences
of (dg-)properads.

Proof. Let φ : P ∼→ Q be a quasi-isomorphism of dg props whose collections of
generators are respectively EP and EQ, such that E+

P (1, 1) = E(1, 1) ⊕ KuP and
E+
Q(1, 1) = E(1, 1) ⊕ KuQ. Then H∗(φ+) sends [uP ] to [uQ] (where [−] denotes

the cohomology class) and coincides with H∗(φ) on the other generators. The only
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relations satisfied by [uP ] and [uQ] are that they are both of square zero so H∗(φ+)
is still a prop isomorphism, hence φ+ is a quasi-isomorphism. □

Lemma 4.7. The (pr)operad Di is contractible in the sense that the initial mor-
phism I → Di and the projection Di→ I are quasi-isomorphisms.

Proof. To define our contracting homotopy, let us analyze a bit more the structure
of Di. We have Di(n) = 0 for ̸= 1 and

Di(1) = K⊕
⊕
n≥1

Kδ◦n

where ◦ is the operadic composition and δ is of degree −1 (so δn is of degree −n).
The differential ∂ is the extension to F(E) of the map E → F(E), δ 7→ δ ◦ δ. For
sign reasons, we have ∂(δ ◦ δ) = 0. By recursion, we deduce that for any natural
integer n, we have ∂(δ◦2n) = 0 and ∂(δ◦2n+1) = δ◦2n+2. Elements of odd degrees
are not cycles and elements of even degrees are boundaries except for the identity
operation in degree zero, which defines the only non trivial class in homology, so
the homology of Di reduces to I.

An equivalent way to state this is that there is a chain homotopy between
IdDi(1,1) and the composite Di(1, 1) → I(1, 1) → Di(1, 1) (the projection de-
termined by sending δ to 0 followed by the inclusion). This chain homotopy
h : Di(1, 1)−n → Di(1, 1)−n−1 (where n is a natural integer and the subscript
is the homological degree) is defined by h(δ◦n) = δn+1. All complexes over K
are fibrant and cofibrant, so chain homotopies are equivalent to homotopies in the
sense of model category theory. Given that the converse composite, the inclu-
sion followed by the projection, equals the identity, this means that these form
a homotopy equivalence. All chain complexes here being fibrant and cofibrant, a
homotopy equivalence is a quasi-isomorphism. Moreover, Di(m,n) = I(m,n) = 0
for (m,n) ̸= (1, 1), so the initial morphism and the projection are indeed homotopy
inverse quasi-isomorphisms of properads. □

This operad Di is a model for the moduli problem associated to derived ho-
motopy self-equivalences haut(X). Indeed, the operadic moduli space Di{X} of a
Di-algebra X controls the homotopy automorphism of the underlying complex:

Proposition 4.8. There is an isomorphism of dg Lie algebras
gtrivDi,X ≃ Lie(haut(X)).

Proof. The operad Di is a quasi-free resolution of I in the sense of Theorem 1.13.
It is of the form Di = (F(s−1C), ∂), where C is a cooperad generated by a single
generator u of degree 0 with a coproduct determined by ∆C(u) = u⊗u. Moreover,
the trivial Di-algebra structure triv sends u to 0, so the Lie bracket on gtrivDi,X =
HomΣ(C,EndX) is just the convolution Lie bracket obtained by taking the graded
commutator of the convolution product. At the level of complexes, we have

gtrivDi,X = HomΣ(C,EndX)
= HomChK(Ku,Hom(X,X))
∼= End(X).

It remains to compare the Lie structures. Since both Lie brackets are graded
commutators of associative products, we just have to compare these products. The
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product on End(X) is the composition of homomorphisms. The product on gtrivDi,X

is the convolution product, obtained on two elements f, g : Ku → End(X) by
applying first the infinitesimal cooperadic coproduct ∆(1) to u, then replacing the
vertices by f(u) and g(u), and finally composing these maps in End(X). Under
the identification of HomChK(Ku,End(X)) with End(X), this gives exactly the
composition product on End(X) so the two structures agree. □

Remark 4.9. At the level of derived formal groups, this means that we have an
equivalence ̂ΩtrivDi{X} ≃ ̂haut(X)

id
(by taking the loops on the corresponding

derived formal moduli problems).
4.2. Computing the tangent Lie algebra of homotopy automorphims. In
this section, we relate Lie

(
hautP∞(X,ψ)

)
with the plus construction.

Lemma 4.10. Let P be a properad. There is a commutative square of properads

(4.1) Di //

��

P+
∞

��
I // P∞

where Di → I and P+
∞ → P∞ are the forgetful maps (sending the generator of Di

to 0), the upper horizontal map is the inclusion and the lower horizontal map is the
initial morphism. The commutative square (4.1) is a pushout.
Proof. We compare first P+

∞ and P∞ ∨Di, where ∨ stands for the coproduct of pr-
operads (see [73, Appendix A.3] for its definition). Since the free properad functor
F is a left adjoint, it preserves coproducts and thus comes with natural isomor-
phisms F(M ⊕ N) ∼= F(M) ∨ F(N). If we take the coproduct P∞ ∨ Q∞ of two
quasi-free properads P∞ = (F(M), ∂P ) and Q∞ = (F(M), ∂Q), then via the previ-
ous isomorphism we can define a differential on F(M ⊕N) by taking the derivation
associated to

∂P |M ⊕ ∂Q|N : M ⊕N → F(M)⊕F(N) ↪→ F(M ⊕N)
by universal property of derivations and the fact that this morphism satisfies the
twisting cochain equation. In the case where Q = Di, it turns out that the free
properad underlying P+

∞ is F(M⊕Kd) and the differential on P+
∞ (see [75]) coincides

with the one above, yielding a properad isomorphism
P+

∞
∼= P∞ ∨Di.

Remind that the coproduct is defined as the following pushout diagram over the
initial object

I //

��

Di

��
P∞ // P∞ ∨Di

and let us consider the following pushout diagram
Di //

��

I

��
P∞ ∨Di // P̃∞.
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We already know that P∞ ∨Di ∼= P+
∞, so to conclude the proof of this Lemma we

have to show that P̃∞ = P∞. For this, let us remark that concatenating these two
pushout diagrams

I //

��

Di //

��

I

��
P∞ // P∞ ∨Di // P̃∞

gives a new pushout diagram
I //

��

I

��
P∞ // P̃∞

where the upper horizontal map is IdI , so that the pushout is indeed P∞. □

Remark 4.11. The properads Di and P+
∞ are not cofibrant. Moreover, the model

category of properads is not left proper, actually even not left proper relatively to
the model category of Σ-bimodules, so the square above is not a homotopy pushout
of properads.

Remark 4.12. Let us note that, for any P∞-algebra (X,ψ), we have a commutative
diagram of properad morphisms

Di �
� //

triv

""

P+
∞

// //

ψ+

��

P∞
ψ

{{
EndX

where the maps relating Di, P∞ and P+
∞ are the ones defined in the Lemma (4.10).

Lemma 4.13. For any cofibration of properads P → Q and any properad R, the
precomposition map of simplicial mapping spaces MapProp(Q,R)→MapProp(P,R)
is a fibration in the Kan-Quillen model structure of sSet.

Proof. This follows essentially the argument line of [10, Proposition 5.3], given that
our choice of functorial simplicial resolution in the model category of properads is
defined by the aritywise tensor product with Sullivan’s algebra of polynomial forms
on the standard simplices as in [10].

For this reason, we do not reproduce here the full proof of [10, Proposition
5.3] but rather points out the modifications needed to adapt it to the properadic
context. First, recall that the category of dg properads is tensored over CGDAK.
This external tensor product ⊗e is defined for any properad P and any cdga A by
(P ⊗eA)(m,n) = P (m,n)⊗A, with the composition product on P ⊗eA defined by
the one of P on the factor P and the product of A on the factor A. In particular, as
explained in Definition 1.8, the external tensor product by the simplicial Sullivan
cdga of standard simplices (−)⊗e Ω• forms a functorial simplicial resolution in the
model category of dg properads. The simplicial mapping space of dg properads is
then defined by
MapProp(P,Q) = MorProp(P,Q⊗e Ωbullet) ∼= MorProp(ModΩ• )(P ⊗e Ω•, Q⊗e Ω•)
analogously to the case of cdgas considered in [10, Section 5].
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Then we adapt the proof of [10, Lemma 5.2] to dg properads, and for this, we
just have to check that for any properad P , the external tensor product P ⊗e
(−) preserves equalizers and finite products of cdgas. The forgetful functor from
properads to Σ-bimodules creates all limits, and limits in Σ-bimodules are created
termwise, so limits of properads are created termwise as well. Moreover, limits of
cdgas are created in chain complexes, in particular equalizers and finite products. So
the argument reduces to check that the tensor product of chain complexes preserves
equalizers and finite products, which is true because the tensor product by a flat
module preserves finite limits, and all modules over a field are flat.

Finally, let us focus on the proof of [10, Proposition 5.3]. The existence of the
desired lifting reduces to the “Mayer-Vietoris” argument used in loc. cit. Indeed,
pullbacks of properads are created termwise, and acyclic fibrations in the model
category of properads are termwise surjective quasi-isomorphisms. So, the maps
A(u) and p(m,n) (following the notations of [10, Proposition 5.3]), where p(m,n)
is the map in arity (m,n) given by the properad fibration p, are surjective quasi-
isomorphisms, and we just have to check that the map (A(u)⊗ id, id⊗ p(m,n)) is
a surjective quasi-isomorphim. □

Lemma 4.14. Let X be a chain complex. The diagram (4.1) induces an homotopy
pullback

P∞{X} //

��

P+
∞{X}

��
I{X} // Di{X}.

of simplicial presheaves.

Proof. The commutative square induced by (4.1) is a strict pullback, simply be-
cause the splitting of P+

∞ as a coproduct P∞ ∧ Di induces a splitting of P+
∞{X}

as P∞{X} × Di{X}. Indeed, the universal property of the coproduct induces a
canonical isomorphism in each simplicial dimension

MorProp(P+
∞, EndX⊗Ω•) ∼= MorProp(P∞, EndX⊗Ω•)×MorProp(Di,EndX⊗Ω•)

which is compatible with the simplicial structure, because the latter is determined
only by the simplicial resolution of the target. Note that pullbacks of simplicial sets
are given by pullbacks of sets in each simplicial dimension, so actually we only need
the isomorphisms of sets above: it proves that we have a pullback of sets in each
simplicial dimension, hence a pullback of simplicial sets. Then, we conclude by the
fact that limits of simplicial presheaves are determined pointwise in simplicial sets.

By Lemma 4.13, the map P+
∞{X} → Di{X} is a fibration, and the Kan-Quillen

model structure on sSet is right proper, so this pullback is a homotopy pullback. □

Remark 4.15. The splitting of P+
∞{X} used in the proof is not a homotopy product

(these are not Kan complexes), so it does not commute with homotopy fiber func-
tors. Consequently, it does not induces a splitting of the corresponding Lie algebra
as a direct sum. Note also that P+

∞{X} is fibrant, but not a fibrant resolution of
P∞{X}.
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Proposition 4.16. The maps of simplicial presheaves of lemma 4.14 induces a
fiber sequence of L∞-algebras

gψP,X → gψ
+

P+,X → gtrivDi,X .

Proof. Since I is the initial properad, the simplicial presheaf I{X} is nothing but
the constant presheaf sending everything to the point. Therefore, the homotopy
pullback of lemma 4.14 is a homotopy fiber sequence of simplicial sets which can
be pointed by the sequence of base points

ψ 7→ ψ+ 7→ triv.

Taking the corresponding based loops and using proposition 2.15, we deduce a
fiber sequence of derived groups whose corresponding homotopy fiber sequence of
L∞-algebras is the one of the proposition. □

Remark 4.17. An alternate way to get this fiber sequence, starting from Lemma
4.10, is to observe that this pushout induces a pullback of convolution L∞-algebras

gP,X //

��

gP+,X

��
gI,X // gDi,X

and that gI,X = 0, so that this a fiber sequence of L∞-algebras. Along this fiber
sequence, the Maurer-Cartan element ψ of gP,X is sent to ψ+, which is in turn sent
to triv. Twisting our L∞-algebras by these Maurer-Cartan elements produces a
new fiber sequence

gψP,X → gψ
+

P+,X → gtrivDi,X .

Moreover, the second arrow is a surjection, hence a fibration in the model category
of L∞-algebras, and all objects are fibrant, so this fiber sequence is a homotopy
fiber sequence.

To conclude, we compare this fiber sequence with the fiber sequence

gψP,X → Lie(hautP∞−Alg(X,ψ))→ Lie(haut(X)).

of Theorem 2.26 to obtain:

Theorem 4.18. There is a quasi-isomorphism of L∞-algebras

gψ
+

P+,X ≃ g
φ
P,X ⋉f End(X) ≃ Lie(hautP∞

(X,ψ)).

Proof. We already have by Proposition 3.8 an equivalence of homotopy fiber se-
quences

P∞{X} //

∼
��

NwP∞ −Alg|X //

∼
��

Bhaut(X)

∼
��

P∞{X} // P∞{X}//haut(X) // Bhaut(X).

.

To conclude the proof, we have to compare the lower fiber sequence with the fiber
sequence

P∞{X} → P+
∞{X} → Di{X}.
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Precisely, we apply twice the décalage construction to get two fiber sequences
(4.2) Ω[φ]P∞{X}//haut(X)→ haut(X)→ P∞{X}

and
(4.3) Ωφ+P+

∞{X} → ΩtrivDi{X} → P∞{X}.

We do not expect to get directly an equivalence at this level, however, our strategy
is to define a commutative square

(4.4) ΩtrivDi{X} //

��

P∞{X}

��
haut(X) // P∞{X}

hence inducing a morphism between the corresponding homotopy fiber sequences,
so that the two vertical arrows induce equivalences of L∞-algebras at the tangent
level, after completion of the derived groups at the appropriate base points.

The right hand vertical arrow of (4.4) is just the identity morphism. Recall
that, by [32, Theorem 5.2.1], if O∞ is the cobar construction on a Σ-cofibrant
dg cooperad, then the homotopies between two morphisms φ,ψ : O∞ → EndX
are in bijection with ∞-quasi-isotopies in O∞ − Alg between the corresponding
O∞-algebras, that is, ∞-quasi-isomorphisms whose first level lies in the connected
component of the identity in haut(X).

In particular, a loop in ΩφO∞{X}, that is, a self-homotopy of φ, induces a
self-∞-isotopy of (X,φ). In the particular case where the operad is augmented
and φ is the trivial O∞-algebra structure on X (that is, it factorizes through the
augmentation O∞ → I), then such a self-∞-isotopy is just a self quasi-isomorphism
in the connected component of the identity. Consequently, there is a natural map

ΩtrivDi{X} → ΩtrivBcBDi{X} → haut(X)
where BcBDi is the bar-cobar resolution of Di, the first arrow is induced by the
operad morphism BcBDi → Di and the second arrow is the one explained above
which takes loops on the trivial algebra structure to self-∞-isotopies of the trivial
algebra structure, that is, to self-quasi-isomorphisms. This natural map makes the
commutative square (4.4) above commutes, and becomes an isomorphism when
restricting the target to the connected component of idX . This means that, even
though this map is not an equivalence, taking the tangent Lie algebras of the derived
formal groups obtained after completions at the appropriate base points (trivial loop
on the left, idX on the right) leads to a quasi-isomorphism of Lie algebras

gtrivDi,X
≃→ Lie( ̂haut(X)id) = End(X).

Now, this commutative square (4.4) induces a morphism between the homotopy
fibers given by (4.2) and (4.3)

Ωφ+P+
∞{X} → Ω[φ]P∞{X}//haut(X).

Since this square becomes a square of quasi-isomorphisms of Lie algebras at the
tangent the level, the induced morphism between the Lie algebras of the fibers is a
quasi-isomorphim as well

gφ
+

P+,X = Lie( ̂Ωφ+P+
∞{X}) ∼→ Lie( ̂Ω[φ]P∞{X}//haut(X)).
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Therefore, Proposition 3.12 gives us the equivalence of the later Lie algebra with
Lie(hautP∞

(X,φ)). Moreover Lie( ̂Ω[φ]P∞{X}//haut(X)) is canonically equiva-
lent to the homotopy semi-direct product gφP,X ⋉f End(X) by Theorem 3.15. □

Remark 4.19. Although it is interesting to see the role of the Borel construction
here, there is an alternate proof of Theorem 4.18 which makes no use of it. Let us
sketch it; for this, we compare the fiber sequences

Ω[φ]P∞{X}//haut(X)→ haut(X)→ P∞{X}
and

hautP∞
(X,φ)→ haut(X)→ P∞{X}

by checking that actually, in both cases we are considering the fibers of the same
map from haut(X) to P∞{X}, which is the map sending a homotopy automorphism
to its action on φ. Hence an equivalence of Lie algebras

Lie(hautP∞
(X,φ)) ≃ Lie(Ω[φ]P∞{X}//haut(X)).

Then, the argument line of the proof above provides the equivalence

Lie(Ω[φ]P∞{X}//haut(X)) ≃ gφ
+

P+,X .

Theorem 4.18 shows that the + construction is crucial to study deformation of
dg-algebras and not just deformations of algebraic structures on a fixed complex.

Example 4.20 (Strict associative algebras). Let (A,ψ) be a (necessarily strict)
associative algebra concentrated in degree 0. Then by proposition 3.11, one has
haut(A) ∼= Hom(A,A) the Lie algebra (concentrated in degree 0) of endomorphisms
of the underlying vector space of A.

It is a standard computation ([74, 75]) that the Lie algebra gψAss = LAss∞{A}ψ is
isomorphic to the subcomplex C•≥2(A,A)[1] =

⊕
n≥2 Hom(A⊗n, A) of the shifted

Hochschild cochain complex C•(A,A)[1] with Lie bracket given by the restriction
of the standard Gerstenhaber complex. Using these equivalences, the action given
by lemma 3.10 of Hom(A,A) on C•≥2(A,A)[1] is given by the usual action of
Hom(A,A) = C1(A,A)[1] on the Hochschild complex given by the Lie bracket.
Therefore, we have that

Lie(hautAss∞
(A,m)) ∼= C•≥1(A,A)[1]) ∼= Hom(A⊗>1, A)[1] ⋊Hom(A,A).

The latter can be deduced by an immediate computation mimicking [75] from the
operad Ass+

∞ obtained by the usual Koszul resolution of Ass, using theorem 4.18.
In particular, the moduli space Ass∞{A}ψ(K[[t]]) controls the algebra structures

on A[[t]] whose reduction modulo t is the given one.
However, the moduli space hautAss∞

(A,ψ)(K[[t]]) controls the algebra structures
on A[[t]] whose reduction modulo t is the given one, up to isomorphism of algebras
which are the identity modulo t.

In other words, the set of connected components of such deformations in the
first case is the set of all possible deformations, while the connected component of
the derived prestack group hautAss∞

(A,ψ) are the set of all possible deformations
modulo the standard gauge equivalences.

Example 4.20 can be generalized to algebras concentrated in degree 0 over other
operads, see Section 6.1.

Note that this result extends for dg-algebras (and A∞-algebras as well), see 5.1.
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If P∞ is semi-free, there is a nice explicit description of Lie(hautP∞
(X,ψ)).

Corollary 4.21. Let P∞ = (F(s−1C), ∂) ∼→ P be a cofibrant quasi-free resolution
of an operad P where C is a cooperad and (X,ψ) be a P∞-algebra. One has an
equivalence of Lie algebras

Lie(hautP∞
(X,ψ)) ∼= HomΣ(C ⊕ I,Q) ∼= Coder(C(X[1]))DΨ ⋊ End(X,X)

where the last term is the L∞-algebra of coderivations of the cofree coalgebra on
X[1] twisted by the Maurer Cartan element DΨ (the coderivation of square zero
corresponding to the P∞-algebra structure Ψ) and the action of End(X,X) is given
by the composition of coderivations of C(X[1]).

Proof. The isomorphism of Lie algebras given in [63, Proposition 10.1.17] induces
an isomorphism of Lie algebras

gP,X ∼= Coder(C(X[1])).

Then, the P∞-algebra structure ψ is a Maurer-Cartan element in gψP,X , whose
image under the Lie algebra isomorphism above gives a Maurer-Cartan element
Dψ in Coder(C(X[1])), that is, a degree 1 coderivation of square zero. Twisting
this isomorphism by those Maurer-Cartan elements gives an isomorphism

gψP,X
∼= Coder(C(X[1]))Dψ .

Therefore the equivalence between the r.h.s and l.h.s in the theorem follows from
Theorem 4.18. The tangent action of End(X) on gψP,X induced by the action of
hautP∞

(X,ψ) on P∞{X} (lifting, for any f ∈ hautP∞(X,ψ), the P∞-structures
along Endf → EndX by Lemma 3.10) gives under this isomorphism an action of
End(X) on Coder(C(X[1]))Dψ defined by the composition of coderivations. The
equivalence between the middle term and the r.h.s of the equivalences now follows
from proposition 4.8 and the fact that the dg-operad Di is of the form Di =
(F(Kδ), ∂) ∼= (F(s−1I), ∂)(Definition 4.3). □

Example 4.22. Let A be a dg-associative algebra. We can consider the truncated
and full Hochschild complexes of A, respectively CH•>0(A) and CH∗(A) as in 4.20.
The full version controls the deformation theory of the category of A-modules
which is in general another kind of formal moduli problem. Equivalently, the full
Hochschild complex controls the deformations of A as a curved A∞-algebra [79].

However, in the case where A is concentrated in degree zero, we observe that,
first, deformations of A are deformations as a strict Poisson algebra or as a strict
associative algebra, and second, curved and uncurved deformations are equivalent.
Consequently, the space of Maurer Cartan elements are the same for the truncated
and the untruncated versions of ¨ Hochschild complexes.

This observation is crucial in the study of formality theorems for Poisson al-
gebras and deformation quantization of Poisson structures on manifolds [59, 85].
Let us fix A = C∞(Rd) the algebra of smooth functions on Rd, and consider two
complexes. First, the full Hochschild complex CH∗(A,A), second, the complex of
polyvector fields Tpoly(A) =

(⊕
k≥0

∧k
Der(A)[−k]

)
[1] (recall that vector fields

are derivations of the ring of smooth functions). The complex of polyvector fields
also forms a (shifted) Lie algebra with a Lie structure induced by the bracket of
vector fields. The classical Hochschild-Kostant-Rosenberg theorem (HKR for short)
states that the cohomology of CH∗(A,A) is precisely Tpoly(A). However, the HKR
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quasi-isomorphism is not compatible with their respective Lie algebra structures.
In [59], Kontsevich proved that the HKR quasi-isomorphism lifts to an L∞-quasi-
isomorphism

Tpoly(A)[1] ∼→ CH∗(A,A)[1]
by building an explicit formality morphism. An alternative proof of the formality
theorem is due to Tamarkin [85] and provides a formality quasi-isomorphism of
homotopy Gerstenhaber algebras (that is E2-algebras). Here Tpoly(A) is actually
the deformation complex of the trivial Poisson algebra structure. In general, the full
Hochschild complex CH∗(A,A) controls deformations of A as a curved algebra, but
since A is in degree zero, the space of Maurer Cartan elements obtained from the full
Hochschild complex is the same as the one from the truncated Hochschild complex.
This is important, because the formality theorem holds for the full complex but
not for the truncated one. This formality theorem implies the equivalence of the
associated formal moduli problems. Then, applying these moduli problems to the
ring of formal power series K[[t]], one gets that the the set of isomorphism classes
Poisson algebra structures on A[[ℏ]] without constant term is in bijection with gauge
equivalence classes of ∗ℏ-products (that is, associative formal deformations of the
product of A).

There aer similar phenomenon for other categories of algebraic structures such
as (shifted) Poisson ones. See 5 and 6.

5. Examples

5.1. Deformations of En-algebras. We now generalize example 4.20 to the ho-
motopy setting and to higher algebras, that is En-algebras.The latter are higher
generalizations of homotopy associative algebras and form a hierarchy of “more and
more” commutative and homotopy associative structures, interpolating between ho-
motopy associative or A∞-algebras (that is E1-algebras) and E∞-algebras.

Algebras governed by En-operads and their deformation theory play a promi-
nent role in a variety of topics such as the study of iterated loop spaces, Goodwillie-
Weiss calculus for embedding spaces, deformation quantization of Poisson manifolds
and Lie bialgebras, factorization homology and derived symplectic/Poisson geome-
try [58, 59, 66, 69, 12, 29, 28, 36, 44, 48, 55, 60, 71, 79, 85, 92].

To define En-algebras, one first note that the configuration spaces of (rectilin-
ear embeddings of) n-disks into a bigger n-disk gather into a topological operad
Dn, called the little n-disks operad. An En-operad (in chain complexes) is a dg-
operad quasi-isomorphic to the singular chains C∗(Dn) of the little n-disks operad.
There is an ∞-functor from En-algebras to L∞-algebras whose composition with
the forgetful functor to chain complexes is the shift X 7→ X[1− n].

Given an ordinary associative algebra A, its endomorphismsHombiModA(A,A) in
the category biModA of A-bimodules is isomorphic to the center Z(A) of A. Deriv-
ing this hom object gives the Hochschild cochain complex C∗(A,A) ∼= RHombiModA(A,A)
ofA, and the associated Hochschild cohomologyHH∗(A,A) ofA satisfiesHH0(A,A) =
Z(A). For higher structures, one has the following definition (see [28, 69, 44]).

Definition 5.1. The (full) Hochschild complex of an En-algebra A, computing its
higher Hochschild cohomology, is the derived hom C∗

En
(A,A) = RHomEn

A (A,A) in
the category of (operadic) A-modules12 over En.

12note that the operadic E1-module are precisely the bimodules
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The Deligne conjecture endows the Hochschild cochain complex with an En+1-
algebra structure [44, Theorem 6.28] or [28, 69]. Associated to an En-algebra A,
one also has its cotangent complex LA, which classifies square-zero extensions of
A [28, 69].

Definition 5.2 ([28]). The tangent complex TA of an En-algebra A is the dual
TA := HomEn

A (LA, A) ∼= RDer(A,A).

The latter isomorphism gives a L∞-structure to TA and Francis [28, 69] has
proved that TA[−n] has a canonical structure of En+1-algebra (lifting the L∞-
structure). He further proved that there is a fiber sequence

TA[−n]→ CH∗
En(A,A)→ A

where the first map is a map of En+1-algebras.
A corollary of our theorem 4.18 is the following operadic identification of the

tangent complex TA of an En-algebra (5.2):

Corollary 5.3. The En-Hochschild tangent complex TA of an En-algebra A is
naturally weakly equivalent as an L∞-algebra to gψ

+

E+
n ,A

:

TA ≃ Lie(hautEn(A,ψ)) ≃ gψ
+

E+
n ,A

,

where ψ+ is the E+
n -algebra structure on A trivially induced by its En-algebra struc-

ture ψ : En → EndA as above, and hautEn(A) is the derived prestack group of
homotopy automorphisms of A as an En-algebra.

Proof. According to [28, Lemma 4.31], the homotopy Lie algebra of homotopy
automorphisms Lie(hautEn(A,ψ)) is equivalent to the tangent complex TA of A.
Hence Theorem 4.18 implies the corollary. □

In particular, Theorem 4.18 implies that the tangent complex TA of an An-
algebra splits as a semi-direct product of End(A) with the operadic deformation
complex of A as an En-algebra.

5.2. Deformation complexes of Poisn-algebras. We now introduce Tamarkin
deformation complexes of a Poisn-algebra [87] and prove that these complexes do
control deformations of (dg-)Poisn-algebras.

We denote by Poisn the operad of Poisn-algebras and uPoisn the operad of
unital Poisn-algebras.

Let A be a dg Poisn-algebra, with structure morphism ψ : Poisn → EndA. We
denote by CH∗

Poisn
(A,A) its Poisn-Hochschild cochain complex, also referred to

as its Poisn-deformation complex as defined by Tamarkin [87] and Kontsevich [58].
Following Calaque-Willwacher [11], we note that this complex is given by the sus-
pension

(5.1) CH∗
Poisn(A,A) := HomΣ(uPoisn∗{n}, EndA)[−n]

of the underlying chain complex of the convolution Lie algebra. Here (−)∗ is the
linear dual and {n} is the operadic n-iterated suspension. The inclusion of Poisn
in uPoisn induces a splitting (as a graded space)

(5.2) CH∗
Poisn(A,A) ∼= A⊕HomΣ(Poisn∗{n}, EndA)[−n]
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and also gives rise to the truncated deformation complex

(5.3) CH
(•>0)
Poisn

(A,A) = HomΣ(Poisn∗{n}, EndA)[−n]
obtained by deleting the “unit part” A, which is more relevant to deformations of
Poisn-algebras13, see Lemma 5.6. Note that both complexes are naturally bigraded
with respect to the internal grading of A and the “operadic” grading coming from
uPoisn

∗. The notation CH
(•>0)
Poisn

(A,A) is there to suggest that we are taking the
subcomplex with positive weight with respect to the operadic grading.

The suspensions CH∗
Poisn

(A,A)[n] and CH
(•>0)
Poisn

(A,A)[n] have canonical L∞-
structures since they are convolution algebras, and CH(•>0)

Poisn
(A,A)[n] is canonically

a sub L∞-algebra of CH∗
Poisn

(A,A)[n]. Tamarkin [87] (see also [58, 11]) proved
that the complex CH∗

Poisn
(A,A) actually inherits a (homotopy) Poisn+1-algebra

structure lifting this L∞-structure. Further, by (5.2) we have an exact sequence of
cochain complexes

(5.4) 0 −→ CH
(•>0)
Poisn

(A,A) −→ CH∗
Poisn(A,A) −→ A −→ 0

which yields after suspending the exact triangle

(5.5) A[n− 1] ∂Poisn [n−1]−→ CH
(•>0)
Poisn

(A,A)[n] −→ CH∗
Poisn(A,A)[n].

Remark 5.4. The map ∂Poisn : A ⊂ CH∗
Poisn

(A,A) → CH
(•>0)
Poisn

(A,A) is the part
of the differential in the cochain complex CH∗

Poisn
(A,A) = A ⊕ CH

(•>0)
Poisn

(A,A)
which comes from the operadic structure. That is ∂Poisn(x) ∈ Hom(A,A) is the
map a 7→ ±[x, a] where the bracket is the bracket of the Poisn-algebra. The Jacobi
identity for the Lie algebra A[n − 1] implies that the sequence (5.5) is a sequence
of L∞-algebras.

Remark 5.5. The operad Poisn is denoted en in [11, 87] and the complex CH∗
Poisn

(A,A)
is simply denoted def(A) in Tamarkin [87]. We prefer to use the notations we have
introduced by analogy with (operadic) Hochschild complexes.

The next Lemma compares the L∞-algebra structure of the truncated Poisn
Hochschild complex and the one associated to the derived prestack group of homo-
topy automorphisms of a Poisn-algebra:

Lemma 5.6. Let A be a dg Poisn-algebra with structure map ψ : Poisn → EndA.
There is an equality of dg Lie algebras

gψ
+

Pois+
n ,A

= CH
(•>0)
Poisn

(A,A)

where the right hand side is the truncated cochain complex of a Poisn-algebra defined
by Tamarkin as above.

Proof. According to the definition of the plus construction (−)+ given in Section 4,
we have

Pois+
n∞ = Ω(Pois∗

n{n})+ = (F(Pois∗
n{n+ 1})+, ∂+)

where Poisn∞ is the minimal model of Poisn, (−)∗ is the linear dual, {n} is the
operadic n-iterated suspension, Ω is the operadic cobar construction and − is the

13as opposed to deformation of categories of modules
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coaugmentation ideal of a coaugmented cooperad. Recall that the collection of
generators Pois∗

n{n+ 1}+ is given by

Pois∗
n{n+ 1}+(1) = Pois∗

n{n+ 1}(1)⊕K[1] = Pois∗
n{n+ 1}(1)⊕Kd

where d is a generator of degree 1 and

Pois∗
n{n+ 1}+(r) = Pois∗

n{n+ 1}(r)

for r > 1. The restriction of the differential ∂+ on the generators decomposes into
∂+ = ∂ + δ where ∂ is the differential of the minimal model and δ is defined by
δ(d) = d ⊗ d and zero when evaluated on the other generators (note that, by the
Koszul sign rule and for degree reasons, we have δ2(d) = 0 so we get a differential
indeed). Now let ψ+ : Pois+

n∞ → EndA be the operad morphism induced by ψ,
thus a Maurer-Cartan element of the convolution graded Lie algebra gPois+

n ,A
. We

twist this Lie algebra by ψ to get a dg Lie algebra gψ
+

Pois+
n ,A

with the same Lie
bracket and whose differential is defined by

±(dA)∗ + [ψ,−]

where (−)∗ denotes the post-composition, dA is the differential on EndA induced
by the differential of A, the ± sign is defined according to the Koszul sign rule and
[−,−] is the convolution Lie bracket. Note here that the Koszul dual cooperad has
no internal differential. We refer the reader to [63, Chapter 12] for more details
about such convolution Lie algebras. Now let us point out that

Pois∗
n{n+ 1}+(1) = Pois∗

n{n+ 1}(1)⊕K[1] = (Pois∗
n{n}(1)⊕K)[1],

which implies that

gψ
+

Pois+
n ,A

= HomΣ(Pois∗
n{n} ⊕ I, EndA)ψ = Conv(Pois∗

n{n}, EndA)

where Conv(Pois∗
n{n}, EndA) is the convolution Lie algebra of [11, Section 2.2].

This is an equality of dg Lie algebras, because the convolution bracket is defined by
the action of the infinitesimal cooperadic coproduct on the coaugmentation ideal,
so is the same on both sides. □

Lemma 5.6 together with Theorem 4.18 implies that

Corollary 5.7. The truncated Tamarkin deformation complex CH(•>0)
Poisn

(A,A) con-
trols deformations of A into the ∞-category of dg Poisn-algebras, in other words is
the tangent Lie algebra of the derived prestack group hautPoisn∞

(A), where Poisn∞
is a cofibrant resolution of Poisn.

Remark 5.8. The proof of Lemma 5.6 also shows that the deformation complex
gψPoisn,A of the formal moduli problem Poisn∞{A}

ψ is given by the L∞-algebra
CH

(•>1)
Poisn

(A,A)[n], which is the kernel

(5.6) CH
(•>1)
Poisn

(A,A)[n] := ker
(
CH

(•>0)
Poisn

(A,A)[n] ↠ Hom(A,A)[n]
)

and is thus a even further truncation of CH∗
Poisn

(A,A). The situation is thus
similar to what happens in deformation theory of associative algebras.
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One can also wonder which deformation problem is controled by the full complex
CH∗

Poisn
(A,A). In view of our results and classical results on deformation theory

of En-algebras ([57, 79, 28]), we make the following
Conjecture. Let n ≥ 2 and let A be an n-Poisson algebra. The L∞-algebra struc-
ture of the full shifted Poisson complex CH∗

Poisn
(A)[n] controls the deformations

of ModA into En−1-monoidal dg categories.
Here, when n ≤ 1, some shift is needed on the linear enrichment of the E|n−1|-

monoidal dg-category, according to the red shift trick [92, 91].
This conjecture is deeply related to the deformation theory of shifted Poisson

structures in derived algebraic geometry, in the sense of [12]. Precisely, if X is a
derived Artin stack locally of finite presentation and equipped with an n-shifted
Poisson structure, then its sheaf of principal parts (which controls the local defor-
mation theory on X and whose modules describe the quasi-coherent complexes over
X) forms a sheaf of mixed graded Poisn+1-algebras. The deformation theory of
the category of quasi-coherent complexes should then be controled by a full shifted
Poisson complex.

5.3. Bialgebras. Let us conclude our series of examples with one of properadic
nature. Here we are interested in associative and coassociative bialgebras, and
refer the reader to Example 7.7 for a precise definition as well as the construction
of the corresponding properad Bialg.

What we call the Gerstenhaber-Schack complex is the total complex of a bicom-
plex, defined by

(5.7) C∗
GS(B,B) ∼=

∏
m,n≥1

Homdg(B⊗m, B⊗n)[−m− n].

The horizontal differential is defined, for every n, by the Hochschild differential
associated to the Hochschild complex of B seen as an associative algebra with coef-
ficients in the B-bimodule B⊗n. The vertical differential is defined, for every m, by
the co-Hochschild differential associated to the co-Hochschild complex of B seen as
a coassociative coalgebra with coefficients in the B-bicomodule B⊗m. The compat-
ibility between these differentials, which gives us a well defined bicomplex, follows
from the distributive law relating the product and the coproduct of the bialgebra
B (see [38, 75] for details). Combining Theorem 4.18 with the computation of [75],
we get:

Theorem 5.9. The Gerstenhaber-Schack complex is quasi-isomorphic to the L∞-
algebra controlling the deformations of dg bialgebras up to quasi-isomorphisms:

C∗
GS(B,B) ∼= gφ

+

Bialg+
∞,B
≃ Lie(hautBialg∞

(B))

.

Hence the Gerstenhaber-Schack complex is indeed the L∞-algebra controling the
derived deformation theory of dg bialgebras in a precise meaning, something new
since the introduction of this complex by Gerstenhaber and Schack in their seminal
paper [38]. Moreover, as emphasized by the results of [75] and [46], this complex
plays a crucial role in deformation quantization.



DERIVED DEFORMATION THEORY OF ALGEBRAIC STRUCTURES 61

6. Concluding remarks and perspectives

To conclude, let us give an overview of the various deformation complexes con-
sidered in the litterature and their derived and underived formal moduli problems.

6.1. Algebras over operads in vector spaces. Let X be a vector space and P
an operad with Koszul dual C. Then the cohomological grading on the convolution
Lie algebra gP,X = HomΣ(C,EndX) is entirely determined by the “weight grading”
of operations in the cooperad C. In particular, in the case where X is of finite
dimension n, this means that the degree 0 Lie subalgebra of gP,X is nothing but
gl(X), whose associated Lie group is the general Lie group GL(X). This is the
gauge group acting on the Maurer-Cartan elements of gP,X , so that the moduli set
of Maurer-Cartan elements is

MC(gP,A) = Mor(P,EndA)/GL(A).
The deformation complex gφP,X of a P -algebra A = (X,φ) controls then the defor-
mations of A as a P -algebra, up to linear automorphisms of A. If we replace C by
C in the definition of gP,X , which is what we did in the present paper, then there
is no non trivial gauge group acting anymore, and the Maurer-Cartan moduli set
is just

MC(gP,A) = Mor(P,EndA).
The corresponding underived formal moduli problem, or classical deformation func-
tor, controls the deformations of A as a P -algebra in the category of vector spaces,
up to isomorphisms.

In the derived setting, one replaces Artinian algebras by their dg enhancement,
so that the simple description above in terms of gauge group action does not exist
anymore (notice that, although V is in degree 0, we have to consider haut(V ⊗A)
for any differential graded local Artinian algebra A, and V ⊗ A is not in degree
zero anymore). The relevant theory, described in Section 4, defines the appropriate
deformation problems as loops over the homotopy quotient of the moduli space
of P -algebra structures by a homotopy automorphisms group. Moreover, it turns
out, as we explained in Remark 2.25, that the corresponding derived formal moduli
problem is given by the formal completion ̂NwP −Alg

A
at A of the n-geometric

derived Artin stack of n-dimensional P -algebras.
To clarify the link between our derived construction and the underived deforma-

tion functor described above, let us restrict our derived moduli problem to local
Artinian algebras. In this context, provided that P is an operad in vector spaces,
the simplicial presheaves P∞{X} and haut(X,φ) are actually discrete. Indeed,
given a local Artinian algebra R, each vertex of the Kan complex P∞{X ⊗ mR}
factors uniquely through the composite

P∞ ↠ P → EndV⊗mR

because of degree reasons, commutation with the differentials and the fact that
EndX⊗mR is concentrated in degree zero. Moreover, for the same reasons, a ho-
motopy between two such maps cannot be anything else than the identity, so that
finally

P∞{X ⊗mR} ∼= Morprop(P,EndX⊗mR) = MC(gP,X)
and the corresponding pointed functor over (X,φ) is

P∞{X ⊗mR}varphi ∼= MC(gφP,X).
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Note that this is coherent with the fact that left homotopies between such maps are
in bijection with ∞-isotopies of (X,φ), which boils down to Id(X,φ) when X is in
degree zero. Also for degree reasons, the simplicial presheaf haut(X,φ) is equivalent
to the discrete presheaf defined, for each local Artinian algebra R, by the strict
automorphism group Aut(X ⊗mR), that is, the algebraic group of automorphisms
of (X,φ). The homotopy action of haut(X,φ) on P∞{X} is then nothing but the
gauge action described above, so that the semi-direct product gφ

+

P+,X ≃≃ g
φ
P,X ⋉hol

End(X) becomes the dg convolution Lie algebra considered in [63, Section 12.2.22].

6.2. Differential graded algebras over operads. A differential graded struc-
ture on the object X carries non trivial homotopies, and taking into account this
new homotopy data that do not exist in the degree zero case involves deforma-
tions of P -algebra structures into P -algebra structures up to homotopy, that is
P∞-algebra structures, and therefore taking into account the non trivial homotopy
type of the moduli space P∞{X}. Given a P∞-algebra A = (X,φ), there are a
priori three possible variants of derived deformation problems one could look at:

(1) Deformation theory of the operad morphism φ : P∞ → EndA;
(2) Deformation theory ofA in the∞-category of P∞-algebras up to∞-isotopies;
(3) Deformation theory of A in the ∞-category of P∞-algebras up to quasi-

isomorphisms.
Problem (1) is, as we saw before, controled by the derived formal moduli problem

P∞{X}(R) = hofibφ(P∞{X ⊗R} → P∞{X})

whose associated L∞-algebra is gφP,X (constructed with C). Problem (2) is the
setting in which [63, Section 12.2.22] takes place: an R-deformation of a P -algebra A
in the sense of (2) is a an R-linear P∞-algebra Ã ≃ A⊗R with a K-linear P∞-algebra
∞-isomorphism Ã⊗RK ∼→ A, where (−)⊗RK is defined by the augmentation of R.
Two deformations are equivalent if they are related by an R-linear ∞-isomorphism
whose restriction modulo mR is the identity, that is ∞-isotopies. It turns out
that, in the operadic case, problems (1) and (2) are equivalent: by [32, Theorem
5.2.1] homotopies between morphisms from P∞ to EndX are in bijection with ∞-
isotopies between the corresponding P∞-algebras, and by [63, Section 12.2.22] the
later are also controled by the convolution L∞-algebra. Here the gauge group of the
deformation complex (for this moduli problem) of a P∞-algebra A is isomorphic to
the group of ∞-isotopies of A.

We spent some time in this article to deal with Problem (3), which had previ-
ously no known construction in the framework of derived deformation theory. As
explained before, an R-deformation of a P -algebra A in the sense of (3) is a an
R-linear P∞-algebra Ã ≃ A ⊗ R with a K-linear P∞-algebra quasi-isomorphism
Ã ⊗R K ∼→ A, where (−) ⊗R K is defined by the augmentation of R. We built
a derived formal group ̂hautP∞

(A)
id

whose corresponding L∞-algebra admits two
equivalent descriptions

Lie( ̂hautP∞
(A)

id
) ≃ gφP,X ⋉hol End(X) ≃ gvarphi

+

P+,X

where the middle one exhibits this moduli problem as originating from the homo-
topy quotient of the space of P∞-algebra structures on X by the homotopy action
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of self-quasi-isomorphisms haut(X), and the right one explains how one can en-
code this explicitely as simultaneous compatible deformations of the P∞-algebra
structure and the differential of X.

Another way to compare deformation problems (2) and (3) is to recall that there
are equivalences of ∞-categories

P∞ −Alg[W−1
qiso] ≃ P −Alg[W−1

qiso] ≃ ∞− P∞ −Alg[W−1
∞−qiso]

where the first equivalence is induced by the operadic quasi-isomorphism P∞
∼→ P ,

and the second equivalence is induced by the strictification theorem of [63, Chapter
12], the later∞-category being the one of P∞-algebras with∞-morphisms, and with
∞-quasi-isomorphisms as weak equivalences. Problem (3) concerns deformation
theory in the ∞-category of P∞-algebras up to ∞-quasi-isomorphisms, hence is a
relaxed version of Problem (2) in this sense.

6.3. Algebras over properads. There is no well defined (homotopy invariant)
notion of ∞-morphism of algebras over properads at present, though recent pro-
gresses have been made in [53]. So problem (2) does not make sense anymore in this
more general setting. However, as we proved in the previous sections, problems (1)
and (3) can be properly formalized and explicitely described by means of homotopy
theory and derived algebraic geometry methods. One of the main additional diffi-
culties when passing from operads to properads is the absence of model category
structure on the corresponding kinds of algebras, which makes the situation more
subtle to deal with both from the viewpoints of ∞-category theory and derived
algebraic geometry.

7. Appendix: recollections on props, homotopical algebra and
∞-categories

The goal of this appendix is to briefly review several key notions and results
from model categories and props that will be used in the present paper, as well as
their homotopical algebra and associated ∞-categories.

7.1. Symmetric monoidal categories over a base category. Symmetric monoidal
categories over a base category formalize how a given symmetric monoidal category
can be tensored and enriched over another category, in a way compatible with the
monoidal structure:

Definition 7.1. Let C be a symmetric monoidal category. A symmetric monoidal
category over C is a symmetric monoidal category (E ,⊗E , 1E) endowed with a sym-
metric monoidal functor η : C → E , that is, an object under C in the 2-category of
symmetric monoidal categories.

This defines on E an external tensor product ⊗ : C×E → E by C⊗X = η(C)⊗EX
for every C ∈ C and X ∈ E . This external tensor product is equipped with the
following natural unit, associativity and symmetry isomorphisms:

(1) ∀X ∈ E , 1C ⊗X ∼= X,
(2) ∀X ∈ E ,∀C,D ∈ C, (C ⊗D)⊗X ∼= C ⊗ (D ⊗X),
(3) ∀C ∈ C,∀X,Y ∈ E , C ⊗ (X ⊗ Y ) ∼= (C ⊗X)⊗ Y ∼= X ⊗ (C ⊗ Y ).
The coherence constraints of these natural isomorphisms (associativity pen-

tagons, symmetry hexagons and unit triangles which mix both internal and external
tensor products) come from the symmetric monoidal structure of the functor η.
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We will implicitly assume throughout the paper that all small limits and small
colimits exist in C and E , and that each of these categories admit an internal
hom bifunctor. We suppose moreover the existence of an external hom bifunctor
HomE(−,−) : Eop × E → C satisfying an adjunction relation

∀C ∈ C,∀X,Y ∈ E ,MorE(C ⊗X,Y ) ∼= MorC(C,HomE(X,Y ))
(so E is naturally an enriched category over C).

Throughout this paper we will deal with symmetric monoidal categories equipped
with a model structure. We assume that the reader is familiar with the basics of
model categories. We refer to to Hirschhorn [52] and Hovey [51] for a compre-
hensive treatment of homotopical algebra. We just recall the axioms of symmetric
monoidal model categories formalizing the interplay between the tensor and the
model structures (in a word, these conditions ensure that the tensor product forms
a Quillen bifunctor). From the point of view of∞-categories, if a model category is
equipped with a compatible symmetric monoidal structure (that is, satisfying the
conditions below), then its associated ∞-category is symmetric monoidal as well
(as an ∞-category).

Definition 7.2. (1) A symmetric monoidal model category is a symmetric monoidal
category C equipped with a model category structure such that the following axioms
holds:

MM0. For any cofibrant object X of C, the map Q1C ⊗ X → 1C ⊗ X ∼= X
induced by a cofibrant resolution Q1C → 1C of the unit 1C is a weak equivalence.

MM1. The pushout-product (i∗, j∗) : A⊗D⊕A⊗CB⊗C → B⊗D of cofibrations
i : A ↣ B and j : C ↣ D is a cofibration which is also acyclic as soon as i or j is
so.

(2) Suppose that C is a symmetric monoidal model category. A symmetric
monoidal category E over C is a symmetric monoidal model category over C if
the axiom MM1 holds for both the internal and external tensor products of E .

Example 7.3. The usual projective model category ChK of unbounded chain com-
plexes over a field K forms a symmetric monoidal model category.

A useful property of the pushout-product axiom MM1 is that it is equivalent to
the following standard dual version:

Lemma 7.4. (cf. [51, Lemma 4.2.2]) In a symmetric monoidal model category C,
the axiom MM1 is equivalent to the following one:

MM1’. The morphism
(i∗, p∗) : HomC(B,X)→ HomC(A,X)×HomC(A,Y ) HomC(B, Y )

induced by a cofibration i : A ↣ B and a fibration p : X ↠ Y is a fibration in C
which is also acyclic as soon as i or p is so.

7.2. Props, properads and their algebras. Props generalize operads, so that
algebras over props can be defined by operations with multiple outputs, contrary
to operads which parametrize only operations with one single output. In particu-
lar, they are adapted to the study of bialgebra-like structures. Properads are an
intermediate object between operads and props, which are close enough to operads
in the sense that they are defined, like operads, as monoids in a category of sym-
metric sequences (contrary to props), but are sufficient to encode many interesting
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bialgebra-like structures. One of the key feature of properads is that, contrary to
props, there is a good theory of bar-cobar constructions and Koszul duality for
them, allowing to get explicit resolutions in deformation theory of algebraic struc-
tures. We detail some of these ideas below.

7.2.1. Props and their algebras. Let C be a symmetric monoidal category. A Σ-
biobject is a double sequence {M(m,n) ∈ C}(m,n)∈N2 where each M(m,n) is
equipped with a right action of Σm and a left action of Σn commuting with each
other. We write CS for the category of Σ-biobjects in C.

Definition 7.5. A prop is a Σ-biobject endowed with associative horizontal com-
position products

◦h : P (m1, n1)⊗ P (m2, n2)→ P (m1 +m2, n1 + n2),

associative vertical composition products

◦v : P (k, n)⊗ P (m, k)→ P (m,n)

and units 1→ P (n, n) which are neutral for ◦v. These products satisfy the exchange
law

(f1 ◦h f2) ◦v (g1 ◦h g2) = (f1 ◦v g1) ◦h (f2 ◦v g2)
and are compatible with the actions of symmetric groups. The elements of P (m,n)
are said to be of arity (m,n).

Morphisms of props are equivariant morphisms of collections compatible with
the composition products.

There is a functorial free prop construction F leading to an adjunction

F : CS ⇄ Prop : U

where U is the forgetful functor. As for operads, there is a notion of ideal in a
prop, so that one can define a prop by generators and relations. This approach is
particularly useful considering the definition of algebras over a prop:

Definition 7.6. (1) To any object X of C we can associate an endomorphism prop
EndX defined by

EndX(m,n) = HomC(X⊗m, X⊗n).
(2) A P -algebra is an object X ∈ C equipped with a prop morphism P → EndX .

Operations of P are sent to operations on tensor powers of X, and the com-
patibility of a prop morphism with composition products on both sides impose the
relations that such operations satisfy. This means that given a presentation of a
prop P by generators and relations, the P -algebra structure on X is determined
by the images of these generators and their relations. Let us give some motivating
examples related to our article:

Example 7.7. A differential graded associative and coassociative bialgebra is a
triple (B,µ,∆) such that:

(i) (B,µ) is a dg associative algebra;
(ii) (B,∆) is a dg coassociative coalgebra;
(iii) the map ∆ : B → B⊗B is a morphism of algebras and the map µ : B⊗B →

B is a morphism of coalgebras.
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The prop Bialg of associative-coassocative bialgebras is generated by two degree
zero operations , one generator of arity (2, 1) and one generator of arity (1, 2), which
corresponds to the operations µ and ∆ above wether one specifies a prop morphism
Bialg → EndB . It is quotiented by the ideal generated the associativity relation,
the coassociativity relation, and the compatibility relation describing the condition
(iii) above.

In the unitary and counitary case, one adds a generator for the unit, a generator
for the counit and the necessary compatibility relations with the product and the
coproduct.

Example 7.8. Lie bialgebras originate from mathematical physics, in the study
of integrable systems whose gauge groups are not only Lie groups but Poisson-Lie
groups, see the seminal work of Drinfeld [17].

A differential graded Lie bialgebra is a triple (g, [, ], δ) such that:
(i) (g, [, ]) is a dg Lie algebra;
(ii) (g, δ) is a dg Lie coalgebra;
(iii) the cocycle relation : the coLie cobracket of a Lie bialgebra g is a cocycle in

the Chevalley-Eilenberg complex C∗
CE(g,Λ2g), where Λ2g is equipped with

the structure of g-module induced by the adjoint action.
The prop BiLie encoding Lie bialgebras is generated by one generator of arity (2, 1)
and one generator of arity (1, 2), both of degree zero, and with the signature action
of Σ2 (that is, they are antisymmetric). It is quotiented by the ideal generated by
the Jacobi relation, the co-Jacobi relation, and the cocycle relation.

We can also define a P -algebra in a symmetric monoidal category over C:

Definition 7.9. Let E be a symmetric monoidal category over C.
(1) The endomorphism prop ofX ∈ E is given by EndX(m,n) = HomE(X⊗m, X⊗n)

where HomE(−,−) is the external hom bifunctor of E .
(2) Let P be a prop in C. A P -algebra in E is an object X ∈ E equipped with a

prop morphism P → EndX .

This definition will be useful, for instance, in the case where P is a dg prop (a
prop in ChK) but algebras over P lie in a symmetric monoidal category over ChK.

To conclude, props enjoy nice homotopical properties. Indeed, the category of
Σ-biobjects CS is a diagram category over C, so it inherits the usual projective model
structure of diagrams, which can be transferred along the free-forgetful adjunction:

Theorem 7.10. (cf. [33, Theorem 5.5]) The category of dg props Prop equipped
with the classes of componentwise weak equivalences and componentwise fibrations
forms a cofibrantly generated model category.

7.2.2. Properads. Composing operations of two Σ-biobjects M and N amounts to
consider 2-levelled directed graphs (with no loops) with the first level indexed by
operations of M and the second level by operations of N . Vertical composition by
grafting and horizontal composition by concatenation allows one to define props as
before. The idea of properads is to mimick the construction of operads as monoids
in Σ-objects, by restricting the vertical composition product to connected graphs.
The unit for this connected composition product ⊠c is the Σ-biobject I given by
I(1, 1) = K and I(m,n) = 0 otherwise. The category of Σ-biobjects then forms a
symmetric monoidal category (ChSK,⊠c, I).
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Definition 7.11. A dg properad (P, µ, η) is a monoid in (ChSK,⊠c, I), where µ
denotes the product and η the unit. It is augmented if there exists a morphism of
properads ϵ : P → I. In this case, there is a canonical isomorphism P ∼= I ⊕ P
where P = ker(ϵ) is called the augmentation ideal of P .

Morphisms of properads are morphisms of monoids in (ChSK,⊠c, I).

Properads have also their dual notion, namely coproperads:

Definition 7.12. A dg coproperad (C,∆, ϵ) is a comonoid in (ChSK,⊠c, I).

As in the prop case, there exists a free properad functor F forming an adjunction

F : ChSK ⇄ Properad : U

with U the forgetful functor [94]. Dually, there exists a cofree coproperad functor
denoted Fc(−) having the same underlying Σ-biobject. This adjunction equips dg
properads with a cofibrantly generated model category structure with component-
wise fibrations and weak equivalences [73]. The notion of algebra over a properad
is similar to algebra over a prop since the endomorphism prop restricts to an endo-
morphism properad. Moreover, properads also form a model category for the same
reasons as props:

Theorem 7.13. (cf. [73, Appendix A]) The category of dg props Prop equipped
with the classes of componentwise weak equivalences and componentwise fibrations
forms a cofibrantly generated model category.

Properads are general enough to encode a wide range of bialgebra structures
such as associative and coassociative bialgebras, Lie bialgebras, Poisson bialgebras,
Frobenius bialgebras for instance.

7.3. Algebras and coalgebras over operads. Operads are used to parametrize
various kind of algebraic structures consisting of operations with one single output.
Fundamental examples of operads include the operad As encoding associative alge-
bras, the operad Com of commutative algebras, the operad Lie of Lie algebras and
the operad Pois of Poisson algebras. Dg operads form a model category with bar-
cobar resolutions and Koszul duality [63]. An algebra X over a dg operad P can be
defined in any symmetric monoidal category E over ChK, alternatively as an algebra
over the corresponding monad P (−) : ChK → ChK, which forms the free P -algebra
functor, or as an operad morphism P → EndX where EndX(n) = HomE(X⊗n, X)
and HomE is the external hom bifunctor.

Remark 7.14. There is a free functor from operads to props, so that algebras over
an operad are exactly the algebras over the corresponding prop. Hence algebras
over props include algebras over operads as particular cases.

Dual to operads is the notion of cooperad, defined as a comonoid in the cate-
gory of Σ-objects. A coalgebra over a cooperad is a coalgebra over the associated
comonad. We can go from operads to cooperads and vice-versa by dualization.
Indeed, if C is a cooperad, then the Σ-module P defined by P (n) = C(n)∗ =
HomK(C(n),K) form an operad. Conversely, suppose that K is of characteristic
zero and P is an operad such that each P (n) is finite dimensional. Then the P (n)∗

form a cooperad in the sense of [63]. We also give the definition of coalgebras over
an operad:
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Definition 7.15. (1) Let P be an operad. A P -coalgebra is a complex C equiped
with linear applications ρn : P (n) ⊗ C → C⊗n for every n ≥ 0. These maps are
Σn-equivariant and associative with respect to the operadic compositions.

(2) Each p ∈ P (n) gives rise to a cooperation p∗ : C → C⊗n. The coalgebra
C is usually said to be conilpotent if for each c ∈ C, there exists N ∈ N so that
p∗(c) = 0 when we have p ∈ P (n) with n > N .

If K is a field of characteristic zero and the P (n) are finite dimensional, then
it is equivalent to define a P -coalgebra via a family of applications ρn : C →
P (n)∗ ⊗Σn C

⊗n.

7.4. Homotopy algebras. Given a prop, properad or operad P , a homotopy P -
algebra, or P -algebra up to homotopy, is an algebra for which the relations are
relaxed up to a coherent system of higher homotopies. this is encoded by

Definition 7.16. A homotopy P -algebra is an algebra over a cofibrant resolution
P∞ of P .

To make this definition meaningful, one has to prove that the notion of homotopy
P -algebra does not depend (up to homotopy) on a choice of resolution:

Theorem 7.17. (cf. [98]) A weak equivalence of cofibrant dg props P∞
∼→ Q∞

induces an equivalence of the corresponding ∞-categories of algebras
P∞ −Alg[W−1

qiso]
∼→ Q∞ −Alg[W−1

qiso],

where P∞ − Alg[W−1
qiso] denotes the ∞-categorical localization of P∞ − Alg with

respect to its subcategory of quasi-isomorphisms.

Remark 7.18. Properads have a well defined theory of bar-cobar constructions and
Koszul duality [94], which allows to produce explicit cofibrant resolutions of prop-
erads. The bar-cobar resolution is a functorial cofibrant resolution but of a rather
big size, whereas the resolution obtained from the Koszul dual (when P is Koszul)
is not functorial but smaller and better suited for computations.

These resolutions are of the form P∞ = (F(V ), ∂) where ∂ is a differential
obtained by summing the differential induced by the Σ-biobject V with a certain
derivation. To sum up, for a (pr)operad, one can always choose a homotopy P -
algebra to be an algebra over a quasi-free resolution of P , in which the generators
give the system of higher homotopies and the relations defining a strict P -algebra
become coboundaries.

7.5. Homotopy theory of cdgas and their modules. Before getting to the
heart of the subject, let us precise that, as usual in deformation theory and (derived)
algebraic geometry, the commutative differential algebras (cdga for short) that we
consider here are unital. That is, we consider the category of unital commutative
monoids in the symmetric monoidal model category ChK and note it CDGAK. Such
monoids enjoy many useful homotopical properties, as they form a homotopical
algebra context in the sense of [89, Definition 1.0.1.11]. We will not list all the
properties satisfied by cdgas, but here is a non-exhaustive one that will be useful
in this article:

(1) The category CDGAK forms a cofibrantly generated model category with
fibrations and weak equivalences being the degreewise surjections and quasi-
isomorphisms.
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(2) Given a cdga A, its category of dg A-modules ModA forms a cofibrantly
generated symmetric monoidal model category. The model structure is,
again, right induced by the forgetful functor, and the tensor product is
given by −⊗A −. In particular, we have a Quillen adjunction

(−)⊗A : ChK ⇆ModA : U
with a strong monoidal left adjoint (hence lax monoidal right adjoint). The
unit η of this adjunction is defined, for any complex X, by

η(X) : X → X ⊗A
x 7−→ x⊗ 1A

where 1A is the unit element of A (the image of 1K by the unit map of A).
(3) Base changes are compatible with the homotopy theory of modules. Pre-

cisely, a morphism of cdgas f : A→ B induces a Quillen adjunction
f! : ModA ⇆ModB : f∗

where f∗ equip a B-module with the A-module structure induced by the
morphism f and f! = (−) ⊗A B. Moreover, if f is a quasi-isomorphism of
cdgas then this adjunction becomes a Quillen equivalence.

(4) The category of augmented cdgas CDGAaugK is the category under K asso-
ciated to CDGAK, so it forms also a cofibrantly generated model category.
Moreover, this model category is pointed with K as initial and terminal ob-
ject, so that one can alternately call them pointed cdgas. Let us note also
that augmented unital cdgas are equivalent to non-unital cdgas CDGAnuK
via the Quillen equivalence

(−)+ : CDGAnuK ⇆ CDGAaugK : (−)−

where A+ = A⊕K for A ∈ CDGAnuK and A− is the kernel of the augmen-
tation map of A for A ∈ CDGAaugK .

Example 7.19. There is a simplicial cdga called the Sullivan cdga of polynomial
forms on the standard simplices. It is given by

(7.1) Ωn := Sym

(
n⊕
i=0

(
Kti ⊕Kdti

))
/(

t0 + · · ·+ tn = 1
dt0 + · · ·+ dtn = 0

)
which is the algebra of piecewise linear forms on the standard simplex ∆n, the
differential being defined, on the generators, by d(ti) = dti. The simplicial structure
is induced by the cosimplicial structure of n 7→ ∆n, see [84] for details.

This cdga and its modules will be essential when considering formal moduli
problems and simplicial resolutions in the core of the paper.

For any cdga A, the category ModA of left dg A-modules is a (cofibrantly gener-
ated) symmetric monoidal model category tensored over chain complexes. There-
fore one can define the category P∞ − Alg(ModA) of P∞-algebras in ModA, for
any cofibrant prop P∞ as in section 7.4 and Theorem 7.17 extends to this context.

An important subcategory of augmented cdgas is the one of artinian algebras,
which are the coaffine formal moduli problems.
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Definition 7.20. An augmented cdga A is Artinian if
• its cohomology groups Hn(A) vanish for n > 0 and for n << 0, and each

of them is finite dimensional over k;
• the (commutative) ring H0(A) is artinian in the standard meaning of com-

mutative algebra.
We denote dgArtaugK the full subcategory of CDGAaugK of Artinian cdgas.

7.6. Relative categories versus∞-categories. There are many equivalent ways
to model ∞-categories. Precisely, there are several Quillen equivalent models for
∞-categories we can choose to work with [7], for instance quasi-categories [68],
complete Segal spaces [82], simplicial categories [6], or relative categories [3, 4]. In
this paper, it will often be convenient to consider ∞-functors which are associated
to “naive” functors, provided-of course-that they preserve weak equivalences. This
is not necessarily posible to do that in a straightforward naive way depending on the
model chosen for∞-categories. Therefore, here, we choose to work in the homotopy
theory of relative categories as developed recently by Barwick-Kan [3, 4]. This
will allow us to define more easily ∞-functors starting from classical constructions,
instead of going through, for instance, the cartesian fibration/opfibration formalism
of [68]. For the sake of clarity, we start by recalling the main features of this theory
and refer to [3, 4] for more details. Then we state some technical lemmas that will
help us to go from equivalences of relative categories to equivalences of∞-categories.

7.6.1. ∞-categories associated to relative categories or model categories. We now
recall and compare various standard ways to construct ∞-categories.

Definition 7.21. A relative category is a pair of categories (C,WC) such that WC
is a subcategory of C containing all the objects of C. We call WC the category of
weak equivalences of C. A relative functor between two relative categories (C,WC)
and (D,WD) is a functor F : C → D such that F (WC) ⊂WD.

We note RelCat the category of relative categories and relative functors. By
Theorem 6.1 of [3], there is an adjunction between the category of bisimplicial sets
and the category of relative categories

Kξ : sSets∆op

⇆ RelCat : Nξ
(where Kξ is the left adjoint and Nξ the right adjoint) which lifts any Bousfield
localization of the Reedy model structure of bisimplicial sets into a model structure
on RelCat. In the particular case of the Bousfield localization defining the complete
Segal spaces [82], one obtains a Quillen equivalent homotopy theory of the homotopy
theories in RelCat [3]. In particular, a morphism of relative categories is a weak
equivalence if and only if its image under Nξ is a weak equivalence of complete Segal
spaces. We refer the reader to Section 5.3 of [3] for the definition of the functor Nξ.
Let us just mention that it is weekly equivalent to the classifying diagram functor
N defined in [82], which is a key tool to construct complete Segal spaces.

A simplicial category is a category enriched over simplicial sets. We denote by
SCat the category of simplicial categories. There exists functorial cosimplicial res-
olutions and simplicial resolutions in any model category ([21],[52]), so model cat-
egories provide examples of (weakly) simplicially enriched categories. One recovers
the morphisms of the homotopy category from a cofibrant object to a fibrant object
by taking the set of connected components of the corresponding simplicial mapping
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space. Another more general example is the simplicial localization developed by
Dwyer and Kan [19]. To any relative category Dwyer and Kan associates a simplicial
category L(C,WC) called its simplicial localization. They developed also another
simplicial localization, the hammock localization LH(C,WC) [20]. By taking the
sets of connected components of the mapping spaces, we get π0L(C,WC) ∼= C[W−1

C ]
where C[W−1

C ] is the localization of C with respect to WC (i.e. the homotopy cat-
egory of (C,WC)). The simplicial and hammock localizations are equivalent in the
following sense:
Proposition 7.22. (Dwyer-Kan [20], Proposition 2.2) Let (C,WC) be a relative
category. There is a zigzag of Dwyer-Kan equivalences

LH(C,WC)← diagLH(F∗C, F∗WC)→ L(C,WC)
where F∗C is a simplicial category called the standard resolution of C (see [19]
Section 2.5).

Let us precise the definition of Dwyer-Kan equivalences:
Definition 7.23. Let C and D be two simplicial categories. A functor F : C →
D is a Dwyer-Kan equivalence if it induces weak equivalences of simplicial sets
MapC(X,Y ) ∼→MapD(FX,FY ) for every X,Y ∈ C, as well as inducing an equiv-
alence of categories π0C

∼→ π0D.
Let us compile some useful results: first, every Quillen equivalence of model cate-

gories gives rise to a Dwyer-Kan equivalence of their simplicial localizations, as well
as a Dwyer-Kan equivalence of their hammock localizations (see [21] Proposition
5.4 in the case of simplicial model categories and [50] in the general case). By The-
orem 1.1 of [6], there exists a model category structure on the category of (small)
simplicial categories with the Dwyer-Kan equivalences as weak equivalences. Every
simplicial category is Dwyer-Kan equivalent to the simplicial localization of a cer-
tain relative category (see for instance [4], Theorem 1.7) and the associated model
structure is also a homotopy theory of homotopy theories. The Reedy weak equiva-
lences between two complete Segal spaces are precisely the Dwyer-Kan equivalences
between their associated homotopy theories (Theorem 7.2 of [82]).

Therefore the ∞-category associated to a relative category is thus, equivalently,
the ∞-category associated to its simplicial localization or the ∞-category associ-
ated to its corresponding complete Segal space. The same construction applies to
turn relative functors into ∞-functors. Moreover, it can be made functorial. For
instance, given a relative category (C,WC), the associated quasi-category is given
by the composite NcohL

H(C,WC)f , where LH(−) is the Dwyer-Kan localization
functor, (−)f is a functorial fibrant resolution in the Bergner model structure [6],
and Ncoh is the coherent nerve. In the following, given a relative category (M,W ),
where W is the subcategory of weak equivalences, we will denote by M [W−1] its
∞-categorical localization.

7.6.2. From relative categories to homotopy automorphisms. We collect two useful
lemmas to obtain equivalences between ∞-categories of algebras, and see under
which conditions they induce equivalences between the formal moduli problems
controlling deformations of such algebras:
Lemma 7.24. Let F : (C,WC) ⇄ (D,WD) : G be an adjunction of relative cat-
egories (that is, the functors F and G preserves weak equivalences) such that the
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unit and counit of this adjunction are pointwise weak equivalences. Then F induces
an equivalence of ∞-categories with inverse G.

Proof. Let us denote by RelCat the category of relative categories. The objects
are the relative categories and the morphisms are the relative functors, that is, the
functors restricting to functors between the categories of weak equivalences. By [3,
Theorem 6.1], there is an adjunction between the category of bisimplicial sets and
the category of relative categories

Kξ : sSets∆op

⇆ RelCat : Nξ
(where Kξ is the left adjoint and Nξ the right adjoint) which lifts any Bousfield
localization of the Reedy model structure of bisimplicial sets into a model structure
on RelCat. In the particular case of the Bousfield localization defining the model
category CSS of complete Segal spaces [82, Theorem 7.2], one obtains a Quillen
equivalent homotopy theory of ∞-categories in RelCat [3].

As recalled in 7.6.1, a way to build the ∞-category associated to a relative cate-
gory (C,WC) is to take a functorial fibrant resolution Nξ(C,WC)f of the bisimplicial
set Nξ(C,WC) in CSS to get a complete Segal space. So we want to prove that
NξF

f is a weak equivalence of CSS. For this, let us note first that the assumption
on the adjunction between F and G implies that F is a strict homotopy equiva-
lence in RelCat in the sense of [3]. By [3, Proposition 7.5 (iii)], the functor Nξ
preserves homotopy equivalences, so NξF is a homotopy equivalence of bisimpli-
cial sets, hence a Reedy weak equivalence. Since CSS is a Bousfield localization
of the Reedy model structure on bisimplicial sets, Reedy weak equivalences are
weak equivalences in CSS, then by applying the fibrant resolution functor (−)f we
conclude that NξF f is a weak equivalence of complete Segal spaces. □

In the formalism of Dwyer-Kan’s hammock localization, an equivalence of sim-
plicial categories F : C → D satisfies in particular the following property: for every
two objects X and Y of C, it induces a weak equivalence of simplicial mapping
spaces

LH(C,WC)(X,Y ) ∼→ LH(D,WD)(F (X), F (Y )).
(in particular, the associated functor Ho(F ) at the level of homotopy categories
is an equivalence). We would like this weak equivalence to restrict at the level of
homotopy automorphisms:

Lemma 7.25. Let F : (C,WC) ⇄ (D,WD) : G be an adjunction of relative cate-
gories satisfying the assumptions of Lemma 7.24. Then the restriction of F to the
subcategories of weak equivalences

wF : WC →WD

is an equivalence of simplicial localizations (actually an equivalence of∞-groupoids)
inducing a weak equivalence of homotopy automorphisms

LHWC(X,X) ∼→ LHWD(F (X), F (X)),
where LHWC is Dwyer-Kan’s hammock localization of WC with respect to itself.

Proof. This adjunction of relative categories induces, by Lemma 7.24, an equiva-
lence of simplicial localizations between LH(C,WC) and LH(D,WD). By construc-
tion, this implies that the simplicial categories LHWC and LHWD are equivalent
as well. Alternately, one could say that an equivalence of ∞-categories induce an
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equivalence of the associated ∞-groupoids of weak equivalences. By definition of
an equivalence of simplicial categories, we get the desired equivalence between the
simplicial mapping spaces of LHWC and their images under F in LHWD (that is,
an equivalence of homotopy automorphisms). □
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