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Abstract

A Goldman bracket for oriented differentiable stacks of dimension 2
was defined in our previous paper, using string topology techniques. Here
we specialized to the case of 2-dimensional orbifolds. We construct a
stack analogue of the character variety, which has a symplectic (or Pois-
son) coarse moduli space and then construct a Lie algebra homomor-
phism from the Goldman Lie algebra to its function for orbifolds. We also
prove that for orbifolds obtained as a quotient of the hyperbolic plane
by a Fuchsian group, our Goldman bracket agrees with Chas-Gadgil ones
and as a corollary one obtains that the Goldman Lie bracket of orbifolds
encodes the geometric intersection numbers of the orbifold. Finally we
construct a Chas-Sullivan type generalization of Goldman Lie algebra of
unoriented curves for all oriented stacks (in particular manifolds) and ex-
tend Goldman Lie algebra homomorphism for unoriented curves to the
case of surface orbifolds. Our main tool is the naturality of Chas-Sullivan
construction with respect to embeddings.

Contents

1 Background on stacks 6

1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Group actions on stacks . . . . . . . . . . . . . . . . . . . . . . . 7

2 The generalized Goldman Lie algebra of an oriented differen-
tiable stack 8

3 Relation with Chas-Gadgil bracket 9

3.1 Recall on Fuchsian groups . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Chas-Gadgil Lie bracket . . . . . . . . . . . . . . . . . . . . . . . 10

∗Sorbonne Universités, UPMC Univ Paris 06, Institut de Mathématiques de Jussieu-Paris
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Introduction

Goldman Lie algebra [Go1] is a beautiful and intriguing structure found in
the eighties on linear combinations of (free homotopy classes of) curves in an
oriented surface. It combines the usual composition of loops with the same
base point with the intersection product inside the surface. This Lie algebra
relates deeply the topology of surface and combinatorics of curves on it with
representation theory, precisely the symplectic structure of character varieties
Hom(π1(Σ), G)/G (which also describes the moduli space of flat connections on
G-bundles over Σ).

Later, in their seminal work on string topology, Chas-Sullivan [ChSu] gen-
eralized the Goldman bracket (for oriented curves) to all oriented manifolds
and in all homological degrees. Precisely, they proved that the S1-equivariant
homology HS1

∗ (LM) of the free loop space LM = Map(S1,M) of an oriented
manifold has a Lie bracket of degree 2−dim(M) which, in degree 0 for M = Σ a
surface, is precisely the Goldman bracket. This result is obtained by mixing the
Batalin-Vilkovisky algebra structure of H∗(LM)[dim(M)] discovered by Chas-
Sullivan with the Gysin sequence in equivariant homology. An interpretation of
the even part of this Lie algebra for even dimensional manifolds in terms of the
symplectic structure of moduli space of flat connections was studied in [AZ].

In [GiNo], we generalized Chas-Sullivan Lie algebra to the case of arbitrary
oriented (differentiable) stacks, building on our work [BGNX] on operations for
(co)homology of topological stacks and string topology for stacks. In particular,

for a stack of dimension 2, the degree 0 equivariant homology HS1

0 (LX) is a Lie
algebra which we call Goldman Lie algebra of X. The primary goal of this paper
is to study the Goldman algebra for dimension 2 orbifolds as well as its relation
with character varieties. Our strategy is to take advantage of the particularly
simple form of surface orbifolds as well as the functoriality of Goldman Lie
algebra of a stack with respect to open embeddings that we proved in [GiNo]
(and is recalled in Proposition 2.2). A nice feature of surface orbifolds is that
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one can study this bracket in terms of geometry of the coarse moduli space
and simple group theoretic argument. Further, the bracket can be studied in
terms of immersed curves on the moduli space away of the orbifold locus which
provides a rather geometric understanding of the structure.

At the same time as our preprint [GiNo], Chas-Gadgil [ChGa] have also
defined a generalization of Goldman bracket for specific orbifolds obtained as
quotient [G\H] of the hyperbolic plane by a Fuchsian group G (in particular
these orbifolds are reductive). Their definition is very different from ours and
defined purely in group theoretic terms taking somehow advantage of the simple
connexity of H. We proved in Section 2 (see Theorem 3.2 for a more precise
statement) that our bracket is isomorphic with Chas-Gadgil ones.

Theorem 0.1 The Chas-Gadgil Lie algebra of [G\H] is canonically isomorphic

to the Lie algebra on HS1

0 (L[G\H]) given by the Chas-Sullivan type construction
from [GiNo].

Chas-Gadgil construction was in fact motivated by the study of intersection
of immersed curves in a surface, for which Goldman bracket is a very useful tool.
In fact, Goldman already showed in his original paper [Go2] that, for homotopy
classes of loops, one of which having a simple representative, vanishing of the
bracket was equivalent to the curves admitting disjoint representatives. This is
one instance of the fact that the Goldman bracket does reflect very accurately
the geometric intersection of free loops, that is the minimal number of inter-
sections between representatives. In their recent preprint, Chas-Gadgil [ChGa]
proved that the geometric intersection of curves is indeed given by the number
of terms (with multiplicities) in the Goldman bracket (asymptotically). Using
Chas-Gadgil result, the previous theorem and the fact that there is an epimor-
phism of Lie algebras from the Goldman Lie algebra of the complement U of the
orbifold locus onto the one of X, we proved that the main result of [ChGa] also
holds for all (non-necessarily reduced) oriented 2-dimensional orbifolds.

Theorem 0.2 The geometric intersection number of two curves α and β in X
is equal to the number of terms (counted with multiplicities) of the Goldman

bracket
1

pq
[αp, βq] for all but finitely many q 6= pc.

A similar statement holds for self-intersection of a curve (Theorem 4.5).

One of the main motivation behind Goldman discovery of the bracket on free
homotopy classes of curves was the study of the Poisson bracket of character
variety. For an oriented surface Σ and algebraic group G, the character variety
χΣ,G is the quotient space of Hom(π1(Σ), G) by the adjoint action of G and can
be identified with the coarse moduli space of flat connections on a G-principal
bundle P over Σ. The (smooth part) of character varieties carries an important
symplectic (or Poisson if the surface is not closed) structure (see [Go1, Au, BiGu]
for instance).
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One of the main result of Goldman [Go1] is that this symplectic structure in
the case of classical matrix Lie groups can be studied in terms of the Goldman
Lie algebra of curves. More precisely, Goldman proved that if G = GLn(K)
(seen as a subgroup of GLn·dim(K)(R) in the standard way), the the Trace

Tr : GLn(K) ⊂ GLn·dim(K)(R)→ R

induces a Lie algebra homomorphism

Tr∗([α]) =
(
ϕ 7→ Tr

(
ϕ(α)

))
(0.1)

from the Goldman Lie algebra to the (Poisson algebra of) functions OχΣ,G
on

the character variety.
We generalize this result for orbifolds as follows. First, we define in Sec-

tion 5 a smooth stack ChY,G of flat connection on principal G-bundles over an
arbitrary differentiable stack Y. Then we define the character variety χY,G of
the stack Y to be the coarse moduli space of ChY,G. We prove that for an
orbifold, this stack inherits a symplectic (or Poisson) structure. The restriction
to orbifolds is crucial for the following reason: orbifolds are differentiable stacks
X whose tangent and cotangent complexes are actually vector bundles over X.
In particular, forms on on orbifold can be described simply in terms of invariant
one forms on an atlas of the orbifold. This allows to essentially define symplec-
tic orbifold as a kind of equivariant notion of the usual definition see [LeMa].
Studying symplectic structures for general differentiable stack1 seems to require
to work in a broader (and much more complicated) context of derived geometry
differentiable stacks. With that input, we prove that Goldman trace maps is
well-defined for orbifolds as well and we prove

Theorem 0.3 Let Y be a connected oriented effective orbifold of dimension 2
and G = GLn(K) (with K = R,C, or H). The map Tr∗ : HS1

0 (LY,Z)→ OχY,G

is a Lie algebra homomorphism.

The above trace map from the Goldman Lie algebra for surfaces is, however,
not a Lie algebra homomorphism for other groups, for instance for orthogonal
groups and in particular does not capture interesting bracket of the Poisson
structure of the character variety. To accommodate the important orthogonal
group case, Goldman in his seminal paper [Go2] also defines a Lie algebra struc-
ture on the linear combinations of (free homotopy classes of) unoriented curves
(but still in an oriented surface), which is the quotient of the of H0(LM) by the
Z/2Z action reversing orientation of loops. Goldman proves that one can also
define a Lie algebra structure on the free module, denoted Zπ, of unoriented
strings, by setting

{α, β} :=
∑

p∈αtβ

sign(p)
(
α •p β − α •p β−1

)
1not to be mistaken with symplectic groupoids
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where p runs through (transverse) intersection points; the sign is the one of the
intersection of the curves, and α •p β means the composition of the loops α and
β based at p.

Goldman then proved that the above trace map induces on the quotient
a well-defined Lie algebras homomorphism from Zπ to the functions on the
character variety associated to an orthogonal or spin group.

From the point of view of equivariant homology, one can see the underlying

module Zπ as the O(2)-equivariant homology H
O(2)
0 (LM) with respect to the

O(2)-action on the loops. This raises the question of defining a Chas-Sullivan
type generalization of the unoriented Goldman Lie algebras for all oriented
manifolds, orbifolds or even general differentiable stacks.

We prove (Theorem 6.1) that the BV-algebra structure on the homology
free loop space, combined with transfer homomorphisms we studied in [GiNo],

provides a Lie algebra structure on H
O(2)
∗ (LM)[2− dim(M)].

This result applies to all oriented stacks, and in particular to oriented mani-
folds, for which it is new as far as we know. Though we are primarily interested
in orbifolds, we prove the results for arbitrary stacks since the proof is not harder
in this generality, relying on the machinery of operations in (co)homology which
was established in this general context in [BGNX].

For dimension 2-stacks we thus get a Lie algebra structure on H
O(2)
0 (LX) the

free module generated by unoriented strings. In homological degree 0, we have

further an identification of H
O(2)
0 (LM) with the image p∗(H

S1

0 (LM)) along the
natural projection. We prove that the Lie bracket on unoriented strings can be

refined on all p∗(H
S1

∗ (LX) yielding another Lie algebra (p∗(H
S1

0 (LM), {̃−,−}):

Theorem 0.4 Let X be an oriented manifold, orbifold or differentiable stack

For x, y ∈ p∗
(
HS1

∗ (LX,Z)
)
⊂ HO(2)

∗ (LX,Z) the formula

{̃x, y} := p∗
({
TZ/2Z(x), p−1

∗ (y)
})
,

where p−1
∗ (y) is any pre-image of y by p∗, is well-defined and makes the

(sub)space p∗
(
HS1

∗ (LX,Z)
)
[2− d]) a Lie algebra.

For a 2-dimensional oriented stack, we thus get a Lie algebra structure in
homological degree 0, which we call the Goldman Lie algebra of unoriented
strings.

We relate (see Proposition 6.9) the various Lie algebra structures on

HS1

∗ (LX) and H
O(2)
∗ (LX) and show that the Goldman bracket of unoriented

strings indeed refine the unoriented Chas Sullivan bracket {−,−}O(2). We then
extend the Goldman homomorphim for orthogonal group to surface orbifolds.

Theorem 0.5 Let Y be a connected oriented effective orbifold of dimension 2
and G = On(K), Op,q, Up,q, Spp,q, Spn(R) or Spn(C). The linear map

Tr∗ :
(
H
O(2)
0 (LY,Z), {̃−,−}

)
−→ OχY,G
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is a Lie algebra homomorphism.

Plan of the paper: We recall the (string topology type) definition of the Goldman
algebra for stacks along with its functoriality properties in Section 1, as well as
some basic facts and definitions for stacks. We prove in Section 2 that Chas-
Gadgil Lie bracket is a special case of the Goldman bracket for general orbifolds.
In section 3, we use the functoriality property of the Goldman bracket and Chas-
Gadgil main result to study the geometric intersection of curves on an orbifold.
In section 4, we define the character variety of a stack, its symplectic structure
and extend Goldman homomorphism to orbifolds. In Section 5, we define two
main Lie algebras structures on unoriented strings for all arbitrary stacks (even
though we are motivated by the orbifold case only). We then extend Goldman
homomorphism for orthogonal groups to orbifolds.

Notations. For stacks and group actions we will mostly follow the notation of
[GiNo]. Throughout the paper we will consider (co)homology with coefficients in
k, a commutative unital ring. If G is a group and g ∈ G, we denote gh = hgh−1

its conjugate by h ∈ G. If G, H are Lie groups, we denote Hom(G,H) the space
of group homomorphisms form G to H.

1 Background on stacks

1.1 Generalities

For a quick review of the result on stack in the style that will be used in this
paper we refer the reader to the prequel [GiNo], Sectons 2 and 3. For the
convenience of the reader we very briefly recall some of the main definitions and
facts on stacks.

By a topological stack X we mean a stack, over the Grothendieck site CGTop
of compactly generated topological spaces, that is of the form X ∼= [R\X] for
some topological groupoid [R ⇒ X]. In the case of a differentiable (or Lie)
groupoid, we say that X is a differentiable stack. In particular if a topological
(resp. Lie) group G acts continuously (resp. smoothly) on a space (resp. mani-
fold) X, then we have the topological (resp. differentiable) stack [G\M ] which is
the quotient stack associated to the transformation groupoid X×G⇒ X where
the source and target maps are the projection and the action; the groupoid
structure is induced by the group structure of G. The classifying stack of a
topological group G is defined to be BG := [G\•] where • is a point.

When the groupoid [R ⇒ X] is étale (i.e., the source and target maps are
local homeomorphisms) and the diagonal R → X × X is proper, the stack X
is called an orbifold (or Deligne-Mumford). Every (differentiable) orbifold is
locally of the form [G\Rn], where G is a finite group acting (smoothly) on Rn;
reciprocically one can define orbifolds purely in terms of charts of that type
(see [ALR, Mo]).
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Every stack X (on CGTop) has an associated coarse moduli space, denoted
Xcoarse, together with a map X → Xcoarse which is universal among maps from
X to topological spaces. When X ∼= [G\X] is a quotient stack of a space by
a group action, then the coarse moduli space is simply the orbit space G\X
given by the ordinary quotient. More generally the coarse moduli space of a
topological stack isomorphic to the quotient [R\X] of a topological groupoid is
the quotient space of X by the equivalence relation defined by R.

There are various different ways to define (co)homology of a topological stack.
One can use simplicial resolutions as in [Beh1], classifying space as in [No2], or
singular chains as in [CoNo]. A classifying space X → X is a (necessarily
representable) map X → X from a topological space X which has the property
that its base extension to any topological space T → X is a weak equivalence
XT → T of topological spaces. The weak homotopy type of X (in particular,
its homotopy, homology, and cohomology groups) are defined to be those of
X. It is shown in [No2] that the weak homotopy type is well-defined up to a
unique isomorphism and is functorial in X. Further, classical (co)homological
operations extend to topological stacks [BGNX], in particular to orbifolds. The
notion of orientation of a differentiable stack is a generalization of the definition
of orientation defined in terms of orientation (homology) class of the normal
bundle of the diagonal X → X × X, see [BGNX]. For an orbifold as we mainly
use here, this definition boils down to asking that the transition maps between
the local charts [G\Rn] are orientation preserving (Section 4.1).

For a compact topological space Y , the mapping stack Map(Y,X), which
can in fact be defined for arbitrary stacks Y and X, turns out to be a topo-
logical stack. This is one of the main results of [No1], where it is also shown
that Map(Y,X) has the same weak homotopy type as the usual mapping space
Map(Y,X), where X → X is a classifying space for X. (In fact, the weak equiv-
alence is induced by the natural map Map(Y,X) → Map(Y,X).) The case we
are interested in is Y = S1. In this case, we denote Map(S1,X) by LX and call
it the loop stack of X. By functoriality, there is a natural S1-action on LX (see
Section 1.2 below).

1.2 Group actions on stacks

In [GiNo], we studied (weak) actions of a group on topological (or geometric)
stacks following the work of [Ro]. We proved that if G is a topological (resp.,
Lie) group acting on a topological (resp., differentiable) stack X, then, there is
a topological (resp., differentiable) stack [G\X]. An important class of examples
of G-stacks is obtained as follows. If Y is a compact space with a G-action, and
X a topological stack, then the mapping stack Map(Y,X) inherits a canonical
G-action.

Let Y be a (topological) stack endowed with an action of the Lie group O(2).
Then it inherits a S1 = SO(2)-action and we have a topological stack [S1\Y].

We record the following lemma for future reference.
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Lemma 1.1 Let Y be a (topological) stack endowed with an action of the Lie
group O(2). The group Z/2Z ∼= S1\O(2) acts canonically on [S1\LX] and there
is an natural isomorphism of (topological) stacks

[Z/2Z\[S1\LX]] ∼= [O(2)\LX]

where O(2) acts on LX via its action on S1 ⊂ R2

Proof. it follows from the exact sequence of groups S1 → O(2)→ Z/2Z which
exhibits O(2) as a semi-direct product. �

Example 1.2 The example we are interested in is the free loop stack LX =
Map(S1,X) of a topological stack X. It is endowed with an O(2) action induced
by the action of O(2) on S1 = {z ∈ C, |z| = 1}, see [GiNo] for details (especially
on the induced S1-action on LX). The resulting action of Z/2Z on S1 is given
by z 7→ z. On the free loop space, it simply maps a loop to the same loop but
going backward.

We recall that if X ∼= [G\X] is the quotient stack of a topological group
action on a space, then the (co)homology of X is canonically equivalent to the
G-equivariant (co)homology of X. If the group acts on a stack, then we can
use the homotopy type of the topological quotient stack to define similarly
equivariant (co)homology.

Definition 1.3 ([GiNo]) Let G be a group acting on a stack X. The G-
equivariant homology HHG

∗ (X) (resp. cohomology HHG
∗ (X)) of X is defined

to be the homology (resp. cohomology) of the quotient stack [G\X] :

HG
∗ (X) := H∗([G\X]), H∗G(X) := H∗([G\X]).

2 The generalized Goldman Lie algebra of an
oriented differentiable stack

In this section we quickly recall some basic results about the generalized Gold-
man bracket for a differentiable stack X. We are mainly interested in the case
where X is a 2-dimensional orbifold.

In [BGNX, GiNo], we proved that, if X is a differentiable (or Hurewicz)
oriented stack (for instance an oriented orbifold),

• the shifted homology H∗(LX)[1 − dim(X)] has a canonical structure of
Batalin-Vilkovisky algebra (BV-algebra for short) generalizing Chas-
Sullivan [ChSu] algebra for oriented manifolds;

• the shifted S1-equivariant homology HS1

∗ (LX)[2 − dim(X)] has a canoni-
cal structure of graded Lie algebra generalizing Chas-Sullivan [ChSu] Lie
algebra structure for oriented manifolds.
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Definition 2.1 The Goldman bracket of an oriented 2-dimensional stack X is
the restriction to HS1

0 (LX) of the (degree 0) Lie bracket on HS1

∗ (LX).

If X = Σ is an ordinary surface, the induced structure on HS1

0 (LΣ) ∼=
k[π0(Map(S1,Σ))] is isomorphic to Goldman Lie algebra of free loops. In Sec-
tion 4 we will see an explicit description of the Goldman bracket for general
2-dimensional orbifolds.

The Goldman bracket (and Chas-Sullivan loop product) are both natural
with respect to open embeddings of stacks.

Proposition 2.2 (Proposition 10.3 and Lemma 11.3 in [GiNo]) Let X
be an oriented Hurewicz stack of dimension d, and U ⊆ X be an open sub-
stack. Then, U inherits a natural orientation from X, and the induced map
H∗+d(LU) → H∗+d(LX) is a morphism of BV-algebras. Similarly, the induced

map HS1

∗ (LU)[2− d]→ HS1

∗ (LX)[2− d] is a morphism of graded Lie algebras.

Let X be a 2-dimensional orbifold (not necessarily reduced), and let U ⊆ X be

the complement a finite set of points. The natural map HS1

0 (LU) → HS1

0 (LX)
is a surjective map of Lie algebras.

3 Relation with Chas-Gadgil bracket

An interesting class of examples of (global quotient) 2-dimensional orbifolds is
given by the quotient orbifolds [G\H] of the hyperbolic plane by a Fuchsian
group. This class of examples has been studied by Chas and Gadgil [ChGa] at
the same time as the first version of our work. Their approach and definition
of the Goldman bracket for this class of orbifolds uses in an explicit way the
combinatorics of Fuchsian groups. Below we briefly recall their definition.

3.1 Recall on Fuchsian groups

By a Fuchsian group we mean a subgroup G of the group PSL(2,R) of isometries
of the upper half-plane H. We will assume that all our Fuchsian groups are
finitely generated. In this case, [G\H] is an analytic orbifold with finitely many
orbifold points, cusps and removed discs. The orbifold points (respectively, the
cusps, the removed discs) correspond to conjugacy classes of maximal elliptic
(respectively, parabolic, boundary-hyperbolic) subgroups of G. The finiteness
of these is proved in [Bea, Corollary 10.3.3, Theorem 10.3.7].

All such conjugacy classes are cyclic. In the elliptic case they can be identi-
fied (up to conjugation) with the finite cyclic group generated by the loop around
the corresponding orbifold point. In the parabolic (respectively, boundary-
hyperbolic) case, they correspond, up to conjugation, to the infinite cyclic group
generated by the loop around the cusp (respectively, the removed disc).
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3.2 Chas-Gadgil Lie bracket

The underlying abelian group of the Chas-Gadgil construction of the Goldman
algebras of loops on [G\H] is the free abelian group spanned by the set Conj(G),
where Conj(G) denotes the of conjugacy classes of elements in G. The latte can
be canonically identified with the set of free homotopy classes of loops on [G\H].

Let 〈g〉 denote the cyclic subgroup generated by the element g ∈ G.

Definition 3.1 For hyperbolic elements in g, h ∈ G, let

C(g, h) ⊆ 〈g〉\G/〈h〉

be the set of those double cosets 〈g〉b〈h〉 such that Ag∩ tAh 6= ∅ for some (hence
all) t ∈ 〈g〉b〈h〉. Here, Ag stand for the axis of the hyperbolic element g, the
unique geodesic semi-circle joining the two fix points of g. If either of g or h is
not hyperbolic we define C(g, h) to be the empty set.

For conjugacy classes bgc, bhc, Chas and Gadgil define a bracket on
Z[Conj(G)] by the formula,

{bgc, bhc} =
∑

b∈C(g,h)

ι(g, hb)bghbc.

The sign ι(g, hb) in the above formula is +1 if the axes Ag and tAh cross
positively (with respect to the orientation of H) and −1 otherwise. Chas-
Gadgil [ChGa] proved that this bracket is a well-defined Lie bracket on
Z[Conj(G)].

Note that this bracket is also well-defined over any commutative unital ring
k instead of Z. In what follows, we fix such a k, and take all homology groups
to be with coefficients in k.

The main result of this section is that this Lie bracket coincides with the
Goldman bracket of 2-dimensional stacks defined in [GiNo].

Theorem 3.2 Let [G\H] be the orbifold quotient of the hyperbolic plane by a
Fuchsian group G, and let Conj(G) be the set of conjugacy classes of G. There
is a natural isomorphism of Lie algebras(

HS1

0 (L[G\H]), [−,−]
) ∼= (k[Conj(G)], {−,−}

)
,

where the Lie algebra on the left is the one defined in [GiNo] and the one on the
right is the Chas-Gadgil Lie algebra.

First we establish an isomorphism between the underlying k-modules.

Lemma 3.3 The set of free homotopy classes of loops on [G\H] are in a natural
bijection with Conj(G). We have a natural isomorphism

HS1

0 (L[G\H]) ∼= k[Conj(G)].
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Proof. This is an immediate consequence of [GiNo, Lemma 11.1], because
π1[G\H] ∼= G, and the isomorphism is well defined up to conjugation. �

For future reference, we elaborate the above isomorphisms. Since [G\H] is a
global quotient of a manifold by a discrete group, by [BGNX, Proposition 5.9]
we have isomorphisms

L[G\H] ∼=
∐
g∈G

[Pg/G] ∼=
∐

bgc∈Conj(G)

[Pg/Stab(g)],

where Pg := {f : [0, 1]→ H, f(1) = gf(0)} is equipped with the compact-open
topology and G acts pointwise on the paths. Since H is contractible, we have

HS1

0 (L[G\H])
'← H0(L[G\H]) ∼= k[Conj(G)].

The latter isomorphism identifies a conjugacy class x in G with the homology
class of any path f : [0, 1]→ H such that f(0) = gf(1), for any g with x = bgc.

Lemma 3.4 Let α = bgc ∈ Conj(G) ∼= HS1

0 (L[G\H]) be the class of a parabolic

or elliptic element g ∈ G. Then, for all x ∈ HS1

0 (L[G\H]), one has [α, x] = 0.

Proof. In the elliptic case, the loop g is a ghost loop, i.e., it is in the image of
of the inertia group of the corresponding orbifold point. Thus, its free homotopy
class can be made as small as possible in any neighborhood of the given orbifold
point. So, we can arrange that it never meets x. Hence, [α, x] = 0.

We can argue similarly in the parabolic case. In this case, the loop g cor-
responds to a vertex at infinity of the a fundamental domain for G in H, thus
it can be identified with a loop wrapping around the corresponding cusp in the
compactification of (the underlying Riemann surface of) [G\H]. Such a loop
can always be made small enough to avoid x. �

The above lemma also holds in the Goldman algebra
(
k[Conj(G)], {−,−}

)
by definition of the Lie bracket of Chas-Gadgil.

Next we consider the case of hyperbolic elements.

Lemma 3.5 Let α = bgc, β = bhc be conjugacy classes of hyperbolic elements

in G. Then the Goldman bracket in HS1

0 (L[G\H]) is given by the formula

[α, β] =
∑

b∈C(g,h)

ι(g, hb)bghbc.

Here C(g, h) is still the subset of the double coset 〈g〉b〈h〉 of those double cosets
〈g〉b〈h〉 ∈ 〈g〉\G/〈h〉 such that Ag ∩ tAh 6= ∅ for t ∈ 〈g〉b〈h〉. Further the sign
ι(g, hb) is still +1 if the axis Ag and tAh crosses positively (with respect to the
orientation of H) and −1 if not.
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Proof. The class α and β are respectively represented by any geodesic path
τg : [0, 1]→ H, τh : [0, 1]→ H such that τg(1) = g.τg(0), τh(1) = h.τh(0) which
induces well defined loops Ωg, Ωh : S1 → [G\H] on the orbifold. By [ChGa,
Proposition 2.5], we can find such shortest geodesic paths τg, τh, such that Ωg
and Ωy have precisely C(g, h) intersections, transverse and at double points
only.

By [GiNo, Lemma 11.2], the Goldman bracket [α, β] is the image of the
Goldman bracket of Ωg,Ωh] computed in the complement ΣG of the orbifold
locus of [G\H]. We are thus left to counting it for the standard Goldman bracket
on a surface [Go2]. In particular, it is given by the sum

[Ωg,Ωh] :=
∑

P∈Ωg∪Ωh

ε(P )bΩg •P Ωhc

over all intersection points P of Ωg and Ωy, where Ωg •P Ωh is the loop starting
at P , following Ωg back to P and then following Ωh. The sign ε(P ) is +1 if the
tangent vectors of Ωg and Ωh at P forms a direct basis of the oriented surface
ΣG, and −1 otherwise.

Following [S] and [ChGa], we see that the intersections of Ωg and Ωh are
labelled by the set of translates of the geodesic path t.τh such that Ag ∩ tAh 6=
∅. This shows that the composition Ωg •P Ωh is precisely the loop on [G\H],
corresponding to the loop obtained as the class of gtht−1. It is immediate that
the sign of th crossing of Ag and tAh is preciesly ι(g, ht). �

Proof of Theorem 3.2. By Lemma 3.3, we are left to check that the
bracket [α, β] coincides with {α, β} on representatives of conjugacy classes of G.
This is the case if either α or β is non-hyperbolic by Lemma 3.4. We are left to
the case of hyperbolic elements which is the content of Lemma 3.5. �

4 Geometric intersection numbers of loops on
2-dimensional orbifolds

4.1 2-dimensional orbifolds

In this section, we assume that X is a 2-dimensional differentiable orbifold of
finite type with finitely many orbifold points. This means that, locally, X is
isomorphic to a quotient stack [H\R2], where H is a finite group acting on R2

by rotations via a cyclic quotient of H. When this cyclic quotient is non-trivial,
the image of the origin in [H\R2] (or X) is called an orbifold point. We require
that there are finitely many such orbifold points in X. By X being of finite type
we mean that the underlying surface of X, by which we mean the coarse moduli
space of X, is of finite type (i.e., can be compactified by adding finitely many
points, or equivalently, has finitely generated fundamental group). We say that
X is reduced if away from the orbifold locus it is isomorphic to a surface.

We say that X is oriented if the transition maps between orbifold charts are
orientation preserving. Equivalently, the underlying surface of X is oriented.

12



Lemma 4.1 Let X be a 2-dimensional differentiable orbifold, and let X be its
coarse moduli space. Suppose that X is endowed with an analytic structure.
Then, there is a unique analytic structure on X making the moduli map X→ X
analytic.

Proof. By uniqueness, it is enough to prove the statement locally, so we may
assume that X = D is the unit disc, and X = [H\U ], where U is diffeomorphic
to R2 and H = Z/nZ acts by rotations around the origin. We thus have a
smooth branched covering q : U → D which is an Z/nZ-cover away from the
origin. We need to show that there is a unique analytic structure on U making
p analytic.

There is a Z/nZ-equivariant diffeomorphism f : U → D relative to X, as in
the commutative diagram

U
f //

Z/nZ

q

##

D

Z/nZ{{
X = D

and that this diffeomorphism is unique up to the Z/nZ-rotation action on D.
The analytic structure on U that makes f analytic is the sought after analytic
structure that makes q analytic, and this is clearly unique. �

By the above lemma, any oriented 2-dimensional differentiable orbifold X of
finite type with finitely many orbifold points can be endowed with an analytic
structure, hence is isomorphic to a global stack [G\X], where X is H, C or a
weighted projective line P(m,n); see [BeNo]. In the former case, which is the
case we are mainly interested in, we say that X is hyperbolic. In this case, G is
a finitely generated Fuchsian group.

Remark 4.2 In fact, by choosing the analytic structure near the cusps (i.e.,
the puncture points of the underlying surface of X) to be isomorphic to the
punctured disc D\{0} (as opposed to an annulus), we may further assume that
G is a Fuchsian group of the first kind and has finite covolume. But we will not
need this extra assumption in this paper.

A general 2-dimensional orbifold X as above can be realized as an H-gerbe
over a reduced orbifold Xred, for some finite group H; see [BeNo, Proposition
4.6]. The map X → Xred is a weak Serre fibration by [No3, Proposition 4.6].
Therefore, we have an exact sequence

H → π1X→ π1Xred → 1. (4.1)

This sequence is exact on the left when X is hyperbolic (because in this case
Xred is also hyperbolic, so π2Xred is trivial).

Lemma 4.3 Let X be a 2-dimensional orbifold which is an H-gerbe over a
reduced orbifold Xred. Then, the following are equivalent:

13



1) X is of finite type and has finitely many orbifold points;

2) Xred is of finite type and has finitely many orbifold points;

3) π1Xred is finitely generated;

4) π1X is finitely generated.

Proof. The equivalence of (1) and (2) is clear because X and Xred have the
same underlying surface and the same set of orbifold points. The fact that (2)
implies (3) follows from van Kampen, and (3) and (4) are equivalent because of
the exact sequence (4.1). To prove that (3) implies (2), note that, by adding a
few extra punctures, we may assume that Xred is hyperbolic, hence of the form
[G\H] for some finitely generated Fuchsian group G. The claim now follows
from the fact that G has finitely many maximal elliptic and parabolic conjugacy
classes; see Section 3.1. �

4.2 Intersection of free loops on oriented 2-dimensional
orbifolds

We outline a geometric way of defining intersections for free homotopy classes
of loops on a general oriented 2-dimensional orbifold.

Definition 4.4 Let U ⊂ X be the complement of the orbifold locus of a reduced
orbifold X.

• Let α, β be free homotopy classes of loops on X (that is, element of
H0(LX)). The geometric intersection number of α and β is the mini-
mum number of transverse intersections of loops representing α and β
and lying in U.

• The self-intersection number of α is the minimum number of transverse
intersections of a loop representing α and lying in U.

For a general non-reduced orbifold, we first write it as an H-gerbe over a reduced
orbifold Xred. To define the intersection of α and β in U, we simply count
each intersection point x of αred and βred in Ured with multiplicity |H| (since
{x} ×BG {x} is a disjoint union of |H|-many points). Self-intersection of loops
is defined similarly.

The above definition makes sense because, by [GiNo, Lemma 11.3], any loop
α in X can be lifted to U.

For reduced orbifolds of the type [G\H], Chas and Gadgil have proved that
this intersection number is computed stably by the Goldman bracket of powers
of α and β. We now explain how to extend their results to all oriented reduced
orbifolds of dimension 2.

Theorem 4.5 Let X be a 2-dimensional orbifold of finite type and α, β ∈
HS1

0 (LX) be free homotopy classes of loops on X.

14



1. The geometric intersection number of α and β is equal to the number
of non-zero terms (counted with multiplicities) of the Goldman bracket
[αp, βq] divided by pq, for all but finitely many q 6= pc (where c is the ratio
of the translation length of any two hyperbolic elements in U presenting α
and β or 0 if either α or β can be presented by non-hyperbolic elements).

2. If α is simple (that is, not equal to βn for some β), then the self-
intersection number of α is equal to the number of non-zero terms (counted
with multiplicities) of the Goldman bracket [αp, αq] divided by pq, for all
but finitely many q 6= p.

Proof. We may assume that X is connected. The proof of the two statement
are similar, so we only prove the first one.

First, we reduce the claim to the case of a reduced orbifold. An arbitrary
connected 2-dimensional orbifold X of finite type with finitely many orbifold
points can be written as an H-gerbe π : X→ Xred over a reduced orbifold Xred,
where H is a finite group; see Section 4.1. The exact sequence (4.1) gives us the
short exact

1→ H/K → π1X
π∗−→ π1Xred → 1,

where K is the kernel of the map H ∼= π1(BH) → π1(X) induced by π (whose
fibers are isomorphic to the stack BH). There is a map

τ : k[Conj(π1(Xred))]→ k[Conj(π1(X))]

relating the Goldman brackets in Xred and in X which is defined as follows. It
sends the conjugacy class bγc ∈ Conj(π1(Xred)) to

τ(bγc) := |K|
∑
bπ−1
∗ (γ)c,

where |K| is the cardinality of K. By [GiNo, Proposition 11.12], we have

{α, β}X = τ
(
{π∗(α), π∗(β)}Xred

)
,

where the right hand side is the image by τ of the Goldman bracket on Xred.
In particular, the Goldman bracket {α, β}X contains exactly |H|-many times
the number of (non-zero) terms of the Goldman bracket {π∗(α), π∗(β)}Xred

. By
definition of the intersection of loops in an orbifold (Definition 4.4), dividing
both sides of the equality claimed in (i) by |H| reduces the claim to the case of
the reduced orbifold Xred. So, without loss of generality, we may assume that
X is reduced.

For X reduced, the complement U of the orbifold locus is a finite type Rie-
mann surface. By removing a few more points from U, if necessary, we may
assume that U is hyperbolic, i.e., is of the form [G\H] for a finitely generated
Fuchsian group acting freely on H. By Theorem 3.2, the result is now an imme-
diate consequence of the main theorem of Chas and Gadgil [ChGa] (where c is
the ratio of the translation length of the hyperbolic elements presenting α and
β). �
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5 Stacky symplectic character variety and Gold-
man homomorphism for orbifolds

In this section, we generalize Goldman’s Lie algebra map (0.1) to orbifolds.

5.1 Symplectic orbifolds

We recall the definition of a symplectic structure on an orbifold due to Lerman
and Malkin [LeMa]. If the orbifold X is presented by a Lie groupoid X1 ⇒ X0

(with source and target maps denoted s and t, respectively), then the (differen-
tial graded) algebra Ω∗(X) of differential forms on X is isomorphic to

Ω∗(X0)X1 := {ω ∈ Ω∗(X0) | s∗(ω) = t∗(ω)},

the subalgebra of equivariant forms on X0. Let A→ TX0 be the Lie algebroid
of X1 ⇒ X0. Then, the Lie algebra of vector fields on X is isomorphic to the
Lie algebra Γ(TX0/A)X1 of equivariant global sections of the bundle TX0/A
over X0. For a 2-forms ω, its contraction along vector fields gives rise to a
canonical map ρω : Γ(TX) → Ω1(X). The 2-form ω is non-degenerate if ρω is
an isomorphism. A symplectic structure on X is defined to be a closed non-
degenerate 2-form ω ∈ Ω2(X).

5.2 The character stack

First we begin with a general observation. Let π and G be sheaves of group over
a site. We write Mor(π,G) for the sheaf of homomorphisms from π to G. We
define Bi(G, π) to be the stack that assigns to each object T the groupoid of
(G, π)-bimodule whose left G-module structure is principal. That is, an object
in Bi(G, π)(T ) is pair (P, µ), where P → T is a left G-torsor and µ : P ×π → P
is a G-equivariant right action of π on P relative to T .

Proposition 5.1 We have natural equivalences of stacks

Map(Bπ,BG) ∼= Bi(G, π) ∼= [G\Mor(π,G)],

were G acts on Mor(π,G) by left conjugation on the target.

Proof. To prove the equivalence Map(Bπ,BG) ∼= Bi(G, π) we exhibit a nat-
ural equivalence between the groupoid of T -points,

Map(Bπ,BG)(T ) ∼= Bi(G, π)(T ),

for every object T in the site.
First let us work out the left hand side. By definition of the mapping stack,

we have

Map(Bπ,BG)(T ) ∼= MorStacks(T ×Bπ,BG),
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which in turn is equivalent to the groupoid of maps from the pre-stack T × [π\•]
to BG; here [π\•] is π viewed as a one-object groupoid over the site (whose
stackification then becomes Bπ).

The latter groupoid is equivalent the the groupoid of pairs (P, µ), where
P → T is a left G-torsor and µ : P × π → P is a G-equivariant right action of π
on P relative to T . In other words, P is a (G, π)-bimodule whose left G-module
structure is principal. This proves the desired equivalence.

To prove the equivalence Bi(G, π) ∼= [G\Mor(π,G)], we first describe the
groupoid [G\Mor(π,G)](T ). By the torsor description of the quotient stack,
this is equivalent to the groupoid of pairs (P, f), where P → T is a left G-torsor
and f : P → Mor(π,G) is G-equivariant. By abuse of notation, we denote the
adjoint family P × π → G of homomorphisms also by f .

The equivalence Bi(G, π)(T ) → [G\Mor(π,G)](T ) is defined by sending
(P, µ) to (P, f), where f is defined as the composition

P × π (µ,pr1)−−−−→ P ×T P ∼= G× P pr1−−→ G.

Symbolically, for x ∈ P and α ∈ π, fx(α) ∈ G is defined by the equation
fx(α)x = xα. To verify that for every x ∈ P the map fx : π → G is a group
homomorphism one uses the fact that, for every g ∈ G and α ∈ π, fgx(α) =
gfx(α)g−1, which is a consequence of the fact that the actions of G and π on P
commute.

One can run this construction backwards to construct (P, µ) from (P, f),
thereby producing the inverse equivalence. �

Corollary 5.2 Suppose π is a finitely generated discrete group. Then,
Map(Bπ,BG) is a topological (respectively, differentiable, analytic, algebraic,
etc.) stack whenever G is a topological (respectively, differentiable, analytic,
algebraic, etc.) group.

Proof. This is because Mor(π,G) is closed inside the product GS , where S is
a set of generators for π. �

Remark 5.3 In the above corollary the finite generation of π is not necessary in
the topological setting. Also, in the differentiable setting, the statement remains
valid without this assumption if we allow Fréchet manifolds. The statement is
also valid in the algebraic setting if we assume G is affine.

Now, let Y be a connected topological stack and write π := π1(Y, y0) for its
fundamental group (taken at some base point y0 whose choice is not relevant
here). Let G be a topological (or differentiable, analytic, algebraic, etc.) group.

We denote by BflG the stack over Diff of flat principal G-bundles, whose
fiber over a manifold U is the groupoid BflG|U of principal G-bundles over U
together with a flat connection on the bundle.

We define the character stack of Y to be the mapping stack (over the site
where G lives)

ChY,G := Map(Bπ,BG).
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Note that, if we write Π for the fundamental groupoid of Y, then the choice of
the base point y0 yields a canonical stack morphism

Map(BΠ,BG)→ Map(Bπ,BG)

which is an equivalence since Y is connected. This provides a base point free
version of the character stack.

Proposition 5.4 Let Y be a connected topological stack with fundamental group
π. Let G be a topological group. We have a natural equivalence of stacks

ChY,G
∼= [G\Mor(π,G)],

were G acts on Mor(π,G) by left conjugation on the target. Furthermore, if G is
a Fréchet (respectively, affine algebraic) group, then the character stack ChY,G
is a Fréchet (respectively, algebraic) stack. If π is finitely generated and G is a
Lie (respectively, complex, algebraic) group, then the character stack ChY,G is
a differentiable (respectively, analytic, algebraic) stack. Furthermore, one has a
natural isomorphism ChY,G

∼= Map(Y,BflG) of stacks over Diff.

Proof. Follows from Proposition 5.1 and Corollary 5.2. Also see Remark 5.3.
�

Remark 5.5 When Y has trivial homotopy groups in degree n ≥ 2, then the
character stack ChY,G is also isomorphic to the mapping stack Map(Y, BconG)
where BconG is the stack of bundles equipped with connections.

Example 5.6 Take Y to be the circle S1. Then one finds that the mapping
stack LBflG = Map(S1,BflG) is isomorphic to [Mor(Z, G)/G] = [G\G] where
G acts on itself by conjugation, that is the inertia stack of BG.

For the rest of this section we will assume that Y is a connected 2-
dimensional orbifold of finite type, and G is a reductive Lie group with a G-
invariant non-degenerate pairing K : g⊗ g→ R.

Definition 5.7 We define the character variety of Y to be the coarse moduli
space χY,G := (ChY,G)coarse of the character stack.

In other words, χY,G is the quotient space G\Mor(π,G). It has a well
defined structure of a real-valued ringed space (see [Ka]) (when G is finitely
generated) and can also be seen as real analytification of an algebraic variety
as in [Go1, Go2]. We have a morphism of topological stacks ChY,G → χY,G.
Functions on χY,G are simply G-equivariant functions on the smooth ringed
space2 Mor(π,G). We are now interested in vector fields and forms on the
character variety.

2which can be seen as a manifold or an algebraic variety
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Lemma 5.8 Let φ : π → G be a group homomorphism.

1. The sections of TχY,G at φ are naturally isomorphic to H1(Y, gφ), where
gφ is the Lie algebra g viewed as a local coefficient system on Y via φ.

2. If we further assume that Y is of finite type (in other words that π is
of finite presentation), then the fiber of Ω1(χY,G) at φ is isomorphic to
H1(Y, gφ).

Proof. By proposition 5.4, we have a presentation of χY,G by the (transforma-
tion) Lie groupoid Mor(π,G) × G ⇒ Mor(π,G) associated to the conjugation
action of G on itself. By [Ka, Theorem 3], we have a natural isomorphism
Tφ Mor(π,G) ∼= Z1(π, gφ), where the latter stands for the space of the 1-cycles
π → g for the action of π on g via φ. Similarly, the tangent space at φ to the
G-orbit of φ is isomorphic to the spaces of 1-coboundaries B1(π, gφ). Hence,
Tφ Mor(π,G) × G ∼= Z1(π, gφ) ⊕ g with Aφ ∼= g and thus we have a natural
isomorphism

Γ(TX0/A)X1

φ
∼= H1(π, gφ). (5.1)

Now let q : Y → Y be a classifying space for Y. Then q : π1(Y ) → π is an
isomorphism and thus q induces natural isomorphisms

H1(π, gφ)
'−→ H1(π1(Y ), gφ) ∼= H1(Y, gφ)

'←− H1(Y, gφ)

where the middle isomorphism is induced by Hurewicz and universal coefficient
theorem. This proves (1). When Y is of finite type, H1(Y, gφ) is finite di-
mensional and the cap product H1(Y, gφ) ⊗H1(Y, gφ

′) → H0(Y, gφ ⊗ gφ
′) →

H0(Y) ∼= R exhibits H1(Y, gφ
′) as the linear dual of H1(π, gφ). Then (2) fol-

lows from the isomorphism gφ
′ → gφ induced by the non-degenerate pairing

K : g⊗ g→ R. �

To define symplectic a structure on the character stack, we assume further
that Y is compact. In this case, we have a fundamental class [Y] and thus a
natural isomorphism H2(Y) ∼= R induced by capping with [Y]. Then, for any
φ : π → G, we can define a linear map ωφ as the composition

ωφ : H1(Y, gφ)⊗2 ∪−→ H2(Y, g⊗2
φ )

K∗−→ H2(Y,R) ∼= R, (5.2)

where K∗ is well defined since K is G-invariant. The collection (ωφ)φ∈Mor(π,G)

defines an anti-symmetric bilinear form on TχY,G, hence a 2-form on χY,G,
denoted ω.

Let us now define a bracket on the functions of χY,G which will prove to
be a Poisson bracket. Here we assume again that Y is of finite type. We first
define the 2-vector field ω̃ ∈ Λ2TχY,G as the collection, for all φ : π → G,

H1(Y, gφ)⊗2 e−→ H0(Y, g⊗2
φ )

K∗−→ H0(Y,R) ∼= R
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where e is the intersection product in homology. This defines a 2-vector field
by Lemma 5.8. Now, for functions f, g on χY,G, we define a pairing

[f, g] := ω̃(df, dg). (5.3)

Note that this formula makes sense as soon as Y is an oriented orbifold, not
necessarily a compact one.

Theorem 5.9 Let Y be an oriented orbifold of dimension 2, which is of finite
type.

1. If Y is compact, the 2-form ω ∈ Ω2(χY,G) is closed and non-degenerate.
Hence it makes the character variety χY,G a symplectic ringed space. Fur-
thermore, the Poisson bracket on functions is given by the bracket (5.3).

2. If Y is a punctured compact3 orbifold and is further effective, then the
above bracket (5.3) also makes its character variety a Poisson algebra.

Note that in this paper we will only need part 2 when Y is punctured Riemann
surface in which case it is standard [Au, BiGu].

Proof. We first assume Y is compact. Then the closedness of the 2-form ω
follows from the identification H1(Y, gφ) ∼= H1(π, gφ) (see (5.1)) and [Ka, Theo-
rem 4] (where we take ϕ to be induced by the cap product along the fundamental
class of Y). We prove it is non-degenerate as follows. Let δφ : H1(Y, gφ) →(
H1(Y, gφ)

)′
be the map induced by the pairing ωφ. Since Y is compact, as in

Lemma 5.8.2, we have an identification
(
H1(Y, gφ)

)′ ∼= H1(Y, gφ
′) under which

δφ becomes

H1(Y, gφ)
−∩[Y]−→ H1(Y, gφ)

δK−→ H1(Y, gφ
′)

where the first map is Poincaré duality isomorphism and the second one δK is
induced by the pairing K : g ⊗ g → R. The pairing being non-degenerate, the
last map is an isomorphism as well.

The same argument shows that if Hf is the Hamiltonian vector field associ-
ated to a function f , then df = δK(Hf ∩ [Y]) is its Poincaré dual composed with
the identification of g and g′ induced by K. In particular, since the intersection
product is the Poincaré dual to the cup product, we obtain that the Poisson
bracket on functions is given by (5.3).

We now assume S is effective and punctured. Since it is also of finite type, it
means that S is isomorphic to a compact Riemann surface with boundary and
a finite sets of orbifold points (not located on the boundary). We wish to prove
that OχS,G

is a Poisson algebra and we let S1 ⇒ S0 be an étale presentation of
S. It is enough to prove the result on a connected component of χS,G, which
we do now in the case of the component of the identity; the other cases being
similar. By Proposition 5.4, we are left to prove the result in the case of the

3in other words is isomorphic to the complement of a discrete set of non-overlapping disks
in a compact orbifold
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coarse moduli space of the global quotient stack of the space F ⊂ Ω1(S0, g)Y1 of
flat connections on the trivial G-bundle on S by the group G = Map(S0, G)S1

of S1-equivariant maps. We refer to [Beh2] for details on flat connections on
stacks and [LeMa] for the special case of forms on orbifolds. Let also G∂ be the
normal subgroup of G of those maps which are the identity at the punctures.
There is a closed 2-form on F defined at any flat connection α ∈ Ω1(S0, g)Y1 as

ω̃α(x, y) = K∗(x ∧ y) ∩ [S]

where [S] is the fundamental class of S; one notes that the pairing actually
do not depend on ω, in particular it is closed. Since K is non-degenerate,
the pairing induced by this 2-form is non-degenerate as well. Hence, ω̃ is a
symplectic structure on the vector space Ω1(S0, g)Y1 . The standard argument
of [Au, §2] (or [BiGu]) shows that the curvature can be identified with the
moment map of the subgroup G∂ . In particular, the quotient Ω1

flat(S0, g)Y1/G∂
is symplectic. Further, the G action on this quotient is symplectic and thus
makes the quotient (F/G∂)/G ∼= (F/G) a Poisson space (see [Au, §2], [BiGu]).

Now, recall that the identification of [F/G] with the character stack ChS,G is
induced by the holonomy map which sends a flat connection α ∈ F and a loop
γ ∈ π1(S) to its holonomy.

Under this isomorphism, the same computation as above in the point 1) using
Poincaré duality for orbifolds with boundary shows that the Poisson bracket is
induced by formula (5.3). �

If f : X→ Y is a map of connected topological stacks, then we have an induced
map f∗ : π1(X)→ π1(Y) inducing a topological stack morphisms f∗ : ChY,G →
ChX,G and f∗ : χY,G → χX,G. Passing to the function, we finally get the map
(f∗)∗ : OχX,G

→ OχY,G
.

Proposition 5.10 Let i : S ↪→ Y be an open embedding of oriented connected
2-dimensional orbifolds. The induced map (i∗)∗ : OχS,G

→ OχY,G
is a map of

Poisson algebras.

Proof. The open embedding i : S ↪→ Y preserves the intersection product by
[GiNo, §10]. Hence, we have a commutative diagram

H1(S, gφ◦i)
⊗2 e //

i∗

��

H0(S, g⊗2
φ◦i)

K∗ //

i∗

��

H0(S,R)

i∗

��

∼=

""
H1(Y, gφ)⊗2 e // H0(Y, g⊗2

φ )
K∗ // H0(Y,R)

∼= // R

so that the induced map i∗ : χY,G
∼= G\Mor(π,G) → G\Mor(π1(S), G) ∼=

χS,G induces a map of Poisson algebras on the functions by Theorem 5.9. �
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5.3 Goldman Lie algebras homomorphim for orbifolds

Now let us define a map from the Goldman Lie algebra to the functions on
the character stack as follows. Let Tr : G → R be the trace map given by
the composition of an embedding of G in GLn(R) followed by the usual trace
function on real valued matrices. Since it is a G-invariant map, it defines a
function on the stack Map(S1, BGcon) ∼= [G\G] (Example 5.6). By composition,
we also have a differentiable stack morphism Map(S1,Y)×Map(Y, BGcon)→
Map(S1, BGcon) hence, passing to functions, a map

π0(Map(S1,Y)× O[G\G])→ OχY,G
.

Choosing the Trace Tr as the function, we thus get a map

Tr∗ : π0(Map(S1,Y))→ OχY,G

Precisely, for [γ] ∈ HS1

0 (LY) = π0(Map(S1,Y) the class associated to a loop
γ : S1 → Y, we have that

Tr∗(γ) : φ 7→ Tr(φ(γ)) (5.4)

where φ ∈ Mor(π,G).

Remark 5.11 The map Tr∗ we just defined depends on the embedding G ⊂
GLn(R). We can also replace the Trace Tr by any G-invariant function f : G→
R (in particular such a f is canonically a function on Map(S1, BGcon)).

The Trace map is natural:

Lemma 5.12 Let i : X→ Y be a map of 2-dimensional oriented orbifolds. The
following square

HS1

0 (LX)
Tr∗ //

i∗
��

OχX,G

(i∗)∗

��
HS1

0 (LY)
Tr∗ // OχY,G

.

(5.5)

is commutative.

Proof. For γ ∈ π1(X) and φ : π1(Y)→ G, we have

(i∗)∗ ◦ Tr∗(γ)(φ) = Tr∗(γ)(i∗(φ)) = Tr∗(γ)(φ ◦ i)
= Tr∗(φ(i ◦ γ))

= Tr∗(i∗(γ))(φ).

�
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Following Goldman, for G = GLm(K), (with K = R,C, or H), we choose the
standard embedding4 of G in GLn(R) to define the Trace Tr5 and accordingly
we take for K the trace form associated to this standard representation6.

The following result is an orbifold generalization of Goldman standard result
for closed surfaces.

Theorem 5.13 Let Y be a connected oriented finite type orbifold of dimension
2 and G = GLn(K) (with K = R,C, or H). The map Tr∗ : HS1

0 (LY)→ OχY,G

is a Lie algebra homomorphism.

In the above theorem we take k = Z for the coefficients of the homology group.

Proof. Let S be the complement of finitely many points in Y so that
we have epimorphisms i∗ : π1(S) → π and HS1

0 (LS) → HS1

0 (LY). For
any φ : π → G, By Hurewicz theorem we also have a linear surjection
i∗ : H1(S, gφ◦i)→ H1(Y, gφ). By Lemma 5.12 and Proposition 5.10 we have a
commutative diagram

HS1

0 (LS)
Tr∗ //

i∗
��

OχS,G

(i∗)∗

��
HS1

0 (LY)
Tr∗ // OχY,G

.

whose vertical arrows are Lie algebras homomorphims and futher, the left one
is surjective. We want to show that the lower arrow is a map of Lie algebras
It is thus enough to prove that the top horizontal arrow is a Lie algebra homo-
morphism to finish the proof.

Let us first do the easier case where Y is further reduced. Then S, being
the complement of the orbifold locus of Y, is an ordinary punctured Riemann
surface. Goldman classical result [Go2, Theorem 3.5] (or more accurately [BiGu,

Theorem 3.2]) applies to S to show that Tr∗ : HS1

0 (LS) → OχS,G is a Lie
algebra homomorphism. Indeed, to compute the bracket [Tr∗(γ), T r∗(β)] we can
use the Poisson bracket formula (5.3) which amounts to compute the Poincaré
dual of the Hamiltonian vector field associated to Tr∗(γ). By [Go2, Proposition
3.7], this is given by the class bγ ⊗ V (Tr∗)(φ(γ))c where V (Tr) : G → g is the
variation of Tr. Thus the top horizontal arrow of (5.5) is a morphism of Lie
algebras which concludes the proof in the reduced case.

Now if X is non-reduced, then it is an H-gerbe over a reduced one Xred
(see 4.1). Taking S to be the complement of finitely many points in X, we can
assume S to be a neutral H-gerbe over an hyperbolic surface Sred ⊂ Xred. We
let π : S→ Sred denote the gerbe structure map.

4as the subgroup of GLdim(m)K)(R) which centralizes the K-structure on Km

5for instance, the map Tr : GLn(C) → R is 2 times the real part of the usual trace
GLnC)→ C.

6for instance, K : GLn(C)→ R is 2 times the real part of the usual trace GLnC)→ C.
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As we have seen above, we only need to prove that HS1

0 (LS)
Tr∗−→ OχS,G

is
a Lie algebra homomorphim to conclude the proof of the theorem.

By [GiNo, Section 11.3], we have that

{x, y}S =
∑

π−1
∗
(
{π∗(x), π∗(y)}Sred

)
(5.6)

in HS1

0 (LS). We now study the Poisson bracket on functions of χS,G. We
refer to [BGNX] (in particular Sections 9 and 16) for details on Gysin maps
and intersection product. The intersection pairing of an oriented orbifold X

H∗(X, g)⊗H∗(X, g)→ H∗(X×X, g⊗ g))
diag!

→ H∗(X, g⊗ g)[dim(X)] is the Gysin
map associated to the diagonal diag : X→ X× X. Note that the diagonal map
for S factors as

S −→ S×Sred
S −→ S×S

where the first map is a principal H-bundle map. Hence the Gysin map diag!

in that case is the composition

H∗(S×S, g⊗ g))
π∗diag!

−→ H∗−2(S×Sred
S, g⊗ g))

τH−→ H∗−2(X, g⊗ g)

of the Gysin map associated to the pullback S ×Sred
S −→ S × S and the

usual transfer for covering spaces by [BGNX, Lemma 9.4, formula 9.3.1, and
9.2.1]. Further, by naturality of Gysin morphisms ([BGNX, 9.2.2]), we obtain a
commutative diagram

H1(S, gφ◦π)⊗2 π∗diag!

//

(π∗)⊗2

��

H0(S×Sred
S, g⊗2

φ◦π)

π×Sred
π∗∼=

��
H1(Sred, gφ)⊗2 e // H0(Sred, g

⊗2
φ )

where the right vertical map is an isomorphism since it is induced in degre 0
by a H × H-gerbe map. Hence, the intersection product for S is given, for
x, y ∈ H1(S), by the formula

(x e y) = τ ◦
(
π ×Sred

π
)−1

0

(
π∗(x) e π∗(y)

)
. (5.7)

The form K : g ⊗ g → R is given by the real part of the trace map, more
precisely by the formula λRe(Tr(XY )) where λ = 1 if K = R and λ = 2 if
K = C,H. To compute the bracket (5.3) of Tr∗(bxc) and Tr∗(byc), we apply
the above formula to dTr∗(bxc)ϕ, dTr∗(byc)ϕ ∈ H1(X, gφ). Using Goldman
classical computations [Go1, Proposition 3.7, 1.5 and 1.7], we obtain, for any

ϕ : π1(X)→ G, bxc, byc ∈ HS1

0 (LS),

[Tr∗(bxc), T r∗(byc)]ϕ =
∑
h∈H

λRe
(
Tr
(
(π∗(bxc)⊗ ϕ(x)) e (π∗(byc))⊗ ϕ(hy)

))
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where we identify ϕ(z) ∈ G with its image g under the natural inclusion
G = GLn(K) ↪→ Mn(K) = gln(K). We can choose x and y to be a (linear
combination) of curves such that (each of) the curves (in the linear combina-
tion) π(x), π(y) lies in the complement of the orbifold locus of the reduced
orbifold Sred and have transversal intersections with only double points. We
denote π(x)#π(y) the set of transversal intersections and we denote as usual
sgn(p) the sign of this intersection, that is +1 if the orientation given by the
tangent vectors of π(x) and π(y) agrees with the one of Sred and −1 otherwise.
We then get[

Tr∗(bxc), T r∗(byc)
]
ϕ

=
∑

h ∈ H,
p ∈ π(x)#π(y)

sgn(p)λRe
(
Tr
(
ϕ(xp · hyp)

)))
(5.8)

where zp means the representative of z ∈ HS1

0 (LS) in π1(S, π−1(p)) of the loop
z : S1 → S starting at a chosen lift π−1(p); by invariance under the conjugation
action, the choice of the lift does not matter.

We also have by [GiNo, Proposition 11.12] and using that the curves π(x),
π(y) lies in an ordinary surface, that

Tr∗
(
{bxc, byc}S

)
(ϕ) = λRe

(
Tr
(∑

ϕ
(
π−1
∗ {π∗(bxc), π∗(byc)}Sred

))
= λRe

(
Tr
(∑

ϕ
(
π−1
∗

∑
p∈π(x)#π(y)

sgn(p)(π(x)p · π(y)p)
))

=
∑

h ∈ H,
p ∈ π(x)#π(y)

sgn(p)λRe
(
Tr
(
ϕ(xp · hyp)

)))

which, by identity (5.8), shows that HS1

0 (LS)
Tr∗−→ OχS,G

is a Lie algebra ho-
momorphism. There is nothing left to prove. �

Remark 5.14 Theorem 5.13 is a generalization of Goldman standard result for
orbifolds but only use the character variety and not the full stack structure. Let
OChY,G

be the functions on the character stack. This is a (equivalence class of)
commutative Hopf algebroid and in particular, for any presentation of Z1 ⇒ Z0

of the stack, we get a simplicial commutative algebra defined as the nerve of the
Hopf algebroid OZ0

⇒ OZ1
. Its cohomology is by definition the cohomology of

the functions on the stack.
We write H•(OChY,G

) its cohomology. It is a graded commutative algebra

which, in degree 0 is precisely H0(OChY,G
) ∼= OGMor(π,G). It will be pleasant to

see whether all the algebra of functions is a Poisson algebra.
However, note that the character stack ChY,G is really a stack and not an

orbifold (unless G is finite), so that we do not have a nice definition of symplectic
structure. Further, it was proved in [AZ] that, for Y a surface, the Goldman
map can be lifted to a map of Lie algebras from the even degree part (HS1

2• (LY)
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of the equivariant homology with values in the functions on a moduli space of
super connections witnessing higher cohomological degree Hi(Y, g) and not only
the degree i = 1 provided by Lemma 5.8. In view of the analogous situation in
algebraic geometry, this suggests that differentiable stacks shall be embedded
in a larger category of derived differentiable stack (not yet detailled in the
literature) for which it seems reasonnable to expect that a derived character
stack RChY,G shall have a symplectic (or Poisson) structure.

Question 5.15 Is there a good notion of derived Fréchet Poisson stacks making
RChY,G Poisson in such a way that there is an natural linear morphism

H•(O[G\G])→ H•(MapdgLie
(
HS1
• (LY), H•(ORChY,G

)
)

(where MapdgLie is the mapping space of Lie algebras homomorphisms), which
in degree 0 induces the above Goldman transformation Tr∗ ?

6 Lie algebras of unoriented strings

Theorem 5.13 also applies to other groups, for instance orthogonal or symplectic
groups, provided one replaces free loops by unoriented free loops [Go1]. Indeed
(see [Go1, Tu]) the free abelian group Zπ, where π is set of free homotopy classes
of unoriented loops on a surface Σ, has a Lie algebra structure and the trace
defines a Lie algebra homomorphism with values in the functions of the character
variety of orthogonal or symplectic groups (see loc. cit. or Theorem 6.13 below
for a precise statement).

In this section we first give Chas-Sullivan type generalizations7 of this Lie
algebra structure of unoriented loops for arbitrary oriented stacks, and then
to prove that there is a generalization of Goldman homomorphism for oriented
orbifolds.

Note that Zπ is the degree 0 homology group H
O(2)
0 (LΣ) where the group

O(2) acts on L(Σ) via its natural action on S1. We recall that H
O(2)
i (LΣ) ∼=

Hi([O(2)\LΣ]) where [O(2)\LΣ] is the quotient stack (see 2), which is homo-
topic to the stack [Diff(S1),LX] of unoriented strings (see [GiNo, Remark 7.5]).
From this identification and Goldman result, is natural to look for Lie algebra

structures on H
O(2)
∗ ∼= H∗([O(2)\LX] for any oriented stack X.

6.1 Goldman and Chas-Sullivan Lie algebras of unoriented
loops

By Lemma 1.1, we have a topological stack isomorphism [O(2)\LX] ∼=
[Z/2Z\[S1\LX]]. There is thus, by [GiNo, Lemma 8.1 and Definition 8.2], a
transfer homomorphism

TZ/2Z : H
O(2)
i (LX) ∼= Hi([O(2)LX])→ Hi([S

1\LX]) ∼= HS1

i (LX) (6.1)

7there are three of them, which are equivalent in characteristic zero but not in general
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associated to the quotient

p : [S1\LX] −→ [Z/2Z\[S1\LX]] ∼= [O(2)\LX].

We also have, by [GiNo, Lemma 8.1 and Definition 8.2] again, a transfer map

TO(2) : H
O(2)
∗ (LX)→ H∗+1(LX). (6.2)

We denote the Chas-Sullivan product by ? : H∗(LX)⊗2 → H∗−dim(X)(LX)
(see [ChSu] for manifolds and [BGNX] for arbitrary stacks).

We construct two Lie algebras as follows.

Theorem 6.1 Let X be an oriented differentiable8 stack of dimension d.

1. For x, y ∈ HO(2)
∗ (LX) ∼= H∗([O(2)\LX]), the formula

{x, y}O(2) := (−1)|x|q∗
(
TO(2)(x) ? TO(2)(y)

)
makes the equivariant homology H

O(2)
∗ (LX)[2−d] into a graded Lie algebra.

Here TO(2) is the above transgression map and q : LX→ [O(2)\LX] is the
canonical projection.

2. Assume further that the multiplication by 2 is injective in the ground ring

k. For x, y ∈ p∗
(
HS1

∗ (LX)
)
⊂ HO(2)

∗ (LX) the formula

{̃x, y} := p∗
({
TZ/2Z(x), p−1

∗ (y)
})
,

where p−1
∗ (y) is any pre-image of y by p∗, is well-defined and makes the

(sub)space p∗
(
HS1

∗ (LX)
)
[2− d]) a Lie algebra.

For our purpose, the important examples of oriented differentiable stacks are
oriented smooth manifolds, oriented orbifolds and more generally quotient stacks
[G\Y ] of an oriented smooth manifold Y by a smooth and orientation preserving
action of a Lie group G. Our result thus gives a Lie algebra structure on shifted
O(2)-equivariant homology of the free loop space of a manifold which was not
explicited in the literature to our knowledge.

In homological degree 0, the map

p∗ : HS1

0 (LX) ∼= k[π̂] −→
(
HS1

0 (LX)
)
Z/2Z

∼= H
O(2)
0 (LX) ∼= k[π]

is surjective. Here we denote π̃1(X) and π1(X) respectively the sets of free
homotopy classes of loops and unoriented free homotopy classes of loops. Since

p∗ is surjective, the bracket {−,−} is thus defined on all H
O(2)
0 (LX).

Corollary 6.2 Assume X is of dimension 2 and the multiplication by 2 is in-

jective in the ground ring k. Then {̃−,−} makes H
O(2)
0 (LX) a Lie algebra.

8or more generally, an oriented Hurewicz stack, see [BGNX] for a definition.
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Definition 6.3 • We call call
(
H
O(2)
∗ (LX), {−,−}O(2)

)
the unoriented

Chas-Sullivan9 Lie algebra of X.

• When dim(X) = 2, we also call
(
H
O(2)
0 (LX), {̃−,−}

)
the unoriented Gold-

man10 Lie algebra of X.

• Finally, for general X, we call
(
p∗
(
HS1

∗ (LX)
)
[2− d], {̃−,−}

)
the extended

unoriented Goldman Lie algebra of X.

Remark 6.4 In degree 0 and for X = Σ an oriented surface, the unoriented

Goldman Lie algebra structure on p∗
(
HS1

0 (LΣ)
) ∼= H

O(2)
0 (LΣ) is the same as the

one considered by Goldman on unoriented loops. This follows from Remark 6.10,
identity 4. in Lemma 5.2 and Proposition 6.7 below, since, for a loop α : S1 → Σ,
ε∗bαc = α−1.

Remark 6.5 The unoriented Goldman bracket is a refinement of the (restric-
tion in degree 0 for a dimension 2 oriented stack of the) Chas-Sullivan bracket.
Indeed, it only uses half of the term involved in the Chas-Sullivan bracket, see
Proposition 6.9 below.

Before proving the theorem we collect some results related to transfer maps
and the Z/2Z-action. If Y is a topological stack with O(2)-action (we care only
about Y = LX), we denote ε : [S1\Y] → [S1\Y] the non-trivial automorphism
of the string stack [S1\Y] induced by the Z/2Z action on [S1\Y] (that is the
map induced by the action of −1 ∈ {±1} = Z/2Z).

Lemma 6.6 Let Y be a topological stack endowed with a O(2)-action (for in-

stance Y = LX). For x, y ∈ HO(2)
∗ (Y), one has the following identities

1. p∗(T
Z/2Z(x)) = 2x;

2. TO(2)(x) = T ◦ TZ/2Z(x) where T : HS1

∗ (Y) → H∗+1(Y) is the transfer
map from [GiNo, Definition 8.2].

3. ε∗ ◦ TZ/2Z(x) = TZ/2Z(x); that is the image of TZ/2Z lies in the Z/2Z-

invariant subspace of HS1

∗ (Y);

4. For z ∈ HS1

∗ (Y), one has

TZ/2Z(p∗(z)) = z + ε∗(z).

Proof. Replacing [S1\Y] by a classifying space [No2] and by functoriality of
transfer [GiNo, Proposition 8.3], it is enough to prove 1. and 4. for a topological
space. By [BGNX, Lemma 9.4], it reduces to the usual transfer formula for
finite covering and the result is now standard. Similarly identity 3. follows

9or Chas-Sullivan Lie algebra of unoriented strings
10or Goldman Lie algebra of unoriented strings
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from naturality of Gysin maps [BGNX, Section 9.2] applied to the commutative
diagram

[S1\Y]
ε //

p

��

[S1\Y]

p

��
[O(2)\Y]

id // [O(2)\Y].

Identitiy 2. follows from functoriality of Gysin maps [BGNX, Section 9.2] applied
to the composition

q : Y
π−→ [S1\Y]

p−→ [Z/2Z\[S1\Y]] ∼= [O(2)\Y].

�

We now study the action of Z/2Z on the Goldman bracket for oriented loops.

Proposition 6.7 For a, b ∈ HS1

∗ (LX), one has

{ε∗(a), ε∗(b)} = ε∗
(
{a, b}

)
.

In particular, the invariant subspace
(
HS1

∗ (LX)[2− d]
)Z/2Z

is a Lie subalgebra

of
(
HS1

∗ (LX)[2− d], {−,−}
)

.

Proof. We start with the first claim. Let us denote m : Map(8,X) → LX the
gluing of loops, that is the map induced after composition with Map(−,X) by
the canonical pinching map S1 → S1 ∨ S1 = 8 identifying 1 and its antipodal
point11. We recall that Map(8,X) ∼= LX ×X LX since X is Hurewicz ([BGNX,
Corollary 5.3]). We let τ : LX×X LX→ LX×X LX be the map exchanging the
two factors. We abusively denote similarly the map exchanging the two factors
of the product LX × LX. The key observation is that, a contrario of the case
of based loops, the multiplication of loops m : Map(8,X) → LX is homotopy
commutative (see [ChSu] or [BGNX, proof of Proposition 10.8]), hence m∗ :
H∗(Map(8,X))→ H∗(LX) is equal to m∗ ◦ τ∗. Further, since

ε ◦m = m ◦ τ ◦ (ε×X ε) : LX×X LX→ LX

we thus obtain after passing to homology

ε∗ ◦ π∗ ◦m∗ = π∗ ◦ ε∗ ◦m∗ = π∗ ◦m∗ ◦ τ∗ ◦ (ε×X ε)∗

= π∗ ◦m∗ ◦ (ε×X ε)∗

11If X is a topological space it is simply the standard map composing two loops with the
same base point into one loop
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as maps H∗(Map(8,X))→ H∗(LX). It follows that the right square in diagram

H∗(LX)⊗2 S //

(ε∗)⊗2

��

H∗(LX× LX)
∆!
//

(ε×ε)∗
��

H∗−d(Map(8,X))
π∗◦m∗//

(ε×Xε)∗

��

HS1

∗−d(LX)

ε∗

��
H∗(LX)⊗2 S // H∗(LX× LX)

∆!
// H∗−d(Map(8,X))

π∗◦m∗// HS1

∗−d(LX)

is commutative. Here ∆! is the Gysin map associated to the diagonal ∆ : M →
M × M and S is the cross product, see [BGNX, Section 10.1]. The middle
square commutes by naturality of the Gysin map [BGNX, 9.2.2] and the left
square by naturality of the cross product. Since the Chas-Sullivan loop product
is the composition ([BGNX])

Hp(LX)⊗Hq(LX)
S→ Hp+q(LX× LX)

∆!

→ Hp+q−d(Map(8,X))
m∗→ Hp+q−d(LX),

we are left to prove that the diagram(
HS1

∗−1(LX)
)⊗2 T⊗T//

(ε∗)⊗2

��

H∗(LX)⊗2

(ε∗)⊗2

��(
HS1

∗−1(LX)
)⊗2 T⊗T// H∗(LX)⊗2

is commutative. Since T is the Gysin map associated to LX→ [S1\LX] ([GiNo,
Definition 8.2]), this result follows again by naturality of Gysin map [BGNX,
9.2.2] and the Proposition is proved. �

We now compare the formula defining the bracket {−,−}O(2) with the Goldman
bracket.

Lemma 6.8 For any x, y ∈ HO(2)
∗ (LX), one has

{x, y}O(2) = p∗({TZ/2Z(x), TZ/2Z(y)}). (6.3)

Further, one has

TZ/2Z({x, y}O(2)

)
= 2{TZ/2Z(x), TZ/2Z(y)}. (6.4)

Proof. Let us denote by d the dimension of X. By definition of the
Lie bracket for S1-equivariant loops ([GiNo, Corollary 9.6]), the bracket
{TZ/2Z(x), TZ/2Z(y)}) is given (up to the sign (−1)|x|) by the last line of the
following diagram

H
O(2)
p−1 (LX)⊗HO(2)

q−1 (LX)
(TO(2))⊗2

//(
T Z/2Z

)⊗2

��

Hp(LX)⊗Hq(LX)
? // Hp+q−d(LX)

q∗ // HO(2)
p+q−d(LX)

HS1

p−1(LX)⊗HS1

q−1(LX)
T⊗2

// Hp(LX)⊗Hq(LX)
? // Hp+q−d(LX)

π∗ // HS1

p+q−d(LX).

p∗

OO

(6.5)
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The commutativity of the left square in the diagram is precisely the identity 2. in
Lemma 6.6 while the right square is commutative by definition of q = p◦π. This
proves identity (6.3) since the first line of the diagram is the bracket {−,−}O(2).

The second identity (6.4) follows from the first one since, by Lemma 6.6
(identity 4) and Proposition 6.7, we have that

{x, y}O(2) = TZ/2Z ◦ p∗({TZ/2Z(x), TZ/2Z(y)})
= {TZ/2Z(x), TZ/2Z(y)}+ ε∗

(
{TZ/2Z(x), TZ/2Z(y)}

)
= {TZ/2Z(x), TZ/2Z(y)}+ {ε∗ ◦ TZ/2Z(x), ε∗ ◦ TZ/2Z(y)}
= 2{TZ/2Z(x), TZ/2Z(y)}

by invariance of the image of TZ/2Z (identity 3. in Lemma 6.6). �

Proof of Theorem 6.1.

1. The (graded) antisymmetry of the bracket {−,−}O(2) is a consequence of
the fact that the Chas-Sullivan product ? is graded commutative.

We are left to prove the Jacobi identity for {−,−}O(2).

{x, {y, z}O(2)}O(2) ± {y, {z, x}O(2)}O(2) ± {z, {x, y}O(2)}O(2) = 0.

The proof is similar to the one of the Goldman bracket. Indeed, since q = p ◦π,
by identity 2 in Lemma 6.6 and Z/2Z-equivariance of π,

{x, {y, z}O(2)}O(2) = (−1)|x|+|y|q∗

(
TO(2)(x) ? T ◦ TZ/2Z ◦ p∗ ◦ π∗

(
TO(2)(y) ? TO(2)(z)

))
= (−1)|x|+|y|q∗

(
TO(2)(x) ? T ◦ (id+ ε∗) ◦ π∗

(
TO(2)(y) ? TO(2)(z)

))
= (−1)|x|+|y|q∗

(
TO(2)(x) ? T ◦ π∗ ◦ (id+ ε∗)

(
TO(2)(y) ? TO(2)(z)

))
Repeating an argument from the proof of Proposition 6.7, we have

ε∗
(
TO(2)(y) ? TO(2)(z)

)
= ε∗

(
TO(2)(y)

)
? ε∗

(
TO(2)(z)

)
= TO(2)(y) ? TO(2)(z)

where the last equality follows from identity 2 and 3 in Lemma 6.6 and ε∗ ◦T =
T ◦ ε∗ (by naturality of Gysin maps [GiNo, 9.2.2]). Plugging this identity in
the previous one, we finally have

{x, {y, z}O(2)}O(2) = 2(−1)|x|+|y|q∗

(
TO(2)(x) ? D

(
TO(2)(y) ? TO(2)(z)

))
(6.6)

where D = T ◦ π∗ (see [ChSu, GiNo]) is the BV-operator in the homology
H∗(LX)[−d]. Summing up the previous identity (6.6) and its two symmetric
ones arising in the Jacobi identity, we see that the Jacobi identity reduces to
the BV-identity

D(a ? b ? c)−D(a ? b) ? c− (−1)|a|a ? D(b ? c)− (−1)(|a|+1)|b|b ? D(a ? c)+

+D(a) ? b ? c+ (−1)|a|a ? D(b) ? c+ (−1)|a|+|b|a ? b ? D(c) = 0
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and q∗ ◦D = p∗ ◦ (π∗ ◦ T ) ◦ π∗ = 0 as well as D ◦ TO(2) = T ◦ (π∗ ◦ T ) ◦ TZ/2Z =
0, which holds by the long exact sequence of S1-equivariant homology [GiNo,
Proposition 8.4].

2. We now study the bracket ˜{−,−, } on the image p∗(H
S1

∗ (LX)). We start
by proving the following identity:

TZ/2Z({̃x, y}) =
{
TZ/2Z(x), TZ/2Z(y)

}
. (6.7)

By definition of ˜{−,−, }, identity 4 in Lemma 6.6 and Proposition 6.7, we get

TZ/2Z({̃x, y}) = TZ/2Z ◦ p∗
({
TZ/2Z(x), p−1

∗ (y)
})

=
{
TZ/2Z(x), p−1

∗ (y)
}

+ ε∗
({
TZ/2Z(x), p−1

∗ (y)
})

=
{
TZ/2Z(x), p−1

∗ (y)
}

+
{
ε∗ ◦ TZ/2Z(x), ε∗ ◦ p−1

∗ (y)
}

=
{
TZ/2Z(x), p−1

∗ (y) + ε∗(p
−1
∗ (y))

}
by invariance of the image of TZ/2Z (identity 3. in Lemma 6.6). Now iden-
tity (6.7) follows from

TZ/2Z(y) = TZ/2Z(p∗(p−1
∗ (y)

))
= p−1
∗ (y) + ε∗(p

−1
∗ (y).

which holds by identity 4 in Lemma 6.6.

Note that the right hand side of identity (6.7) does not depend on any choice
of a preimage of y. Since TZ/2Z is injective (by identity 1 in Lemma 6.6 and our

assumption on the ground ring), it follows that the bracket {̃x, y} is independent
of the choice of p−1

∗ (y). Thus it is well-defined. Moreover, it is thus also graded

antisymmetric since {TZ/2Z(x), TZ/2Z(y)
}

is so.

To prove the Jacobi identity for ˜{−,−, }, again by injectivity of TZ/2Z, it is
thus enough to prove that

TZ/2Z
( ˜{
x, {̃y, z}

}
±

˜{
y, {̃z, x}

}
±

˜{
z, {̃x, y}

})
= 0.

From identity 6.7, we deduce that

TZ/2Z
( ˜{
x, {̃y, z}

})
= {TZ/2Z(x), TZ/2Z({̃y, z})}
= {TZ/2Z(x), {TZ/2Z(y), TZ/2Z(z)}}.

Hence the Jacobi identity for ˜{−,−, } follows from the Jacobi identity for the
Goldman bracket. �

The several Lie algebras structures on the homology unoriented strings (from
the previous section), strings and free loops are related as follows.
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Proposition 6.9 Let X be an oriented differentiable (or Hurewicz) stack of
dimension d.

• The transfer maps 2TZ/2Z : H
O(2)
∗ (LX)[2 − d] → HS1

∗ (LX)[2 − d] and

2TO(2) : H
O(2)
∗ (LX)[2 − d] → H∗(LX)[1 − d] are graded Lie algebras ho-

momorphisms. Here, H∗(LX)[1 − d] is the graded Lie algebra structure
underlying the BV-algebra structure of free loop homology (see [ChSu] for
manifolds or [BGNX] for stacks).

• Assume that the multiplication by 2 is injective in the ground ring k. Then
the following diagram(
p∗
(
HS1

∗ (LX)[2− d]
)
, {−,−}O(2)

)
� � //

� _

×2

��

(
H
O(2)
∗ (LX)[2− d], {−,−}O(2)

)
2T Z/2Z

��

2TO(2)

uu

(
p∗
(
HS1

∗ (LX)[2− d]
)
, ˜{−,−, }

)
T Z/2Z

//

TO(2)

**

((
HS1

∗ (LX)[2− d]
)Z/2Z

, {−,−}
)

� _

��(
HS1

∗ (LX)[2− d], {−,−}
)

T

��(
H∗(LX)[1− d], {−,−}BV

)
is a commutative diagram of graded Lie algebras homomorphisms.

• If in addition 2 is invertible in the ground ring k, then all the maps in the
upper square of the previous diagrams are Lie algebras isomorphisms.

Proof.First we note that the spaces arising in the diagram are all Lie algebras
by Theorem 6.1, Proposition 6.7, identity 6.3 and [GiNo, Corollary 9.6].

Now we also note that the maps 2TZ/2Z and TZ/2Z factors through the in-

variant
(
HS1

∗ (LX)[2−d]
)Z/2Z

subspace as an immediate consequence of identity
3 in Lemma 6.6.

The equality (6.4) also tells us that

2TZ/2Z :
(
p∗
(
HS1

∗ (LX)[2− d]
)
, {−,−}O(2)

)
→
(
HS1

∗ (LX)[2− d], {−,−}
)

is a graded Lie algebra morphism. By Lemma 6.6, 2TO(2) : H
O(2)
∗ (LX)[2−d]→

H∗(LX)[1− d] factors as the composition 2TO(2) = T ◦ 2TZ/2Z. Since T is also
a graded Lie algebra map ([GiNo, Corollary 9.6 ]), the first claim is proved.

That TZ/2Z :
(
p∗
(
HS1

∗ (LX)[2− d]
)
, ˜{−,−, }

)
−→

(
HS1

∗ (LX)[2− d], {−,−}
)

is a graded Lie algebra map is identity (6.7) that we proved earlier. To prove

33



claim 2, we are only left to prove that
(
p∗
(
HS1

∗ (LX)[2 − d]
)
, {−,−}O(2)

)
×2−→(

p∗
(
HS1

∗ (LX)[2−d]
)
, ˜{−,−, }

)
is a graded Lie algebras morphism. Since TZ/2Z

is an injective (by identity 1 in Lemma 6.6 and our assumption on the ground
ring), Lie algebra map, the result follows from the first claim and commutativity
of the diagram.

Further, if 2 is invertible, then
1

2
(id+ε∗) :

(
HS1

∗ (LX)
)
Z/2Z

∼=→
(
HS1

∗ (LX)
)Z/2Z

is an isomorphism. From the canonical isomorphisms(
HS1

∗ (LX)
)
Z/2Z

∼=
(
H∗([S

1\LX])
)
Z/2Z

∼= (H∗([Z/2Z\[S1\LX]]) ∼= H∗([O(2)\LX]) ∼= H
O(2)
∗ (LX)

and identities 1 and 4 in Lemma 6.6, we deduce that p∗ :
(
HS1

∗ (LX)
)
Z/2Z →

H
O(2)
∗ (LX) is an isomorphism and so is TZ/2Z : H

O(2)
∗ (LX) →

(
HS1

∗ (LX)
)
Z/2Z.

This implies that all the maps in upper square of the diagram are bijective. �

Remark 6.10 Proposition 6.9 implies that over a ground field of characteristic

different from 2, the Lie subalgebra
((
HS1

∗+2−d(LX)
)Z/2Z

, {−,−}
)

is isomorphic

to the Lie algebra
(
H
O(2)
∗+2−d(LX), {−,−}

)
. This is well-known for X a surface

in homological degreee 0 [Tu].

If one takes Z as a ground ring, in the case where X = Σ is an oriented
surface, it was already noted by Goldman that we still have an isomorphism
between the invariant part of the Goldman Lie algebra HS1

0 (LΣ)Z/2Z and Zπ =

H
O(2)
0 (LΣ) (where π is the set of unoriented free homotopy classes of loops in

Σ). This isomorphism is simply given by sending the class of the (unoriented)
constant loop to itself and by sending the unoriented homotopy class [x] of a

loop x : S1 → Σ onto the class bxc+ ε∗bx+c ∈ HS1

0 (LΣ). The fact that it is an
isomorphism comes from the fact that bxc and ε∗bxc are not freely homotopic to
each other in an oriented surface (unless they are homotopically constant). That
this map is a Lie algebras homomorphism follows again from Proposition 6.7
(more precisely it is the same as the proof of identity (6.7)) and the fact that
the class of constant loops are in the center of the Goldman algebra.

However, this identification between Z/2Z-invariants of HS1

0 (LX) and

H
O(2)
0 (LX) does not need to apply in general for arbitrary stacks, not even

effective 2-dimensional orbifolds.

6.2 Goldman homomorphism for unoriented strings

We now study the unoriented version of Theorem 5.13. Recall that an embed-
ding G ↪→ GLm(R) followed by the usual Trace defines a G-invariant function

on G as well as the map Tr∗ : HS1

0 (LY) ∼= Z[π̂1(Y)] → OχY,G
given by iden-

tity (5.4). In general, the map Tr∗ is not invariant under the Z/2Z-action on
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HS1

0 (LY) and thus does not pass to the quotient. However, this holds true for
the standard embeddings of groups of automorphisms of nondegenerate bilinear
forms. More precisely:

Lemma 6.11 Let G = On(K), Op,q, Up,q, Spp,q, Spn(R) or Spn(C) and choose
the trace map Tr : G→ R to be the one associated to their standard embedding
in GLm(R). The map Tr∗ : HS1

0 (LY) → OχY,G
is Z/2Z-invariant and thus

passes to the quotient to define

Tr∗ : H
O(2)
0 (LY) ∼=

(
HS1

0 (LY)
)
Z/2Z

−→ OχY,G
. (6.8)

Proof. This is essentially due to Goldman. Indeed, under the assumption
of the Lemma, we have that Tr(A) = Tr(A−1) [Go1, Proof of Theorem 3.14].

Hence, for φ :∈ Mor(π̂1(Y), G) a group morphism, and [γ] ∈ π0(Map(S1,Y)),
one has

Tr∗(ε([γ])) = Tr
(
φ((γ)−1)

)
= Tr

(
(φ(γ))−1

)
= Tr

(
φ(γ)

)
.

by definition of Tr∗ and of the action of Z/2Z on Map(S1,Y). �

Remark 6.12 The mapping stack Map(S1,BflG) has an Z/2Z-action induced
by the O(2)-action on S1. Under the identification Map(S1,BflG) ∼= [G\G]
(Example 5.6), this action is given on objects by ε(g) = g−1. Thus the fact that a
G-invariant map f : G→ R (such as Tr) defines a function on the quotient stack
[Z/2Z\[G\G]] is precisely equivalent to f(A) = f(A−1). In view of the previous

proof, this is precisely the condition needed for the map [γ] 7→
(
φ 7→ f(φ(γ))

)
to define a linear map H

O(2)
0 (LY) −→ OχY,G

.

For the above groups, the map Tr∗ : HS1

0 (LY) → OχY,G
is not a Lie algebra

map but it becomes one if one passes to the unoriented Goldman Lie algebra

HS1

0 (LY) (with the Lie bracket {̃−,−}) provided by Corollary 6.2.

Theorem 6.13 Let Y be a connected oriented finite type reduced orbifold of
dimension 2 and G = On(K), Op,q, Up,q, Spp,q, Spn(R) or Spn(C). The linear

map Tr∗ :
(
H
O(2)
0 (LY,Z), {̃−,−}

)
−→ OχY,G

is a Lie algebra homomorphism.

In view of identity (6.4), it follows that : 2Tr∗ :
(
H
O(2)
0 (LY,Z), {−,−}O(2)

)
−→

OχY,G
is also Lie algebra homomorphism.

Before proving the theorem, we prove the unoriented analogue of our result
(Proposition 2.2) functoriality of Chas-Sullivan Lie algebra structure for open
embeddings; it actually holds in full generality for stacks.

35



Lemma 6.14 Let X be an oriented Hurewicz stack of dimension d, and U ⊆ X
an open substack. Then, U inherits a natural orientation from X, and further

• the induced maps
(
H
O(2)
∗ (LU)[2 − d], {−,−}O(2)

)
→

(
H
O(2)
∗ (LX)[2 −

d], {−,−}O(2)

)
, is a morphism of graded Lie algebras;

• if mutliplication by 2 is injective in the ground ring k, then the

maps
(
p∗
(
HS1

∗ (LU)[2 − d]
)
, {̃−,−}

)
→ p∗

(
HS1

∗ (LX)[2 − d]
)
, {̃−,−}

)
and((

HS1

∗ (LU)[2−d])
)Z/2Z

, {−,−}
)
→
((
HS1

∗ (LX)[2−d])
)Z/2Z

, {−,−}
)

are

morphism of graded Lie algebras. In particular, if X is of dimension

2, then the induced map H
O(2)
0 (LU), {̃−,−}

)
→

(
H
O(2)
0 (LX), {̃−,−}

)
between the unoriented Goldman Lie algebras is a Lie algebra homor-
mophism.

Proof. By [GiNo, Proposition 10.3], U is naturally oriented, H∗(LU)[1− d]→
H∗(LX)[1 − d] is a BV-algebra morphism and the induced map HS1

∗ (LU)[2 −
d],→ HS1

∗ (LX)[2 − d] is a morphism of graded Lie algebras (with respect to
the bracket {−,−}). Since LU → LX is Z/2Z-equivariant, the result factors
through the Z/2Z-invariant subspace in homology.

Let us denote by the same letter i∗ the linear maps HH
∗ (LU) → HH

∗ (LX)
(where G = {1}, S1, O(2)) induced by LU→ LX. Applying naturality of Gysin
maps [GiNo, 9.2.2] to the commutative diagram

LU
π //

q

%%

��

[S1\LU]
p //

��

[O(2)\LU]

��
LX

π //

q

33[S1\LX]
p // [O(2)\LX]

shows that

i∗ ◦ TZ/2Z = TZ/2Z ◦ i∗, i∗ ◦ TO(2) = TO(2) ◦ i∗. (6.9)

Since the bracket {̃x, y} is defined as p∗
({
TZ/2Z(x), p−1

∗ (y)
})

, the identity

i∗({̃x, y}) = ˜{i∗(x), i∗(y)} follows from identity (6.9), i∗ ◦ p∗ = p∗ ◦ i∗ and
the fact that i∗ is a map of graded Lie algebras with respect to the bracket
{−,−}. Similarly i∗({x, y}O(2)) = {i∗(x), i∗(y)}O(2) follows from identity (6.9),
i∗ ◦ q∗ = q∗ ◦ i∗ and the fact that i∗ is a map of algebras with respect to ?. �

Proof of Theorem 6.13. The map Tr∗ is well-defined by Lemma 6.11. We
now prove that it is a Lie algebra map.

36



Let S be the complement of the orbifold locus of Y so that we have epimor-
phisms i : π1(S) → π1(Y), i∗ : π0(Map(S1,S)) → π0(Map(S1,Y)). Moding
out by the Z/2Z-action, we also get an epimorphism i∗ : π0(Map(S1,S))Z/2Z →
π0(Map(S1,Y))Z/2Z and consequently a linear surjection

i
O(2)
∗ : H

O(2)
0 (LS) −→ H

O(2)
0 (LY).

It follows from Lemma 6.11 and diagram (5.5) that we have a commutative
diagram

HS1

0 (LS)

Tr∗

&&

i∗
����

// HO(2)
0 (LS)

Tr∗ //

iO(2)
∗ ����

OχS,G

(i∗)∗

��
HS1

0 (LY)

Tr∗

33// HO(2)
0 (LY)

Tr∗ // OχY,G
.

(6.10)

We have seen (Proposition 5.10) that the right vertical map (i∗)∗ is a Lie algebras

homomorphism. Note that, by definition of Tr∗, for any x ∈ HO(2)
0 (LS) and

any preimage y ∈ p−1
∗ ({x}), we have that Tr∗(x) = Tr∗(p(y)) = Tr∗(y). Hence,

by Z/2Z-invariance of Tr∗ (Lemma 6.11) and Lemma 6.6, we get that

Tr∗
(
TZ/2Z(x)

)
= Tr∗

(
TZ/2Z(p(y))

)
= Tr∗(y + ε∗(y)) = 2Tr∗(y) = 2Tr∗(x).

(6.11)
Since Goldman [Go1, Theorem 5.13] has proved that the map 2Tr∗ :(
HS1

0 (LS)
)Z/2Z

→ OχS,G
is a Lie algebra homomorphism, it follows

from (6.11), Remark 6.4 and Proposition 6.9 that the upper left horizontal arrow

in diagram (6.10) is a Lie algebra homomorphism. Since i
O(2)
∗ : H

O(2)
0 (LS) −→

H
O(2)
0 (LY) is surjective, it is now enough to prove that it is a Lie algebra ho-

momorphism. This is Lemma 6.14. �

Remark 6.15 As we have seen on the proof of Theorem 6.13, an immedi-
ate consequence of identity (6.11) and Remark 6.4 is that our map Tr∗ :

H
O(2)
0 (LY)→ OχY,G

is identified with Godlman map in [Go1] under the afore-

mentionned equivalence H
O(2)
0 (LY)

'−→
(
HS1

0 (LS)
)Z/2Z

.
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