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Résumé

This paper is based on lectures given at the Vietnamese Institute for
Advanced Studies in Mathematics and aims to present the theory of hi-
gher Hochschild (co)homology and its application to higher string topology.
There is an emphasis on explicit combinatorial models provided by simplicial
sets to describe derived structures carried or described by Higher Hochschild
(co)homology functors. It contains detailed proofs of results stated in a pre-
vious note as well as some new results. One of the main result is a proof
that string topology for higher spheres inherits a Hodge filtration compatible
with an (homotopy) En+1-algebra structure on the chains for d-connected
Poincaré duality spaces. We also prove that the En-centralizer of maps of
commutative (dg-)algebras are equipped with a Hodge decomposition and a
compatible structure of framed En-algebras. We also study Hodge decompo-
sitions suspensions and products by spheres, both as derived functors and
combinatorially.
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1 Introduction and Overview

This paper is based on lectures given at the Vietnamese Institute for Advanced
Studies in Mathematics. It aims to present both the theory of higher Hochschild
(co)homology and its application to higher string topology. It contains detailed
proofs of results stated in the note [Gi3] as well as some new results building on our
previous work [GTZ3, Gi4] notably. One of the main new result is an application of
the techniques of Higher Hochschild (co)homology to study higher string topology 1

and prove that, in addition to its already rich algebraic package, the latter inherits
an additional Hodge filtration (compatible with the rest of the structure). We also
prove that the En-centralizer of maps of commutative (dg-)algebras are equipped
with a Hodge decomposition and a compatible structure of framed En-algebras 2

and study Hodge decompositions suspensions and products by spheres generalizing
the ones of [P] and dual results of [TW], see below for more details on these results.

1. also called Brane topology [CV, GTZ3]
2. also called n-disk-algebras or unoriented En-algebras [AF, Gi4]
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This various results are also a pretext to illustrate the techniques of higher order
Hochschild Homology in the case of commutative differential graded algebras, both
using its derived (in an ∞-categorical sense) interpretation and functoriality and
emphasizing on and using its nice combinatorial structure and how to use it. The
emphasis on this latter point is another benefit of this paper compared to most
of the literature we know 3 and a good way to get a feeling on the behavior and
benefits of higher Hochschild (co)homology, in, we hope, a gentle way.

Higher Hochschild (co)homology was first emphasized by Pirashvili in [P] in
order to understand the Hodge decomposition of Hochschild homology and how to
generalize it. Higher Hochschild (co)homology is in fact a joint invariant of both
topological spaces (or their homotopy combinatorial avatar : simplicial sets) and
commutative differential graded algebras (CDGA for short). As the name suggests,
it is a generalization for commutative (dg-)algebras of the standard Hochschild
homology of dg-associative algebras. It is also a special case [GTZ2, AF] of factor-
ization homology 4 [BD, Lu3, AF] which get extra-functoriality and is one of the
easiest one to compute and manipulate 5.

Standard Hochschild (co)homology is the (co)homology theory controlling defor-
mations into associative algebras (or dg-categories) [G, L2, Lu3]. Besides algebra,
it has tremendous applications in geometry, mathematical physics and algebraic
topology see for instance [K, KS1, KS2, BNT, KS, Ca, CaTu, Ka, KKL, We2, CJ,
CV, Ch, FTV, C1, C2, Tr, TZ, ArTu, Ho, RZ, Gi4] which have triggered the search
for higher generalization and applications. For instance, by [F, Lu3, GTZ3, GY],
Higher Hochschild cohomology over n-spheres Sn controls deformations of cdgas
into En-algebras, generalizing the aforementioned case n = 1 of (possibly homo-
topy) associative algebras.

The Hochschild homology groups of an associative algebra A with value in a
A-bimodule M are defined as

HHn(A,M) ∼= Hn

(
A⊗L

A⊗Aop A
) ∼= TorA⊗A

op

n (A,M).

while Hochschild cohomology groups are defined as

HHn(A,M) ∼= Hn
(
RHomA⊗Aop(A,M)

) ∼= ExtnA⊗Aop(A,M),

these definitions giving right away the correct derived definition of this functors.
There is a standard chain complex CHstd

• (A,M) (resp. CH•std(A,M)) that com-
putes Hochschild homology (resp. cohomology) [G, L1]. One can extend these
definitions to sheaves, differential graded algebras and algebras of smooth func-
tions. Especially important for geometrical applications of Hochschild theory is
the Hochschild-Kostant-Rosenberg (HKR for short) Theorem asserting that, if

3. though for instance [TW, GTZ] are also giving many details on it
4. also called chiral homology, an homology theory for n-dimensional framed manifold and

En-algebras
5. in fact, this paper (and the concomitant lectures) were partially thought as an introduction

to ideas and features of factorization homology in a special case of independent interest but which
does not require as much higher homotopical background as the general theory
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A = C∞(M), then HHn(A,A) ∼= ΩndR(M) and HHn(A,A) ∼= Γ(M,∧nTM). Fur-
ther, there is another differential B : CHstd

• (A,A) → CHstd
•+1(A,A), the Connes

operator, which induces the de Rham operator in the above isomorphism and al-
lows to define cyclic (co)homologies (in his various forms). A consequence of this
fact led to Non Commutative geometry where one replace forms and vector fields
by Hochschild (co)homology of an operator algebra or a dg-category, de Rham co-
homology by cyclic homology and so on. More generally, in algebraic geometry,
Hochschild homology (for schemes, derived schemes, dg-categories and stacks) are
useful models for forms and vector fields as well as many operations [Ca, PTVV].

It was long understood that Hochschild homology was related to loop spaces
and that the B operator shall be think as a circle action. This idea was made
into a theorem by proving that Hochschild homology is (functions on) a derived
loop space and that the circle action is equivalent to the data of B (or de Rham
forms under HKR equivalence), for instance see [TV2, TV3]. And in fact, Higher
Hochschild homology gives a theory which describes more general derived mapping
spaces (those with sources an homotopy type of topological space) [GTZ2].

Hochschild (co)homology of commutative (dg-)algebras has an important addi-
tional virtue: the (co)homology and (co)chains (with value in a symmetric bimod-
ule) inherits a Hodge filtration (and decomposition in characteristic zero) given by a
γ-ring structure (or equivalently Adams operations), first noticed by Gerstenhaber-
Schack [GS] and Loday [L1]. These operations have been highly studied in the
literature and this structure is fundamental in many geometric applications. In
particular, for sheaves, it gives the usual Hodge decomposition of complex alge-
braic schemes [We2]. In fact, the Hodge decomposition is the correct analogue
on Hochschild chains of the weight filtration on forms. In particular, it gives the
correct (derived) weight structure on the mixed complex given by the standard
Hochschild complex which allows to interpret derived closed forms in symplectic
and Poisson derived geometry [PTVV, CPTVV].

In algebraic topology, Hochschild homology has been used intensively as a
model for the forms (or cochains) on (free or based depending on the module
coefficient) loop spaces to explicitly compute it, but also as a powerful device to
study their structures [CJ, W]; these ideas already goes back to the early eight-
ies [Ch, VB, Go]. For instance Hochschild (co)homology is an algebraic model for
string topology [CV, Tr, TZ], that is the rich algebraic structure possessed by (chains
on) the free loop spaces that was discovered by Chas-Sullivan [CS] and became a
major topic in algebraic topology ever since. Indeed, the Hochschild cohomology
of cochains algebras C∗(X) is isomorphic [CJ, FTV] to the chains on the free loop
space if X is a simply connected manifold:

H∗(LX) ∼= HH∗(C∗(X), C∗(X)) ∼= HH∗(C∗(X), C∗(X))[d]. (1.1)

The isomorphism (1.1) is an isomorphism of Gerstenhaber 6 algebras (that is ana-
logue of Poisson algebras with a cohomological degree −1 Lie bracket).

6. also called Pois2-algebras in this paper
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When X is a triangulated oriented Poincaré duality space, applying Sulli-
van’s techniques, Tradler and Zeinalian proved that the Hochschild cohomology
HH•(C∗(X), C∗(X)) is a Batalin-Vilkoviski (BV for short)-algebra (whose under-
lying Gerstenhaber algebra is the usual one) [TZ]. The intrinsic reason for the
existence of this BV-structure is that Poincaré duality is a up to homotopy ver-
sion of a Frobenius structure and that for Frobenius algebras, the Gerstenhaber
structure in Hochschild cohomology is always BV [Tr, W]. Note that the cochains
algebra can always be made into a homotopy commutative algebra and in fact into a
CDGA in characteristic zero so that the restriction to cdgas for higher Hochschild is
irrelevant with respect to the study of algebraic models for (co)chains on mapping
spaces. This was a point of view developed for instance in [GTZ3, Gi3] and that
we are explaining and pushing forward in some direction in the present paper.

Higher Hochschild (co)homology is modeled over spaces in the same way the
usual Hochschild (co)homology is modeled on circles (as we have been alluding to
earlier). More precisely, it is a rule which associate to any space X, commutative
(dg-)algebra A and A-module M , homology groups HHX(A,M) and in fact chain
complexes CHX(A,M) functorial in every argument, such that for X = S1, one
recovers the usual Hochschild homology (see Section 3.3 for more details). The
functoriality with respect to spaces is a key feature which allows us to derive alge-
braic operations on the higher Hochschild chain complexes from maps of topological
spaces. For instance Adams operations studied in Section 4 and higher operations
studied in Section 5.

These higher Hochschild constructions pass to the associated ∞-categories and
and are in fact constructions of (higher) derived functors of these derived ∞-
categories. Being indeed associated to homotopy types of spaces, one can naturally
use simplicial sets as a model for spaces to define them (and this is indeed how they
were originally defined). This allows to give nice combinatorial (co)chains models of
higher Hochschild (co)homology, each simplicial model giving a different resolution
fo the same homotopy type. We take advantage of them in several places in this
paper. This combinatorial structure and the functoriality has also been fruitfully
used in [TW] to study linear representations of Out(Fn), where Fn is the free group
on generators, via its action on wedges of circles.

To sum-up, the philosophy is that (higher) Hochschild (co)homology should
be thought of as some kind of functions on a “mapping space” from X to some
“derived space” and the gain is algebraic structures/operators induced by maps of
spaces as well as algebraic models for mapping spaces and new invariants for spaces
and algebras. Simplicial sets models gives in turn nice combinatorial and simpler
complexes to compute these invariants. Using the relationship of higher Hochschild
with invariants of mapping spaces allows in turn to transfer this rich structure to
the latter ones as we will show in § 7.2 (also see [GTZ, GTZ3]).

Let us now describe the content of the paper. The first section precises our
notations and recall a few facts from homotopical algebra and our conventions for
∞-categories.

In Section 3.1, we define higher Hochschild (co)chain complexes as right and left
Γ-modules (as in [P, GTZ, Gi3]), that is as (co)simplicial objects, and gives several
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examples, while in § 3.3 we explain how Hochschild homology gives rise to a (de-
rived)∞-functor (X,A) 7→ CHX(A) from the∞-categories of spaces Top and the
∞-category CDGA of cdgas with value in CDGA. We also spell out generaliza-
tion of this for module coefficients and cohomology (for pointed spaces), specifying
many various compatibilities, modules structures carried by this functors, some of
them were only implicit in the literature. We give the axiomatic characterization
of Higher Hochschild chains, see Theorem 3.24 which is a multiplicative analogue
of the standard Eilenberg-Steenrod axioms at the chain level.

In Section 4, we apply the functoriality with respect to continuous maps to define
the Hodge decomposition (in characteristic zero) or filtrations of higher Hochschild
(co)homology of cdgas with values in bimodules over products of spheres by a space
or iterated suspensions. We first define the operations in geometric terms, using
the canonical degree k-maps of a sphere, giving rise to the definition of the op-
erations for the derived functors of Hochschild (co)homology, see Theorem 4.14
and 4.25. We then spell out combinatorial models of them for the standard models
of higher Hochschild models of spheres in § 4.4. We use these models to refine
our results on the Hodge decomposition, see Theorem 4.17. One of the properties
of higher Hochschild homology is a Fubini (or exponential law) result stating that
higher Hochschild homology CHX×Y (A) over a product space is (equivalent to)
higher Hochschild of Higher Hochschild, namely CHX(CHY (A). In § 4.6, we give
explicit small combinatorial model for expressing this equivalence and computing
the Hochschild (co)chains of product spaces as well as suspensions. We then use
them and our results for the standard models of spheres to get again nice combi-
natorial description of the γ-ring structure on suspensions and products. We call
these models the Eilenberg-Zilber models.

In Section 5, we study higher operations possessed by Hochschild cohomology
over spheres, which generalize the standard cup-product. Our results here refine
the centralizer construction of [Lu3, GTZ3] in the case of CDGAs (and does not
hold for arbitrary En-algebras). Indeed, we proved that given a CDGA map f :
A→ B, the Hochschild homology CHSd(A,B), which is the (Ed-)centralizer of f ,
has a structure of framed 7-Ed-algebra 8 (Theorem 5.11) and we prove it is further
compatible with respect to the Hodge decomposition (Corollary 5.25). We also
give derived construction of this structure (mainly following ideas of [GTZ3]) as
well as a nice combinatorial model (which was only briefly alluded to in [Gi3]),
see Theorem 5.21.

In Section 6, we give an higher version of the Hochschild-Kostant-Rosenberg
Theorem (HKR for short) for Hochschild (co)homology of formal spaces X. This
results gives a powerful way of computing the Hochschild (co)homology functors in
terms of the coalgebra structure of H∗(X) and semi-free resolution of the algebra.
We also prove that the HKR equivalence preserves the Hodge decomposition see
Corollary 6.8 and Theorem 6.3.

In Section 7, we explain how to use Higher Hochschild homology as a model for

7. or unoriented in the terminology of [Gi4], or that of a d-disk algebra in the one of [AF]
8. said otherwise it has an additional action of the orthogonal group O(d) for which the struc-

ture maps are equivariant
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mapping spaces in algebraic topology. More precisely, we recall from [GTZ] how
to generalize the classical Chen iterated integrals from loop and path spaces to all
mapping spaces and then show how to apply the results of the previous sections
to study higher string topology operations. The main result is Theorem 7.7 which
asserts the existence of a chain level Ed+1-structure (or homotopy Poisd+1-algebra
structure) on the chains of the free sphere space Map(Sd, X) of a d-connected closed
manifold, which is multiplicative with respect to the Hodge filtration induced by
the power maps of Sd.

The techniques we use relies on CDGAs and as such only applies in topology
in characteristic zero. Most of our results can be generalized over other coeffi-
cients or even Z (and some have been in [GTZ3]) but at the price of working with
E∞-algebras for which we can not use HKR theorem anymore (hence loosing an im-
portant computational tool) nor the very nice combinatorial model we have. This
make the construction of Higher Hochschild very dependent of higher homotopical
techniques and possibly less intuitive.

2 Notations, Conventions and a few standard
facts

We fix a ground field k of characteristic 0. We will also use the following
notations and conventions

— If (C, dC) is a cochain complex, C[i] is the cochain complex such that
C[i]n := Cn+i with differential (−1)idC . We will mainly work with cochain
complexes and adopt the convention that a chain complex is a cochain com-
plex with opposite grading when we need to compare gradings.

— An ∞-category will be a complete Segal space. Any model category gives
rise to an ∞-category.

— We write k-Moddg for the category of cochain complexes and k-Mod for
its associated ∞-category. We will use the abbreviation dg for differen-
tial graded. We will use the words (co)homology for an object of these
∞-categories (in other words a complex thought up to quasi-isomorphism)
and use the words (co)homology groups for the actual groups computed by
taking the quotient of the (co)cycles by (co)boundaries (for instance see
Definition 3.19).

— sSet and Top: sSet is the (model) category of simplicial sets, that is
functors from ∆op → Set where ∆ is the simplex category of finite sets
n+ := {0, . . . , n} with order preserving maps. We also have the (model)
category of topological spaces Top. These two categories are Quillen equiv-

alent: | − | : sSet
∼
�
∼

Top : ∆•(−). Here ∆• : Top → sSet the singular

set functor defined by ∆n(X) = MapTop(∆
n, X), where ∆n is the standard

n-dimensional simplex, and |Y•| the geometric realization. Their associated
∞-categories, respectively denoted sSet and Top are thus equivalent.
These four (∞)-categories are symmetric monoidal with respect to disjoint
union.
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— There are also pointed versions sSet∗ and Top∗ as well sSet∗ and Top∗ of
the above (∞-)categories.

— The category Γ : is the category of finite sets while Γ∗ is the category of
finite pointed sets.

— CDGAs: the model category CDGA of commutative differential graded
algebras (CDGA for short) yields the ∞-category CDGA It has a (∞-
)monoidal structure induced by tensor products of CDGAs. The mapping
space between cdgas A and B is the simplicial set MapCDGA(A,B) ∼=
HomCDGA(A,B ⊗ Ω∗PL(∆n)) where Ω∗PL(∆n)) are the polynomial forms on
the standard simplex [S1].

— Modules over CDGAs: there are model categories A-Mod and A-CDGA
of (differential graded) modules and (differential graded) commutative al-
gebras over a CDGA A from which we get ∞-categories A-Mod∞ and
A-CDGA∞. The base change functor (for a map f : A → B) lifts to an
∞-functor f∗ : B-Mod∞ → A-Mod∞ (see [TV1]). The tensor products of
A-modules gives rise a to symmetric monoidal functor on A-Mod∞ that we

denote −
L
⊗
A
− (since it is a lift of the derived tensor product). Similarly, we

denote RHomA(−,−) the internal hom of A-Mod∞.
— We will write ModCDGA and ModCDGA for the categories consisting of pairs

given by an algebra and a module (with respective maps explained in § 3.3)
and ModCDGA and ModCDGA for their associated ∞-categories. We denote
ι∗ : ModCDGA → CDGA and ι∗ : ModCDGA → CDGAop the canonical functors
sending a pair to the underlying algebra.

— En-algebras: there are similarly ∞-categories En-Alg of En-algebras
where En is an (∞)-operad equivalent to the little n-dimensional cubes
operad. We denote ModEkA the symmetric monoidal ∞-category of (Ek-
)modules over an Ek-algebra A (see [Lu3, F]). Recall that, for instance,
ModEkA is equivalent to the category of A-bimodules, while, if A is a CDGA,

ModE∞A is equivalent to the (∞-)category of left A-modules.
— We denote Poisn the operad controlling n-Poisson algebras (that is CDGA

endowed with a cohomological degree 1 − n Lie structure whose bracket is
a graded derivation in each variable). We recall that for n > 1, this is the
homology of (any) En-operad (see [Fr4, Co]) and that the latter are formal
under the same assumption.

— Since we are over a characteristic zero field, any operad O gives rise to a
model category of algebras and hence to an associated∞-category [Hi, Fr3].

— γ-rings: We will denote (γ, 0)-Ring the category of γ-rings with trivial
multiplication, see 4.1 as well as (γ, 0)-Ring for its associated ∞-category.

Remark 2.1 We will consider various “derived categories” of algebras, modules
or chain complexes, which can be described as ∞-categories. We will often use
boldface typography for ∞-categories, their objects as well as functors to distin-
guish them from their strict analogues from which they are an enrichment of the
ordinary derived category. For most of our applications, the reader does not need
much about ∞-category, besides the fact that they are enrichment of homotopy

8



categories, that is categories where one inverts weak-equivalences, for which the
morphisms are topological spaces (or simplicial sets) which can be computed by
cofibrant-fibrant resolutions when the ∞-category come from a model category.
Also, in that context, homotopy (co)limits can be expressed with universal proper-
ties in the ∞-category world (in other words as ∞-(co)limits).

In that paper, following [R, Lu2], by an ∞-category we mean a complete Segal
space (though none of our results actually depends on the choice of a specific
model; in particular quasi-categories [Lu1] will be equally fine). The ∞-categories
we are mostly interested in will arise from Dwyer-Kan localizations from model
categories; as alluded to, they should be thought of as nice enhancement of derived
categories (in particular weak-equivalences have been inverted (in a non-naive way).
Let us recall briefly how to get an ∞-category out of a model category; this will
be our prominent source of examples. There is a simplicial structure, denoted
SeSp on the category of simplicial spaces such that a fibrant object in the SeSp is
precisely a Segal space. Rezk has shown that the category of simplicial spaces has
another simplicial closed model structure, denoted CSeSp, whose fibrant objects are
precisely complete Segal spaces [R, Theorem 7.2]. Let R : SeSp→ SeSp be a fibrant

replacement functor. Let ·̂ : SeSp → CSeSp, X• → X̂•, be the completion functor
that assigns to a Segal space an equivalent complete Segal space. The composition

X• 7→ R̂(X•) gives a fibrant replacement functor LCSeSp from simplicial spaces to
complete Segal spaces. Now, a standard idea to go from a model category to a
simplicial space is to use Dwyer-Kan localization. Let M be a model category and
W be its subcategory of weak-equivalences. We denote LH(M,W) its hammock
localization. It is a simplicial category such that the category π0(LH(M,W)) is the
homotopy category of M. Any weak equivalence has (weak) inverse in LH(M,W).

Thus, a model category M gives rise functorially to the simplicial category
LH(M,W) hence a simplicial space N•(L

H(M,W)) by taking its nerve. Com-
posing with the complete Segal Space replacement functor we get a functor
M→ L∞(M) := LCSeSp(N•(L

H(M,W))) from model categories to ∞-categories.

3 Higher Hochschild (co)homology

3.1 Γ-modules and Hochschild (co)chain complexes over
spaces

Let Γ be the category of finite sets and Γ∗ be the category of finite pointed
sets. We will write k+ for the set {0, 1, . . . , k} with 0 as base point; this base point
will often just be denoted by +. The collection of k+ is a skeleton for Γ∗. A left
Γ-module is a functor Γ → Vect and right Γ-module is a functor Γop → Vect.
There are similar definitions for left and right Γ∗-modules; the latter will also
simply be called pointed left or right Γ-modules. The category Mod-Γ∗ of right
Γ∗-modules is abelian with enough projectives and injectives and the same is true
for the categories of left modules Γ∗-Mod as well as Mod-Γ, Γ-Mod. Details can be
found in [P]. The significance of Γ-modules in Hochschild (co)homology was first
understood by Loday [L1] who initiated the following constructions. Let A be a
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commutative unital algebra and M a symmetric A-bimodule. The left Γ∗-module
L(A,M) is defined on an object I+ with base point + by

L(A,M)(I+) = M ⊗
⊗

i∈I+\{+}

A

and on a a map I+
φ−→ J+ by, for any (ai ∈ A)i∈I+\{+} and m+ ∈M , the formula

L(A,M)(φ)
(
m+ ⊗

⊗
i∈I+\{+}

ai

)
= n+ ⊗

⊗
j∈J+\{+}

bj (3.1)

where bj =
∏
i∈φ−1(j) ai. Here the empty product is set to be the unit 1 of A and

for j = +, the product is givn by the module structure.

Similarly [Gi3], there is a right Γ∗-module H(A,M) defined on I+ by

H(A,M)(k+) = Homk(A⊗I+\{+},M).

For a map I+
φ−→ J+ and f ∈ Homk(A⊗J+\{+},M), the linear map

H(A,M)(φ)(f) ∈ Homk(A⊗I+\{+},M) is given, for any (ai ∈ A)i∈I+\{+}, by

H(A,M)(φ)(f)
( ⊗
i∈I+\{+}

ai

)
= b+ · f

( ⊗
j∈J+\{+}

bj

)
(3.2)

where bj =
∏
i∈φ−1(j) ai. Again the empty product is set to be the unit 1 of A and,

for j = +, the product denotes the module structure.

The above constructions extend naturally to the differential graded context;
in that case one shall add the sign ε in equation (3.2) given by the usual Koszul
sign rule, that is one adds the sign (−1)|x|·|y| whenever x moves across y. This
is simply the sign carried out by the standard symmetric monoidal structure of
graded modules.

Given a cocommutative coalgebra C and a C-comodule N , Pirashvili [P] defined
a right Γ∗-module coL(C,N) given on objects by coL(C,N)(I+) = N ⊗ C⊗I+\{+}.
The action on arrows is as for H(A,M) replacing multiplications by comultiplica-
tions. Again both constructions naturally extends to differential graded algebras
and coalgebras.

Example 3.1 Let L• be a simplicial set. Then its homology is a cocommutative
coalgebra and coL(H∗(L), H∗(L)) is a graded right Γ∗-module. In particular its
degree q part yields the right Γ∗-module coLq(H∗(L), H∗(L)).

Example 3.2 (non-pointed extensions) When M = A, formula (3.1) makes
sense for all sets maps and no longer only pointed ones. Hence the functor L(A,A)
extends canonically into a left Γ-module. Similarly, for M = (A)∨ the linear dual
of the (dg-)module M , the functor H(A, (A)∨) extends canonically into a right
Γ-module.
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A right Γ∗-module R can be extended to a functor Setop
∗ → Vect, where Set∗ is

the category of pointed sets, by taking limits :

Set∗ 3 Y 7→ R(Y ) := lim
Γ3X→Y

R(X).

Thus, given any pointed simplicial set Y• and right Γ-module R one gets a pointed
cosimplicial vector space R(Y•). Similarly, we extend left Γ∗-modules by colimits

Y → L(Y ), Set∗ 3 Y 7→ L(Y ) := colim
Γ3X→Y

L(X)

as well as the non-pointed versions.

Replacing (graded) vector spaces by (co)chain complexes with their standard
symmetric monoidal structure, one obtains left and right, pointed or not, differential
graded Γ-modules. In particular formula (3.2), (3.1) and example 3.2 extend to
differential graded algebras and modules over them in a canonical way 9 giving
rise to left and right Γ and Γ∗ dg-modules. In these notes, we will almost always
consider dg-Γ or Γ∗-modules. In that case we obtain, for any (pointed) simplicial
set X• and left (pointed) Γ-dg-module (L, d) the simplicial (pointed) Γ-dg-module
L(X•). The Dold-Kan realization functor [We] thus produces a bicomplex whose
total complex is denoted

Ldg(X•) = Tot(L(X•), d, ∂). (3.3)

where ∂ : L(Xi) → L(Xi−1) is the simplicial differential
∑i
k=0(−1)k(dk)∗ where

dk : X• → X•−1 are the face operators. In other words, writing L(I)p the degree
p component of the chain complex (L(I), d) for any I ∈ Γ, in (homological) degree
n, one has Ldg(X•)n =

⊕
p+q=n L(Xq)p with total differential D = (−1)qd + ∂.

Similarly, if (R, d) is a right (pointed) Γ-dg-module, we have a cosimplicial (pointed)
Γ-dg-module R(X•) and its totalization thus produces the bicomplex

Rdg(X•) = Tot(R(X•), d, ∂
∗). (3.4)

where ∂∗ : R(Xi)→ R(Xi+1) is the cosimplicial differential
∑i
k=0(−1)k(dk)∗ where

dk : X• → X•−1 are the face operators. In other words, writing R(I)p the degree p
component of the chain complex (L(I), d) for any I ∈ Γ, in (homological) degree n,
one has Ldg(X•)n =

⊕
p−q=n L(Xq)p with total differential D = (−1)qd + ∂. We

have considered the case of chain complexes, but one deal in the same way with
cochain complexes.

Further, since the (co)chain complexes above came from (co)simplicial dg-
modules, they are quasi-isomorphic to their normalized complexes, that is the
subcomplexes obtained by taking the kernel of degeneracies (in the cosimplicial
case) or the quotient by the image of the degeneracies (in the simplicial case).
Henceforth, we will often tacitly assume that the notations Ldg and Rdg stand
for normalized (co)chain complexes when there is no harm in doing so. We refer
to [L2, We] for details on these standard constructions.

9. that is the dg-structure on M ⊗
⊗

i∈I+\{+} A is the tensor product of the underlying dg-

k-modules.
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A virtue of the constructions of Ldg(−,−) and Hdg(−,−) is that they are
invariant under quasi-isomorphisms. To see this, also note that associated to any
simplicial set we have the right Γ-module C̃∗(X•) : I 7→ C∗(X

I
• ) where C∗ is the

singular chain complex. If X• is pointed, then this gives a right Γ∗-module.

Proposition 3.3 Let R ∈ Mod-Γ∗, L ∈ Γ∗-Mod and X• be a pointed simplicial
set.

1. There is an natural equivalence

Ldg(X•) ∼= C̃∗(X•)
L
⊗
Γ∗
L

in the derived ∞-category of complexes over k.

2. There is an natural equivalence

Rdg(X•) ∼= RHomMod-Γ∗

(
C̃∗(X•), R

)
in the derived ∞-category of complexes over k.

3. In particular there are spectral sequences:

Ep,q1 = ExtpMod-Γ(coLq(H∗(X•), H∗(X•)) , R) =⇒ Hp+qRdg(X•),

E1
p,q = TorΓ,p(

coLq(H∗(X•), H∗(X•)) , L) =⇒ Hp+qLdg(X•).

4. The same holds for unpointed Γ-modules.

Proof. Note that C̃∗(X•) is the functor defined by I 7→ k
[
HomSet(I,X•)

]
which

is cofibrant by [P]. As in [GTZ2, Proposition 4], we deduce an equivalence of
simplicial modules

C̃∗(X•)
L
⊗
Γ∗
L ∼= k

[
HomSet(I,X•)

]
⊗
Γ∗
L ∼= colim

Γ3I→X•
L(I)

from which the first equivalence follows. The second equivalence is dual to this one
and the spectral sequences are the associated Grothendieck spectral sequences as
in Theorem 2.4 in [P]. �

In particular if α : X• → Y• is a map of pointed simplicial sets, by functorial-
ity it induces a map of cosimplicial vector spaces R(Y•) → R(X•) which is an
isomorphism in cohomology when α∗ : H∗(X•)→ H∗(Y•) is an isomorphism.

From the Quillen equivalence | − | : sSet
∼
�
∼

Top : ∆•(−) between the model

categories of simplicial sets and topological spaces and its pointed analogue, we
deduce from Proposition 3.3

Corollary 3.4 If R ∈ Mod-Γ∗ and L ∈ Γ∗-Mod, the functors X• 7→ Rdg(X•) and
X• 7→ Ldg(X•) induces ∞-functors

R : Top∗
op → k-Mod, L : Top∗ → k-Mod.

12



Further, if R, L extends respectively to Mod-Γ and Γ-Mod, then the functors R and
L extends to functors of ∞-categories

R : Topop → k-Mod, L : Top→ k-Mod.

Example 3.5 By definition, for any space X, an explicit (co)chain complex rep-
resenting R(X) is given by Rdg(X•) for any simplicial set X• whose geometric
realization is (weakly homotopy equivalent to) X. In particular, using the simpli-
cial set functor X 7→ ∆•(X), we get a strict functor Top∗ → k-Moddg given by
X 7→ Rdg(∆•(X)) representing R. We will simply write R(X) for this functor.

Of course, we will use the same construction and notation for left Γ∗-modules
and the non-pointed versions.

By functoriality, the counit X• → ∆•(|X•|) of the adjunction yields canonical
(co)chain complexes maps

R(X)→ Rdg(X•), Ldg(X•)→ L(X) (3.5)

which allows to compare effectively constructions done on different simplicial mod-
els.

3.2 Combinatorial Higher Hochschild (co)chains

We will now study in depth the Γ∗-modules L(A,M) and H(A,M). Contrary
to an arbitrary left Γ-modules, these functors will inherit more structures coming
from the algebra structure on A and give rise to what is called Higher Hochschild
(co)chains Let (A =

⊕
i∈ZA

i, d, µ) be a CDGA and M be a differential graded
symmetric bimodule. Let us first consider the unpointed case. As seen above,
we have L(A,A)(I) = A⊗I . Since the tensor products of CDGAs is a CDGA,
L(A,A)(I) inherits a cdga structure and further the maps (3.1) are maps of CDGAs
as well 10. Hence, I 7→ L(A,A)(I) is a functor from from sets to differential graded
commutative algebras.

Now, if Y• is a simplicial set, we also get the simplicial CDGA L(A,A)(Y•). Ap-
plying the Dold-Kan construction 11, L(A,A)dg(Y•) is canonically a CDGA whose
product is induced by the shuffle product which is defined (in simplicial degree p,
q) as the composition

sh : L(A,A)dg(Yp)⊗ L(A,A)dg(Yq)
sh×−→ L(A,A)dg(Yp+q)⊗ L(A,A)dg(Yp+q)

∼= L(A⊗A,A⊗A)dg(Yp+q)
µ∗−→ L(A,A)dg(Yp+q) (3.6)

where µ : A ⊗ A → A denotes the multiplication in A (which is a map of algebra
since A is commutative) and, denoting si the degeneracies of the simplicial structure
in L(A,A)dg(Y•),

sh×(v ⊗ w) =
∑
(µ,ν)

sgn(µ, ν)(sνq . . . sν1(v)⊗ sµp . . . sµ1(w)), (3.7)

10. here the commutativity is crucial
11. Recall that we can consider normalized chains and cochains when applying Dold-Kan
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where (µ, ν) denotes a (p, q)-shuffle, i.e. a permutation of {0, . . . , p+q−1} mapping
0 ≤ j ≤ p − 1 to µj+1 and p ≤ j ≤ p + q − 1 to νj−p+1, such that µ1 < · · · < µp
and ν1 < · · · < νq.

The differential D : L(A,A)dg(Y•) → L(A,A)dg(Y•)[1] is given as follows. The
tensor products of chain complexes A⊗Yi has an internal differential which we
abusively denote as d since it is induced by the inner differential d : A → A[1].
Then, the differential on L(A,A)dg(Y•) is given by the formula:

D
(⊗
i∈Yi

ai
)

:= (−1)id
(⊗
i∈Yi

ai
)

+

i∑
r=0

(−1)r(dr)∗
(⊗
i∈Yi

ai
)
, (3.8)

where the (dr)∗ : L(A,A)dg(Yi)→ L(A,A)dg(Yi−1) are induced by the correspond-
ing faces dr : Yi → Yi−1 of the simplicial set Y•. From now on, we will denote
by CHY•(A) the CDGA L(A,A)dg(Y•). More precisely, following the notations
of [P, Gi3, GTZ].

Definition 3.6 Let Y• be a simplicial set. The Hochschild chains over Y• of A is
the commutative differential graded algebra (CHY•(A) := L(A,A)dg(Y•), D, sh).

The rule (Y•, A) 7→ (CHY•(A), D, sh) is thus a bifunctor from the ordinary dis-
crete categories of simplicial sets and CDGAs to the ordinary discrete category of
CDGAs.

Taking the normalized chains in the definition of L(A,A)dg(Y•) yields the nor-
malized Hochschild chain complex CHY•(A) which is also a functorial CDGA. It
is standard that the canonical map CHY•(A) → CHY•

(A) is an equivalence (for
instance see [L2, We]). In practice, we will usually not have to worry about taking
normalized or not Hochschild chains and not always make the distinction between
them if there is no harm in taking either one.

Remark 3.7 By construction, CHY•(A) = L(A,A)dg(Y•) is naturally a bigraded
object, with in one side a grading coming from the internal grading of A and in
the other one a grading coming from the simplicial degree of Y•: an element in
CHYn(A) is of simplicial degree n. We will write |x|int for the internal grading of
an element and |x|simp for the simplicial degree.

The grading on CHY•(A) is just the total grading of this bigrading, that is the
sum of the two gradings, where the simplicial grading n is (as usual) viewed as an
homological grading (and thus contributes to −n for the cohomological grading).

Further note that the differential D splits into two differentials of bidegree (0, 1)
and (1, 0); the first one being induced by the first term in (3.8) and the second one
of simplicial degree -1 given by the alternating sum of the face maps (that is the
second term in (3.8)).

Moreover, the bigrading is preserved both by CDGAs homomorphisms and maps
of simplicial sets.

Hence, the Hochschild chains over Y• of A is canonically, in a bifunctorial way,
the total complex of a bicomplex. As such, we have standard spectral sequences to
compute it as well.
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Example 3.8 (The point) The point has a trivial simplicial model given by the
constant simplicial set ptn = {pt}. Hence

(CHpt•(A), D) := A
0← A

id← A
0← A

id← A · · ·

which is a retract deformation of A (as a CDGA): the canonical algebra map
A ↪→ CHpt•(A), which maps A identically on its component of simplicial degree
0, is a quasi-isomorphism of CDGAs as well as is the projection on the simplicial
degree 0 part CHpt•(A) � L(A,A)(pt0) ∼= A. Note that the normalized chain
complex CHpt•

(A) is isomorphic to A as a CDGA. The projection above identifies
with the quotient from the unnormalized to the normalized chains.

Now, if Y• is a pointed simplicial set, the canonical CDGA map A
∼
↪→

CHpt•(A)→ CHY•(A) makes CHY•(A) a A-CDGA 12. Then, if M is an A-module,
from (3.1), we obtain an natural isomorphism of k-modules:

M ⊗
A
CHY•(A) ∼= L(A,M)dg(Y•) (3.9)

and similarly, from (3.2), we have an natural isomorphism of k-modules:

HomA(CHY•(A),M) ∼= R(A,M)dg(Y•) (3.10)

Definition 3.9 Let Y• be a pointed simplicial set, A a CDGA and M an A-module
(viewed as a symmetric bimodule).

— The Hochschild chains of A with value in M over Y• is the A-module

CHX•(A,M) := M ⊗
A
CHX•(A).

It is a covariant functor with respect to maps of CDGAs, A-modules and
pointed simplicial sets.

— The Hochschild cochains of A with value in M over Y• is the A-module

CHX•(A,M) := HomA(CHX•(A),M).

It is a contravariant functor with respect to maps of CDGAs and pointed
simplicial sets, but is covariant with respect to maps of modules.

Both functors are also naturally bigraded just as is CHX•(A) in Remark 3.7.

Of course, one can again takes normalized versions of these (co)chain complexes
which are canonically quasi-isomorphic (as modules) to their unnormalized coun-
terpart.

A special kind of modules will be provided by A-algebras. Indeed, if B is a (non-
necessarily unital) CDGA over A, then it is in particular a symmetric A-bimodule.
In that case, it follows as above that L(A,B)(Y•) is a simplicial CDGA for any
simplicial set Y• and applying the Dold-Kan construction, L(A,B)dg(Y•) endowed
with the shuffle product (3.6) is a CDGA as well. From the isomorphism (3.10),
we obtain

12. that is a commutative algebra object in the symmetric monoidal category of differential
graded A-modules
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Lemma 3.10 If B is a (non-necessarily unital) CDGA over A, then CHX•(A,B)
is naturally (in A, B and X•) a CDGA.

For any simplicial set X•, we also have the canonical (and actually unique)
map of simplicial set X• → pt• which by functoriality and example 3.8 gives
a CDGA map CHX•(A) → A. In particular, for a pointed simplicial set X•,
CHX•(A) is canonically an A-augmented CDGA. Hence, Definition 3.9 implies
that CHX•(A,M) and CHX•(A,M) inherits an action of CHX•(A) induced by its
canonical action on itself, lifting 13 their A-module structure.

Lemma 3.11 Let X• be a pointed simplicial set. There are natural isomorphisms

CHX•(A,M) ∼= RHomA(CHX•(A),M),

CHX•(A,M) ∼= M
L
⊗
A
CHX•(A)

in the derived category of A-modules.

Proof. By definition CHX•(A) ∼= A⊗CHX•\{∗}(A) as a A-CDGA, where the A-
module structure is given by multiplication in the first tensor. It is thus a semi-free
A-cdga. Hence HomA(CHX•(A),M) and M ⊗A CHX•(A) computes the derived
homomorphisms and tensor products in the model category of A-modules. �

Lemma 3.12 The natural weak equivalences of A-modules given by Lemma 3.11
lifts to weak equivalences in the derived ∞-category of CHX•(A)-modules.

Proof. Since the canonical maps A → CHX•(A) and CHX•(A) → A are maps
of semi-free A-cdgas, any cofibrant resolution of CHX•(A) as a CHX•(A)-module
is also a cofibrant resolution as a A-module. Thus the canonical lift given by
the left hand sides in Lemma 3.11 induces the desired derived CHX•(A)-modules
structures. �

Example 3.13 (ground field) Let M be any k-module. Then, by definition
CHX•(k,M) ∼= M , and

(CHX•(k,M) := M
0←M

id←M
0←M

id←M · · ·

which is a retract deformation of M , with section obtained by mapping M iden-
tically on its component of simplicial degree 0. Note that M concentrated in
(simplicial) degree 0 is precisely the normalized cochain complex associated to
CHX•(k,M). This retract is compatible with the one given by example 3.8.

13. meaning that the A-module structure is induced from the CHX• (A) one through the algebra
map A→ CHX• (A)

16



Namely, for any pointed simplicial set pt• → X•, cdga A and A-module, we have a
commutative diagram

M �
� ' //� s

'
%%

CHX•(k,M)
(k→A)∗// CHX•(A,M)

CHpt•(A,M)

(pt•→X•)∗

66
.

We now go over the combinatorics of several crucial examples in details.

Example 3.14 (The interval) A (pointed) simplicial model for the interval I =
[0, 1] is given by In = {0+, 1 · · · , n+1}, hence in simplicial degree n, CHIn(A,M) =
M ⊗A⊗n+1 and the simplicial face maps are

di(a0 ⊗ · · · an+1) = a0 ⊗ · · · ⊗ (aiai+1)⊗ · · · ⊗ an+1.

Clearly CHI•(A,M) = Bar(M,A,A) is the standard (two sided) Bar construction
which is quasi-isomorphic to M . Similarly, the normalized chains are the standard
two-sided reduced Bar construction.

Example 3.15 (The circle) The circle S1 ∼= I/(0 ∼ 1) has (by Example 3.8) a
simplicial model S1

• which is the quotient S1
n = In/(0 ∼ n + 1) ∼= {0, . . . , n}. One

computes that the face maps di : S1
n → S1

n−1, for 0 ≤ i ≤ n − 1 are given by
di(j) is equal to j or j − 1 depending on j = 0, . . . , i or j = i+ 1, . . . , n and dn(j)
is equal to j or 0 depending on j = 0, . . . , n − 1 or j = n. For i = 0, . . . , n, the
degeneracies si(j) is equal to j or j+1 depending on j = 0, . . . , i or j = i+1, . . . , n.
This is the standard simplicial model of S1 cf. [L2, § 6.4.2]. Thus, CHS1

•
(A,M) =⊕

n≥0M ⊗ A⊗n and the differential agrees with the usual one on the Hochschild
chain complex C•(A,M) of A with values in a (symmetric) bimodule M (see [L2]).
In particular, CHS1

•
(A) is the usual Hochschild chain complex of A; this

is the motivation behind the terminology.

We will see in details the derived and functorial properties of the Hochschild
cochains in the next section 3.3.

Example 3.16 (The 2-dimensional sphere) The sphere S2 has a simplicial
model S2

• = I2
•/∂I

2
• i.e. S2

n = {(0, 0)}
∐
{1 · · ·n}2, where we take (0, 0) as the

base point (if needed). Here the face and degeneracies maps are somehow the quo-
tient of diagonal ones as taken from Example 3.14. Hence, the ith differential is

given by d
S2
•
i (p, q) = (0, 0) in the case that di(p) = 0 or di(q) = 0 (where di is the

ith-face map of S1
•), or setting otherwise di(p, q) = (di(p), di(q)). For i ≤ n− 1, we
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obtain di(a(0,0) ⊗ · · · ⊗ a(k,k)) is equal to:

a(0,0)⊗
⊗(a(i−1,i)a(i−1,i+1))⊗ . . . ⊗a(i−1,n)

⊗(a(i,i)a(i,i+1)a(i+1,i)a(i+1,i+1))⊗ . . . ⊗(a(i,n)a(i+1,n))
⊗(a(i+2,i)a(i+2,i+1))⊗ . . . ⊗a(i+2,n)

...
...

⊗(a(n,i)a(n,i+1))⊗ . . . ⊗a(n,n)

Example 3.17 (higher spheres) We will especially focus on spheres Sd with d >
1. First, similarly to S2, we have the standard model Sd• := (I•)

d/∂(I•)
d ∼= S1

•∧· · ·∧
S1
• (d-factors) for the sphere Sd. Hence Sdn

∼= {0}
∐
{1 · · ·n}d and the face operators

are similar to those of Example 3.16 (except that, instead of a matrix, we have a
dimension d-lattice) and face maps are obtained by simultaneously multiplying
each ith-hyperplane with (i + 1)th-hyperplane in each dimension. The last face
dn is obtained by multiplying all tensors of all nth-hyperplanes with a0. We get

this way the standard Hochschild cochain complex CS
d
• (A,M) which is the

cochain complex associated to H(A,M)(Sd•).
We also have the small model Sdsm• which is the simplicial set with exactly two

non-degenerate simplex, one in degree 0 and one in degree d. Then, Sdsmn = pt
for n < d and Sdsmn

∼= {0+}
∐
{1, . . . ,

(
n
d

)
} for n ≥ d. Using this model, it is

straightforward to check the following computation of the first homology groups of
CHSd(A) for a commutative algebra A:

Hn(CHSd(A)) ∼= Hn(CHSdsm•
(A))

 = A if n = 0
= 0 if 0 < n < d

= Ω1
A if n = d

where Ω1
A is the A-module of Kähler differentials (see [L2, We]).

Of course, we also have the singular complexes CH∆•(Sd)(A,M),

CH∆•(S
d)(A,M) which are the cochain complexes associated to the fibrant simpli-

cial set which in dimension n is the set of maps ∆n → Sd. By definition, those are
the strict functors associated to L(A,M) and H(A,M) as in Example 3.5.

When working with this combinatorial definition of the Hochschild chain com-
plex, it is often useful to think of it by writing the tensor products on a model given
by the geometric realization of the simplicial sets, putting the tensors axi ∈ A⊗Xi ,
for each xi in Xi at the position on |X•| given by the point η(t, xi) where
η : ∆i × Xi → |X•| is the canonical projection. This helps seeing the tensors
and studying the differential and functorial structure. The sphere example above
illustrates this and we refer to [GTZ] for many more examples of this.

3.3 Derived Hochschild (co)chains

By Corollary 3.4, the definitions of Hochschild (co)chains (Definitions 3.6
and 3.9) passes to (∞-)derived categories. These lifts do retain their additional
algebraic structures as we will see.
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To encode the package of the many various functoriality, we will introduce some
notations.

Let us denote ModCDGA the category of pairs (A,M) consisting of a CDGAA and

aA-moduleM whose morphisms from (A,M) to (B,N) are pairs (A
f→ B,M

φ→ N)
where f : A→ B is a CDGA map and φ : M → f∗(N) is an A-module homomor-
phism. Note that we have an obvious covariant functor ι∗ : ModCDGA → CDGA
sending (A,M) to A, as well as, for any CDGA A, an equivalence of categories
{A} ×CDGA ModCDGA → A − Mod induced by (A,M) goes to M . Further, since
an algebra A is canonically a module over itself, we have the faithful functor
CDGA ↪→ ModCDGA given by A 7→ (A,A).

Let us also denote ModCDGA the category of pairs (A,M) consisting of a CDGA
A and a A-module M whose morphisms from (A,M) to (B,N) are now pairs

(B
f→ A,M

φ→ N) where f : B → A is a CDGA map and φ : f∗(M) → N is an
A-module homomorphism. Here we denote as it is standard by f∗(N) the canonical
A-module structure on N induced by the map f . We have now an obvious functor
ι∗ : ModCDGA → CDGAop sending (A,M) to A, as well as, for any CDGA A, an
equivalence of categories {A} ×CDGAop ModCDGA → A − Mod induced by (A,M)
goes to M . Further we also have a faithful functor CDGAop ↪→ ModCDGA given by
A 7→ (A,A∨) where the dual A∨ is endowed with its canonical A-module structure.

In particular, functors out of ModCDGA yields naturally contravariant functors
with respect to maps of CDGAS but covariant functors with respect to modules
maps, while functors out of ModCDGA yields natural covariant functors on both vari-
ables. The choice of CDGA has an upper and lower notation respectively is designed
to suggest this co(ntra)variance properties with respect to maps of CDGAs. All the
above categories have standard simplicial enrichment of their morphims (given by
tensoring by polynomial forms Ω∗Pl(∆

•) on simplices at the target) and the above
functors preserve the enrichment.

Finally, we denote ModCDGA, ModCDGA the ∞-categories corresponding to
these categories (see[Lu3, F, Fr4, GTZ3] for details on ∞-categories of modules).
The above described functors passes to these ∞-categories; for instance we still
have ι∗ : ModCDGA → CDGA and ι∗ : ModCDGA → CDGAop.

Proposition 3.18 ([GTZ2, GTZ3]) The Hochschild chains functor (X•, A) 7→
CHX•(A) (Definition 3.6) lifts 14 as a functor of ∞-categories

CH(−)(−) : Top×CDGA→ CDGA, (X,A) 7→ CHX(A).

The Hochschild chains (X•, A,M) 7→ CHX•(A,M) and cochains CHX•(A,M)
(Definition 3.9) lifts respectively as functors of ∞-categories

CH(−)(−,−) : Top∗ ×ModCDGA →ModCDGA, (X,M) 7→ CHX(ι∗(M),M)

14. said otherwise, the combinatorial definition of Hochschild chains has an natural derived
enhancement
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fitting into a commutative diagram

Top∗ ×ModCDGA

i×ι∗
��

CH(−)(−,−)
//ModCDGA

ι∗

��
Top× CDGA

CH(−)(−)
// CDGA

and

CH(−)(−,−) : Top∗
op ×ModCDGA →ModCDGA, (X,M) 7→ CHX(ι∗(M),M)

fitting into a commutative diagram

Top∗ ×ModCDGA

i×ι∗

��

CH(−)(−,−)
//ModCDGA

ι∗

��
Top× CDGAop

CH(−)(−)
// CDGAop.

Definition 3.19 (Higher Hochschild (co)homology and Higher
Hochschild (co)homology groups) We will refer to CHX(A) as the (higher)
Hochschild homology 15 of A over the space X and CHX(A,M) as (higher)
Hochschild cohomology.

The higher Hochschild (co)homology groups are defined as their (co)homology
groups 16; they will be denoted by HHX(A)∗ := H∗(CHX(A)) , HHX(A,M)∗ :=
H∗(CHX(A,M)) and HHX(A,M)∗ := H∗(CHX(A,M)).

Proof. The first statement is in [GTZ2] and the other ones in [GTZ3]. Since
we will use explicit construction henceforth of this functor using the combinatorial
models of Section 3.2, we sketch the proof of the last part of the proof. The fact
that the Hochschild cochains functor lifts to ∞-functors is Corollary 3.4 and the
commutativity of the diagrams is provided by Lemma 3.12. To check the claimed
functoriality, we may assume that A is a cofibrant CDGA and M a cofibrant B-
module. A CDGA map A → B gives a A-cdga structure to B and we can thus
assume (taking a resolution if necessary) that B is a cofibrant A-cdga. Finally, we

can also assume N is cofibrant as a B-module. Then a pair (A
f→ B,M

φ→ N)
yields first the CDGA map f∗ : CHX•(A) → CHX•(B) which is a morphism of
cofibrant CHX•(A)-cdga. Then the chain complex morphism

CHX•(A,M) ∼= M⊗ACHX•(A)
φ⊗Af∗−→ N⊗ACHX•(B)→ N⊗BCHX•(B) ∼= CHX•(B,N)

15. using the now standard terminology of calling homology an object of an∞-derived category
of complexes, not to be mistaken with their associated homology groups

16. which are actually k-modules
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is a morphism of CHX•(A)-modules. This provides the desired structure for the
first functor. The structure for the second functor is obtained similarly. Given
ψ : f∗(N)→M , we get a chain complex morphism

CHX•(B,N) ∼= HomB(CHX•(B), N)
f∗−→ HomA(CHX•(A), N)

ψ∗→ HomA(CHX•(A),M) ∼= CHX•(A,M)

which is a map of CHX•(B)-modules by construction. �

Remark 3.20 (Hochschild chains over singular set are universal repre-
sentatives) By definition, the Hochschild homology algebra CHX(A) is repre-
sented by the CDGA CHX•(A) for any simplicial set X• whose geometric realiza-
tion is weakly equivalent to X (this is what means the fact that CH(−)(−) lifts

CH(−)(−)). A similar result holds for CHX(A,M) and CHX(A,M).

In particular, we have always a canonical choice of representative for any space
X. That is the Hochschild chains over the singular set ∆•(X) :

CHX(A) := CH∆•(X)(A) ' CHX(A).

Further, for any simplicial set model X• of X ∼= |X•|, the canonical map
X• → ∆•(|X•|) (adjoint to η : ∆• × X• → |X•|) gives a canonical CDGA quasi-
isomorphisms

CHX•(A)
'−→ CH∆•(|X•|)(A).

The later allows in practice to compare effectively constructions and computa-
tions done with various models of a space. Again, we have similar statements for
(co)chains with coefficients in the categories ModCDGA and ModCDGA.

Remark 3.21 (skeletal filtration) By Remark 3.7 and the previous one, any
choice of a simplicial set model X• of X gives rise to a bigraded chain complex
representing CHX(A) (or other variant), and such chain complex came with a
canonical quasi-isomorphism η∗ : CHX•(A) → CH∆•(X)(A) which preserves the
bigrading, since maps of simplicial sets preserves this bigrading. Consequently, the
derived functors CH(−)(−,−) and CH(−)(−,−) are canonically filtered by a weight
induced by the simplicial degree. We call this filtration the skeletal filtration.

Remark 3.22 Let us consider the case where the objects (A,M) in ModCDGA

are such that M is in fact a CDGA over A. That is, we consider the category
CAlg(ModCDGA) of commutative algebra objects in the symmetric monoidal 17 cat-
egory ModCDGA and its associated ∞-category CAlg(ModCDGA). By Lemma 3.10,
we have that for any (A,B) ∈ CAlg(ModCDGA), the Hochschild chain CHX•(A,B)
is a CDGA over CHX•(A) and the proof of Proposition 3.18 shows that

17. for its standard monoidal structure given by tensoring over A
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Proposition 3.23 The Hochschild chains (X•, A,B) 7→ CHX•(A,B) lifts to a
functor of ∞-categories

CH(−)(−,−) : Top∗ ×CAlg(ModCDGA)→ CAlg(ModCDGA),

(X,B) 7→ CHX(ι∗(B), B)

fitting into a commutative diagram

Top∗ ×CAlg(ModCDGA)

i×ι∗
��

CH(−)(−,−)
// CAlg(ModCDGA)

ι∗

��
Top× CDGA

CH(−)(−)
// CDGA.

Putting together Theorem 4.2.2 and Theorem 4.3.1 in our paper [GTZ2], we get

Theorem 3.24 The Hochschild Homology functor CH(−)(−) : Top×CDGA→
CDGA is the unique ∞-functor satisfying the following axioms

1. value on a point: there is a natural equivalence CH•pt(A) ∼= A in CDGA.

2. (infinite) monoidal: the canonical maps⊗
i∈I

CHXi(A) −→ CH∐
i∈I Xi

(A)

are natural equivalences (in CDGA).

3. homotopy glueing/pushout: CH sends homotopy pushout in Top to ho-

motopy pushout in CDGA. More precisely, given maps Z
f→ X and Z

g→ Y
in Top, and W ∼= X

⋃h
Z Y a homotopy pushout, there is a natural equiva-

lence

CHW (A) ∼= CHX(A)
L
⊗

CHZ(A)
CHY (A).

Furthermore, we have natural equivalences

CHX×Y (A)
∼→ CHX (CHY (A)))

in CDGA and an natural weak-equivalence

MapTop
(
|X•|,MapCDGA(A,B)

) ∼= MapCDGA(CHX•(A), B) (3.11)

between the mapping spaces of the associated model categories of spaces and
CDGAs.

Note that axiom 2 is trivially (the map being an isomorphism) satisfied at the level
of Hochschild chains for any family of simplicial sets (X•,i)i∈I . The pushout axiom
is also easily made explicit on a given simplicial set model. Indeed, if f : Z• → X•
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is an inclusion of simplicial sets (e.g. a cofibration of simplicial sets), then the
canonical map

CHX•(A) ⊗
CHZ• (A)

CHY•(A) −→ CHW•(A) (3.12)

is a quasi-isomorphism and a model for the equivalence

CH|W•|(A) ∼= CH|X•|(A)
L
⊗

CH|Z•|(A)
CH|Y•|(A).

The gluing axiom also extends to Hochschild homology with value in a A-module
in a straightforward way, see [GTZ3, Gi4] for details.

Let us mention another derived interpretation of Hochschild cohomology func-
tor. The canonical operad map Cn → Com where Cn is the n-cube operad (or
any model for En-algebras) induces a canonical functor ModCDGA →ModEn from
cdgas and modules over it to En-algebras and En-modules 18. Given an En-algebra
A, we get the sub-∞-category ModAEn of En-A-modules and, we have the derived

functor RHomModAEn
(−,−) : ModAEn

op ×ModAEn → k-Moddg.

Proposition 3.25 ([GTZ3]) One has an natural equivalence CHSn(A,M) ∼=
RHomModAEn

(A,M).

4 Hodge filtration and λ-operations on Hochschild
(co)homology over spheres and suspensions

In this section we will define and study the Hodge filtration on higher Hochschild
(co)homology, both from the derived point of view (which will gives geometric and
universal characterization) as well as on combinatorial models (which allows com-
putations and will allow to strengthen some results as well). The Hodge filtration
is induced by a structure of γ-ring, a classic notion going back to the genesis of
K-theory, but will be a very specific kind of such : it will be a γ-ring with trivial
multiplication (not to be mistaken with the multiplicative structure of Hochschild
homology itself !). We start with the basic definitions and recollections of this
structure.

Disclaimer: in this section 4, unless otherwise stated, to simplify the combi-
natorial identities, we assume all the Hochschild (co)chains complexes to be nor-
malized without changing the notations.

4.1 γ-rings and lambda operations

In this section we recall a few results and notations about the classical theory
of γ-rings. We refer to [H], [Kr] for detailed treatment. Traditionally, γ-rings are
additional structures on a ring provided by families of self-maps λk, γk and ψk (the

18. sometimes called En-bimodules since for n = 1, they correspond to homotopy bimodules
over an homotopy associative algebra

23



Adams operations), for k ≥ 0, which are related by universal formulas allowing to
deduce all the operations from the first one and the ring structure.

In this paper we are interested in a very special kind of such γ-ring, namely the
case where we see the ring is equipped with the zero multiplication which are the
ones relevant for the algebraic Hochschild complex see [L1]. We thus only give the
definition in that case.

Definition 4.1 Let R be a Z-module. A structure of γ-ring with zero multiplica-
tion on R is a family of linear maps (λk : R→ R)k≥0 such that

1. λ0 = 0 and λ1 = id,

2. λk ◦ λ` = λk` for any k, l ≥ 0.

Remark 4.2 For the sign for the operations λk, we follow the“more geometric”
sign convention from [MCa, L2]. the reader shall be careful that in [L1, H, Kr],
they consider the same operations but multiplied by the sign (−1)k−1.

Since the multiplication is set to be null, following this convention, the usual
Adams operations associated to the γ-ring structure are given by ψk = kλk.

Remark 4.3 Classically, in [AT], one considers unital ring when defining a γ-ring.
Definition 4.1 is simply a translation of the classical definition of a (special) γ-
ring on the unital ring k ⊕ R (where R is an ideal with 0-multiplication). The

corresponding operations λ
k

on Z ⊕ R, with the sign conventions of [H, AT], are

(necessarily) given by λ
k
(n, x) =

((
n
k

)
, (−1)k−1λk(x)

)
.

In addition to the Adams operations, we can also define the maps γk, defined, for
x ∈ R, by

γk(x) = (−1)k−1
n−1∑
i=0

(
k − 1

i

)
(−1)k−i−1λk−i.

This formula is a specialization in our null ring structure case of a general formula
valid for all γ-rings; in fact one can see that γk is just (the component in R of)

λ
k
(x+ k − 1) with the notation of remark 4.3.

An important feature of γ-rings is that they carry a natural filtration. The
filtration of a γ-ring R, is the filtration F γnR (n ≥ 0) defined by

F γpX = 〈γp1(x1)...γps(xs) ; x1, .., xs ∈ R and p1 + ...+ ps ≥ p〉. (4.1)

The notation 〈y1...yp〉 stands for the abelian group generated by monomials y1...yp.
This filtration has the property that, for n ≥ 1, if x ∈ F γnR, then

λk(x) ≡ kn−1x modulo F γn+1R.

Of course, in our case of interest of null ring structure, the filtration has a simpler
form since we only need to consider a single monomial. Note, for instance, that
F γ0 = F γ1 = R so the first step of the filtration is not relevant. This motivates
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to change the grading by 1, which will recover the traditional Hochschild grading
and is compatible with the Hodge filtration of de Rham complexes via Hochschild
Kostant Rosenberg Theorem.

We define the Hodge filtration to be the filtration (F γn+1R)n≥0. When R
is a module over a ring of characteristic zero, and is further convergent, it is well-
known (for instance see [H, Kr], that the filtration always splits yielding the Hodge
decomposition of R:

R ∼=
∏
n≥0

R(n), where R(n) := F γn+1R/F
γ
n+2R.

We thus have in that case that λk(x) = knx for all x in R(n).

Example 4.4 If (R, (λk)k≥0) is a λ-ring with zero multiplication, then, for any

d > 0, the family (λ̃k)k≥0 defined by λ̃k := λk
d

also satisfy Definition 4.1; hence
is a different λ-ring with zero multiplication structure on R. However, the Hodge
filtration and decomposition associated to this new structures are essentially the
same. Indeed, if x ∈ F γn+1R, one has that

λ̃k(x)− kdnx ∈ F γn+1R.

On the other hand, the filtration (F γ̃n )n≥0 associated to the operations (λ̃k)k≥0

must satisfy, for any k ≥ 1, if x ∈ F γm+1R, then λ̃k(x)− kmx ∈ F γ̃n+1R. In charac-

teristic zero, this implies immediately for all n that F γ̃dn+1R = · · · = F γ̃dn+dR and

in particular the Hodge decomposition associated to the new operations (λ̃k)k≥0

satisfy R̃(n) = {0} if d is not a divisor of n and R̃(dj) = R(j). We will see a natural
example of such in Section 4, see Theorem 4.17.

We will also be interested in the case where the underlying module R of a γ-ring
zero multiplication also admits another (non-trivial) product structure and that the
structure on R is compatible with the product:

Definition 4.5 A γ-ring with zero multiplication (R, (λk)k≥0) which is also a (dg-
)commutative k-algebra is said to be a multiplicative γ-ring with zero multiplication
if the maps λk : R → R are maps of k-algebras (with respect to the non-trivial
multiplication).

In other words, a multiplicative γ-ring with zero multiplication is a γ-ring with zero
multiplication in the symmetric monoidal category of (dg-)commutative algebras.
A standard example is the Hochschild chain complex of a commutative algebra [L2].

Example 4.6 Let A be a cdga and W be a dg-A-module. Then SymA(W ) inherits
a multiplicative dg-γ-ring with zero multiplication structure by setting λk(w) = k.w
for any w ∈W and extending (in the unique way) as an algebra map. In that case,

the weight n piece of the Hodge decomposition is precisely Sym
(n)
A (W ). This is for
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instance the case of the standard Hodge decomposition Ω∗(A) ∼= SymA(Ω1
A) for a

smooth algebra.

An interesting particular case of this construction is given as follows. Let
Sym(V ) be a polynomial algebra on a graded k-module V . Assume given a dif-
ferential d on Sym(V ) such that d(V ) ⊂ Sym≥1(V ). In other words, (Sym(V ), d)
is a semi-free cdga. Then for any integer p, one can define a multiplicative γ-ring
with zero multiplication structure on

Sym(V ⊕ V [p]) ∼= SymSym(V )(Sym(V )⊗ V [p]),

Sym(V ⊕ V ∨[p]) ∼= SymSym(V )(Sym(V )⊗ V ∨[p])

by setting A = Sym(V ) and W = Sym(V ) ⊗ V [p] (or W = Sym(V ) ⊗ V ∨[p]).
Extending the differential on Sym(V ) to a differential on Sym(V ⊕ V [p]) as the
unique differential satisfying d(v[p]) = (−1)ps(d(v) where s is the unique differential
whose restriction to V is the shift V → V [p]. We obtain a multiplicative dg-γ-ring
with zero multiplication where V is on weight 0 and V [p] (respectively V ∨[p]) in
weight 1 with respect to the Hodge decomposition.

We will write (γ, 0) − CDGA and (γ, 0) − CDGA for the category of multi-
plicative γ-rings with zero multiplication and its associated ∞-category, that is
the (∞) categories of γ-rings with trivial multiplication in the symmetric monoidal
categories CDGA and CDGA respectively.

Remark 4.7 The notion of (dg-)commutative multiplicative γ-ring structure with
trivial multiplication can be extended to any symmetric monoidal (∞-)category to
define (γ, 0)− C for any such category C.

4.2 Edgewise subdivision and simplicial approach to λ-
operations

We will define functorial λ-operations on Hochschild (co)homology over spheres
using topological operations on spheres representing the degree k-maps Sd → Sd.
However, at the (co)chain level, theses operations will be defined only on the sin-
gular models which is a very large complex. As we will see, we can find concrete
combinatorial description of them on small complexes representatives of Higher
Hochschild (co)chains. For this, we will follow an idea due to McCarthy relying
on the edgewise subdivision functor [BHM] and the construction of natural system
leading to power maps. The result will be Definition 4.11 below.

The (k-th) Edgewise subdivision is the functor sdk : ∆ → ∆ (where k ≥ 1)
which is defined on objects by

sdk(n− 1)+ = (kn− 1)+

and, if f : (n− 1)+ → (m− 1)+ is non-decreasing,

sdk(f)(in+ j) = im+ f(j).
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Figure 1: The first edgewise subdivisions sd2∆2 and sd3∆2 of the 2-simplex .

It thus gives rise to functors sdk : sSet→ sSet on simplicial sets by precomposition
by sdk:

X• 7→ sdk(X•) := ∆op sd−→ ∆op X•−→ Set.

The edgewise subdivision is a subdivision like the barycentric subdivision; in

particular, one has homeomorphisms |sdr(X)•|
Dr−→∼= |X•| induced by

Xrn−1 ×∆n−1
+

Dr−→ Xrn−1 ×∆rn−1
+

(x, u) 7→ (x, ur ⊕ ...⊕
u
r ) (r factors)

(4.2)

(cf. [BHM] Lemma 1.1). Hence for any R ∈ Mod-Γ∗ and pointed simplicial set
X•, one has |R(X•)| ∼= |R(sdk(X)•)|. There is an explicit quasi-isomorphism D•k :
Rdg(sdk(X)•)→ Rdg(X•) due to McCarthy [MCa] representing this equivalence 19.
This is constructed as follows. For positive integers k, n, set

Sn,k := {(σ, τ) ∈ Σn ×Hom∆

(
(n− 1)+, k+

)
/ σ(i) > σ(i+ 1)⇒ τ(i− 1) < τ(i)}.

Each element µ = (σ, τ) corresponds to a non-degenerate n-simplex of the k-fold
subdivision of the standard n-simplex ([MCa]), as is concretely realized by the
following rule µ 7→ δµ ∈ Hom∆

(
(kn+ k − 1)+, n+

)
where

δµ(i) :=

{
0 if i ≤ τ(0)(n+ 1) + σ(1)− 1
j if τ(j − 1)(n+ 1) + σ(j) ≤ i ≤ τ(j)(n+ 1) + σ(j + 1)− 1

(4.3)

where 1 ≤ j ≤ n in the second line. It is easy to check that δµ is a well-defined
map in the simplicial category ∆ (because τ is non-decreasing).

When Y• is a simplicial set andR ∈Mod−Γ, thenR(Y•) is a cosimplicial module
and we have sdkR(Y•) = R(sdk(Y )•) hence Rdg(sdk(Y )•) ∼= Tot(sdkR(Y•)) where
Tot is the totalization (or Dold-Kan) chain complex associated to a cosimplicial
module.

19. and thus realizing R(D−1
k )
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Definition 4.8 Let R• be a cosimplicial module and L• be a simplicial module.
We define D•k : sdk(R•)→ R• by the formula

D•k :=
∑

µ=(σ,τ)∈Sn,k

(−1)τ (δ∗µ)∗ (4.4)

and similarly Dk,• : L• → sdk(L•) by the formula

Dk,• :=
∑

µ=(σ,τ)∈Sn,k

(−1)τ δ∗µ. (4.5)

In particular, formula (4.5) can be applied to get a map Rdg(sdk(X)•)→ Rdg(X•)
and formula (4.4) can be applied to to get a map Ldg(X•)→ Ldg(sdk(X)•).

Lemma 4.9 ([MCa], Corollary 3.7) The maps D•k and Dk,• are natural quasi-
isomorphisms which induces the inverse D−1

r ∗ of the homeomorphism Dr in
(co)homology.

To define the λ-operations on Tot(L•), we need a way to compose Dk with maps
sending back sdk(L•) to L•. This is possible when L is in fact a left Γ-module.
First note:

Remark 4.10 (The underlying (co)simplicial structure of Γ-modules)
Any (pointed) left Γ-module L has an underlying (pointed) simplicial mod-
ule structure L• given by Ln := L(n+) and, for any non-decreasing map

f ∈ Hom∆(n+,m+), by L(f̃) : Lm → Ln where f̃ : m+ → n+ is the map defined
by

f̃(i) =

{
j if f(j − 1) < i ≤ f(j)
0 if there is no such j as above.

Similarly, any right Γ-module R has an underlying cosimplicial module given by
Rn := R(n+) and R(f̃) : Rn → Rm and, if the Γ-module was pointed, so is he
induced cosimplicial module.

We will use the following natural system of maps to define λ-operations. We set
ϕ̃kn : (kn− 1)+ → (n− 1)+ to be the pointed finite set maps defined by

ϕ̃kn(in+ j) = j. (4.6)

By functoriality, if R is a right Γ∗-module we get cosimplicial maps

ϕ̃k∗(R) : R• → sdk(R•)

and, for L ∈ Γ∗ −Mod, simplicial maps

ϕ̃k∗(L) : sdk(L•)→ L•.
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Definition 4.11 For a R a right Γ∗-module, we denote ϕk : R• → R• the compo-
sition ϕk = D•k ◦ ϕ̃k∗.

Similarly, for L a left Γ∗-module, we define ϕk : L• → L• to be the composition
ϕk = ϕ̃k∗ ◦Dk,•.

Note that ϕ1 = id and further that the maps ϕk gives us lambda operations (on a
trivial ring structure) in the sense of Definition 4.1, that is we have

Lemma 4.12 The maps ϕ• satisfy ϕk ◦ ϕl = ϕkl.

Proof. Let X : Γ∗ → Set, this is in particular a simplicial set by remark 4.10 and
then equation (4.6) defines a functor ϕ̃k∗ : sdkX(•) → X(•). The lemma for a left
Γ-module follows now from the commutative diagram

|X(•)|
D−1
k //

D−1
kl

��

|sdkX(•)|
ϕ̃k∗ //

D−1
l

xx

|X(•)|

D−1
l

��
|sdklX(•)|

sdl(ϕ̃
k
∗) //

ϕ̃kl∗ --

|sdlX(•)|

ϕ̃l∗
��

|X(•)|

where we use | − | stands for the realization of a simplicial dg-module (that is
dg-extension of Dold-Kan functor). The commutativity of the lower triangle is a
consequence of (4.6) and the upper one by definition of Dm. The middle trapeze
commutes since ϕ̃l∗ is a natural transformation sdlX((•))→ X(•). The proof for a
right Γ∗-module is similar. �

4.3 Hodge filtration for Hochschild cochains over spheres
and suspensions

We will now use the functoriality over spaces of Hochschild (co)homology to give
a λ-ring (with zero multiplication), and consequently a Hodge-filtration, structure
on the case of a spheres or any other suspension ΣX of a pointed space. For circles,
this structure will recover Loday and Gerstenhaber-Schack ones.

We will also gives combinatorial explicit representations of these structures.

The key idea is the fact that the circle has canonical power maps since it is a
group. Precisely, identifying S1 with {z ∈ C/|z| = 1} with base point its unit 1,
define

λk : S1 → S1, z 7→ zk. (4.7)

Note that these power maps are pointed, thus, we can extend them to any space
obtained as a suspension ΣX = S1 ∧X by

λk : S1 ∧X λk∧id−→ S1 ∧X. (4.8)
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Figure 2: The pinching map λ4 : S1 ∧ S1 → S1 ∧ S1 obtained by collapsing to the
base point the 3 circles on the sphere on the left.

This applies in particular to higher spheres Sd = S1 ∧ · · · ∧ S1. In that case the
power maps, for k ≥ 1, factors as the composition

λk = Sd
pinch(k)

−→ Sd ∨ · · · ∨ Sd ∨id−→ Sd (4.9)

where the first map is a pinching map collapsing k-many Sd−1-spheres, see picture 2.

Similarly we have operations

λk : S1 ×X λk×id−→ S1 ×X. (4.10)

defined for a product of S1 with a space.

From definition (4.7) and (4.8), we immediately obtain (in all cases)

λk ◦ λl = λk+l. (4.11)

By functoriality with respect to continuous maps, we obtain operations on the
singular chains associated to the singular simplicial set of Y and in the ∞-derived
category:

Definition 4.13 Let Y be any space equal to Sd or the suspension ΣX or product
S1×X of any pointed space. For any cdga A and A-module M we define the power
operations to be

λk,• : CH∆•(Y )(A,M)
(λk)∗−→ CH∆•(Y )(A,M), (4.12)

λk• : CH∆•(Y )(A,M)
(λk)∗−→ CH∆•(Y )(A,M) (4.13)

λk : CHY (A,M)
(λk)∗−→ CHY (A,M), (4.14)

λk : CHY (A,M)
(λk)∗−→ CHY (A,M). (4.15)
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By definition, the operations defined on Hochschild (co)homology are represented
by the operations λk (4.12), (4.13) defined on the Hochschild (co)chains over the
singular set ∆•(Y ) and are cochain maps on the later ones.

We now give the main theorem for the Hodge filtration for Hochschild cohomol-
ogy; we will cover the case of homology shortly after.

Theorem 4.14 Let Y be Sd or the suspension ΣX, or product S1 × X by the
circle, of any pointed space X. The maps λk• defined on the singular complex
CH∆•(Y )(A,M) are functorial with respect to maps of algebras and modules and
satisfy the identity

λp,• ◦ λq,• = λpq,•

for any p, q ∈ Z making CH∆•(Y )(−,−) a functor from ModCDGA to γ-rings with
zero multiplication in the category ModCDGA.

The maps λk are similarly functorial and satisfy λp ◦ λq ∼= λpq endowing
CHY (−,−) with the structure of an functor from ModCDGA to γ-rings with zero
multiplication in the ∞-category ModCDGA. Moreover

1. If k is of characteristic 0, then there is an natural splitting

CH∆•(Y )(A,M) =
∏
j≥0

CH∆•(Y ),(j)(A,M)

where the subchain complexes CH∆•(Y ),(j)(A,M) are equal to ker(λk• −
kj .id) (for all k ≥ 0).

2. The map induced by λk on CHSd(A,M) agrees with the map

CHSd(A,M)
fk
∗

−→ CHSd(A,M)

for any map fk : Sd → Sd which is of degree k 20.

3. The above decomposition yields one on Hochschild cohomology groups:
HHY (A,M) =

∏
j≥0HH

Y,(j)(A,M) and we have natural equivalences

HHY,(j)(A,M) = H∗
(

ker
(
CHY (A,M)

λk−kj .id−→ CHY (A,M)
))

= ker
(
HHY (A,M)

λk−kj .id−→ HHY (A,M)
)
∼= H∗(CH∆•(Y ),(j)(A,M)).

4. The various Hodge filtrations preserve the skeletal filtration 21.

Following the terminology from Section 4.1, we call the natural filtra-
tions/decompositions given by the γ-ring structures, the Hodge filtrations or decom-
positions of CHY (A,M) and CH∆•(Y )(A,M) and similarly for the ones induced
on the cohomology groups HHY (A,M).

20. that is πd(fk, ∗)(1) = k
21. see remark 3.21, this is the filtration induced by the simplicial degree.
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Proof. The naturality of the maps λk follows from Proposition 3.18 asserting the
triple functoriality of Hochschild cochains and cohomology functors which, in view
of identity (4.11), also gives the identities:

λp• ◦ λq• = λpq•, λp ◦ λq ∼= λpq.

The map λk is a derived enhancement of λk• by Definition 3.9 (and Proposi-
tion 3.18). In particular we obtain that (CH∆•(Y )(A,M), (λk,•)k≥1) is a strict
γ-ring with trivial multiplication (that is an object of (γ, 0)-ring), representing the
derived system (CHY (A,M), (λk)k≥1)). It follows that the latter inherits a canon-
ical structure of an object in the associated ∞-category (γ, 0)-ring as claimed.

Note also that the factorization (4.9) implies that the map λk : Sd → Sd is
precisely of degree k. Now, claim 2. follows from the fact that two maps Sd → Sd

are homotopic if and only if they are of the same degree.

Assertion 3. follows from 1. and the fact that λk• on CH∆•(Y )(A,M) induces
the map λk on the Hochschild cohomology CHY (A,M).

Now we prove Assertion 1. As already seen, the equality λp•◦λq• = λpq• defines
a γ-ring structure with zero multiplication on the cochain complex CH∆•(Y )(A,M).
We thus obtain a complete Hodge filtration F γ and Adams operations as in Sec-
tion 4.1. Then the general theory of λ-rings ( [H, Theorem 4.5] , [Kr]) implies that,
when k ⊃ Q, there is a decomposition into eigenspaces of the Adams operations
which satisfies the claimed properties.

Assertion 4 is a consequence of the fact that at the cochain level, the maps
λk,• preserves the simplicial degree (as in Remark 3.7) of the Hochschild cochain
complex. �

4.4 Hodge filtration on Hochschild cochains on the standard
model

We have define λ-operations on the Hochschild cohomology CHY (−,−) and
further found a functorial Hodge decomposition on the explicit, but very huge,
chain complex given by the singular set ∆•(Y ) of the space Y . We are going to
define operations on the much smaller complex given by the standard model of the
spheres using the power operations from Definition 4.11. What allows us to do
that is the following proposition 4.15 (whose result does not for arbitrary models).
That will allow us to slightly refine the Theorem 4.14 using combinatorial identities
given by eulerian idempotents.

Proposition 4.15 Let Sd• be the standard models of the spheres (see example 3.17).
The (co)simplicial modules H(A,M)(Sd•) and L(A,M)(Sd•) lift respectively to right
and left Γ∗-modules.

By lifting we mean that the (co)simplicial structure obtained from the Γ∗-modules
as in remark 4.10 is the original one.
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Proof. For d = 1, this is an observation of Loday [L1]. The proof generalizes to
higher spheres, by applying the same construction diagonally (here we are taking
advantage of the fact that the standard models without its base point is given by
d-power of the case d = 1). Namely, for a pointed set I+, denote I := I+ \ {+} and
set

L(A,M)(I+) := M ⊗A(Id)

and H(A,M)(I+) := Homk

(
A⊗(Id),M

)
. For φ : I+ → J+, we define

L(A,M)(φ)
(
m+ ⊗

⊗
(i1,...,id)∈Id

a(i1,...,id)

)
= n+ ⊗

⊗
(j1,...,jd)∈Jd

b(j1,...,jd)

where
b(j1,...,jd) =

∏
(i1,...,id)∈(φd)−1(j1,...,jd)

a(i1,...,id)

and one puts 1 if the preimage (φd)−1 at one set of indexes is empty. It is immediate
to check that the induced simplicial structure is the one of example 3.17 (or 3.16
or 3.15 if d = 2, 1). The construction for H(A,M)(φ) is similar. �

Hence, if Sd• is the standard simplicial set model for the d-sphere, Proposition 4.15,
identities (3.9), (3.10) and definitions 4.11 and 3.9 gives us the following operations:

ϕk,• : CHSd• (A,M) ∼= H(A,M)dg(Sd•) −→ H(A,M)dg(Sd•)
∼= CHSd• (A,M)

(4.16)

ϕk• : CHSd•
(A,M) ∼= L(A,M)dg(Sd•) −→ L(A,M)dg(Sd•)

∼= CHSd•
(A,M) (4.17)

which are (co)chains homomorphisms.
We denote similarly ϕk the induced maps on Hochschild (co)homology

ϕk : CHSd(A,M)→ CHSd(A,M), ϕk : CHSd(A,M)→ CHSd(A,M)

which are well defined since the maps ϕk,• and ϕk• preserves quasi-isomorphisms.

One can give a direct combinatorial definitions of the operations ϕk• and ϕk•
as follows. Let Σn,j be the subset of permutations of Σn with j − 1 descents. We
recall ([L2]) that a descent for σ ∈ Σn is an index i such that σ(i) > σ(i + 1).
The Γ∗-modules structures of Proposition 4.15 satisfies that σ ∈ Σn acts on f ∈
CS

d
n(A,M) = Hom(A⊗n

d

,M)) by

σ∗(f)(· · · ⊗ ai1,...,id ⊗ · · · ) = f(· · · ⊗ aσ−1(i1),...σ−1(id) ⊗ · · · )

as well as by

σ∗

(
m⊗

⊗
ai1,...id

)
= m⊗

⊗
aσ−1(i1),...σ−1(id)

on Hochschild chains CSdn(A,M).
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Lemma 4.16 In simplicial degree n, the operation ϕk,n : CS
d
n(A,M) →

CS
d
n(A,M) on cochains is equal to

ϕk,n =

k−1∑
i=0

∑
σ∈Σn,k−i

(−1)σ
(
n+ k

n

)
σ∗.

On the chains CSdn(A,M), one has

ϕkn =

k−1∑
i=0

∑
σ∈Σn,k−i

(−1)σ
(
n+ k

n

)
σ∗.

Proof. This is an explicit computation using formulas (4.4), (4.5), (4.6), the
definition of power maps (Definition 4.11) and Proposition 4.15. The computation,
in the case d = 1, is given in details in [MCa]; it is the same for d > 1 using the
structure of Proposition 4.15. �

Theorem 4.17 The operations ϕk,• defined on the singular complex CHSd• (A,M)
are functorial with respect to maps of algebras and modules, satisfy

ϕk,• ◦ ϕl,• = ϕkl,•

making CHSd(−,−) into a functor from ModCDGA to γ-rings with zero multiplica-
tion in the category ModCDGA.

Similarly, the operations ϕk are also functorial and give to CHY (−,−) the
structure of a functor from ModCDGA to γ-rings with zero multiplication in the
∞-category ModCDGA.

Moreover

1. After passing to Hochschild cohomology functor, one has

ϕk ∼= λk
d

: CHSd(A,M)→ CHSd(A,M).

2. If k is of characteristic 0, then there is an natural splitting

CHSd• (A,M) =
∏
j≥0

CHSd• ,(j)(A,M)

where the sub-chain complexes CHSd• ,(j)(A,M) are ker(ϕk• − kj .id) (for all
k ≥ 0).

3. If k is a Z/pZ-algebra, there is a natural decomposition

CHSd• (A,M) =
⊕

0≤n≤p−1

CHSd• ,(j)(A,M)

with each ϕn• acting by multiplication by nj on CHSd• ,(j)(A,M).
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4. The above two decompositions yields similar ones on Hochschild cohomology

groups and one has H∗
(
CHSd• ,(`)(A,M)

)
= 0 if ` 6= jd. Denoting

HHSd,(j)(A,M) := H∗
(
CHSd• ,(jd)(A,M)

)
,

one has an natural splitting

HHSd(A,M) =
∏

HHSd,(j)(A,M).

Further one also has an identification

HHSd,(j)(A,M) = H∗
(

ker
(
CHSd(A,M)

λk−kj .id−→ CHSd(A,M)
))

= H∗
(

ker
(
CHSd• (A,M)

ϕk−kjd.id−→ CHSd• (A,M)
))
.

5. In both cases, one has cochains isomorphisms

CHSd• ,(0)(A,M) ∼= pt∗(CH
pt•(A,M)) ∼= M

where pt∗ is the cochain map induced by the base point pt• → Sd• .

In particular the Hodge filtration on the cohomology groups satisfies

HHSd,(0)(A,M) ∼= M and all other pieces HHSd,(j)(A,M) are not in weight
0 with respect to the skeletal filtration.

In particular, from 3. and 4. we get a (partial) Hodge decomposition in positive
characteristic extending the filtration of Theorem 4.14. Statement 4. also ensures

that the pieces HHSd,(j)(A,M) are the same as the ones given by Theorem 4.14
in characteristic zero.

Remark 4.18 Since the cohomology groups of a split complex are the direct sum
of the cohomology groups of the pieces, the claims 3. and 4. in the theorem implies

that the cochain complexes CHSd• ,(j)(A,M) are acyclic unless j = di is a multiple

of d. In which case, the cochain complex CHSd• ,(id)(A,M) is quasi-isomorphic to

CH∆•(S
d),(i)(A,M) by 1 and 4.

Remark 4.19 Statement 5. and 4. imply that, for any simplicial model of the
maps λk on a simplicial model Y• of Sd inducing a γ-ring structure, the natural
map (induced by the base point) M ↪→ CHY•,(0)(A,M) is a quasi-isomorphism. In
particular, the only piece of weight 0 in the Hochschild cohomology decomposition
are also of weight 0 for the skeletal filtration.

Proof of Theorem 4.17
The functoriality follows from from Theorem 3.24 as in Theorem 4.14. The

formula ϕk• ◦ϕl• = ϕkl• comes from Lemma 3.12 and Lemma 4.12. Hence we have

a functorial (strict) γ-ring with trivial multiplication structure on CHSd• (A,M)

which in turn induces one on CHSd(A,M) given by ϕk by definition of those.
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Claim 4. is an immediate consequence of the other ones and the fact that the
decomposition in Theorem 4.14 is also given by the same eigenspaces.

Since we have a γ-ring (with trivial multiplication) on the cochain complex

CHSd• (A,M), we have a complete Hodge filtration F γ and Adams operations as
in Section 4.1 which already implies 2. To prove also 3. we use Lemma 4.16 to
analyze a little bit more the ϕk•. Indeed, Loday [L1, Proposition 2.8] has proved

that the eulerian idempotents e
(i)
n form a basis of orthogonal idempotents of Q[Σn]

and further that in simplicial degree n one has

ϕk,n = ke(1)
n + · · ·+ kne(n)

n .

This follows precisely of the formula given in Lemma 4.16 which identifies the map
ϕk,n with (−1)k−1(λkn)∗, where λkn ∈ Z[Σn] is given by [L1, Definition 1.6], and
finally statement g) in [L1, Proposition 2.8]. The eulerian idempotents commutes
with the simplicial differential (see loc. cit.) and thus precisely induces the splitting

of the cochain complex CHSd• (A,M):

CHSd• ,(j)(A,M) = e
(j)
•
(
CHSd• (A,M)

)
= ker

(
CHSd• (A,M)

λk−kj .id−→ CHSd• (A,M)
)
. (4.18)

Furthermore, the combinatorial properties of the associated operations γk show

that CHSd• ,(0)(A,M) = CHSd0 ,(0)(A,M) = M and CHSd•≥1,(0)(A,M) = {0}; the
proof is exactly the same as [L1, Théorème 3.5] using again the formula given by
Lemma 4.16. This proves assertion 5 of the Theorem in characteristic zero as well;
the proof of 5. in positive characteristic is an immediate consequence of it and the
definition of the splitting we give below.

Now if k is a Z/pZ-algebra, we can not define the operators e
(i)
n on the

Hochschild cochains but the operators

e
(i)
n =

∑
m≥0

e(i+(p−1)m)
n : CHSd• (A,M)→ CHSd• (A,M)

are well defined (provided 1 ≤ i ≤ p− 1 and n ≥ 1). The proof is purely combina-

torial and given in [GS, Section 5]. We can thus set e(i) to be the map induced by

the operators e
(i)
n when n varies. The Hochschild differential still commutes with

this operator since it does with all e(i), and further e
(i)
n = e

(i)
n for n ≤ p− 1. This

gives the desired splitting

CHSd• (A,M) =
⊕

0≤i≤p−1

e
(i)
n

∗(
CHSd• ,(j)(A,M)

)
.

It remains to prove assertion 1. The factorization (4.9) shows that

λk
d

= CHSd(A,M)
∨id∗−→ CH

∨
Sd(A,M)

pinch(kd)
∗

−→ CHSd(A,M). (4.19)
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Figure 3: The k = 2 on the left and k = 3 on the right subdivisions of I2/∂I2.

Hence we have to prove that ϕk• represents the same composition when passing to
the derived category.

To do so, we are going to use a different model for the iterated pinching map.
The sphere Sd is the quotient Id/∂Id of the d-cube by its boundary (I = [0, 1]). We
can subdivide easily the cube in kd-isometric d-cube delimited by the intersections
of [0, 1]d with the d(k − 1) hyperplanes of equations xi = j

k (i = 1 . . . d). See
Figure 3.

Identifying the boundary of all the cubes of the subdivision (that is its codi-
mension 1 skeleton) with the base point yields on the quotient spaces a continuous
map:

pinch
(k)
(d) : Sd = Id/∂Id →

∨
{1,...,k}d

Sd (4.20)

from Sd to the wedges of kd-many copies of it.
We are now going to show that the operations ψk are a model for this pinching

map pinch
(k)
(d). We first recall that m+ = {0, . . .m} is of cardinal m + 1 with base

point 0, and that Sdn = (nd)+ = {0}
∐
{1, . . . , n}d. Thus we have sdk(Sd•)n) =

((kn+ k − 1)d)+ and ∨
{1...k}d

Sdn
∼= (nd)+ ∨ · · · ∨ (nd)+

with kd components (which we label by elements of the set {1, . . . , k}d). The wedge∨
Sd is the geometric realization of the wedge

∨
Sd• of simplicial sets.

Then we note that there is a map of simplicial set

p(k) : sdk(Sd•) −→
∨

{1...k}d
Sd•

given, for all 0 ≤ i1, . . . , id ≤ k − 1 and 0 ≤ j1, . . . , jd ≤ n, by

p(k)

(
i1(n+ 1) + j1, . . . , id(n+ 1) + jd

)
= (j1, . . . , jd) ∈ (nd)+ ∨

( ∨
{1,...,k}d\{(i1,...,id)}

{0}
)
⊂

∨
{1...k}d

(n)d+ (4.21)
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that is, p(k)(i1(n+ 1) + j1, . . . , id(n+ 1) + jd) is the element (j1, . . . , jd) viewed in

the (i1, . . . , id)
th component of the wedge

∨
{1...k}d

Sdn =
∨

{1...k}d
(n)d+.

The following lemma identifies the realization of p(k) with the dk-fold pinching
map.

Lemma 4.20 The map p(k) is a map of simplicial sets and after taking geometric
realization we have a commutative diagram

|Sd• |

pinch
(k)

(d)
))

|sdk(Sd•)|
|ϕ̃k•| //

|p(k)|

��

Dkoo |Sd• |

∨
{1...k}d

|Sd• |

∨
id

77 .

Proof of Lemma 4.20 The easiest and most instructive way to check the lemma
is to see that, by definition of edgewise subdivision, sdk(Sd•) is a decomposition of
a d-cube into kd copies of Id• (the standard model for the d-cube) whose boundary
(of the big cube) has been collapsed to a point, see Figure 3. Then the map p(k)

is the map that collapses the boundary of each of the d-cubes of the subdivision.
It is thus a map obtained by quotient of simplicial sets, hence is simplicial and its

realization is the quotient of the realization, which is precisely pinch
(k)
(d).

Let us now put these observation in combinatorial data. This boils down to the
fact that if f : m+ → n+ is non-decreasing, then by definition of the functor sd,
we have

p(k) ◦ f∗
(
i1(n+ 1) + j1, . . . , id(n+ 1) + jd

)
= p(k)

(
i1(m+ 1) + f∗(j1), . . . , id(m+ 1) + f∗(jd)

)
= (f∗(j1), . . . , f∗(jd)) = f∗(j1, . . . , jd)

= f∗ ◦ p(k)

(
i1(n+ 1) + j1, . . . , id(n+ 1) + jd

)
.

The composition of
∨
id with p(k) is just

p(k)

(
i1(n+ 1) + j1, . . . , id(n+ 1) + jd

)
= (j1, . . . , jd) ∈ (nd)+

which proves that the right triangle commutes. For the commutativity of the
left triangle, recall that the standard model is obtained as iterated wedges of S1

•
and identifies canonically with the quotient Id•∂(Id• ). On the realization of this
model, pinch(kd) is obtained by taking the quotient of [0, 1]d by its intersection
with the d(k − 1) hyperplanes of equations xi = j

k (i = 1 . . . d, 1 ≤ j ≤ k − 1. Let
t = (0 ≤ t1 ≤ · · · ≤ tn ≤ 1) be in ∆n; then the element {t}×{(j1, . . . , jd)} becomes
the point of coordinates (tj1 , . . . , tjd) ∈ [0, 1]d/∂[0, 1]d ∼= |Sd• | in the geometric
realization. The homeomorphism

Dk : |sdkSdn| =
∐

∆n × (kn+ k − 1)d+/ ∼→
∐

∆(kn+k−1)d × (kn+ k − 1)d+/ ∼
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is given by (4.2). Hence

Dk

(
{t} × {(i1(m+ 1) + j1), . . . , id(m+ 1) + jd

)
}
)

=
( i1
k

+
tj1
k
, . . . ,

id
k

+
tjd
k

)
.

Further for the same reasons,

|P(k)|
(
{t} × {(i1(m+ 1) + j1), . . . , id(m+ 1) + jd

)
}
)

= (tj1 , . . . , tjd)

this component lying in the sphere labeled by (i1, . . . , ik) in the wedge. The result
follows by applying the pinch map, which simply sends a point of coordinates
1

k

(
(i1, . . . , ik) + (uj1 , . . . ujk

)
to k(uj1 , . . . ujk) in the component (i1, . . . , ik), to the

image of Dk. �

Since, by definition 4.11 and (4.16), ϕk is the composition

CHSd• (A,M)
ϕ̃k∗−→ CHsdk(Sd•)(A,M)

D•k−→ CHSd• (A,M),

Lemma 4.20 and Lemma 4.9 implies that passing to the Hochschild cohomology

functor CHSd(A,M) we get the identity

ϕk = CHSd(A,M)
∨id∗−→ CH

∨
Sd(A,M)

pinch
(k)

(d)

∗

−→ CHSd(A,M). (4.22)

Since pinch
(k)
(d) is homotopical to pinch(kd), then we deduced from it and factoriza-

tion (4.19) that

ϕk ∼= λk
d

:= CHSd(A,M) −→ CHSd(A,M).

In fact, we also see that the diagram

CH∆•(S
d)(A,M)

λk
d

//

η∗

��

CH∆•(S
d)(A,M)

η∗

��
CHSd• (A,M)

ϕk // CHSd• (A,M)

is commuting up to an natural homotopy of cochain complexes. �

Corollary 4.21 For d = 1, the Hodge decompositions of Hochschild cohomology
groups and CHS1

•(A,M) are identical to Gerstenhaber-Schack ones [GS].

Proof. It follows from equation (4.18) and the explicit definition of Gerstenhaber-
Schack splitting in terms of eulerian idempotents. �

Remark 4.22 From Lemma 4.20 and its proof, it is not hard to see that the

realization |ϕ̃k| ◦D−1
k is a model for the continuous map

Sd ∼= S1 ∧ · · · ∧ S1 λk∧···∧λk−→ S1 ∧ · · · ∧ S1 ∼= Sd

given by the iterated wedge of the power map λk on the standard circle.
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4.5 Hodge filtration and λ-operations for Hochschild chains
over spheres and suspensions

Let Y be a space equal to Sd, or ΣX or S1×X. In Section 4.3, we have defined
power operations (see (4.12) and (4.15))

λk• : CH∆•(Y )(A,M)
(λk)∗−→ CH∆•(Y )(A,M)

λk : CHY (A,M)
(λk)∗−→ CHY (A,M).

on Hochschild chains (over the singular set of Y ) and (the derived) Hochschild
homology over Y . Further in Section 4.4, we have defined (4.17) operations

ϕk• : CHSd•
(A,M) −→ CHSd•

(A,M)

on the Hochschild chains over the standard model of the spheres inducing the
operation

ϕk : CHSd(A,M)→ CHSd(A,M)

on Hochschild homology.
When the module structure of M comes from an algebra one, since the power

maps are induced by maps of spaces, we get

Proposition 4.23 Let B be a CDGA over A. The power maps λk• and λk are
maps of CDGAs. Further, they make the cdga CH∆•(Y )(A,B) a multiplicative
λ-ring with zero multiplication 22.

Passing to homology, these operations provides a factorization of the functor
CH(−)(−) : Top × CAlg(ModCDGA) → CAlg(ModCDGA) from proposition 3.23
as a functor

CH(−)(−,−) : Top∗ ×CAlg(ModCDGA)

−→ (γ, 0)−CAlg(ModCDGA)
forget−→ CAlg(ModCDGA) (4.23)

where (γ, 0) − CAlg(ModCDGA) is the ∞-category of (non-unital) cdga’s over a
unital cdga endowed with an additional γ-ring with zero multiplication structure
(see remark 4.7).

In particular, for B = A, the higher Hochschild homology functor (from Propo-
sition 3.18) lifts canonically as a functor

CH(−)(−) : Top×CDGA −→ (γ, 0)−CDGA.

Proof. Since the power operations as well as their identities are induced by maps
of topological spaces, the first statement comes from Lemma 3.10 and Proposi-
tion 3.23. The gamma-ring structure with trivial multiplication is a consequence
of identity (4.11) which yields

λp• ◦ λq• = λpq• , λp ◦ λq ∼= λpq.

22. see Definition 4.1
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In particular we obtain that (CH∆•(Y )(A,B), sh, (λk,•)k≥1) is a strict multiplica-
tive γ-ring with trivial multiplication (that is an object of (γ, 0)-ring(CDGA)), rep-
resenting the derived system (CHY (A,B), sh, (λk)k≥1)). It follows that the latter
inherits a canonical structure of an object in (γ, 0)-ring(CDGA) = (γ, 0)−CDGA
as claimed. By construction, forgetting the γ-ring structures gives back the original
Hochschild homology functor. The last statement follows from the first statement.
�

Similarly, on the small model we have

Lemma 4.24 Let B be a CDGA over A. The maps ϕk• (and the algebra structure
of Lemma 3.10) makes CHSd•

(A,B) a multiplicative γ-ring with zero multiplication.

Proof. The γ-ring structure with 0-multiplication is a consequence of Lemma 4.12.
Lemma 4.16 gives an explicit combinatorial formula for the maps ϕk• and one needs
to check that these maps are multiplicative with respect to the multiplication in-
duced by the shuffle product 3.7. This is the same combinatorial identity to check
as for the usual λ-operations in [L2] (which is the case S1

•) or the detailed compu-
tations in [MCa, Section 5]. �

We now state the properties of the Hodge filtration for Hochschild chains and
homology, which are “predual” to those of Hochschild cochains and are proved
exactly in the same way.

Theorem 4.25 Let Y be Sd or the suspension ΣX, or product S1 × X by the
circle, of any (pointed in the suspension case) space X.

1. The power maps λk• makes CH∆•(Y )(−,−) a γ-ring with zero multiplication
which is a module over the multiplicative γ-ring with zero multiplication
CH∆•(Y )(A), in a functorial way. Passing to the (derived) homology func-
tor, this yields

λp ◦ λq ∼= λpq

and a factorization of higher Hochschild Homology (over Y ) CHY (−,−) as
a functor from ModCDGA to (γ, 0)− (ModCDGA) 23.

2. The operations ϕk• satisfy

ϕk• ◦ ϕl• = ϕkl•

and makes CHSd•
(A,M) a γ-rings with zero multiplication which is a mod-

ule over the multiplicative γ-ring with zero multiplication CHSd•
(A), in a

functorial way 24.

3. In Hochschild homology, one has

ϕk ∼= λk
d

: CHSd(A,M) −→ CHSd(A,M).

23. See Definition 4.1, Remark 4.7
24. in other words a functor from ModCDGA to (γ, 0)− (ModCDGA).
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4. For Y = Sd, the map λk agrees with the map

CHSd(A,M)
fk∗−→ CHSd(A,M)

for any map fk : Sd → Sd which is of degree k.

5. If k is of characteristic 0, then there are natural splittings

CHSd•
(A,M) =

∏
j≥0

CH
(j)

Sd•
(A,M)

CH∆•(Y )(A,M) =
∏
j≥0

CH
(j)
∆•(Y )(A,M)

where the sub-chain complexes CH
(j)

Sd•
(A,M) and CH

(j)
∆•(Y )(A,M) are re-

spectively ker(ϕk• − kj .id) and ker(λk• − kj .id) (for all k ≥ 0).

6. If k is a Z/pZ-algebra, there is a natural decomposition

CHSd•
(A,M) =

⊕
0≤n≤p−1

CH
(j)

Sd•
(A,M)

with each ϕn• acting by multiplication by nj on CH
(j)

Sd•
(A,M).

7. The above decompositions yields similar ones on Hochschild homology

groups: HHY (A,M) =
∏
j≥0HH

(j)
Y (A,M) and we have natural equiva-

lences

HH
(j)
Y (A,M) = H∗

(
ker
(
CHY (A,M)

λk−kj .id−→ CHY (A,M)
))

= ker
(
HHY (A,M)

λk−kj .id−→ HHY (A,M)
)
∼= H∗(CH

(j)
∆•(Y )(A,M))

∼= H∗
(
CH

(jd)

Sd•
(A,M)

)
.

If Y = Sd, the latter group are also isomorphic to

H∗

(
ker
(
CHSd•

(A,M)
ϕk−kjd.id−→ CHSd•

(A,M)
))
.

Further, H∗
(
CH

(`)

Sd•
(A,M)

)
= 0 if ` 6= jd.

8. The various Hodge filtrations preserve the skeletal filtration.

9. One has chains isomorphisms

CH
(0)

Sd•
(A,M) ∼= pt∗(CHpt•(A,M)) ∼= M

where pt∗ is the cochain map induced by theSd• → pt•.

In particular the Hodge filtration on the cohomology groups satisfies

HH
(0)

Sd
(A,M) ∼= M and all other pieces HH

(j)

Sd
(A,M) are not in weight

0 with respect to the skeletal filtration.
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Proof. The existence of γ-ring structures with trivial multiplication follows from
identity (4.11) as well as Lemma 4.12. Proposition 4.23 and Lemma 4.24 the
multiplicative γ-ring structures; their proof and Proposition 3.23 then yield claims
1 and 2. The proof of the other statement is the same as those of Theorem 4.17
and Theorem 4.14. �

Corollary 4.26 i) The Hodge decomposition provided by Theorem 4.25 on the
homology groups HHSd(A,M) coincides with Pirashvili’s ones in [P].

ii) For d = 1, the maps ϕm coincides with the usual Adams operations in
Hochschild homology [L1].

Proof. Claim i) is a consequence of claim 5 in Theorem 4.25 and the main
result of [P]. Claim ii) follows from the explicit combinatorial description given by
Lemma 4.16 and the computations in [MCa, L1] giving an explicit description the
operations in terms of descents. �

4.6 Hodge filtration and the Eilenberg-Zilber model for
Hochschild cochains of suspensions and products

In section 4.4, we constructed a γ-ring structure on the standard chain complex

CHSd• (−,−) inducing the same Hodge decomposition as the one given by the power
operations λk, and used it to exhibit some more structure on the Hodge filtration,
for instance the positive characteristic filtration.

The construction of the operations ϕk does not extend to a product or suspen-
sion S1

• ∧ X• in general because the proof of Proposition 4.15 uses the particular
form of the simplicial sets Sd• . But we can take advantage of the product or suspen-
sion structure to define another, much smaller actually, model for the Hochschild
(co)chains over S1

•∧X• or S1
•×X•. The trick is to use the “exponential rule” for the

Hochschild chain cdga (see Theorem 3.24). This is realized by using iteratively the
Eilenberg-Zilber, following [GTZ]. Recall from Sections 3.1 and 3.2 that sh is the
shuffle product (3.6) and that L(A,A)(Y•) is a simplicial CDGA for any simplicial
set Y•. Replacing A by the simplicial CDGA L(A,A)(X•) yields the bisimplicial
CDGA

Lbis(A)(X1
• , X•) := L

(
L(A,A)(X•),L(A,A)(X•)

)
(Y•)

whose associated diagonal simplicial CDGA is L(A,A)(Y• ×X•). We can use the
formula defining the shuffle operations sh× (3.7) to map a bisimplicial dg-module
into a dg-module in the usual way [GJ]. That is, this formula extends diagonally
to give the map

sh×bis : L
(
L(A,A)(X•),L(A,A)(X•)

)dg
(Y•) −→ L(A,A)dg(Y•×X) = CHY•×X•(A)

given by the formula∑
(µ,ν)

sgn(µ, ν)
(
sY•νq . . . s

Y•
ν1

)
◦
((

sL(A,A)(X•)
µp . . . sL(A,A)(X•)

µ1

)⊗Xp)
. (4.24)
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Composing it with the (Y•-fold) shuffle sh×:

L(A,A)dg(X•)
⊗Yn (sh×)×#Yn−1

−→ L(A⊗Yn , A⊗Yn)(X•)

= L
(
L(A,A)(X•),L(A,A)(X•)

)dg
(Yn), (4.25)

we get the following linear map:

EZ : CHY•(CHX•(A)) =
⊕(

CHXp0
(A)⊗ · · · ⊗ CHXp#Yn

(A)
)

(sh×)×#Yn−1

−→
⊕(

CHXp0+···+p#Yn
(A)
)⊗Yn

= L
(
L(A,A)(X•),L(A,A)(X•)

)dg
(Y•)

sh×bis−→ L(A,A)dg(Y• ×X•) = CHY•×X•(A). (4.26)

Proposition 4.27 The map (4.26) EZ : CHY•(CHX•(A)) → CHY•×X•(A) is a
weak-equivalence of CDGAs. It is further natural in A, X•, Y•. In particular,
CHY•(CHX•(A)) is a model for CHY×X(A) ∈ CDGA.

Proof. The second statement is an immediate consequence of the first one, which
is proved in [GTZ]. Now, let f• : X• → X ′•, g : Y• → Y ′• be simplicial sets
morphisms. Since the shuffle operation (3.7) is a lax symmetric monoidal from
bisimplicial dg-modules to simplicial dg-modules, we get a commutative diagram

CHY•(CHX•(A))
CHY• (f•)//

(sh×)×#Y•−1

��

CHY•(CHX′•
(A))

(sh×)×#Y•−1

��

g• // CHY ′•
(CHX′•

(A))

(sh×)×#Y•−1

��⊕
(CHX•(A))

⊗Y• f⊗Y•• //

sh×bis

��

⊕(
CHX′•

(A)
)⊗Y• (id)⊗g•//

sh×bis

��

⊕(
CHX′•

(A)
)⊗Y ′•

sh×bis

��
CHY•×X•(A)

f•×id //

f•×g•

11CHY•×X•(A)
id×g• // CHY•×X•(A)

which shows the functoriality of EZ with respect to pairs of maps of simplicial sets.
The functoriality with respect to maps of cdgas is an immediate consequence of the
formula defining the shuffle operations. �

Not also that by functoriality, CHX•(A,M) and CHX•(A,M) are canonically sym-
metric CHX•(A)-bimodules. Similarly, we have

Corollary 4.28 Let A be a CDGA, M a A-module. There are natural (in A, M ,
X•, Y•) quasi-isomorphisms

EZ : CHY•(CHX•(A), CHX•(A,M))
'−→ CHY•×X•(A,M) (4.27)

EZ∗ : CHY•×X•(A,M)
'−→ CHY•(CHX•(A), CHX•(A,M)) (4.28)

EZ∧ : CHY•(CHX•(A), A)⊗CHY• (A) M
'−→ CHY•∧X•(A,M) (4.29)

EZ∧ : CHY•∧X•(A,M)
'−→ HomCHY• (A)

(
CHY•(CHX•(A), A),M

)
(4.30)
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of CHY•(CHX•(A))-modules. Further, if M is an A-CDGA, then the maps (4.27)
and (4.29) are quasi-isomorphisms of CDGAs.

Proof. One can apply a similar technique as for proposition 4.27. Or simply note
that by definition 3.9 and proposition 4.27 to get the natural quasi-isomorphisms

CHY•(CHX•(A), CHX•(A,M))
∼= CHY•(CHX•(A))⊗CHX• (A) CHX•(A,M)

∼= CHY•(CHX•(A))⊗CHX• (A)

(
CHX•(A)⊗AM

)
∼= CHY•(CHX•(A))⊗AM

EZ⊗Aid−→ CHY•×X•(A)⊗AM
∼= CHY•×X•(A,M) (4.31)

and

CHY•×X•(A,M) ∼= HomA

(
CHS1

•×X•(A),M
)

EZ∗−→ HomA

(
CHY•(CHX•(A)),M

)
∼= HomA

(
CHX•(A)⊗CHX• (A) CHY•(CHX•(A)),M

)
∼= HomCHX• (A)

(
CHY•(CHX•(A)), HomA

(
CHX•(A),M

))
∼= CHY•(CHX•(A), CHX•(A,M)

)
. (4.32)

By statement 3 in Theorem 3.24 and Lemma 3.10, we also have

CHY•(CHX•(A), A)⊗CHY• (A) M

∼= CHY•(CHX•(A), CHX•(A)) ⊗
CHY• (A)⊗ACHX• (A)

M

EZ ⊗
CHY• (A)⊗ACHX• (A)

id

−→ CHY•∧X•(A) ⊗
CHY•∨X• (A)

M

∼= CHY•∧X•(A,M). (4.33)

The last quasi-isomorphism is obtained similarly by combining the construction of
the previous two ones. Further, the last claim in the corollary is a consequence of
Lemma 3.10. �

Definition 4.29 (Eilenberg-Zilber model for Hochschild (co)chains) Let
X• and Y• be simplicial sets; A a CDGA and M an A-module.

1. The Eilenberg Zilber model for Hochschild (co)chains of the product X•×Y•
are respectively

CEZY•×X•(A,M) := CHY•(CHX•(A), CHX•(A,M))

and CY•×X•EZ (A,M) := CHY•(CHX•(A), CHX•(A,M)).

45



2. The Eilenberg Zilber model for Hochschild (co)chains of the smash product
X• ∧ Y• are respectively

C∧Y•,X•(A,M) := CHY•(CHX•(A), A)⊗CHY• (A) M

and CY•,X•∧ (A,M) := HomCHY• (A)

(
CHY•(CHX•(A), A),M

)
.

Taking Y• = S1
• , we obtain a model for Hochschild (co)chains of suspensions.

These models are functorial in all arguments and are naturally CHY•(CHX•(A))-
modules (for the actions induced by the CHZ•(A)-module structure on
CHZ•(A,M) for any simplicial set Z• and A-module M). Corollary 4.28 then
shows that

Proposition 4.30 The Eilenberg-Zilber models are models for the derived
functors CH|Y•|×|X•|(A,M), CH|Y•|×|X•|(A,M), CH|Y•|∧|X•|(A,M) and

CH|Y•|∧|X•|(A,M) equipped with all the functoriality provided by Proposition 3.18
and Proposition 3.23.

Remark 4.31 The functoriality implies that one can iterate the Eilenberg-Zilber
model. Namely,

CHZ•(CHY•(CHX•(A), A)⊗CHY• (A) A,A)⊗CHZ• (A) M

is a functorial model for CH|X•|×|Y•|×|Z•|(A,M). Likewise,

HomCHZ• (A)

(
CHZ•(CHY•(CHX•(A), A)⊗CHY• (A) A,A),M

)
is a functorial model for CH|X•|×|Y•|×|Z•|(A,M). We denote respectively

CHX•,Y•,Z•
∧ (A,M) and CH∧X•,Y•,Z•(A,M) these models.

The advantage of the Eilenberg-Zilber model is that it allows us to apply our
constructions of Section 4.4 to any product or suspension. Indeed, replacing A by
CHX•(A) and M by CHX•(A,M) (which have the correct algebraic structures by
Section 3.2), the maps ϕk,• (4.16) gives us maps on the Eilenberg-Zilber models for
products:

ϕk,•EZ : CHSd• (CHX•(A), CHX•(A,M))→ CHSd• (CHX•(A), CHX•(A,M))(4.34)

ϕk•EZ : CHSd•
(CHX•(A), CHX•(A,M))→ CHSd•

(CHX•(A), CHX•(A,M)).(4.35)

satisfying, in view of Lemma 3.12 and Lemma 4.12,

ϕk,•EZ ◦ ϕ
l,•
EZ = ϕkl,•EZ , ϕp•EZ ◦ ϕ

q
•EZ = ϕpq•EZ .

To define similar operations on the Eilenberg-Zilber model for suspensions, re-

call the canonical quasi-isomorphisms CHpt•(B,M)
'→ M (example 3.8) and
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CHX•(k,M)
'→M (example 3.13) fitting in a commutative diagram

M �
� //

= //

CHX•(k,M)

--

(k→A)∗// CHX•(A,M)
(X•→pt•)∗// CHpt•(A,M)

'
��
M.

In particular for X• = Sd• , it implies that

Lemma 4.32 The canonical map CHSd•
(A,M)) → CHpt•(A,M)

'→ M is a map
of γ-rings (with zero multiplication), where M is equipped with the trivial γ-ring

structure given by ϕkM := M
id→M (for all k ≥ 0).

By Theorem 4.17 and Theorem 4.25.2, the maps ϕk• are functorial and it follows
that they induced well-defined maps

ϕk∧ := ϕk• ⊗ ϕkM : CHSd•
(CHX•(A), A) ⊗

CH
Sd•

(A)
M

−→ CHSd•
(CHX•(A), A) ⊗

CH
Sd•

(A)
M. (4.36)

on the Eilenberg-Zilber model C∧Sd• ,X•
(A,M) for suspensions. Similarly, we have

maps

ϕk∧ := (ϕk•)
∗ : HomCH

Sd•
(A)

(
CHSd•

(CHX•(A), A),M
)

→ HomCH
Sd•

(A)

(
CHSd•

(CHX•(A), A),M
)

(4.37)

These maps satisfy
ϕk∧ ◦ ϕl∧ = ϕkl∧ , ϕp∧ ◦ ϕ

q
∧ = ϕpq∧

since the maps ϕk• do.

As usual we denote with bold letter ϕk∧, ϕk∧, ϕkEZ and ϕkEZ the maps induced
by the operations ϕk∧, ϕk∧, ϕk,EZ , ϕk•EZ on the various (co)homology functors
(which is possible since these maps are induced by maps of spaces and thus preserves
quasi-isomorphisms).

Theorem 4.33 Let X• be a pointed simplicial set. The operations ϕk∧, ϕk∧, ϕk,EZ ,
ϕkEZ defined on the Eilenberg-Zilber models (Definition 4.29) (co)chains of the sus-
pensions S1

•×X• or product S1
•×X• are functorial with respect to maps of algebras

and modules, making these cochain (resp. chain) complexes into functors

ModCDGA −→ (γ, 0)−ModCDGA, (resp.) ModCDGA −→ (γ, 0)−ModCDGA

from ModCDGA (resp. ModCDGA) to γ-rings with zero multiplication in the category
ModCDGA resp. ModCDGA).

Moreover

47



1. After passing to Hochschild cohomology functor, one has

ϕk∧ ∼= λk
d

: CHSd∧|X•|(A,M)→ CHSd∧|X•|(A,M).

Similarly, one has ϕk∧ = λk
d

, ϕkEZ = λk
d

ϕkEZ = λk
d

on the corresponding
Hochschild (co)homology functors associated to suspension and products.

2. If k is of characteristic 0, then there is an natural splitting

CH
Sd• ,X•
∧ (A,M) =

∏
j≥0

CH
Sd• ,X•,(j)
∧ (A,M)

where the sub-chain complexes CH
Sd• ,X•,(j)
∧ (A,M) are ker(ϕk∧ − kj .id) (for

all k ≥ 0).

3. If k is a Z/pZ-algebra, there is a natural decomposition

CH
Sd• ,X•
∧ (A,M) =

⊕
0≤n≤p−1

CHSd•∧X•,(j)(A,M)

with each ϕn• acting by multiplication by nj on CHSd•∧X•,(j)(A,M).

4. The above two decompositions yields similar ones on Hochschild cohomology

groups and one has H∗
(
CHSd•∧X•,(`)(A,M)

)
= 0 if ` 6= jd. Denoting

HHSd∧|X•|,(j)(A,M) := H∗
(
CHSd•∧X•,(jd)(A,M)

)
,

one has an natural splitting

HHSd∧|X•|(A,M) =
∏

HHSd∧|X•|,(j)(A,M).

Further one also has an identification

HHSd∧|X•|,(j)(A,M) = H∗
(

ker
(
CHSd∧|X•|(A,M)

λk−kj .id−→ CHSd∧|X•|(A,M)
))

= H∗
(

ker
(
CHSd•∧X•(A,M)

ϕk−kjd.id−→ CHSd•∧X•(A,M)
))
.

5. In both cases, one has cochains isomorphisms

CHSd•∧X•,(0)(A,M) ∼= (pt∗)
∗(CHpt•(A,M)) ∼= M.

In particular the Hodge filtration on the cohomology groups satisfies

HHSd∧|X•|,(0)(A,M) ∼= M and all other pieces HHSd∧|X•|,(j)(A,M) are
not in weight 0 with respect to the skeletal filtration.

6. All the above statements 2 to 5 are also true for the Eilenberg-Zilber
(co)chains C∧Y•,X•(A,M), CEZY•×X•(A,M) and CY•×X•EZ (A,M).
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Proof. We have seen that the various operations ϕk•EZ , ϕk•EZ , ϕk∧, ϕk∧ satisfy the
identity defining a λ-ring structure with trivial multiplication. The other statement
corresponding to ϕk•EZ , ϕk•EZ are derived immediately from Theorem 4.17 applied
to the algebra CHX•(A) and the dg-module A as well as Theorem 3.24.

For the suspension case, applying the functoriality given by proposition 4.27,
we have a commutative diagram

CH∆•(S1∧|X•|)(A,M)
λj• // CH∆•(S1∧|X•|)(A,M)

CH∆•(S1)∧∆•(|X•|)(A,M)

'

OO

(λj∧id)∗ // CH∆•(S1)∧∆•(|X•|)(A,M)

'

OO

CH∆•(S1)(CH∆•(|X•|)(A), A) ⊗
CH∆•(S1)(A)

M

EZ∧ '

OO

λj•⊗id
// CH∆•(Sd)(CH∆•(|X•|)(A), A) ⊗

CH∆•(S1)(A)
M

EZ∧'

OO

where the upper vertical arrows are induced by the canonical map of simplicial
sets ∆•(S

1) ∧ ∆•(|X•|) → ∆•(S
1 ∧ |X•|). This gives a description of the power

operations on the Eilenberg-Zilber model of the suspension. Passing to homology,
applying Theorem 4.25 and Theorem 3.24, we deduce the diagram

CHS1∧|X•|(A,M)
λj // CHS1∧|X•|(A,M)

CHS1(CH|X•|(A), A)⊗CHS1 (A)M

'

OO

λj⊗id
// CHS1(CH|X•|(A), A)⊗CHS1 (A)M

'

OO

CHS1(CH|X•|(A), A)⊗CHS1 (A)M

'

OO

ϕj∧=ϕj⊗id
// CHS1(CH|X•|(A), A)⊗CHS1 (A)M.

'

OO

is commutative (the last line is given by the map (4.36)). Using once again Theo-
rem 4.25 and noticing that Sd ∧ |X•| ∼= S1 ∧ (Sd−1 ∧ |X•|) we obtain similarly that
a commutative diagram:

CHS1∧(Sd−1∧|X•|)(A,M)
λj
d

// CHS1∧(Sd−1∧|X•|)(A,M)

CHSd(CH|X•|(A), A)⊗CH
Sd

(A)M

'

OO

λj
d
⊗id
// CHSd(CH|X•|(A), A)⊗CH

Sd
(A)M

'

OO

CHSd(CH|X•|(A), A)⊗CH
Sd

(A)M

'

OO

ϕj∧=ϕj⊗id
// CHSd(CH|X•|(A), A)⊗CH

Sd
(A)M.

'

OO
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We thus have proved claim 1 for the Hochschild homology of suspension, that is

ϕk∧
∼= λk

d

as self-maps of CHSd∧|X•|(A,M). The cohomology statement ϕk∧ ∼=
λk

d

is obtained straightforwardly by dualizing it.
Then the rest of the proof is similar to the one of Theorem 4.17 and Theo-

rem 4.25. �

Since the d-sphere is an iterated suspension Sd ∼= S1 ∧ Sd−1, Theorem 4.33
implies that the map (4.36)

ϕk∧ = (ϕk•)
∗ : HomCHS1

•
(A)

(
CHS1

•
(CHSd−1

•
(A), A),M

)
→ HomCHS1

•
(A)

(
CHS1

•
(CHSd−1

•
(A), A),M

)
yields a γ-ring structure on the Eilenberg-Zilber model for the standard model of
Sd. We compare it with the one given by Theorem 4.14.

Lemma 4.34 The Eilenberg-Zilber maps

EZ∧ : CHS1
•
(CHSd−1

•
(A), A)⊗CHS1

•
(A) M

'−→ CHS1
•∧S

d−1
•

(A,M) and

EZ∧ : CHS1
•∧S

d−1
• (A,M)

'−→ HomCHS1
•

(A)

(
CHS1

•
(CHSd−1

•
(A), A),M

)
are γ-rings maps. In particular, we have a commutative diagram

CHS1∧Sd−1

(A,M)

∼=
��

ϕk∧ // CHS1∧Sd−1

(A,M)

∼=
��

CHSd(A,M)
λk

// CHSd(A,M)

in cohomology and a similar one in homology.

Proof.The second claim is just the first one after passing to the ∞-categories
functors. From the first part of the proof of Theorem 4.33, we have that

EZ∧ ◦ λk• ⊗ id = (λk ∧ id)∗ ◦ EZ∧.

Since the map λk : Sd ∼= S1 ∧ Sd−1 → S1 ∧ Sd−1 is precisely λk ∧ id (see defini-
tion (4.8)) the result follows using identity (4.22) in the case d = 1. The proof is
the same in cohomology. �

Now we also realize the γ-ring maps ψk on the standard model Sd•
∼= S1

• ∧ · · ·S1
•

for Sd (§ 4.4) with the (iterated) Eilenberg-Zilber model for Sd• .
When d = 2, we have the model HomCHS1

•
(A)

(
CHS1

•
(CHS1

•
(A), A),M

)
and the

map ϕk∧ := (ϕk•)
∗. But on the source of this Hom space, we also have the γ-ring
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map ϕk∗ : CHS1
•
(CHS1

•
(A), A) → CHS1

•
(CHS1

•
(A), A). It follows that we have an

induced map:

ϕk∧(2) := (ϕk•)
∗ ◦ (ϕk∗)

∗ : HomCHS1
•

(A)

(
CHS1

•
(CHS1

•
(A), A),M

)
→ HomCHS1

•
(A)

(
CHS1

•
(CHS1

•
(A), A),M

)
. (4.38)

Similarly, on the chains, we have

ϕk∧(2) := ϕk∧ ◦ ((ϕk•)∗ ⊗ id) : CHS1
•
(CHS1

•
(A), A) ⊗

CHS1
•

(A)
M

−→ CHS1
•
(CHS1

•
(A), A) ⊗

CHS1
•

(A)
M. (4.39)

From remark 4.31, we can iterate this construction to get maps

ϕk∧(d) := (ϕk•)
∗ ◦ (ϕk∗)

∗ : HomCHS1
•

(A)

(
CHS1

•
(CHS1

•
(A), A),M

)
→ HomCHS1

•
(A)

(
CHS1

•
(CHS1

•
(A), A),M

)
. (4.40)

and

ϕk∧(d) := CH∧S1
•,··· ,S1

•
(A,M)→ CH∧S1

•,··· ,S1
•
(A,M). (4.41)

In Section 4.4, we have defined operations ψk on CHSd• (A,M) and CHSd•
(A,M).

Proposition 4.35 The following diagrams are commutative:

CH∧S1
•,··· ,S1

•
(A,M)

ϕk∧(d) //

∼=EZ∧

��

CH∧S1
•,··· ,S1

•
(A,M)

EZ∧∼=
��

CHSd•
(A,M)

ϕk
// CHSd•

(A,M)

,

CH
S1
•,··· ,S

1
•

∧ (A,M)
ϕk∧(d) // CH

S1
•,··· ,S

1
•

∧ (A,M)

CHSd• (A,M)
ϕk

//

EZ∧∼=

OO

CHSd• (A,M).

EZ∧ ∼=

OO

In other words, under the Eilenberg-Zilber quasi-isomorphism, the γ-ring maps ϕk

becomes the ϕk∧(d) maps.

Proof. Note that by definition, we have

ϕj∧(d) = ϕj∗(ϕ
j
∗(· · · (ϕj∗ ⊗ ϕkA) · · · )⊗ ϕkM .
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The first part of the proof of Theorem 4.33 and identity (4.22) shows that we have
a commutative diagram

CH∆•(S1)∧···∧∆•(S1)(A,M)
(λj∧···∧λj)∗ // CH∆•(S1)∧···∧∆•(S1)(A,M)

CHS1
•∧···∧S1

•
(A,M)

'

OO

CHS1
•∧···∧S1

•
(A,M)

'

OO

CH∧S1
•,··· ,S1

•
(A,M)

EZ∧ '

OO

ϕj∧(d)

// CH∧S1
•,··· ,S1

•
(A,M)

EZ∧'

OO

where the vertical maps are the composition of the iterated Eilenberg-Zilber map
provided by Proposition 4.30 with iteration of the canonical maps CS1

•
(A,M) →

C∆•(S1)(A,M) induced by the simplicial structure of S1
• as in Remark 3.20. To-

gether with Theorem 4.17, this proves the result after passing to ∞-categories and
thus that the diagrams in the proposition are commutative up to homotopies. In
order to prove the that the diagrams of the Proposition are strictly commutative,
we use the combinatorial description of the map ϕk. For d = 1, the result is imme-
diate by definition. For d > 1, we apply Lemma 4.16 (recall that we are working
with normalized (co)chain complexes) to identify ϕj∧(d) = ϕj∗(ϕ

j
∗(· · · (ϕj∗) · · · ) with

ϕj : CHSd• (A,M)→ CHSd• (A,M). �

5 Additional ring structures for Higher
Hochschild cohomology

5.1 The wedge and cup product

Let A
f→ B be a map of CDGAs. Note that it makes B into an A-algebra as well

as an A⊗A-algebra (since the multiplication A⊗A→ A is an algebra morphism).
The excision axiom 3.24.2 implies

Lemma 5.1 ([Gi3]) Let M be an A-module and X,Y be pointed topological
spaces. There is a natural equivalence

µ : RHomA⊗A (CHX(A)⊗CHY (A),M)
'−→ CHX∨Y (A,M)

which is represented for any simplicial models X•, Y• of X,Y by a natural quasi-
isomorphism

µ : HomA⊗A (CHX•(A)⊗ CHY•(A),M)
∼=−→ CHX•∨Y•(A,M)

of CHX•(A)⊗ CHY•(A)-dg-modules.
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Proof. Recall that CHX•(A) = L(A,A)dg(X•) is the CDGA obtained as the
realization out of the simplicial cdga L(A,A)(X•) (Section 3.1). The natural iso-
morphism µ is the composition of (the map induced by) the Alexander-Whitney
quasi-isomorphism 25 (of A×A-modules)(

L(A,A)(X•)⊗ L(A,A)(Y•)
)dg '−→ CHX•(A)⊗ CHY•(A)

with the cochain complex isomorphism

HomA⊗A

((
L(A,A)(X•)⊗ L(A,A)(Y•)

)dg
,M
) ∼=−→ HomA⊗A

(
CHX•

∐
Y•(A),M

)
∼=−→ HomA

(
A⊗A⊗A CHX•

∐
Y•(A),M

) ∼=−→ HomA (CHX•∨Y•(A),M)
∼=−→ CHX•∨Y•(A,M) (5.1)

where the second line is given by the fact that the A ⊗ A-action on M is the one
induced by the one of A along the multiplication map A⊗A→ A and the adjunction
formula HomA(f∗(N),M) ∼= HomB(N, f∗(M)) for any map F : B → A of cdgas.
�

When M is in fact an A-algebra, we can use Lemma 5.1 to define the wedge
product of Hochschild cochains (which we first introduced in [Gi3, Section 3]) as
the (A⊗A-)linear map

µ∨ : CHX•(A,B)⊗ CHY•(A,B) −→ HomA⊗A

(
CHX•(A)⊗ CHY•(A), B ⊗B

)
(mB)∗−→ HomA⊗A

(
CHX•(A)⊗ CHY•(A), B

)
∼= CHX•∨Y•(A,B) (5.2)

where the first map is given by the tensor products (f, g) 7→ f ⊗ g of functions and
the second is induced by the multiplication of B.

Proposition 5.2 The wedge product is a cochain map and is associative, meaning
that the following diagram is commutative

CHX•(A,B)⊗ CHY•(A,B)⊗ CHZ•(A,B)
µ∨⊗id //

id⊗µ∨
��

CHX•∨Y•(A,B)⊗ CHZ•(A,B)

µ∨

��
CHX•(A,B)⊗ CHY•∨Z•(A,B)

µ∨ // CHX•∨Y•∨Z•(A,B)

,

and commutative meaning that µ∨◦τ = τX•,Y•∗◦µ∨ where τX•,Y• : X•∨Y• ∼= Y•∨X•
is the canonical isomorphism and τ : M ⊗ N ∼= N ⊗M is the permutation of the
two factors.

25. in other words the quasi-isomorphism from CHX• (A,B)⊗CHY• (A,B) to the chain complex
associated to the diagonal cosimplicial space

(
CHXn (A,B)⊗ CHYn (A,B)

)
n∈N.
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Proof. This is a consequence of the naturality of µ in Lemma 5.1 with respect
to spaces, the fact that the Alexander-Whitney map is colax and the explicit for-
mula (5.2). �

The category of pointed simplicial sets (resp. pointed topological spaces) has a
symmetric monoidal structure given by the wedge product∨

: (Xi,•)i∈I 7→
∨
i∈I

Xi,• (5.3)

which induces a symmetric monoidal structure on its associated∞-category as well
as on the opposite of the above categories. By functoriality of Hochschild cochains
(Theorem 4.14), we see that Proposition 5.2 means that µ∨ makes the Hochschild
functor X• 7→ CHX•(A,B) into a lax monoidal functor from (sSet∗

op,⊗∨) to
(k-Moddg,⊗).

Corollary 5.3 The map µ∨ passes to the derived category to exhibit the Hochschild
homology functor CH(−)(A,B) into a lax symmetric monoidal ∞-functor

(Top∗
op,∨) −→ (k-Mod,⊗) :

⊗
i∈I

CHXi(A,B)
µ∨−→ CH

∨
Xi(A,B).

Further any map of cdga’s A → A′ or B → B′ yields a lax monoidal natural
transformation.

Proof. Proposition 5.2 shows that the rule

(X0, . . . , Xn) 7→
(
µ◦n∨ :

⊗
CH∆•(Xi)(A,B) −→ CH

∨
∆•(Xi)(A,B)

)
is a natural transformation between the Γ objects satisfying the Segal condition
(Xi) 7→

∨
Xi and (Ni) 7→

⊗
Ni. By homotopy invariance of Hochschild cochains

(Corollary 3.4) and of the tensor product over k, this functor passes to the associ-
ated∞-category to give an natural transformation between the claimed symmetric
monoidal transformation since the canonical map

∨
∆•(Xi)→ ∆•(

∨
Xi) is a func-

torial (with respect to pointed maps of spaces) weak-equivalence of simplicial sets.
�

Example 5.4 Let X•, Y• be finite simplicial sets models of X,Y . We assume
that we identify Xi with the set {1, . . . ,#Xi} with base point 1. We identify
similarly the sets Yj . The wedge product µ∨ is then combinatorially described as
the composition of the Alexander-Whitney map with the linear map given, for any
f ∈ CHXn(A,B) = HomA(A⊗#Xn , B), g ∈ CHYn(A,B) = HomA(A⊗#Yn , B) by

µ̃(f, g)(a1, a2, . . . a#Xn , b2, . . . , b#Yn) = a1.f(1, a2, . . . a#Xn).g(1, b2, . . . , b#Yn)

(here a1 this corresponds to the element indexed by the base point of Xn ∨ Yn).
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Thus, for any f ∈ CHXp(A,B) = HomA(A⊗#Xp , B), g ∈ CHYq (A,B) =
HomA(A⊗#Yq , B), we have

µ∨(f, g)(a1, a2, . . . a#Xp+q , b2, . . . , b#Yp+q )

= µ̃
(
f(dp+1 ◦ · · · dp+q(a1, . . . , a#Xp+q )).g((d0)◦p(1, b2, . . . , b#Yp+q ))

)
(5.4)

where the di are the face maps of the (respective) simplicial structure.

If a space X is further endowed with an (homotopy) co-associative diagonal
δ : X → X ∨X, then we can compose the wedge product with the map induced by
the diagonal to give the Hochschild cohomology CHX(A,B) over X an (homotopy)
associative algebra structure:

Definition 5.5 Let δ : X → X ∨ X be a continuous map. The cup-product over
X is the composition

∪X : CHX(A,B)⊗CHX(A,B)
µ∨−→ CHX∨X(A,B)

δ∗−→ CHX(A,B).

Proposition 5.6 Assume (X, δ) is an E1-coalgebra in pointed spaces. Then the
cup product extend to give an E1-algebra structure to the Hochschild cohomology
CHX(A,B) which is functorial with respect to maps of pointed spaces cdga’s A and
maps of A-cdgas B.

In other words, the Hochschild cohomology functor gives rise to a functor:

E1-Alg(Top∗)×CDGA(ModCDGA) −→ E1-Alg(k-Mod)

Proof. By assumption we have an E1-coalgebra X 7→
∨
i∈I X in Top∗ hence

a symmetric monoidal functor δ : Ass → EndTop∗
op(X). Since CH is con-

travariant with respect to maps of spaces we get an ∞-functor δ∗ : Ass →
Endk-Moddg (CHX(A,B)). By Corollary 5.3, this functor is also symmetric
monoidal. The naturality is a consequence of the naturality of Hochschild cochains
and the explicit description of µ∨. �

In general, one can use simplicial approximation of the diagonal to compute the
cup-product on an explicit combinatorial model. They will in general be associative
only up to homotopy.

Example 5.7 A standard example of space with a diagonal is given by the spheres
X = Sn. Actually, one can check (see Lemma 5.8 below) that for d = 1, the cup-
product ∪S1 is (homotopy) equivalent to the usual cup-product for Hochschild
cochains as in [G] and for n = 2, ∪S2 is (homotopy equivalent to) the Riemann
sphere product as defined in [GTZ]. Note that the diagonal Sn → Sn∨Sn becomes
more commutative as n-increases. This can be use to lift the cup-product to En-
algebra structure as we show in the next section.

Specifying the construction of the wedge product to example 3.17, we get the
chain maps
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i) mst : CHSd• (A,B)⊗ CHSd• (A,B)→ CHSd•∨S
d
• (A,B);

ii) msm : CH(Sdsm)•(A,B)⊗ CH(Sdsm)•(A,B)→ CH(Sdsm)•∨(Sdsm)•(A,B).
Recall from section 4.4 the simplicial map p(k) : sdk(Sd•) →

∨
{1,...k}d

Sd• . Element

indexing the wedge are tuples (j1, . . . , jd) of elements in k, see Figure 3 and the
proof of Lemma 4.20. We consider the projection i(k) :

∨
{1,...k}d

Sd• →
∨

{1,...k}
Sd•

which maps every non-diagonal 26 sphere Sd• to the point pt•. Also recall the map

D•k (4.4) which induces the inverse of the homeomorphism Dk : |Sd• |
'→ |sdk(Sd•)|.

Lemma 5.8 The composition

∪Sd• : CHSd• (A,B)⊗ CHSd• (A,B)
mst−→ CHSd•∨S

d
• (A,B)

i∗(2)−→ CH

∨
{1,...2}d

Sd•

(A,B)
p∗(2)−→ CHsd2(Sd•)(A,B)

D•2−→ CHSd• (A,B)

is a model for the cup-product of spheres.
If d = 1, this product restricted to normalized cochains is the standard

Hochschild cochain cup-product [G].

Proof. By Lemma 4.20, we have that i(k) ◦ p(k) is a model for the composition

|i(k)| ◦ pinch
(k)
(d) ◦Dk. The composition |i(k)| ◦ pinch

(k)
(d) is homotopic to the pinching

map pinch(k) defined in Section 4.3. Hence the fact that the composition is a model
for the cup-product now follows from Lemma 4.9.

Assume now d = 1. Then i(2) = id and, for f ∈ CHS1
p(A,B), g ∈ CHS1

q (A,B),
from example 5.4, one finds

mst(f, g)(a0, a1 . . . , ap+q, b1, . . . bp+q)

= ±a0·ap+1 · · · ap+qf(1, a1 . . . , ap)·b1 · · · bp·g(1, bp+1, . . . , bp+q) (5.5)

where the sign is the Koszul-Quillen sign. Hence

p∗(2) ◦ i
∗
(2) ◦mst(f, g)(a0, a1 . . . , ap+q, a2p+2q+1)

= ±a0·ap+1 · · · ap+qf(1, a1 . . . , ap)·ap+q+1 · · · a2p+q+1·g(1, a2p+q+2, . . . , a2p+2q+1)
(5.6)

where the sign is again the Koszul-Quillen sign. Since the cochains f , g vanishes
if any of their entries (but the first one) is a scalar, from formula (4.4) and the
previous one, we obtain that

f ∪S1
•
g(a0, . . . , ap+q) = a0 · f(1, a1, . . . , ap) · g(1, ap+1, . . . ap+q)

which concludes the proof. �

26. by a diagonal sphere, we mean a component indexed by a tuple for which all the ji are the
same. Which are precisely those on the diagonal cubes in Figure 3.
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One can also work with the singular model for the sphere. Indeed, let

j : k[∆•(S
d ∨ Sd)]→ k[∆•(S

d) ∨∆•(S
d)]

be a quasi-inverse of the canonical (inclusion) map ∆•(S
d)∨∆•(S

d) ↪→ ∆•(S
d∨Sd).

Explicitly, for σ : ∆n≥1 → Sd ∨ Sd, one can take j(σ) = σ1 ∨ cst + cst ∨ σ2 where
σi are the respective projections on each factor and cst is the constant map to the
base point of Sd.

Lemma 5.9 The map

msg : C∆•(S
d)(A,B)⊗ C∆•(S

d)(A,B)
µ∨−→ C∆•(S

d)∨∆•(S
d)(A,B)

j∗−→ C∆•(S
d∨Sd)(A,B)

pinch∗2−→ C∆•(S
d)(A,B)

is a model for the cup-product.

Proof. It follows from Proposition 5.6 and the commutativity of the diagram

∆•|∆•(Sd) ∨∆•(S
d)|

∼=
��

∆•(S
d) ∨∆•(S

d)
ηoo

��
∆•(|∆•(Sd)| ∨ |∆•(Sd)|)

∆•(β∨β) // ∆•(Sd ∨ Sd)

whose horizontal arrows are the canonical ones induced by the adjunction between
realization and singular chains (that is β|∆•(Y )| → Y is the counit of the adjunc-
tion). �

5.2 The universal En-algebra structure lifting the cup-
product

In [Gi3], we extended the above cup-product for spheres Sn (Definition 5.5) into
an En-algebra structure (at the level of cochains). This result is actually a version
of higher Deligne conjecture for morphisms of CDGAs, i.e., an explicit construction
of Lurie’s notion of (derived) centralizers of a map of CDGAs in the category of
En-algebras, see [Lu3, GTZ3]. We below recall the construction for cdgas and then
explain how to interpret it in terms of convolutions and generalize it to (iterated)
suspensions and products.

5.2.1 The En-structure of Hochschild (co)homology over Sn

Let Cn = (Cn(r))r≥0 be the usual n-dimensional little cubes operad, as an
operad of topological spaces, and respectively Cnun = (Cnun (r))r≥0 its non-unital
version. Recall that Cn(k) is the configuration space of (resp. non-empty) k n-
dimensional open cubes in In. We let Ed stands for its enveloping symmetric
monoidal category, viewed as a symmetric monoidal∞-category. More precisely, it
is the ∞-category associated to the topological category whose objects are disjoint
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unions of finitely many copies of the unit cube In and morphisms are the spaces of
rectilinear embeddings 27 (resp. Enud is given by rectilinear embeddings which are
surjective on connected components). The monoidal structure is given by disjoint
union. In other words, Ed is the ∞-operad governing En-algebras in the sense
of [Lu3]; an explicit model for those algebras in the category of chain complexes
being given by algebras over C∗(Cn), the singular chains on the little cube operad.

A key (and defining) property of this operad is that any element c ∈ Cd(k) de-
fines a map pinc : Sd →

∨
i=1...k S

d by collapsing the complement of the interiors of
the cubes to the base point. The maps pinc assemble together to give a continuous
map

pin : Cd(k)× Sd −→
∨

i=1...k

Sd. (5.7)

These maps in turn gives maps, for every objects k

pin : Ed(k, 1)× Sd −→
∨

i=1...k

Sd (5.8)

where we identify an natural number i with the set {1, . . . , i}. , `
∨
i=1...` S

d

Note also that the map pin preserve the base point of Sd hence pass to the
pointed category Top∗ in all cases.

We start by giving the ∞-categorical construction of the En-algebra lift of
the product before detailing its explicit combinatorial incarnation. The natural
equivalences (3.11) and the pinch map (5.8) yield a space morphism

Pin∗A : MapCDGA(CH∨k
i=1 S

d(A),CH∨k
i=1 S

d(A))

∼= MapTop

( ∨
i=1...k

Sd, MapCDGA(A,CH∨k
i=1 S

d(A))
)

pin∗−→ MapTop

(
Ed(k, 1)× Sd, MapCDGA(A,CH∨k

i=1 S
d(A))

)
∼= MapTop

(
Ed(k, 1), MapCDGA(CHSd(A),CH∨k

i=1 S
d(A))

)
.

We denote

pin∗Sd,A : Ed(k, 1)→ MapCDGA(CHSd(A),CH∨k
i=1 S

d(A)) (5.9)

the image Pin∗A(id) of the identity morphism of CH∨k
i=1 S

d(A). Note that this map

is functorial in A since Pin∗A is. Since pin preserves the base point, pin∗Sd,A takes

value in the space MapA−CDGA(CH∨`
i=1 S

d(A),CH∨k
i=1 S

d(A))
)

of A-linear cdgas.

Dualizing over A, from Definitions 3.9 and 3.19 we get

27. that is continuous maps which are embeddings, which, restricted to each cube is obtained
by a translation and and an homothety in each of the nth direction of the cube In
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Definition 5.10 We define

pinS
d,A
∗ : Ed(k, 1)→ Mapk-Mod(CH

∨k
i=1 S

d

(A,M),CHSd(A,M))

the dual of pin∗Sd,A with values in a A-module M .

When M = B is an unital A-cdga, we can precompose these maps with the the
maps µ∨ from the previous section to get

Ed(k, 1)
pinS

d,A
∗−→ Mapk-Mod(CH

∨k
i=1 S

d

(A,B),CHSd(A,B))

(µ∨)∗−→ Mapk-Mod

(
(CHSd(A,B))⊗k,CHSd(A,B)

)
(5.10)

Theorem 5.11 Let B be a unital A-CDGA. The map (5.10) makes CHSd(A,B)
into an Ed-algebra functorially 28 in A and B.

If B is non-unital, then CHSd(A,B) inherits an Eund -algebra structure. The
underlying E1-structure is the cup-product of Definition 5.5.

In particular, for d > 1, the induced cup-product on the cohomology groups
HHSn

• (A,B)⊗2 → HHSn

• (A,B) is commutative.

Proof. Since we have an equivalence of ∞-categories En-Alg ∼=
Fun⊗

(
Ed,Endk-Moddg (CHSd(A,B))

)
[Lu3, F], it is enough to see that the above

map induces such a symmetric monoidal functor. On objects, we define it as

k 7→ (CHSd(A,B))⊗k (which is essentially forced since we want it monoidal). We
now extend (5.10) to define the functor on morphisms. By definition of the en-
velopping category of an operad, we have weak equivalences

∐
ϕ:k→`

∏̀
i=1

Ed(ϕ−1(i), 1) ∼= Ed(k, `)

so that the map (5.10) yields

Ed(k, `)
∐
ϕ

∏`
i=1 pin

Sd,A
∗−→

∐
ϕ

∏̀
i=1

Mapk-Mod(CH
∨ϕ−1(i)
i=1 Sd(A,B),CHSd(A,B))

∐∏
(µ∨)∗−→

∐
ϕ

∏̀
i=1

Mapk-Mod

(
(CHSd(A,B))⊗ϕ

−1(i),CHSd(A,B)
)

−→
∐
ϕ

Mapk-Mod

( ⊗
i=1...`

(CHSd(A,B))⊗ϕ
−1(i)),

⊗
i=1...`

CHSd(A,B)
)

∼=
∐
ϕ

Mapk-Mod

(
(CHSd(A,B))⊗k, (CHSd(A,B))⊗`

)
−→ Endk-Mod(CHSd(A,B)).

28. in other words, CHSd (−,−) is a functor CDGA(ModCDGA)→ En-Alg(k-Mod)
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That the collection of maps pinS
d,A
∗ defines a symmetric monoidal∞-functor Ed →

Endk-Mod(CHSd(A,B), follows from the fact that the equivalence (3.11) is natural
with respect to maps of spaces and composition of cdgas maps. We thus get the

claimed Ed-algebra structure on CHSd(A,B). Further the functor is natural in A
and B since Pin∗A is functorial in A and HomA(−, B) is functorial in B.

One recovers the cup product by considering a standard diagonal configuration
cst,2 : Id

∐
Id → Id.

The definition for non-unital algebras is similar except that we have to restrict
to maps with are surjective on the connected component of each morphism space

of the ∞-operad. The naturality follows from the fact that CHSd(−,−) is a ∞-
functor from ModCDGA to ModCDGA by Proposition 3.18 and that all pinching
maps are pointed. �

Example 5.12 If A = k, there is a canonical equivalence of En-algebras
CHSn(k,B) ∼= B (which actually is the restriction of an equivalence of CDGAs)
since we have an natural equivalence CHX(k) ∼= k of cdgas for any space X.

A contrario if B = k (and its A-cdga structure is induced by an augmentation of
A), the induced structure is more complicated. Indeed, one can show that then the

En-algebra structure of CHSn(A, k) is the dual of the En-coalgebra structure given
by the n-times iterated Bar construction Bar(n)(A) (see [Fr2, F, Lu2, GTZ3]).

Let us be more precise about the naturality. Let A
f→ B and B

g→ C be maps

of CDGAs so that A
g◦f−→ C is also a CDGA map. In particular, we have the

pushforward functor f∗ : B-Mod → A-Mod. By Theorem 3.24.3 (using the
decomposition of a sphere in two hemisphere), we have an natural equivalence

CHDd(A)

L⊗
CH

Sd−1 (A)

CHDd(A)
'−→ CHSd(A). (5.11)

Applying the duality functor (and canonical equivalence CHDd(−) ∼= id of endo-
functors of CDGA):

RHomA(−, B) ∼= RHomA(−,CHDd(B)) ∼= RHomCH
Dd

(A)(−,CHDd(B))

we deduce a canonical equivalence

CHSd(A)
'−→ RHomCH

Dd
(A)

(
CHDd(A)

L⊗
CH

Sd−1 (A)

CHDd(A),CHDn(B)
)

∼= RHomCH
Sd−1 (A)

(
CHDd(A),CHDd(B)

)
(5.12)

Using equivalence (5.12) and the pushforward CHSd−1(f)∗ : CHSd−1(B)-Mod →
CHSd−1(A)-Mod we can define the (derived) composition of Hochschild cohomology
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over spheres:

CHSn(A,B)⊗CHSn(B,C)

∼= RHomCH
Sd−1 (A)

(
CHDd(A),CHDd(B)

)
⊗ RHomCH

Sd−1 (B)

(
CHDd(B),CHDd(C)

)
id⊗CH

Sd−1 (f)∗
−→ RHomCH

Sd−1 (A)

(
CHDd(A),CHDd(B)

)
⊗RHomCH

Sd−1 (A)

(
CHDd(B),CHDd(C)

)
◦−→ RHomCH

Sd−1 (A)

(
CHDd(A),CHDd(C)

) ∼= CHSd(A,C). (5.13)

where the arrow
◦−→ is (derived) composition of CHSd−1(A)-modules morphisms.

Remark 5.13 Under the equivalence of Proposition 3.25, the derived composition
identifes with the composition

RHomEn
A

(
A,B

)
⊗ RHomEn

B

(
B,C

) ◦−→ RHomEn
A

(
A,C

)
in the categories of En-modules over A.

The following is proved in [GTZ3].

Lemma 5.14 The derived composition CHSd(A,B) ⊗ CHSd(B,C) →
CHSd(A,C) is a map of Ed-algebras.

Sketch of Proof. The Ed-algebra structure on the tensor product CHSd(A,B)⊗
CHSd(B,C) is induced by the diagonal maps Cd(r) → Cd(r) × Cd(r) in Top.
The equivalence (5.12) is represented at the cochain complexes level by the quasi-
isomorphism

CH∂Sd• (A,B) ∼= Homleft
CH

∂Id•
(A)

(
CHId•

(A), CHId•
(B)

)
. (5.14)

(hence we take, as a model for Sd−1, the boundary of the standard cube ∂Id• ). The
advantage of that model is that CHId•

(A) is a cofibrant module over CH∂Id•
(A).

Then we can apply the same construction as the map (5.13) to get a chain map

CHSd• (A,CHId•
(B)) ⊗ CHSd• (B,CHId•

(C)) −→ CHSd• (A,CHId•
(C)) (5.15)

representing the derived composition of Hochschild cohomology over the d-sphere
Sd. The Ed-algebra structure on higher Hochschild cochains is induced by the
pinching map, which itself is induced by inclusions of (configurations of) cubes in
the right hand side of the equivalence (5.14), i.e. the definition of the little d-cubes
operadic structure as expalined in § 5.2.2. It becomes straightforward to check that
the derived composition (5.13) preserves the Cn-action (also see [GTZ3]). �

The Ed-algebra structure we exhibited actually satisfies an universal property. As-
sume that our A-cdga structure on B is induced by a map f : A → B of cdgas
(that is the A-module structure on B is the pullback of the canonical B-module
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structure on itself along a cdga map f). If B is unital, then the module structure
is necessarily induced by such a map which is defined as a 7→ a · 1B .

Following Lurie [Lu3], the (derived) centralizer of an En-algebra map f :
A→ B is the universal En-algebra z(f) endowed with a morphism of En-algebras
κ : A⊗ z(f)→ B making the following diagram

A⊗ z(f)

κ

##
A

id⊗1z(f)

;;

f // B

(5.16)

commutative in En-Alg. Its existence is proved in [Lu3].

Remark 5.15 There is also a notion of non-unital centralizer which can be de-
scribed in terms of moduli problem associated to f : A → B, that is the functor
En-Algart → Top whose value on an artinian En-algebra R is MapEn-Alg(A ⊗
R,B)f the space of maps whose reduction to MapEn-Alg(A⊗ k,B) is precisely f .

The Ed-algebra structure provided by Theorem 5.11 coincides for cdga maps
f : A→ B with the one in [GTZ3] since they are derived in the same way from the
wedge product.

Proposition 5.16 ([GTZ3]) Let A
f→ B be a map of CDGAs. Then CHSd(A,B)

(equipped with the structure given by Theorem 5.11 is the centralizer of f in the
category of Ed-algebras.

Sketch of Proof. This is proved in [GTZ3] for Ed-algebras maps. Let us sketch
the proof for cdgas. By naturality of the Ed-algebra structure (Lemma 5.14) and

Example 5.12 below, there is an natural evaluation map eval : A⊗CHSd(A,B)→ B
which is a map of Ed-algebras making the following diagram

A⊗ CHSn(A,B)

eval

&&
A

id⊗1
88

f // B

commutative in En-Alg.

Now let z be an En-algebra, endowed with a En-algebra map φ : A ⊗ z → B
fitting in a commutative diagram

A⊗ z
φ

""
A

id⊗1z

<<

f // B .

(5.17)
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By adjunction (in k-Mod), the map φ has a (derived) adjoint θφ : z →
RHom(A,B). Since φ is a map of En-algebras and diagram (5.17) is commutative,
one check that θφ factors through a map

θ̃φ : z ∼= k ⊗ z

1RHom
ModA

En

(A,A)⊗id

−→ RHomModAEn
(A,A)⊗z ∼= RHomModAEn

(A,A)⊗RHomModkEn
(k, z)

−→ RHomModAEn
(A,A⊗ z)

φ∗−→ RHomModAEn
(A,B) ∼= CHSn(A,B). (5.18)

The last equivalence is provided by Proposition 5.16. It follows from naturality of
the En-algebra structure of Hochschild cohomology over Sn that this composition

θ̃φ : z → CHSn(A,B) is actually a map of En-algebras. Further, by definition of
θφ, the identity

eval ◦
(
idA ⊗ θφ

)
= φ

holds. Now, the uniqueness of the map θ̃φ follows quite easily from the fact that
the composition

RHomModAEn
(A,B) ∼= RHomEn

k

(
k,RHomModAEn

(A,B)
)

1RHom
ModA

En

(A,A)⊗id

−→ RHomModAEn
(A,A)⊗

(
k,RHomModAEn

(A,B)
)

−→ RHomModAEn

(
A,A⊗ RHomModAEn

(A,B)
)

ev∗−→ RHomModAEn
(A,B) (5.19)

is the identity map. Hence CHSn(A,B) satisfies the universal property of the
derived center z(f). �

Remark 5.17 One can check in a similar (but slightly more complicated) way
that, when B is non-unital (and one uses the well-defined normalized cochain com-
plex ker

(
CHIn•

(k ⊕ B) → CHpt•(k ⊕ B) ∼= k ⊕ B → k
)

as a replacement for

CHIn•
(B)), CHSd(A,B) is the non-unital centralizer of f .

Following Lurie, we now recall a very nice consequence of the centralizer func-
toriality. By Lemma 5.14 above, the derived composition

CHSn(A,A)⊗CHSn(A,A) −→ CHSn(A,A) (5.20)

is a homomorphism of En-algebras (with unit given by the identity map 1A) which
is further (homotopy) associative and unital (with unit 1A). In other words it

makes CHSn(A,A) an object of E1-Alg(En-Alg).
By the∞-category version of Dunn Theorem [Du, Lu3], there is an equivalence

of ∞-categories E1-Alg(En-Alg) ∼= En+1-Alg. Thus the multiplication (5.20) lifts

the En-algebra structure of CHSn(A,A) to an En+1-algebra structure:
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Corollary 5.18 (Higher Deligne Conjecture) Let A be a CDGA. There is a natural

En+1-algebra structure on CHSn(A,A) whose underlying En-algebra structure is
the one given by Theorem 5.11. In particular, the underlying E1-algebra structure
is given by the standard cup-product.

5.2.2 The combinatorial description of the centralizer of cdga maps

We now give an explicit combinatorial model for the Ed-structure given by
Theorem 5.11. To do this, we first start with a model of (3.11) at the simplicial
cdga level. Let f : X × Y → Z be a map of topological spaces. Applying the
singular set functor, we get the simplicial set morphism

∆•(X)×∆•(Y ) ∼= ∆•(X × Y )
f∗−→ ∆•(Z). (5.21)

If L ∈ Γ−Mod, we then get a k-module morphism

k[∆•(X)]⊗ L(A,A)(∆•(Y ))
L(f∗,A)−→ L(A,A)(∆•(Z)) (5.22)

defined, in simplicial degree n, as the colimit, over all finite (τk : ∆n → Y )k∈K
subsets of ∆n(Y ), of(∑

λj(∆
n σj→ X),

⊗
K

aτk
)
7→
∑
j

λj ιj

( ⊗
γ∈f∗(σj×K)

( ∏
σj×τk∈f−1

∗ (γ)

a(σj×τk)
))
(5.23)

where ιj : L(A,A)(f∗(σj × K)) ↪→ L(A,A)(∆•(Z)) is the canonical map from a
finite subset to the colimit defining L(A,A)(∆•(Z))

Lemma 5.19 The map (5.22) is a simplicial k-module morphism

Proof. Since k[∆•(X)] ⊗ L(A,A)(∆•(Y )) ∼= k[∆•(X)] ⊗ colim
q:L→∆•(Y )

L(A,A)(L)

and f∗ is a simplicial set morphism, the result boils down to check that the ten-

sor product
⊗

γ∈f∗(σj×K)

(∏
σj×τk∈f−1

∗ (γ) a
(σj×τk)

)
is compatible with face and de-

generacies operations on the source and target. This follows from the fact that
L(A,A)(L) =

⊗
l∈L a

l is a functor from finite sets to k-dg-modules. �

Composing with The Eilenberg-Zilber map we get a chain complex morphism

f∗ : C∗(X)⊗ CH∆•(Y )(A) −→ CH∆•(Z)(A). (5.24)

where we use f∗ as an abusive notation which is reasonable in view of the following

Lemma 5.20 Given a commutative diagram

X × Y
f //

p×q
��

Z

r

��
X ′ × Y ′

f ′ // Z ′
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the following induced square of chain complexes

C∗(X)⊗ CH∆•(Y )(A)
f∗ //

p∗⊗q∗
��

CH∆•(Z)(A)

r∗

��
C∗(X

′)⊗ CH∆•(Y ′)(A)
f ′∗ // CH∆•(Z′)(A)

is commutative.
If, Y , Z are pointed and for any x ∈ X, the induced map f : {x} × Y → Z is

pointed, then the map (5.24) is a dg-A-module morphism.

Proof. The first claim is a consequence of the fact that L(A,A) is a functor from
sets to dg-k-modules and the naturality of the map (5.21) and Eilenberg-Zilber
chain map.

The A-module structure is given by the A-module structure on Hochschild
chains on a pointed simplicial set both at source and target. In other words by
multiplication on the tensor factor indexed by the constant function from the sim-
plex with value the base point of respectively Y and Z. The assumption implies
that for any σ : ∆n → X, f∗(σ, τ) is the base point of Hom(∆n, Z) (that is the
constant map to the base point of Z) when τ is the base point of Hom(∆n, Y ).
Then, formula (5.23) shows that pointed, then the map (5.22) maps the tensor
factor corresponding to the base point into a product of element which are in the
factor indexed by the base point of ∆•(Z). Hence the A-module is preserved, and
we already know it is a dg-map. �

Assuming (Y, y0), (Z, z0) are pointed and f : X×Y → Z maps f(X×{y0}) = {z0},
Lemma 5.20 implies that we can apply HomA(−,M) to the map (5.24) to get a
chain map

f∗ : C∗(X)⊗ CH∆•(Z)(A,M) −→ CH∆•(Y )(A,M) (5.25)

for any A-module M .
Now we will apply this to the map (5.7) f = pin which preserves the base-point

as in the above assumption. This gives us the following chain map.

pinch∗Sn,r : C∗
(
Cn(r)

)
⊗
(
CH∆•(S

n)(A,B)
)⊗r

(µ∨)(r−1)

−→ C∗
(
Cn(r)

)
⊗ CH

∨r
i=1 ∆•(S

n)
(
A,B

)
j∗−→ C∗

(
Cn(r)

)
⊗ CH∆•

(∨r
i=1 S

n
)(
A,B

)
pinch∗−→ CHSn(A,B) (5.26)

in k-Moddg; here (µ∨)(r−1) is the iteration of the wedge product (5.2) and

j : k[∆•
( r∨
i=1

Sn
)
] −→ k[

r∨
i=1

∆•(S
n)] (5.27)
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is the linear map
∑r
k=1 prk obtained by summing all the projections prk :

∆•
(∨r

i=1 S
n
) projk◦−−→

∨r
i=1 ∆•(S

n) of a singular simplex of the wedge on each
of its component (as in Lemma 5.9).

Theorem 5.21 Let B be a A-cdga. The collection of maps (5.26) gives a structure
of C∗

(
Cn
)
-algebra 29 to CH∆•(S

n)(A,B) which is functorial with respect to A and
B.

This structure is a model for the En-algebra structure of CHSn(A,B) given by
Theorem 5.11.

In the above Theorem and definition of the maps (5.26), we can replace the little
cubes operad by the little disk operad Dn, that is the operad consisting of configu-
rations of euclidean open disks 30 inside the open unit disk od Rn. The proofs and
constructions goes on mutatis mutandis.

Proof. Let us prove the first claim first. Note that the second claim will a priori
only imply that the maps (5.26) gives rise to an homotopy En-algebra structure on
the cochains CH∆•(S

n)(A,B).
We have already seen that all the involved map whose composition is the

map (5.26) are chain maps. So we are left to prove that it is compatible with
the operadic composition. By definition of the operad structures, we have commu-
tative squares of chain complexes

Cn(r)× Cn(s)× Sn
id×pinch //

◦i×id
��

Cn(r)×
∨s
i=1 S

n

pinch×id∨
j 6=i Sn

��
Cn(r + s− 1)× Sn

pinch // ∨r+s−1
i=1 Sn

for every i = 1 . . . r. Dualizing Lemma 5.20 (that is applying HomA(−, B)) we
obtain the commutative squares

C∗(Cn(r))⊗ C∗( Cn(s))⊗ CH∆•(
∨r+s−1
i=1 Sn)(A,B)

id⊗(pinch×id∨
j 6=i Sn )∗

//

◦i∗⊗id
��

C∗(Cn(r))⊗ CH∆•(
∨r
i=1 S

n)(A,B)

pinch∗

��
Cn(r + s− 1)⊗ CH∆•(

∨r+s−1
i=1 Sn)(A,B)

pinch∗ // CH∆•(S
n)(A,B).

(5.28)
Then the compatibility follows from Proposition 5.2 and the associativity of j∗ as
well.

It remains to prove that this map describes the En-algebra structure of Theo-
rem 5.11. By adjunction the simplicial set map (5.21) gives a simplicial set mor-
phism

evf : ∆•(X) −→ MapsSet(∆•(Y ),∆•(Z)) (5.29)

29. in particular of En-algebra in cochain complexes
30. instead of rectangles parallel to the axes
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defined by sending a simplex σ : ∆n → X to the simplicial set morphism

evf (σ) : ∆n ×∆•(Y )
1×σ̃−→ ∆•(X)×∆•(Y )

f−→ ∆•(Z) (5.30)

where σ̃ : ∆n → ∆•(X) is the canonical map sending the non-degenerate n-simplex
of ∆n to σ ∈ ∆n(X) (see [GJ]). Applying the Hochschild chain functor 3.6 we
obtain a simplicial map

evf ∗ : ∆•(X) −→ MapCDGA(CH∆•(Y )(A), CH∆•(Z)(A)). (5.31)

Forgetting the algebra structure, we obtain a linear map ∆•(X) −→
Mapk-Moddg (CH∆•(Y )(A), CH∆•(Z)(A)). By adjunction (and applying the singu-
lar chain functor), we obtain a chain map

C∗(X)⊗ CH∆•(Y )(A) −→ CH∆•(Z)(A). (5.32)

Formula (5.30) and Definition 3.6 shows that for f = pin : Cn(r)× Sn →
∨r
i=1 S

n,
the map obtained from (5.32) by applying the duality HomA(−, B) functor is the
chain map pinch∗Sn,r (this dual is well defined by Lemma 5.20 again).

On the other hand we have the weak equivalence C∗(Mapk-Mod(A,B) ∼=
Homdg(A,B)) with the cochain complex of non-negatively graded chain complexes
maps from A to B equipped with the standard differential d(f) := dB◦f−(−1)|f |f◦
dA. Under this weak equivalence, pinch∗Sn,r is the image by the exponential law

Mapk-Mod(C∗((Cn(r))⊗ CH∆•(Sd)(A), CH∆•(
∨r
i=1 S

d)(A))

∼= Mapk-Mod

(
C∗((Cn(r)),Mapk-Mod(CH∆•(Sd)(A), CH∆•(

∨r
i=1 S

d)(A))
)

in k-Mod of HomA(evf ∗, B); that is the image of the (A-linear) dual with value
in B of the map (5.31). By lemma 5.22 below applied to the pinching map (5.7),
this later map is a model for the map of Theorem 5.11 as claimed since the little
cube operad is an En-operad. �

Lemma 5.22 The map (5.29) represents in Top the image of the identity along
the following composition:

MapCDGA(CHZ(A),CHZ(A))

∼= MapTop

(
Z, MapCDGA(A,CHZ(A))

)
−◦f−→ MapTop

(
X × Y, MapCDGA(A,CHZ(A))

)
∼= MapTop

(
X, MapCDGA(CHY (A),CHZ(A))

)
.

Proof. The rule f 7→ evf is the bijection corresponding to the exponential law
HomsSet(∆•(X)×∆•(Y ),∆•(Z)) ∼= HomsSet(∆•(X),MapsSet(∆•(Y ),∆•(Z)) ([GJ])
and CH(−)(A) is a symmetric monoidal ∞-functor exhibiting the tensor structure
of CDGA over sSet by Theorem 3.24. �

Remark 5.23 For n > 1, Theorem 5.21 gives an explicit homotopy, that is a ∪1-
product for the commutativity of the cup product; and more generally iterated ∪i
product up to i = n− 1.
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5.3 The O(d)-equivariance of the universal Ed algebra struc-
ture on Hochschild cochomology over spheres

In this section we lift the Ed-structure of Theorem 5.11 to a structure of unori-
ented 31 Ed-algebra and it is a smooth (and weakly homotopy equivalent) version of
what is simply called a Diskd algebra in the terminology of Ayala-Francis [AF, F].
For d = 2, this is the same (by formality and transfer of structure) as an homotopy
BV-algebra structure together with an involution of the algebra.

Following [SW], ifG is a (topological) group acting on an operad O in topological
spaces, we can define the G-framed analogue of O define as the operad(

(OoG)(r) := O(r)×Gr
)
r
.

The symmetric group action is diagonal (and acting by permutation on Gr). The
operad structure map (OoG)(r)× (OoG)(i1)× · · · × (OoG)(ir)→ (OoG)(i1 +
· · ·+ ir) is extended from the one on O by the formula(

(x, g), (y1, h1), . . . , (yr, hr)
)
7→
(
µO(x, g1 · y1, . . . , gr · yr), g1h1, . . . , grhr

)
.

Here g = (g1, . . . , gr) is a tuple (and similarly for hi), µO is the operadic composition

in O and gjhj is the diagonal action og gj on the components of the tuple hj ∈ Gij .
By [SW], an (OoG)-operad is the same as an O-algebra in the category of G-spaces.

The framed operad we are mainly interested is the framed little disk operad
Dn o O(n) of little disks together with an orthogonal transformation. The action
of the orthogonal group on disks is the rotation or reflexion action on the disk fixing
the center. Note that (the ∞-category of) algebras over this operad are the same
as (the ∞-category of) unoriented En-algebras in the sense of [Gi4]. Let us also
denote the operad of (topological) d-disks 32 algebras by (Diskd(r))r≥0 where

Diskd(r) = Emb(
∐

i=1...r

Rd,Rd)

is the space of topological embeddings of r-many disjoint pairwise copies of the eu-
clidean space Rd in itself. The operadic structure is of course given by composition
of embeddings (similarly to the operad of cubes), see [AF].

Fixing a base point on Sd, we have an natural action ofO(d) and Homeopt(S
d) ∼=

Homeo(Rn) on Sd preserving the base point. The O(d)-action is simply obtained
by rotation along the axis through the center and the base point. By functoriality

of the Hochschild chain functor, we thus get induced actions on CH∆•(S
d)(A,B).

Lemma 5.24 The above action of O(d) on Sd is the same as the action induced
by the standard euclidean action of O(d) on Rd on the quotient Sd ∼= Dd/∂Dd

31. we follow the convention of [Gi4]; it is called framed in [SW]
32. a disk is open here
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Proof. The natural action of O(d) on the Rd preserves the unit disk and the unit
sphere. Hence it passes to the quotient Sd = Dd/∂Dd fixing the base point of Sd

and its antipodal point corresponding to the (image by the quotient map of the)
center of Dd. �

Corollary 5.25 Let f : A→ B be a cdga map.

1. The Ed-algebra structure on CH∆•(S
d)(A,B) given by Theorem 5.21 is

equivariant with respect to O(d).

In particular, it lifts to a structure of algebra over the framed little disk

operad Dd oO(d) and further CHSd(A,B) is in Eunord -Alg so that the Ed-
centralizer of a cdga map f : A→ B is canonically an unoriented Ed-algebra.

2. The above structure on CH∆•(S
d)(A,B) lifts to a structure of algebras over

Diskd which is Homeo(Rd)-invariant. In particular CHSd(A,B) is an d-disk
algebra in the sense of [AF].

3. The γ-ring structures maps λk,• (and therefore λk) of Definition 4.13 are
O(d)-equivariant.

Proof. By [SW], the fact that the structure maps pinch∗Sd,r admits a lift to a struc-
ture of framed little disk algebra follows from their equivariance. Namely, it is suffi-

cient to check that, for g ∈ C∗(O(d)), c ∈ C∗(Dn(r)), f1, . . . , fr ∈ CH∆•(S
d)(A,B),

one has

g · pinch∗Sd,r(c⊗ f1 ⊗ · · · ⊗ fr) =
∑

pinch∗Sd,r(g(0) · c⊗ g(1) · f1 ⊗ · · · ⊗ g(r) · fr)

where
∑
g(0) ⊗ · · · ⊗ g(r) is the iterated diagonal. The latter follows from the

commutativity of the following diagram of spaces

Sd
Pinc // ∨

i=1...r S
d

∨
g·

��
Sd

g·

OO

Ping·c // ∨Sd
(5.33)

where c ∈ Dd(r) and g ∈ O(d). It follows that CH∆•(S
d)(A,B) is a Dd o O(d)-

algebra hence CHSd(A,B) is in Eunord -Alg by Theorem 5.21.
For the second claim of the corollary, we first note that the operads Dd and Cd

are suboperads of the Disk operad Diskd = (Diskd(r))r≥0 described above. Indeed,
the first operad is obtained from Diskd by restricting to those embeddings which are
obtained by dilatation and translation of each copies of Rd (together with a standard
homeomorphism between the open unital disk and Rd). The second operad is
obtained similarly but by restricting to those embeddings which are rectilinear
(meaning that they are composition of translation and dilatation in each direction
given by the canonical basis of Rd; in particular they send a rectangle with axis
parallel to the axes of the unit cube to a rectangle with axis still parallel to those
of the unit cube).
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Identifying Sd with the Alexandroff compactification of Rd (the base point being
the point at ∞) yields a pinching map

pinchtop
Sd,r

: Diskd(r)× Sd −→
∨

i=1...r

Sd (5.34)

which maps the complements of the images of the embedding (lying in Rd = Sd \
{∞}) to the point at infinity of Sd (that is, its base point). It is a continuous map.
Hence we can define analogues for that operad Diskd of Disks of the maps (5.26)
and the maps (5.10) are well defined and the proofs of Theorem 5.11 and 5.21
apply mutatis mutandis. This gives an action of the the singular chains of the

topological operad Diskd on CH∆•(S
d

(A,B) which is a model for the structure of

CHSd(A,B) as an object of the∞-category Diskd−Alg. The equivariance follows
from the commutativity of diagram

Sd
Pintopc // ∨

i=1...r S
d

∨
g·

��
Sd

g·

OO

Pintopg·c // ∨Sd
(5.35)

for any c ∈ Emb(
∐
i=1...r Rd,Rd) and g ∈ Homeo(Rd) ∼= Homeo∗(S

d). This proves
the second claim.

For the last claim, we note that that λk splits as Sd
pinch(k)

−→ Sd∨· · ·∨Sd ∨id−→ Sd

(see Section 4.3) hence the statement reduces to the first one and the commutativity
of diagram (5.33). �

Example 5.26 As a consequence, CHS2

(A,B) has a canonical homotopy BV -
algebra structure. It will be interesting to explicitly describe the induced BV-
operator on its cohomology. When f : A → k is an augmentation, then we obtain
an homotopy BV -structure on the iterated Bar construction Bar(2)(A) of A. If
A = Ω∗(X) where X is 2-connected, then we have an equivalence

CHS2

(A, k) ∼= C∗(Ω
2X)

by Theorem 7.2 and [GTZ3]. By functoriality of the iterated integral map, the
induced action is given by the standard O(2)-action on Ω2X and thus, we recover
the standard BV -structure of the singular chains C∗(Ω

2X) on a 2-fold based loop
space.

Remark 5.27 The category of algebras over the operad Diskd of disks in
Corollary 5.25 is also weakly equivalent to the one of algebras over the semi-
direct product Ed o Homeo(Rd) of the operad of framed embeddings Ed(r) =
Embframed(

∐
i=1...r Rd,Rd) with the group of homeomorphisms of Rd (see [AF,

Gi4] for details).
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Example 5.28 (The universal unoriented Ed-algebra structure on semi-
reduced suspensions) Let X be a non-empty topological space. We defined its
d-fold semi-reduced suspension to be the topological space

Σ̃dX := Id ×X/(∂Id ×X).

Note that Σ̃X is the quotient of the (unreduced) suspension of

Σ(X) = I ×X/
{

(1, x) ' (1, y)
(0, x) ' (0, y)

for all x, y ∈ X

obtained by identifying the points [(0, x)] with the point [(1, y)] in ΣX. On the
other hand, if X is pointed (with x0 the base point), then the reduced (d-fold
iterated) suspension Sd ∧X is a quotient of the semi-reduced d-fold suspension:

Sd ∧X ∼= Σ̃dX/(Id × {x0} ' ∞)

where we write ∞ for the point given by the class of ∂Id ×X in Σ̃dX.

If f : A→ B is a CDGA map, the canonical (and unique) map X → pt induces
the CDGA morphism

f ◦ pt∗ : CHX(A)→ CHpt(A) ∼= A
f→ B

which is represented by the CDGA morphism CHX•
(A) → CHpt∗

(A) ∼= A
f→ B

for any simplicial set model X• of X (see example 3.8).

Corollary 5.29 Let f : A→ B be a CDGA map and X a non-empty space.

1. The Hochschild cohomology CHΣ̃dX(A,B) is naturally equivalent to the cen-

tralizer Z(CHX(A)
f◦pt∗→ B) and is naturally an object of Eunord -Alg and a

multiplicative γ-ring with trivial multiplication.

2. The γ-ring structures maps λk given by claim 1 are O(d)-equivariant.

Proof. By the excision property of Theorem 3.24, we have an equivalence
inCDGA

CHΣ̃dX(A) ∼= A
L
⊗

CH
∂Id×X(A)

CHId×X(A) ∼= A
L
⊗

CHX(A)
CHSd×X(A)

since the semi-reduced suspension is also the quotient Σ̃dX ∼= Sd × X/{∗} × X
where we denote by ∗ = [∂Id] the base point of Sd (given by the class of ∂Id in the
quotient Sd ∼= Id/∂Id). From it we deduce an equivalence

αX,d : CHΣ̃dX(A, B) ∼= RHomA

(
CHΣ̃dX(A), B

)
∼= RHomA

(
A

L
⊗

CHX(A)
CHSd×X(A), B

)
∼= RHomCHX(A)

(
CHSd×X(A), B

)
(5.36)
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in CHX(A)-Mod.
By the Eilenberg-Zilber equivalence (4.27) (also see Theorem 3.24 and Corol-

lary 4.28), we also have an equivalence

βX,d : RHomCHX(A)

(
CHSd×X(A), B

) ∼= RHomCHX(A)

(
CHSd(CHX(A)), B

)
∼= CHSd(CHX(A), B). (5.37)

Composing the maps (5.36) and (5.37), we obtain the equivalence

βX,d ◦αX,d : CHΣ̃dX(A,B)
∼=−→ CHSd(CHX(A), B)

where the CHX(A)-module structure on B is induced by the map f ◦ pt∗. Hence
the right hand side is the centralizer z(f ◦ pt∗). The two claims now follow from

Corollary 5.25 applied to CHSd(CHX(A), B). �

From the proof of Corollary 5.29, we see that, if X• is a simplicial set model of a
non-empty space X, then a cochain model for the unoriented Ed-algebra structure

of CHΣ̃dX(A,B) is given by the CHX•(A)-module

HomCHX• (A)

(
CH∆•(Sd)(CHX•(A)), B

) ∼= CH∆•(S
d)(CHX•(A), B). (5.38)

Then Corollary 5.25 implies that the latter inherits a structure of algebras over
Diskd which is Homeo(Rd)-invariant.

6 Applications of Higher Hochschild-Kostant-
Rosenberg Theorem

The classical Hochschild-Kostant-Rosenberg Theorem is a powerful result to
compute Hochschild (co)homology of a smooth algebra. It also gives a nice de-
scription of the pieces of the Hodge decomposition. In this section, we explain how
to generalize it to higher analogues.

6.1 Statement of HKR Theorem

If X is a space, we denote H̃∗(X) its reduced homology coalgebra. Recall that
a space is formal if its cochain algebra is quasi-isomorphic to its cohomology as a
CDGA. This includes all spheres, suspensions, Lie group or Kähler varieties.

Theorem 6.1 Assume X is a formal space of finite type in each degree. And let

(Sym(V ), d)
∼=−→ A be a cofibrant resolution 33 of A. There are natural (in A, M)

equivalences

CHX(A)
∼=−→ (Sym(V ⊗H∗(X)), dX); (6.1)

CHX(A,M)
∼=−→ (M ⊗Sym(V ) Sym(V ⊗H∗(X), dX)) (6.2)

33. Any A is quasi-isomorphic to a semi-free one of the form (Sym(V ), d) and by quasi-invariance
of Hochschild chains it is enough to compute the left hand side of (6.1) for the later cdgas.
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respectively in CDGA and in CHX(A)-Mod. Further, if f : X → Y is
a formal map 34 we have a commutative diagrams (respectively in CDGA and
CHX(A)-Mod):

CHX(A)
∼= //

f∗

��

Sym(V ⊗H∗(X))

Sym(id⊗H∗(f))

��
CHY (A)

∼= // Sym(V ⊗H∗(Y )),

(6.3)

CHX(A,M)
∼= //

f∗

��

M ⊗Sym(V ) Sym(V ⊗H∗(X))

Sym(id⊗H∗(f))

��
CHY (A)

∼= // M ⊗Sym(V ) Sym(V ⊗H∗(Y )),

(6.4)

The differential dX in the right hand sides of (6.1) and (6.2) are induced by the
inner differential of A (as well as M as the usual differential of a tensor product of
complexes) as follows. For v ∈ V , we denote

d(v) :=
∑

v(1) · · · v(n)

its differential; that is v(1) · · · v(n) ∈ Symn(V ) is the weight n summand of d(v) and
is thus by definition a finite sum of monomials of total degree n in V . Following
Sweedler’s notations, we write

∆(n−1)(α) =
∑

α(1) · · · ⊗ α(n)

where ∆(n−1) is the iterated coproduct in the commutative coalgebra H∗(X).
Then the differential dX on Sym(V ⊗H∗(X)) is the unique derivation extending

the map given for any v ⊗ α ∈ V ⊗H∗(X) by

dX(v ⊗ α) :=
∑

(v(1) ⊗ α(1)) · · · (v(n) ⊗ α(n)). (6.5)

Proof.We refer to [GiRo] for details. We will mainly use this results for spheres,
in which case the result is a corollary of [P, Section 4.7]. In general, the result
essentially follows from Proposition 3.3 applied to a dg cocommutative coalgebra
model for chains obtained by dualizing the ones on cochains. This yields a (zigzag

of) weak equivalences of right Γ-modules C̃∗(X) ' coL(H∗(X)).
Then one computes the tensor product

coL(H∗(X))⊗Γ L(Sym(V )) ∼= Sym(V ⊗H∗(X))

which is an explicit computation done 35 in [P]. The differential on d on Sym(V )
makes L(Sym(V )) a dg-Γ-module which induces the claimed differential on the
above tensor product of right and left Γ-module.

34. we recall that it means that f is quasi-isomorphic to H∗(f) : H∗(Y )→ H∗(X) in CDGA;
in particular X and Y are formal

35. it can also be deduced from the fact that Sym is a left adjoint hence commutes with colimits
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Further, if f : X → Y is formal, then there is a commutative diagram

C̃∗(X)
∼= //

f∗
��

coL(H∗(X))

H∗(f)

��
C̃∗(Y )

∼= // coL(H∗(Y ))

in the ∞-category of right Γ-modules. The commutative diagrams (6.3) and (6.4)
are deduced from this diagram and the first part of the proof. �

Remark 6.2 For surfaces, the HKR theorem has first been proved in [GTZ]. A
variant for Chevalley-Eilenberg complexes has been given in [TW].

Corollary 6.3 Assume X is a formal space of finite type in each degree. And let

(Sym(V ), d)
∼=−→ A be a cofibrant resolution of A. There are natural (in A, M)

equivalences in CHX(A)-Mod.

CHX(A,M)
∼=←−M ⊗Sym(V ) SymSym(V )(V

∨ ⊗ H̃∗(X)). (6.6)

The differential is computed as for the Hochschild chains.

Proof. One applies theorem 6.1 and Lemma 3.11. �

Remark 6.4 Given our assumption on A, we have that Sym(V )⊗V [1] is a model
for LΩ1(A), the derived functor of Kähler forms. In other words, it computes the
André-Quillen chain complex. In particular Theorem 6.1 can be restated as

CHX(A)
∼=−→ SymA(LΩ1(A)⊗ H̃∗(X)).

Recall that Ω1(A) is the module generated by symbols ad(b), a, b ∈ A satisfying
the relations that d is k-linear and d(ab) = ad(b) + bd(a); it is also called the
Kähler forms. The differential on A extends to a differential on Ω1(A) in the
obvious way. It is canonically an A-module (with action x ⊗ ad(b) 7→ xad(b)
by multiplication on the left). The (left) derived Kähler forms functor LΩ1(A)
is canonically quasi-isomorphic to the dg-module Ω1(Sym(V )) for any cofibrant
resolution (Sym(V ), d) → A; indeed a quasi-isomorphism of cdgas between semi-
free cdgas induces a quasi-isomorphism between their Kähler forms. In other words,
the HKR theorem identifies the Hochschild homology over a formal space X with
a twisted by X version of André-Quillen homology.

Similarly, one has

CHX(A,M)
∼=←− SymA(RDer(A,M)⊗ H̃∗(X)).

Here Der(A,M) is the dg-A-module of derivations of A into M . Again if A,
B are is semi-free, a quasi-isomorphism f : A → B of cdgas between them in-
duces a quasi-isomorphism f∗ : Der(B,M)→ Der(A,M) of dg-A-modules. Hence
RDer(A,M) is canonically equivalent to Der(Sym(V ),M) for any cofibrant reso-
lution (Sym(V ), d)→ A of a cdga A.
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Example 6.5 (Smooth algebras) We now give an explicit map describing the
HKR equivalence for X = Sd• the standard model for the sphere (see example 3.17)
for smooth algebras. This will be useful in § 6.2. We left to the reader the task to
generalize the formulas for more general spaces such as X × Sd• .

We start with a general notation. Recall that CHSdn
(A) = A⊗A⊗nd ; an element

of which is a sum of tensors a0 ⊗
⊗

(i1,...,id)∈{1,...n}d ai1,...id .

Definition 6.6 For b ∈ A and j1, . . . , jd ∈ {1, . . . n}, we denote Ej1,...,jd(b) the
tensor

Ej1,...,jd(b) := 1⊗
⊗

(i1,...,id)∈{1,...n}d
bi1,...id

for which bj1,...jd = b and the other ones are equal to 1. In other words it is the
tensor which is one everywhere except in the position (j1, . . . , jd) for which it is
equal to b.

Since we are considering normalized chain complexes, Ej1,...,jd(b) = 0 unless n =
0, d. We will, unless otherwise stated, only use this notation for n = d.

For the remainder of this example, we will consider the case where the differen-
tial of A is null, that is of a graded algebra A. Let V be a graded vector space. We
denote sd : V → V [d] the desuspension functor. In other word an element of V [d]
of (cohomological) degree i will be written as sd(v) for an unique v ∈ V of degree
i+ d.

Let εdHKR : Sym(V ⊕ V [d]) → CHSd•
(Sym(V )) be the unique graded commu-

tative Sym(V )-algebra map defined, for any sd(v) ∈ V [d] by

εdHKR(sd(v)) :=
1

d!

∑
σ∈Σd

(−1)σEσ−1(1),...,σ−1(d)(v) ∈ CHSdd
(Sym(V )). (6.7)

Lemma 6.7 Let V be a graded space. The map εdHKR : Sym(V ⊕ V [d]) →
CHSd•

(Sym(V )) is a CDGA quasi-isomorphism and is equivalent to the HKR equiv-

alence of Theorem 6.1 36.

If A is a graded algebra, the map

εdHKR : SymA(Ω1(A)[d]) −→ CHSd•
(A)

defined as the unique graded commutative A-algebra map satisfying

εdHKR(d(b)) :=
1

d!

∑
σ∈Σd

(−1)σEσ−1(1),...,σ−1(d)(b) ∈ HHSdd
(A)

is well defined in homology. It is further an algebra isomorphism
SymA(Ω1(A)[d]) ∼= HHSd(A) if A is smooth.

36. Note that Sym(V ) is endowed with the zero differential
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Proof. First, note that Sym(V ⊕V [d]) ∼= Sym(V ⊗H∗(Sd)). There is a canonical
cycle τ : ∆d → ∆d/∂∆d representing the generator of Hd(S

d) and we have a
projection C∗(S

d)→ k∗⊕kτ = H∗(S
d) which is a quasi-isomorphism (∗ is the base

point of Sd). It follows that the unique commutative algebra map Sym(V ⊕V [d])→
CH∆•(Sd)(Sym(V )) defined by sd(v) 7→ v ⊗

⊗
τ 6=σ∈∆d(Sd) 1 is a chain map and

represents the HKR equivalence of Theorem 6.1. Since a cube Id can be partitioned
into d! many standard d-simplices τσ, we obtain a splitting of the canonical cycle
τ as the chain τ̃ :

∑
σ∈Σd

τσ. Now, recall that Sd• = Id•/∂I
d
• . The canonical

unit of the adjunction map gives us, for any (i1, . . . , id) ∈ {1, . . . , n}d the map
η(i1,...,id) : ∆n → Id/∂Id given, for t = (t1 ≤ · · · ≤ tn) ∈ ∆n by

η(i1,...,id)(t) := (ti1 , . . . , tid).

Therefore the HKR equivalence is equivalent to the unique Sym(V )-algebra map
Sym(V ⊕ V [d])→ CH∆•(Sd)(Sym(V )) defined by

sd(v) 7→ 1

d!

∑
σ∈Σd

v · ⊗
⊗

η(i1,...,id) 6=σ∈∆d(Sd)

1

By functoriality, the map η∗ : CHSd•
(Sym(V ))→ CH∆•(Sd)(Sym(V )) is a CDGA

homomorphism and the above map is

η∗(
∑
σ∈Σd

(−1)σEσ−1(1),...,σ−1(d)(v)) = εdHKR(sd(v)).

Therefore the map εdHKR is a CDGA map representing the HKR equivalence.
For the second part, one first checks that E1,...,d(ab)−bE1,...,d(a)−aE1,...,d(b) is

equal to the differential of the tensor
⊗
αj1,...,jd ∈ CHSdd+1

(A) given by α1,2,...,d =

a, α1,2,...,d−1,d+1 = b and the other components equal to 1. This proves (after
symmetrizing) the the map is well defined in homology since each term E1,...,d(x) is
a cocycle, for any x in A as can be checked explicitly. Taking a cofibrant resolution,
one sees as in Lemma 6.11 that this induced map corresponds to the composition

SymA(Ω1(A)[d]) −→ SymA(LΩ1(A)[d])
HKR∗−→ HHSd(A)

When A is smooth, the first map is an equivalence hence the result. �

6.2 HKR isomorphism and Hodge decomposition

We now relate the HKR isomorphisms from Section 6.1 with the Hodge filtra-
tions on the various (co)chains functors.

Recall from Example 4.6 that Sym(V ⊕V [d]) and Sym(V ⊕V ∨[d]) are endowed
with canonical dg-multiplicative-γ-ring with zero multiplication structure for which
V is of pure weight 0 and V [d] or V ∨[d] are of pure weight 1. More generally if
U and W are graded modules and d is a differential on Sym(U ⊕W ) such that
d(W ) ⊂ W ⊗ Sym(U), then (Sym(U ⊕W ), d) has a dg-multiplicative-γ-ring with
zero multiplication structure for which U is on weight 0 and W in weight 1.
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Corollary 6.8 Assume X is a formal space of finite type in each degree. And let

(Sym(V ), d)
∼=−→ A be a cofibrant resolution of A.

The HKR quasi-isomorphisms yields natural (in A and M) equivalences

1.

HKR : CHSd×X(A)
∼=−→ Sym

(
(V ⊗H∗(X))⊕ (V ⊗H∗(X))[d]

)
, (6.8)

HKR : CHSd∧X(A)
∼=−→ Sym

(
V ⊕ (V ⊗ H̃∗(X))[d]

)
(6.9)

of dg-multiplicative γ-ring with trivial multiplication,

2.

CHSd×X(A,M)
∼=−→M ⊗

Sym(V )
Sym

(
(V ⊗H∗(X))⊕ (V ⊗H∗(X))[d]

)
, (6.10)

CHSd∧X(A,M)
∼=−→ M ⊗

Sym(V )
Sym

(
V ⊕ (V ⊗ H̃∗(X))[d]

)
(6.11)

of dg-γ-ring with trivial multiplication in CHSd×X(A)-Mod and
CHSd∧X(A)-Mod respectively

3. as well as

CHSd×X(A,M)
∼=←M ⊗

Sym(V )
Sym

(
(V ∨⊗ H̃∗(X)⊕V )⊕(V ∨⊗H∗(X))[−d]

)
,(6.12)

CHSd∧X(A,M)
∼=←−M ⊗

Sym(V )
Sym

(
V ⊕ (V ∨ ⊗ H̃∗(X))[−d]

)
(6.13)

of dg-γ-ring with trivial multiplication in CHSd×X(A)-Mod and
CHSd∧X(A)-Mod respectively.

The pure weight 1 part in the right hand sides are given by the shifted by d or −d
component. The other components are of weight 0.

The above theorem applies in particular for X = pt to give models of Higher order
Hochschild (co)chains for spheres and their compatibility with Hodge decomposi-
tion; in particular we recover the results of [P] and [Gi3].

Proof. We use the normalized (co)chain complexes as models for the derived
functors. Let us consider the case 1.

By Proposition 4.30 and Definition 4.29, we have an equivalence of cdgas

CHSd×X(A) ∼= CHSd(CHX(A)) ∼= CHSd(Sym(V ⊗H∗(X)))

where the last equivalence is given by HKR equivalence (Theorem 6.1) and nat-
urality of the Hochschild functor (Proposition 3.18). Since Sd is formal with co-
homology algebra H∗(Sd) ∼= k ⊕ k[−d], we deduce the equivalence (6.8) of cdgas.
Of course one can also simply apply the HKR quasi-isomorphism to the formal
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space Sd × X. The two quasi-isomorphisms obtained this way are equivalent by
the naturality of Corollary 4.28.

The map λk ∧ id : Sd = S1∧Sd−1 → S1∧Sd−1 = Sd is formal for d > 0 since it
is a suspension. It is also formal for d = 1 since the homotopy type of a map from
S1 to itself is determined by its degree. Hence, we can apply the commutativity of
diagram (6.3) to the above reasonning to obtain

CHSd×X(A)
HKR //

λk

��

Sym
(
(V ⊗H∗(X))⊕ (V ⊗H∗(X))[d]

)
Sym(id⊕id⊗H∗(λk))

��
CHSd×X(A)

HKR // Sym
(
(V ⊗H∗(X))⊕ (V ⊗H∗(X))[d]

)
.

Since λk : Sd → Sd is of degree k, we obtain that HKR◦λk ◦HKR−1 restricted to
(V ⊗H∗(X))[d] is multiplication by k and the identity on the restriction to Sym(V ⊗
H∗(X)). This proves 1 since Theorem 4.25 already proves that CHSd×X(A) is a
multiplicative γ-ring with zero multiplication.

The proof of 2. is similar. Namely, we use Proposition 4.30, Definition 4.29 and
again Theorem 6.1 for X and Sd to get equivalences of cdgas:

CHSd∧X(A) ∼= CHSd(CHX(A), A) ⊗
CH

Sd
(A)

A

∼= CHSd(Sym(V ⊗H∗(X)), Sym(V )) ⊗
CH

Sd
(Sym(V ))

Sym(V )

∼= Sym(V ) ⊗
Sym(V⊗H∗(X))

Sym(V ⊗H∗(X)⊕ (V ⊗H∗(X))[d]) ⊗
Sym(V⊕V [d])

Sym(V )

∼= Sym
(
V ⊕ (V ⊗ H̃∗(X))[d]

)
.

As before, by formality of λk, this equivalence becomes the cdga map induced by
id⊕ id⊗H∗(λk) on the right hand side of (6.9), hence the multiplication by k on

the component (V ⊗ H̃∗(X))[d] and the identity on V . The proofs of the remaining
cases are exactly similar. The module structures are obtained from the similar
statement in the HKR Theorem 6.1 and Theorem 4.14, Theorem 4.25. �

Remark 6.9 (Puzzle decomposition) A corollary of the HKR theorem is the
so-called puzzle and puzzling meaning of the groups arising in the decomposi-
tion [P]. Indeed, the right hands of the (various) HKR maps in Corollary 6.8
are rather similar except for the shift by d, the dimension of the sphere Sd. In
particular for d odd, the groups appearing in the Hodge decomposition (for any
A and over any suspension Sd ∧ X or product Sd × X) are those in the Hodge
decomposition for d = 1 but they are dispatched in different degrees. The same is
true for d even with the groups appearing in the decomposition for d = 2.

For d-odd and X = pt, theses groups are (shifted) higher André-Quillen
(co)homology groups. For d-even they correspond to a symmetric version of higher
André-Quillen (co)homology groups in view of remark 6.4. For X = pt, this was
noticed in homology by Pirashvili in [P]. Note that for d = 1, the Hodge decom-
position coincides with the classical one [GS], [L1].
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We now give an explicit expression for the HKR map in the case of a semi-free
CDGA (Sym(V ), d) for the standard sphere model Sd• (example 3.17). Recall that
CHSdn

(A) is spanned by tensors of the form a0 ⊗
⊗

(i1,...,id)∈{1,...n}d ai1,...id . Also

recall (from example 6.5) that we write sd : V → V [d] the canonical map. We
extend it as the derivation of Sym(V ⊕ V [d]) by setting sd(V [d]) = 0.

We define a map πHKR : CHSd•
(Sym(V ))→ (Sym(V ⊕ V [d]), d) as follows:

— πHKR is set to be zero on CHSdn
(Sym(V )) if n 6= dj, that is if n is a multiple

of d;
— it is the canonical inclusion on CHSd0

(Sym(V )) = Sym(V );

— for n = d(j + 1) (j ≥ 0), we set

πHKR

a0 ⊗
⊗

(i1,...,id)∈{1,...n}d
ai1,...id


=

∑
σ0,...,σj∈Σd

 ∏
τ∈Kσ0,...,σj

aτ1,...,τd

 · ((−1)σ0sd(aσ−1
0 (1),...,σ−1

0 (d))
)
· · ·

· · ·
(

(−1)σjsd(ajd+σ−1
j (1),...,jd+σ−1

j (d))
)

(6.14)

where Kσ0,...,σj is the set of all other possible indices 37.
In plain english, the map πHKR is the product for all diagonal d-cubes of size d of
the canonical derivation sd applied to each ”permutation entry“ together with the
product of all other elements (which belongs to Sym(V )).

Remark 6.10 The explicit HKR map (6.14) has another interpretation using
the small model Sdsm• (as in Example 3.17) as follows. We have a map from
CHSdsmd

(A) ∼= A ⊗ A → Ω1(A)[d] which maps a ⊗ b to ad(b). On the other hand

we have a simplicial set projection Sd• → Sdsm•. Concretely, it is obtained by the
natural decomposition of Id into d!-many simplices (obtained, for every permuta-
tion σ ∈ Σd, by choosing the simplex with coordinates 0 ≤ xσ(1) ≤ · · · ≤ xσ(n) ≤ 1
where the xi’s are the coordinates in the standard cube) and then identifying to
each other all these simplices, and their boundary to a point. The composition

CHSdd
(A)→ CHSdsmd(A)→ Ω1(A)[d] is precisely the map πKHR together with the

isomorphism Ω1(Sym(V )) ∼= Sym(V )⊗ V .

Lemma 6.11 The map πHKR : CHSd•
(Sym(V ))→ (Sym(V ⊕V [d]), d) is a CDGA

quasi-isomorphism representing the HKR equivalence.
Its dual π∗HKR := HomSym(V )(πHKR, Sym(V )) : (Sym(V ⊕ V ∨[−d]), d) →

CHSd• (Sym(V )) is a quasi-isomorphism of dg-(Sym(V ), d)-modules representing
the cohomology HKR equivalence.

Proof. Once again, we use the normalized (co)chain complexes as models for the
derived functors. Since sd(1) = 0, all terms which do not permute the diagonal

37. that is those not of the form `d+ σ−1
` (1), . . . , `d+ σ−1

` (d)
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factors are maps to zero. From there follows the fact that πHKR is a CDGA map.
By construction, the map commutes with the inner differential of Sym(V ). To
check it is a chain map thus reduces to prove that the composition

CHSdjd+1
(Sym(V ))

∑
±(dr)∗−→ CHSdjd

(Sym(V ))
πHKR−→ (Sym(V ⊕ V [d]), d)

is zero which is straightforward applying sd(a · b) = asd(b) + bsd(a) to exactly one
permutation for each r = 0 . . . jd+ 1 except for d = 0 and d = jd+ 1.

By construction, the map πHKR is thus a bigraded chain map. Considering
the filtration with respect to the inner degree of Sym(V ), we obtain a spectral
sequence. On the page E1, the map πHKR is a chain map

CHSd•
(Sym(V ))

πHKR−→ Sym(V ⊕ V [d])

where both symmetric algebras are endowed with the zero differential. At the
level of the page E1 we have the quasi-isomorphism εdHKR : Sym(V ⊕ V [d]) →
CHSd•

(Sym(V )) from Lemma 6.7, which represents the HKR equivalence. Now
one checks that

πHKR ◦ εdHKR = idSym(V⊕V [d]). (6.15)

Since both maps are algebra maps, it is enough to check it on V and V [d] for which
it is straightforward. It follows that πHKR as well is a quasi-isomorphism on the
page E1, hence a quasi-isomorphism as claimed.

We obtain the cohomological statement by dualizing πHKR which is a Sym(V )-
linear map since it is a cdga map. �

One obtains versions of πHKR for arbitrary modules as coefficient by tensoring it
with M over Sym(V ). Further, one can construct similar maps for Sd × X and
Sd ∧X. Details are left the reader for this last two cases.

6.3 Compatibility of Hodge decomposition with the alge-
bra structure in cohomology and induced Poisn+1-algebra
structure

When M = A with its standard module structure, the higher Hochschild

cochains CHSd(A,A) for spheres are more than modules; they also have a multi-
plicative structure induced y the cup-product, see Section 5.1 and Definition 5.5
below.

The fact that for d > 1, the (homotopy) commutativity of the cup-product ∪Sd
(of example 5.7) can be induced by a base-point preserving homotopy implies

Lemma 6.12 Assume d > 1 and let B be an unital A-CDGA. Then, the diagram

CHSn(A,B)⊗2 λ
k⊗λk//

∪Sn
��

CHSn(A,B)⊗2

∪Sn
��

CHSn(A,B)
λk // CHSn(A,B)
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is commutative in E1−Alg and λk is a map in the ∞-category E1-Alg. In partic-
ular,

λk(f) ∪Sn λk(g) = λk(f ∪Sn g)

for all f, g ∈ HHSn(A,B).

Recall [BW] that this result is false for d = 1.

Proof. Let us recall that the power map ϕk is the composition (pinch
(k)
(n))
∗ ◦

(
∨k
i=1 id)∗, see § 4.4 and identity (4.22). The, by Theorem 4.17, it is enough to

prove the statement for ϕk instead of λk. Thus the statement is implied by the fact
that the following diagrams (6.16), (6.17) and (6.18) are homotopy commutative
when ∗ = 0.

The diagram

C∗
(
Cn(r)

)
⊗
(
CH∆•(S

n)(A,B)
)⊗r (µ∨)(r−1)

//

id
⊗

((
∨k
i=1 id)∗)⊗r

��

C∗
(
Cn(r)

)
⊗ CH

∨r
i=1 ∆•(S

n)
(
A,B

)
id⊗

∨r
i=1(

∨k
i=1 id)∗

��
C∗
(
Cn(r)

)
⊗
(
CH∆•(

∨k
i=1 S

n)(A,B)
)⊗r (µ∨)(r−1)

//

id⊗(pinch
(k)

(n)

∗
)⊗r

��

C∗
(
Cn(r)

)
⊗ CH

∨r
i=1 ∆•(

∨k
i=1 S

n)
(
A,B

)
id⊗

∨r
i=1 ∆•(pinch

(k)

(n)
)∗

��
C∗
(
Cn(r)

)
⊗
(
CH∆•(S

n)(A,B)
)⊗r (µ∨)(r−1)

// CH
∨r
i=1 ∆•(S

n)
(
A,B

)
(6.16)

is homotopy commutative by naturality of the wedge product (Corollary 5.3) with

respect to the two maps of topological spaces
∨k
i=1 id :

∨k
i=1 S

n → Sn and pinch
(k)
(n) :

Sn →
∨k
i=1 S

n. It is in fact strictly commutative at the dg-level by naturality of
Hochschild cochains.

The diagram

C∗
(
Cn(r)

)
⊗ CH

∨r
i=1 ∆•(S

n)
(
A,B

)
id⊗

∨r
i=1(

∨k
i=1 id)∗

��

j∗
// CH∆•

(∨r
i=1 S

n
)(
A,B

)
id⊗

∨r
i=1(

∨k
i=1 id)∗

��

C∗
(
Cn(r)

)
⊗ CH

∨r
i=1 ∆•(

∨k
i=1 S

n)
(
A,B

)
id⊗

∨r
i=1 ∆•(pinch

(k)

(n)
)∗

��

j∗
// C∗
(
Cn(r)

)
⊗ CH∆•

(∨r
i=1

(∨k
i=1 S

n
))(

A,B
)

id⊗
∨r
i=1(

∨k
i=1 id)∗

��

CH
∨r
i=1 ∆•(S

n)
(
A,B

)
j∗

// C∗
(
Cn(r)

)
⊗ CH∆•

(∨r
i=1 S

n
)(
A,B

)
(6.17)

is also strictly commutative by direct inspection and definition of the map j∗, see
§ 5.2.2, map (5.27).
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The upper square of the following diagram

CH∆•

(∨r
i=1 S

n
)(
A,B

)
id⊗

∨r
i=1(

∨k
i=1 id)∗

��

pinch∗ // CH∆•(S
n)(A,B)

(
∨k
i=1 id)∗

��

C∗
(
Cn(r)

)
⊗ CH∆•

(∨r
i=1

(∨k
i=1 S

n
))(

A,B
)

id⊗
∨r
i=1(

∨k
i=1 id)∗

��

(∨k
i=1 pinch

)∗
// CH∆•

(∨k
i=1 S

n
)
(A,B)

pinch
(k)

(n)

∗

��
C∗
(
Cn(r)

)
⊗ CH∆•

(∨r
i=1 S

n
)(
A,B

) pinch∗ // CH∆•(S
n)(A,B).

(6.18)
is also strictly commutative because it is induced by a commutative diagram of
topological spaces: on each sphere of the bouquet

∨k
i=1 S

n,
∨k
i=1 ◦

∨k
i=1 pinch is

just the pinching map pinch. the lower square is however not strictly commutative.
But since n > 1, for elements in C0(Cn(r), it is homotopy commutative (for a
pointed homotopy) because the diagonal Sn →

∨
Sn is homotopy commuative (Sn

is a En-coalgebra in pointed spaces). This is the only place where we need the
n > 1 assumption (and is false without it).

Since the ∞-category E1-Alg and the one of A∞-algebras (with A∞-
morphisms) are equivalent, the above analysis also shows that to prove that λk

is a map in the ∞-category E1-Alg, it is sufficient to to prove that the pinching
map pinch : Sn → Sn

∨
Sn extends an A∞-coalgebra map in (Top∗,∨). The pinch-

ing map extends an an E2-coalgebra structure on (Top∗,∨). By the ∞-categorical
Dunn Theorem [Lu3], it thus extends as an object of E1-coAlg(E1-Coalg) hence
into an homotopy E1-coalgebra map. Thus λk is an homotopy E1-algebra map for
d > 1. �

The cup-product is in fact part of an homotopy Poisd+1-algebra structure on
Hochschild cochains (as we have seen in § 5.2.1 and 5.3 since, for n ≥ 1, the operad
of little cubes is formal with cohomology the operad Poisn of Poisn-algebras). We
can actually use the HKR theorem to describe this structure very explicitly. Recall
that if A is a dg-algebra, then its derivation Der(A,A) is a dg-Lie algebra. Then
for any integer d,

SymA(Der(A,A)[−d])

endowed with the symmetric algebra multiplication and differential induced by
the one of A is a dg-Poisd+1-algebra. Its Lie bracket is just the Lie bracket of
derivations extended to the whole symmetric algebra by the graded Leibniz rule.

Lemma 6.13 Let (Sym(V ), d) be a quasi-free cdga. Assume V is finitely generated
in each degree. There is an isomorphism of dg-Poisd+1-algebras

Sym(V ⊕ V ∨[−d]) ∼= SymSym(V )(Der(Sym(V ), Sym(V ))[−d])

where the shifted Lie bracket on the left hand-side is induced by the pairing V ⊗
V ∨[−d]→ k[−d] and the Leibniz rule.
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Proof. By freeness of the algebra structure, one has Der(Sym(V ),M) ∼=
M ⊗Sym(V ) Sym(V )⊗ V ∨ as a differential graded Sym(V )-module. �

For any cdga A and resolution (Sym(V ), d)
∼=−→ A, we have canonical quasi-

isomorphisms

SymA(RDer(A,A)[−d])
∼=←− SymSym(V )(RDer(Sym(V ), Sym(V ))[−d])

∼= SymSym(V )(Der(Sym(V ), Sym(V ))[−d])
∼= Sym(V ⊕ V ∨[−d]). (6.19)

From § 6.1 we know that the above equivalence computes the Hodge decomposition
of higher order Hochschild; it also computes its algebraic structure:

Theorem 6.14 Let A be a cdga with finite type cohomology in each degree over a
ring of characteristic zero and assume d > 1.

1. There is an equivalence

CHSd(A,A) ∼= SymA(RDer(A,A)[−d])

of graded dg-Poisd+1-algebras where the grading is given by the Hodge grad-

ing in Hochschild cohomology such that, if (Sym(V ), d)
∼=−→ A is a resolution

one has an equivalence

CHSd(A,A)
∼=←− Sym

(
V ⊕ (V ∨)[−d]

)
of graded Pd+1-algebras. The underlying multiplicative on the left hand side
is the cup-product and the Poisd+1-structure on the right hand side is the
Schouten one of Lemma 6.13

2. There is a quasi-isomorphism of Pd+1-algebras

CHSd(A,A) ∼= C•Poisd(A,A)

where C•Poisd(A,A) is the Poisn+1-deformation/cohomology complex of A
viewed as a Poisd-algebra with zero bracket, endowed with Tamarkin’s
Poisd+1-structure [Ta].

Remark 6.15 The first part of Theorem 6.14 indeed defines an homotopy invari-
ant Poisd+1-structure on higher Hochschild cochains lifting the cup-product. It
was first stated in [Gi3]. The second part identify the structure with Tamarkin’s
celebrated deformation structure of the cdga seen as a Poisd-algebra with zero
bracket.

Proof. We first consider the first statement for the underlying algebra structure.
Below, we consider the normalized cochain complex but use the usual notation for
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Hochschild cochains. Let q : (Sym(V ), d)
∼=−→ A be a resolution. Then A is a

Sym(V )-CDGA so that we have a quasi-isomorphism of E1-algebras

CHSd• (Sym(V ), Sym(V ))
∼=−→
q∗

CHSd• (Sym(V ), A)
∼=←−
q∗

CHSd• (A,A)

which proves that the cup-product is invariant under equivalences of CDGAs.
Hence it is enough to assume A is cofibrant. Now, the Hochschild-Kostant-
Rosenberg equivalence gives us the chain map

π∗HKR : Sym(V ⊕ V ∨[−d])
∼=−→ CHSd• (Sym(V ), Sym(V )).

Now, let εdHKR : (Sym(V ⊕ V [d]), 0) −→ CHSd•
(Sym(V )) be the map defined

as in Lemma 6.7. That is, the map induced by the Sym(V ) linear commutative
algebra map defined on a generator sd(v) ∈ V [d] by

εdHKR(sd(b)) :=
1

d!

∑
σ∈Σd

(−1)σEσ−1(1),...,σ−1(d)(b).

This map is well-defined since the right hand side is always a cocycle with respect
to the simplicial differential

∑
±(dr)∗ where dr are the face maps Sdd → Sdd−1

of the simplicial structure. Hence it is a chain map if we forget the differential
of Sym(V ). Applying the duality functor HomS(V )(−, S(V )) and Lemma 6.7,

we obtain that (εdHKR)∗ : CHSd•
(Sym(V )) −→ (Sym(V ⊕ V ∨[−d]), 0) is a quasi-

inverse of πHKR in the case where the differential is null. The formula for the
cup-product (Lemma 5.9) shows that (εdHKR)∗ is a dg-associative algebra map
since we are working with reduced cochains (so that in the shuffle formula defining
εdHKR(a1, . . . , an), only terms putting the Eσ−1(1),...,σ−1(d)(aj) as a diagonal block
matrix, up to a permutation of the diagonal blocks, are non-zero after applying
f1 ∪Sd• · · · ∪Sd• fj). Hence, in the zero case we obtain that both εdHKR and therefore
its quasi-inverse π∗HKR are A∞-algebras quasi-isomorphisms.

Returning to the general case, we have that π∗HKR : Sym(V ⊕ V ∨[−d])
∼=−→

CHSd• (Sym(V ), Sym(V )) is in fact a graded complex with respect to the grad-
ing induced by its Hodge decomposition; in other words with V ∨[−d] in weight
1. Since the map π∗HKR is Sym(V )-linear and preserves the Hodge decomposition
(by Corollary 6.8 and Corollary 6.3), this grading is given by the Hodge decom-
position on Hochschild cochains. At the page E1 of this spectral sequence, the
quasi-isomorphism πHKR is an homotopy dg-associative algebra map by the previ-
ous case; indeed, the map (εdHKR)∗ is still well defined (since the differential on V ∨

is trivial) and the rest of the argument is strictly the same. It is thus also the case
for the associated graded with respect to the Hodge filtration. By Lemma 4.24,
we have that the operations ϕk of the γ-ring structure are A∞-maps, hence so are
the projections e(n) on the weight n-pieces of the decomposition. It follows that
the quotient map from the complex to its associated graded is also a A∞-quasi-

isomorphism. Hence CHSd• (Sym(V ), Sym(V ))
π∗HKR−→ Sym(V ⊕ V ∨[−d]) lifts to an

A∞-quasi-isomorphism.
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To finish the first claim, using the Leibniz rule, it is now sufficient to prove that
the underlying shifted Lie structure on Sym(V ⊕ V ∨[−d]) induced by the pairing
V ⊗V ∨ → k is (homotopy) invariant under the choice of resolutions. This is a conse-
quence of a general statement for André-Quillen cochain complex: for two cofibrant
and quasi-isomorphic cdgas, Der(A,A) and Der(B,B) are quasi-isomorphic dg Lie
algebras, see [BL, Theorem 2.8] which by Lemma 6.13 is equivalent to our claim.

The second claim is a consequence of the first claim and the formality statement
of Calaque-Willwacher [CW]. In fact, the proof of Theorem 2 in [CW] shows that
there is an equivalence

C•Poisd(A,A) ∼= SymA(RDer(A,A))

of Pd+1-algebras. The equivalence as chain complexes was an immediate conse-
quence of Proposition 3.25 and the identification between Hochschild and Poisson
cochain complexes in [GY]. �

The above proof of part of the theorem relies on a formality theorem of [CW]. It
seems also possible to use the combinatorics of Adams operation to get a proof of
this equivalence. This requires identifying the image of πHKR as living in Sym(e(d))

and to identify (by an explicit quasi-isomorphism) the latter with the convolution
of symmetric sequence Com{d} ◦ Lie(−).

Remark 6.16 Theorem 6.14 is known not to be true for d = 1. Namely, the HKR
quasi-isomorphism

CHS1

(A,A) ∼= SymA(RDer(A,A)[−1])

is not an equivalence of algebras in general (though it is for smoth algebras concen-
trated in degree 0). In that case, the Gerstenhaber structure is only filtered with
respect to the Hodge decomposition. See [BW].

6.4 Applications to Poisn-algebras (co)homology

We use the Hodge decomposition to identify a spectral sequence computing the
Homology of Poisn-algebras.

We write Poisn and uPoisn the operads encoding respectively the non-
unital and unital differential graded Poissonn-algebras, that is dg- commuta-
tive algebras endowed with a cohomological degree 1 − n Lie bracket satisfying
the Leibniz rule, that is, the Lie bracket is a graded derivation with respect
to each variable (for instance see [Fr1, Fr4, Ta, CW]). Finally, let us denote
Hs+t
Poisn

(R,M) and HPoisn
s+t (R,M) for the (co)homology groups of Poisn-algebras,

see [CW, Ta, Fr4, Fr1] for the precise definitions.
For ordinary Poisson algebras, that is Poisn1-algebras in our convention, there

is another ad hoc definition of Poisson (co)homology (different from the operadic
ones in general). We now introduce a higher version of this Poisson (co)homology
groups that we call higher Lichnerowicz Poisson (co)homology groups. The shifted
Lie algebra structure on R induces a Lie algebra structure on Der(R,R)[1− n]
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The higher Lichnerowicz cochains of a Poisn-algebra is the cochain complex

C•LPn
(R,M) := SymR

(
Der(R,M)[−n]

)
with differential given by the sum of the internal differential of R and M and the
differential

∂LPn(F )(r0 . . . , rn) =

n∑
i=1

(−1)in ± [ri, F (r0, . . . r̂i, . . . , rn)]

+
∑
i<j

(−1)n(i+j) ± F (r0, . . . [ri, rj ], . . . rn) (6.20)

where [−,−] is the (degree 1−n) Lie bracket or action and the ± signs are given by
the Koszul-Quillen rule with respect to the permutations of the graded elements ri
(in the internal gradings of R, M). This differential is thus analogue of Chevalley-
Eilenberg cochain complex 38 and the proof it squares to zero is the same.

Similarly we define the higher Lichnerowicz chains of a Poisn-algebra as the
chain complex

CLPn
• (R,M) := SymR

(
M ⊗R Ω1(R)[n]

)
with differential given by the sum of the internal differential of R and M and the
differential

∂LPn(m⊗ d(r1) · · · ⊗ d(rn)) =

n∑
i=1

(−1)ni ± [m, ri]⊗ d(r1) · · · d̂(ri) · · · ⊗ d(rn)

+
∑
i<j

(−1)n(i+j) ±m⊗ d(r1) · · · d([ri, rj ]) · · · ⊗ d(rn). (6.21)

The following result is a generalization of (the dual of) a result of Fresse [Fr1].
Ideas related to this spectral sequence also appeared in [RZ].

Corollary 6.17 Let R be a Poisn-algebra, with n ≥ 1 and M be a R-module.

1. There are weakly convergent spectral sequences

Es,t1 = HHSn,s+t
(s) (R,M) =⇒ Ĥs+t

Poisn
(R,M)

Es,t1 = HH
(s)
Sn,s+t(R,M) =⇒ ĤPoisn

s+t (R,M)

where on the left R is simply considered as a commutative algebra.

2. The cohomology (resp. homology) spectral sequence converges strongly to
Hs+t
Poisn

(R,M) if R,M are concentrated in non-negative degrees (resp. to

HPoisn
s+t (R,M) if R, M are concentrated in non-positive degrees) Poisson

(co)homology groups.

38. for the Lie algebroid Ω1(R)[1− n] deduced from the Lie algebra structure on R[1− n]
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3. If M = R and n > 1, then the first spectral sequence is a spectral sequence
of (graded) Poisn+1-algebras.

4. There is a chain map from higher Lichnerowicz cochain complex to the
Poisn-cochain complexes which is a quasi-isomorphism if R is smooth seen
as a commutative algebra.

Similarly, there is a chain map from the Poisn-chain complexes to the Lich-
nerowicz chain complex which is a quasi-isomorphism if R is smooth seen
as a commutative algebra.

Proof. We do the case of cohomology. The homology one is similar. When
M = R, the complex computing the Poisn-cohomology of R is the underlying
chain complex of

C∗Poisn(R,R) := HomΣ(uPoisn
∗{n}, EndR)[−n] (6.22)

where HomΣ means the morphisms of symmetric sequences. Here (−)∗ is the linear
dual, {n} is the operadic n-iterated suspension and EndR is the endomorphism
operad of R ([CW, Ta]). This complex shifted by n is the convolution between
an operad and a cooperad and inherits a dg-Lie algebra structure. The Poisn-
algebra structure defines a Maurer-Cartan element in it and the (operadic) Poisn-
cohomology is precisely the n-desuspension of this dg-Lie algebra with differential
twisted by this Maurer-Cartan element. By construction, this chain complex is
computed by the Koszul resolution of the Poisn-operad. And we recall that

Poisn = Com ◦ Lie{n− 1}

is the operad given by a distributive law between the operads of commutative
algebras and the one of (shifted) Lie algebras. In particular, the later n-Poisson
cochain complex C∗Poisn(R,R) is naturally a filtered complex (by the arity)see [Gi1,
DP]; we denote C•,•Poisn(R,R) the underlying graded object. The filtration of this
complex yields a spectral sequence concentrated in the upper half-plane, see [Gi1,
Théorème 4.3], hence the convergence condition [We], where

Ĥn
Poisn(R,M) ∼= Hn

(
Π

s+t=n
Cp,qPoisn(R,M)

)
.

Since n > 0, if R<0 = 0, then the spectral sequence lies in the first quadrant hence
the stronger convergence condition.

By loc. cit. the page E1 computes the Poisson cohomology of R endowed
with the zero bracket. In other words, the Poisn-cohomology of the underlying
commutative algebra structure of R. We can then use the main result of [CW]
(or the computations in [GY, Gi1]) to compute the page E1. It is isomorphic to
SymR(RDer(R,R)[−n]) as a graded (with respect to the spectral sequence filtra-
tion on one side and symmetric powers filtration in the other side) Poisn+1-algebra
for n > 1. Then using Theorem 6.14. we can identify it with HHSn,•(R,R) and the
symmetric power with the weight of the Hodge decomposition in higher Hochschild
cohomology. For n = 1, we have the same result but as a module only applying
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Theorem 6.3 and Calaque-Willwacher formality theorem [CW]. Taking an arbi-
trary module amounts to replace RDer(R,R) by RDer(A,M) above and we only
get a quasi-isomorphism of modules again. This proves the first three claims.

For the last claim, the natural map Der(R,M) ↪→ RDer(R,M) induces a
graded vector space map

C•LPn
(R,M) = SymR

(
Der(R,M)[−n]

)
↪→ SymR(RDer(R,M)[−n]) ∼= C∗Poisn(R,M)

where the right hand side is identified with symmetric powers of the Harrison
cochain complex. More precisely this map is realized as the canonical map

SymR

(
Der(R,R)[−n]

)
↪→ HomΣ(uCom∗{n}, EndR)

↪→ HomΣ(uPoisn
∗{n}, EndR) (6.23)

where the first map is given by those elements of the convolution Lie algebra
HomΣ(uCom∗{n}, EndR) which take values in derivation in each slot. From there
it follows by direct inspection that this map is a chain map. When R is smooth,
then the map Der(R,M) ↪→ RDer(R,M) is a quasi-isomorphism, which proves,
by the claim 1 and 2 that the induced map

C•LPn
(R,M) = SymR

(
Der(R,M)[−n]

)
↪→ SymR(RDer(R,M)[−n])

is a quasi-isomorphism as well at the page 2 of the spectral sequence. Hence claim
4 follows. �

Example 6.18 If g is a (dg-)Lie algebra, then Un(g) = S(g[1 − n]) is a Poisn-
algebra, which is precisely the En-enveloping algebra of g see [Kn, FG, CG]. Then
Corollary 6.17.4 and Corollary 6.8 yield

H∗Poisn(Un(g), Un(g)) ∼= H∗CE
(
g, Un(g)

)
.

7 Applications to Brane topology

In this section we give an important application of Hochschild theory for spaces
in manifold topology and more precisely to show that higher brane topology is
compatible with the power maps.

7.1 Higher Hochschild (co)homology as a model for mapping
spaces

First, the Hochschild cochains over spaces yields an algebraic model for (suffi-
ciently connected) mapping spaces. In characteristic zero, the relationship is ma-
terialized by Chen iterated integrals and is thus highly explicit. We follow the
approach described in [GTZ]. Let M be a compact, oriented manifold, and denote
by ΩdR = Ω•dR(M) the space of differential forms on M and let Y• be a simplicial set
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with geometric realization Y := |Y•|. Denote by MY := Mapsm(Y,M) the space
of continuous maps from Y to M , which are smooth on the interior of each sim-
plex Image(η(i)) ⊂ Y . Chen [Ch, Definition 1.2.1 and 1.2.2] gave a differentiable
structure on MY specified by sets of plots φ : U →MY , where U ⊂ Rn for some n.
Plots are those maps whose adjoint φ] : U × Y →M is continuous on U × Y , and
moreover, are smooth on the restriction to the interior of each simplex of Y . Then,
one defines a p-form ω ∈ ΩpdR(MY ) on MY as a collection of p-forms ωφ ∈ ΩpdR(U)
(one form for each plot φ : U →MY ), which is required to be invariant with respect
to smooth transformations of the domain.

Recall that the adjunction between simplicial sets and topological spaces gives,
for any simplicial structure of Y•, the simplicial map η : Y• → S•|Y•|. It is given
for i ∈ Yk by maps η(i) : ∆k → Y in the following way,

η(i)(t1 ≤ · · · ≤ tk) := [(t1 ≤ · · · ≤ tk)× {i}] ∈
(∐

∆• × Y•/ ∼
)

= Y.

From the map η, we can define, for any plot φ : U →MY , a map ρφ := ev◦(φ×id),

ρφ : U ×∆k φ×id−→ MY ×∆k ev−→MYk , (7.1)

where ev is defined as the evaluation map,

ev(γ : Y →M, t1 ≤ · · · ≤ tk) =
(
. . . ,

(
γ ◦ η(i)

)
(t1 ≤ · · · ≤ tk), . . . ,

)
i∈Yk

. (7.2)

Now, if we are given forms a0, . . . , ayk ∈ Ω = Ω•dR(M) on M (one for each element

in the set Yk), , or more precisely a form a0 . . . ayk ∈
(
ΩdR(M)

)⊗Yk , the pullback
(ρφ)∗(a0 ⊗ · · · ⊗ ayk) ∈ Ω•(U ×∆k), may be integrated along the fiber ∆k, and is
denoted by (∫

C

a0 . . . ayk

)
φ

:=

∫
∆k

(ρφ)∗(a0 ⊗ · · · ⊗ ayk) ∈ Ω•dR(U).

The resulting p = (
∑
i deg(ai) − k)-form

∫
C
a0 . . . ayk ∈ ΩpdR(MY ) is called the

(generalized) iterated integral of a0, . . . , ayk . The subspace of the space of De Rham
forms Ω•(MY ) generated by all iterated integrals is called the space of Chen (gen-
eralized) iterated integrals Chen(MY ) of the mapping space MY . In short, we may
picture an iterated integral as the pullback composed with the integration along
the fiber ∆k of a form in MYk ,

MY MY ×∆k ev //
∫
∆koo MYk

Definition 7.1 We define ItY•M : CHY•(Ω) ∼= Ω⊗Y• → Chen(MY ) by

ItY•M (a0 ⊗ · · · ⊗ ayk) :=

∫
C

a0 . . . ayk . (7.3)
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The de Rham algebra functor can be extended over Q and for any topological space
by the Sullivan [S1] polynomial de Rham form functor, denoted Ω• : sSet −→
CDGA. Being invariant under weak-equivalences, this functor canonically gives rise
to an ∞-functor Ω• : Top −→ CDGA.

Theorem 7.2 ([GTZ]) The iterated integral map ItY•M : CHY•(Ω
•
dR(M)) →

Ω•dR(MY ) is a natural map of CDGAs and lift to an ∞-natural transformation

It
(−)
(−) : CH(−)(Ω

•(−)) −→ Ω•((−)(−))

between ∞-functors Topop ×Top −→ CDGA.
Further, assume that Y = |Y•| is n-dimensional, i.e. the highest degree of any

non-degenerate simplex is n, and assume that the space M is n-connected. Then,
ItY•M is a quasi-isomorphism.

Proof. The first part follows from [GTZ, Lemma 2.2.2], [GTZ, Proposition 2.4.6]
and [GTZ, Proposition 2.5.3].

�

Dualizing the construction of iterated integrals, we obtained [GTZ, Corollary 2.5.5],

Corollary 7.3 Under the assumptions of Theorem 7.2, we have a quasi-
isomorphism (ItY•)∗ : C•(Map(Y,M))→ CHY•(Ω,Ω∗).

Explicit examples of iterated integrals are described carefully in [GTZ].

Remark 7.4 Theorem 7.2 and Corollary 7.3 have analogs within the E∞-algebra
context as we prove in [GTZ3]. Also see [U] for a recent related proof.

Let us consider our example of main interest : Y = Sn. First we note that the
power maps (4.8) λk : Sn → Sn from Section 4.3 yields by precomposition and
functoriality maps

λk
∗
∗ : C•(X

Sn)→ C•(X
Sn). (7.4)

From identity (4.11) and functoriality of chains and forms, we immediately get

Lemma 7.5 The maps ((λk)∗∗) makes C•(X
Sn) a γ-ring with trivial multiplica-

tion and the maps (λk
∗∗

)k≥1 makes Ω•(XSn) a multiplicative γ-ring with trivial
multiplication.

Corollary 7.6 The iterated integral maps

CHSn(Ω•(X)) −→ Ω•
(
XSn

)
C•(Map(Sn, X)) −→ CHSn(Ω(X),Ω(X)∨)

are maps of (multiplicative for the first one) γ-rings with trivial multiplication.
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Proof. Since the map It
(−)
(−) : CH(−)(Ω

•(−)) −→ Ω•((−)(−)) is a natural trans-

formation, we have that

(λk)∗∗) ◦ ItS
n

X = ItS
n

X ◦ λ
k

where λk : CHY (A,M)
(λk)∗−→ CHY (A,M) is the map (4.15). This is actually

already true before passing to the derived category:

(λk)∗∗) ◦ It∆•(S
n)

X = It
∆•(S

n)
X ◦ λk•

where λk• is defined in the beginning of Section 4.3. This yields the first claim and
the second one is obtained by dualizing it and replacing Ω(X) by its dual for the
module coefficient. �

7.2 Models for Brane Topology in characteristic zero

We now apply the previous results on higher Hochschild cochains to give an
algebraic models for Brane topology [CV], the analogue of string topology for free
spheres spaces. Further, we get chain level construction. The maps ((λk)∗∗) makes
C•(X

Sn)[dim(X)] a γ-ring with trivial multiplication.
We have seen in the previous Section that the singular chains C•(X

Sn) inherits
a γ-ring structure gien by the power maps (Lemma 7.5). And so does its shift by
dim(X).

Combining Theorem 7.2, Theorem 6.14 and Theorem 5.18 we arrive to our main
result, which extends a result first stated in [Gi3].

Theorem 7.7 Let X be an n-connected Poincaré duality space, with n ≥ 2. Then
the shifted chain complex C•(X

Sn)[dim(X)] has a canonical En+1-algebra structure
satisfying:

1. it induces the sphere product [CV, Section 5]

Hp

(
XSn

)
⊗Hq

(
XSn

)
→ Hp+q−dim(X)

(
XSn

)
in homology when X is an oriented closed manifold;

2. it is compatible with the γ-ring structure, that is, it makes C•(X
Sn)[dim(X)]

into an object of (γ, 0)−En−Alg (see Remark 4.7),

3. one has a canonical equivalence of graded En+1-algebras

C•(X
Sn)[dim(X)] ∼= SymA(RDer(A,A)[−n])

for any cdga model A ∼= Ω(X) of X. Here the additional grading is the
Hodge grading associated to the γ-ring structure.

Proof. Let B
'−→ Ω(X) be a cochain model for X. Then we have an induced

quasi-isomorphism of B-modules Ω(X)∨ → B∨; and, by Theorem 7.2, we have an

91



equivalence

C•(Map(Sn, X))
'−→ CHSn• (Ω(X),Ω(X)∨)

'←− CHSn• (B,Ω(X)∨)
'−→ CHSn• (B,B∨). (7.5)

We have a similar (though through a longer chain) equivalence for a zigzag between
B and Ω(X). Since X is a Poincaré duality space, there is a quasi-isomorphism of

E∞-modules χX : C∗(X) → C∗(X)[dim(X)] ∼=
(
C∗(X)

)∨
[dim(X)]. We can take

B to a Poincaré duality model for Ω(X) which can, for instance, be taken from [LS].
That is B is a cdga weakly equivalent to Ω(X) equipped with a quasi-isomorphism

χB : B
'−→ B∨[dim(X)]

of (symmetric) B-modules inducing the Poincaré duality quasi-isomorphism χX .
Thus, we also get a weak-equivalence

CHSn• (B,B) ∼= HomB

(
CHSn•

(B), B
)

(χB)◦−−→ HomB

(
CHSn•

(B),
(
B
)∨)

[dim(X)]

∼= CHSn•

(
B),

(
B
)∨)

[dim(X)]. (7.6)

Composing the string of weak equivalences (7.5) and (7.6) we obtain an equivalence

C•(Map(Sn, X))[dim(X)] ∼= CHSn(B,B) (7.7)

in the ∞-category k-Mod.

On the other hand, we know from Theorem 5.18 that CHSn(B,B) has an
natural (with respect to weak equivalences of cdgas) structure of homotopy En+1-
algebras, which by Theorem 6.14 is quasi-isomorphic to the En+1-algebra structure
induced by formality by the Poisn+1-structure on SymB(RDer(B,B)[−n]). By
transfer of structure, we thus obtain a canonical structure of homotopy Pn+1-
algebra structure on C•(X

Sn)[dim(X)]. From Theorem 6.14, we know that this
equivalence is graded with respect to the Hodge decomposition. The existence of
the homotopy Pn+1-algebra structure and its compatible γ-ring with trivial mul-
tiplication structure now follows. In particular, it makes SymB(RDer(B,B)[−n])
and thus C•(X

Sn)[dim(X)] an object of the∞-category of (γ, 0)−Poisn−Alg (and
actually gives a strict model of it). In order to finish to prove 2. and 3., we need
to check that this γ-ring structure coming from the Hochschild cohomology side is
compatible with the one defined on the singular chains by Lemma 7.5. By Corol-
lary 7.6 we have that the γ-ring structure on chains is equivalent to the one given
by the maps λk (from § 4.3) which by Theorem 6.14 are equivalent to the natural
one on SymB(RDer(B,B)[−n]). This finishes the proof of 2. and 3. The proof of
1. is completely analogous (and slightly easier) to the one in [GTZ3, Section 7.2],
replacing singular cochains C•(X) by the Poincaré duality model B. �
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Remark 7.8 In particular the above Theorem 7.7 is a chain level construction of
Brane topology operations. However, we only deal with the non-framed version
of the En+1-structure. We conjecture that the structure given above can be lifted
to an action of the framed En+1-operad as in the sense of Section 5.3. Indeed
Corollary 5.25 gives such a result for the underlying centralizer structure (in En-
algebras) but unfortunately does not imply in any way that this structure lifts to
an O(n+ 1)-equivariant one in E1-Alg(En-Alg).

Remark 7.9 Theorem 7.7 does not hold in general for n = 1, in the sense that the
Hodge decomposition does not make C∗(LX)[dim(X)] a graded E2-algebra; not
even in homology. It is however filtered. It is proved in [Gi2] (also see [FT]), that

— There is a BV-structure on HH∗(C∗(X), C∗(X)) and a compatible γ-ring
structure.

— If X is simply connected, there is a BV-algebra structure on H∗(LX) :=
H∗+d(LX) and a compatible γ-ring structure. When X is a manifold
the underlying Gerstenhaber structure of the BV-structure is the Chas-
Sullivan one [CS].

By a BV-structure on a graded space H∗ and compatible γ-ring structure we
mean the following:

1. H∗ is both a BV-algebra and a γ-ring.

2. The BV -operator ∆ and the γ-ring maps λk satisfy λk(∆) = k∆(λk).

3. There is an “ideal augmentation” spectral sequence Jpq1 ⇒ Hp+q of BV
algebras.

4. On the induced filtration Jp∗∞ of the abutment H∗, one has, for any x ∈ Jp∗∞
and k ≥ 1,

λk(x) = kpx mod Jp+1∗
∞ .

5. If k ⊃ Q, there is a Hodge decomposition H∗ =
∏
i≥0H

∗
(i) (given by the

associated graded of the filtration J∗∗∞ ) such that the filtered space FpH
∗ :=⊕

H∗(n≤p) is a filtered BV-algebra.

We conclude with an example of computation

Example 7.10 (Complex projective space CPm) The complex projective
space CPm has a Sullivan model A = (S(V ), d) generated by x in degree |x| = 2
and y in degree |y| = 2m+1 with differential d(x) = 0 and d(y) = xm+1. Note that
A is semi-free and that Der(A,A)[n] is generated by the derivations α`, β`, γ`, δ`
given by formulas

α`(x) = x`, α`(y) = 0, (7.8)

δ`(x) = 0, δ`(y) = x`y. (7.9)
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The degrees in the (shifted) space of derivations Der(A,A)[n] are thus

|α`| = 2(`− 1) + n,

|β`| = 2(`− 1) + (2m+ 1) + n = 2(`+m) + n− 1,

|γ`| = 2`− (2m+ 1) + n = 2(`−m) + n− 1,

|δ`| = 2`+ n.

The module relations are :

x.α` = α`+1, y.α` = β`, x.γ` = γ`+1, y.γ` = δ`, (7.10)

and the basic bracket relations are

[α0, α0] = [α0, γ0] = [γ0, γ0] = 0. (7.11)

The differential induced by d on Der(A,A) becomes D(ρ) = [γm+1, ρ], which gives
the relations D(α`) = −(m + 1)γ`+m, D(β`) = (m + 1)δ`+m + α`+m+1, D(γ`) =
0, D(δ`) = γ`+m+1. Thus D is defined on SymA(Der(A,A)[n]) by taking

D(x) = 0, D(y) = xm+1, D(α0) = −(m+ 1)γm = −(m+ 1)xmγ0, D(γ0) = 0,

and extending this to SymA(Der(A,A)[n]) as a graded derivation. In particular we
have the following relations

[a.α�p0 � γ�q0 , b.α�r0 � γ
�s
0 ]

= a[α�p0 � γ�q0 , b.α�r0 � γ
�s
0 ] + (−1)ε1 [a, b.α�r0 � γ

�s
0 ]� α�p0 � γ�q0

= a[α�p0 � γ�q0 , b]� α�r0 � γ
�s
0 + (−1)ε1+ε2b[a, α�r0 � γ

�s
0 ]� α�p0 � γ�q0

= a[α�p0 � γ�q0 , b]� α�r0 � γ
�s
0 − (−1)ε1+ε2+ε3b[α�r0 � γ

�s
0 , a]� α�p0 � γ�q0 ,

(7.12)
[xrα�p0 , xsα�q0 ] = (ps− qr)xr+s−1α

�(p+q−1)
0 ,

[xryα�p0 , xsyα�q0 ] = 0,

[xrα�p0 � γ0, x
sα�q0 � γ0] = 0,

[xryα�p0 � γ0, x
syα�q0 � γ0] = 0,

(7.13)

and

[xrα�p0 , xsyα�q0 ] = (ps− qr)xr+s−1yα
�(p+q−1)
0 ,

[xrα�p0 , xsα�q0 � γ0] = (ps− qr)xr+s−1α
�(p+q−1)
0 � γ0,

[xrα�p0 , xsyα�q0 � γ0] = (ps− qr)xr+s−1yα
�(p+q−1)
0 � γ0,

[xryα�p0 , xsα�q0 � γ0] = (ps− qr)xr+s−1yα
�(p+q−1)
0 � γ0 + xr+sα

�(p+q)
0 ,

[xryα�p0 , xsyα�q0 � γ0] = −xr+syα�(p+q)
0 ,

[xrα�p0 � γ0, x
syα�q0 � γ0] = xr+sα

�(p+q)
0 � γ0.

.

(7.14)
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[Fr1] B. Fresse, Théorie des opérades de Koszul et homologie des algèbres de Poisson,
Ann. Math. Blaise Pascal 13 (2006), no. 2, 237–312.

[Fr2] B. Fresse, Iterated bar complexes of E-infinity algebras and homology theories, Al-
gebr. Geom. Topol. 11 (2011), no. 2, 747–838.

[Fr3] B. Fresse, Modules over operads and functors, Lecture Notes in Mathematics, 1967,
Springer, Berlin, 2009.

[Fr4] B. Fresse, Homotopy of Operads & Grothendieck-Teichmüller Groups, to appear in
the series Mathematical Surveys and Monographs of the American Mathematical
Society.

[G] M. Gerstenhaber, The Cohomology Structure Of An Associative ring Ann. Maths.
78(2) (1963).

[GS] M. Gerstenhaber, S. Schack, A Hodge-type decomposition for commutative algebra
cohomology J. Pure Appl. Algebra 48 (1987), no. 3, 229–247
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[VB] M. Vigué-Poirrier and D. Burghelea, A model for cyclic homology and algebraic
K-theory of 1-connected topological spaces, J. Differential Geom. 22 (1985), no. 2,
243–253.

[W] N. Wahl, Universal operations in Hochschild homology, J. Reine Angew. Math. 720
(2016), 81–127

[We] C. Weibel An Introduction to Homological Algebra,Cambridge Stud.Adv.Math.,
vol.38, Cambridge University Press, Cambridge, 1994.

[We2] C. Weibel, The Hodge filtration and cyclic homology, K-Theory 12 (1997), no. 2,
145–164.

98


