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On the Hochschild and Harrison (co)homology of
C∞-algebras and applications to string topology

Grégory Ginot

Abstract. We study Hochschild (co)homology of commutative and associa-

tive up to homotopy algebras with coefficient in a homotopy analogue of

symmetric bimodules. We prove that Hochschild (co)homology is equipped
with λ-operations and Hodge decomposition generalizing the results in [GS1]

and [Lo1] for strict algebras. The main application is concerned with string
topology: we obtain a Hodge decomposition compatible with a non-trivial

BV-structure on the homology H∗(LX) of the free loop space of a triangu-

lated Poincaré-duality space. Harrison (co)homology of commutative and as-
sociative up to homotopy algebras can be defined similarly and is related to

the weight 1 piece of the Hodge decomposition. We study Jacobi-Zariski ex-

act sequence for this theory in characteristic zero. In particular, we define
(co)homology of relative A∞-algebras, i.e., A∞-algebras with a C∞-algebra

playing the role of the ground ring. We also give a relation between the Hodge

decomposition and homotopy Poisson-algebras cohomology.

The Hochschild cohomology and homology groups of a commutative and asso-
ciative k-algebra A, k being a unital ring, have a rich structure. In fact, when M is a
symmetric bimodule, Gerstenhaber-Schack [GS1] and Loday [Lo1] have shown that
there are λ-operations (λk)k≥1 inducing so-called γ-rings structures on Hochschild
cohomology groups HH∗(A,M) and homology groups HH∗(A,M). In characteris-
tic zero, these operations yield a weight-decomposition called the Hodge decompo-
sition whose pieces are closely related to (higher) André-Quillen (co)homology and
Harrison (co)homology. These operations have been widely studied for their use in
algebra, geometry and their intrinsic combinatorial meaning.

The Hochschild (co)homology of the singular cochain complex of a topological
space is a useful tool in algebraic topology and in particular in string topology.
In fact, Chas-Sullivan [CS] have shown that the (shifted) homology H∗+d(LM),
where LM = Map(S1,M) is the free loop space of a manifold M of dimension
d, is a Batalin-Vilkovisky-algebra. In particular, there is an associative graded
commutative operation called the loop product. When M is simply connected,
there is an isomorphism H∗+d(LM) ∼= HH∗(C∗(M), C∗(M)) which, according to
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Cohen-Jones [CJ], identifies the cup-product with the loop product. Alternative
proofs of this isomorphism have also been given by Merkulov [Mer] and Félix-
Thomas-Vigué [FTV2]. This isomorphism is based on the isomorphism H∗(LX) ∼=
HH∗(C∗(X), C∗(X)), where X is a simply connected space, and the fact that the
Poincaré duality should bring a “homotopy isomorphism” of bimodules C∗(X) →
C∗(X). Since HH∗(C∗(X), C∗(X)) is a Gerstenhaber algebra, it is natural to
define string topology operations for Poincaré duality topological space X using
the Hochschild cohomology of their cochain algebra C∗(X). To achieve this, one
needs to work with homotopy algebras, homotopy bimodules and homotopy maps
between these structures, even in the most simple cases. This was initiated by
Sullivan and his students, see Tradler and Zeinalian papers [Tr2, TZ, TZ2]. For
example, they show that for nice enough spaces, HH∗(C∗(X), C∗(X)) is a BV-
algebra.

In fact the cochain complex C∗(X) is “homotopy” commutative since the Steen-
rod ∪1-product gives a homotopy for the commutator f ∪ g − g ∪ f . This fact
motivates us to study Hochschild (co)homology of commutative up to homotopy
associative algebras (C∞-algebras for short) in order to add λ-operations to the
string topology picture for nice enough Poincaré duality spaces. These λ-operations
have to be somehow compatible with the other string topology operations. We
achieve this program in Section 5. In particular we prove that if X is a triangu-
lated Poincaré duality space, the Hochschild cohomology of its cochain algebra is
a BV-algebra equipped with λ-operations commuting with the BV-differential and
filtered with respect to the product, see Theorem 5.7.

Besides string topology there are other reasons to study C∞-algebras and co-
homology theories associated to their deformations, i.e. Hochschild and Harrison.
Actually, associative structures up to homotopy (A∞-structures for short), intro-
duced by Stasheff [St] in the sixties, have become more and more useful and popular
in mathematical physics as well as algebraic topology. A typical situation is given
by the study of a chain complex with an associative product inducing a graded
commutative algebra structure on homology. The quasi-isomorphism class of the
algebraic structure usually retains more information than the homology. In many
cases, it is possible to enforce the commutativity of the product at the chain level at
the price of relaxing associativity. For instance, in characteristic zero, according to
Tamarkin [Ta], the Hochschild cochain complex C∗(A,A) of any associative algebra
A has a C∞-structure. The same is true for the cochain algebra of a space [Sm],
also see Lemma 5.7 below. It is well-known that these structures retain more in-
formation on the homotopy type of the space than the associative one, for instance
see [Ka]. Moreover the commutative, associative up to homotopy algebras are quite
common among the A∞-ones and deeply related to the theory of moduli spaces of
curves [KST]. In fact an important class of examples is given by the formal Frobe-
nius manifolds in the sense of Manin [Ma].

In this paper, we study Hochschild (co)homology of C∞-algebras with value
in general bimodules. The need for this is already transparent in string topology,
notably to get functorial properties. Note that we work in characteristic free context
(however usually different from 2) in order to have as broad as possible homotopy
applications. In particular we do not restrain ourself to the rational homotopy
framework. In characteristic zero, a similar approach (but different application)
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to string topology has been studied by Hamilton-Lazarev [HL], see Section 6 for
details.

To construct λ-operations, we need to define homotopy generalizations of sym-
metric bimodules. Notably enough, the appropriate symmetry conditions are not
the same for homology and cohomology. These “homotopy symmetric”structures
are called C∞-bimodules and Cop∞ -bimodules structures respectively. We define and
study λ-operations and Hodge decomposition for Hochschild (co)homology of C∞-
algebras. In particular, the λ-operations induce an augmentation ideal spectral se-
quence yielding important compatibility results between the Gerstenhaber algebra
and γ-ring structures in Hochschild cohomology. In characteristic zero, the Hodge
decomposition of Poisson algebras is related to Poisson algebras homology [Fr1].
We generalize this result in the homotopy framework.

We study Harrison (co)homology of C∞-algebras and prove that, if the ground
ring k contains the field Q of rational numbers, the weight 1 piece of the Hodge
decomposition coincides with Harrison (co)homology. For strictly commutative
algebras, the result is standard [GS1, Lo1].

It is well-known that, in characteristic zero, for unital flat algebras, Harrison
(co)homology coincides with André-Quillen (co)homology (after a shift of degree).
In that case, a sequence K → S → R gives rise to of the change-of-ground-
ring exact sequence, often called the Jacobi-Zariski exact sequence. We obtain
a homotopy analogue of this exact sequence. Our approach is to define relative
A∞ and C∞-algebras,i.e., A∞ and C∞-algebras for which the ”ground ring” is
also a C∞-algebra. We define Hochschild and Harrison (co)homology groups for
these relative homotopy algebras. These definitions are of independent interest.
Indeed, recently, several categories of strictly associative and commutative ring
spectra have arisen providing exciting new constructions in homotopy theory, for
instance see [EKMM, MMSS]. Our constructions of Hochschild and Harrison
(co)homology of relative homotopy algebras are algebraic, chain complex level,
analogues of topological Hochschild/André-Quillen (co)homology of an R-ring spec-
trum, where R is a commutative ring spectrum.

Here is the plan of the paper. In section 1 we recall and explain the basic prop-
erty of A∞-algebras and their Hochschild cohomology. We give some details, not
so easy to find in the literature, for the reader’s convenience. In Section 2 we recall
the definition of C∞-algebras, introduce our notion of a C∞-bimodule, generalizing
the classical notion of symmetric bimodule, and then of Harrison (co)homology.
We also study some basic properties of these constructions. In Section 3 we es-
tablish the existence of λ-operations, Hodge decompositions in characteristic zero
and study some of their properties. In Section 4, we study the homotopy version
of Jacobi-Zariski exact sequence for Harrison (co)homology and establish a frame-
work for the study of A∞-algebras with a C∞-algebra as “ground ring”. In the
last section we apply the previous machinery to string topology and prove that
there exists λ-operations compatible with a BV-structure on HH∗(C∗(X), C∗(X))
for X a triangulated Poincaré duality space. The last section is devoted to some
additional remarks (without proof) and questions.

Acknowledgement : The author would like to thank Ralph Cohen, Andrei
Lazarev, Jim Stasheff and Micheline Vigué for helpful discussions and suggestions.
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Notations :

• in what follows k will be a commutative unital ring and R =
⊕
Rj a

Z-graded k-module. All tensors products will be over k unless otherwise
stated and/or sub scripted.

• We use a cohomological grading for our k-modules with the classical con-
vention that a homological grading is the opposite of a cohomological one.
In other words Hi := H−i as graded modules. A (homogeneous) map of
degree k between graded modules V ∗, W ∗ is a map V ∗ →W ∗+k.

• When x1, . . . , xn are elements of a graded module and σ a permuta-
tion, the Koszul sign is the sign ± appearing in the equality x1 . . . xn =
±xσ(1) . . . xσ(n) which holds in the symmetric algebra S(x1, . . . , xn).

• We use Sweedler’s notation δ(x) =
∑
x(1) ⊗ x(2) for a coproduct δ.

• A strict up to homotopy structure will be one given by a classical differ-
ential graded one.

• The algebraic structures ”up to homotopy” appearing in this paper are
always uniquely defined by sequences of maps (Di)i≥0. Such maps will be
referred to as defining maps, for instance see Remark 1.5.
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1. Hochschild (co)homology of an A∞-algebra with values in a bimodule

In this section we recall the definitions and fix notation for A∞-algebras and
bimodules as well as their Hochschild (co)homology. For convenience of the reader,
we also recall some “folklore” results which might not be found so easily in the
literature and are needed later on.

1.1. A∞-algebras and bimodules. The tensor coalgebra of R is T (R) =⊕
n≥0R

⊗n with the deconcatenation coproduct

δ(x1, . . . , xn) =
n∑
i=0

(x1, . . . , xi)⊗ (xi+1, . . . , xn).

The suspension sR of R is the graded k-module (sR)i = Ri+1 so that a degree +1
map R→ R is equivalent to a degree 0 map R→ sR.
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Let V be a graded k-module. The tensor bicomodule of V over the tensor
coalgebra T (R) is the k-module TR(V ) = k⊕T (R)⊗V ⊗T (R) with structure map

δV (x1, . . . , xn, v, y1, . . . , ym) =
n∑
i=1

(x1, . . . , xi)⊗ (xi+1, . . . , xn, v, y1, . . . , ym)

⊕
m∑
k=1

(x1 . . . , xn, v, y1, . . . , yi)⊗ (yi+1, . . . , ym).

If D is a coderivation of T (R), then a coderivation of T (V ) to TR(V ) over D
is a map ∆ : TR(V )→ TR(V ) such that

(D ⊗ id + id⊗∆)⊕ (∆⊗ id + id⊗D) ◦ δV = δV ◦∆.(1.1)

We denote A⊥(R) = ⊕n≥1sR
⊗n the coaugmentation

0→ k → T (sR)→ A⊥(R)→ 0

and abusively write δ for its induced coproduct.

Definition 1.1. • An A∞-algebra structure on R is a coderivation D
of degree 1 on A⊥(R) such that (D)2 = 0.

• An A∞-bimodule over R structure on M is a coderivation DR
M of degree

1 on A⊥R(M) := TsR(sM) over D such that (DR
M )2 = 0.

• A map between two A∞-algebras R,S is a map of graded differential coal-
gebras A⊥(R)→ A⊥(S).

• A map between two A∞-bimodules M,N over R is a map of graded dif-
ferential bicomodules A⊥R(M)→ A⊥R(N).

Henceforth, R-bimodule will stand for A∞-bimodule over an A∞-algebra R.

Notation 1.2. We will denote “a ⊗ m ⊗ b ∈ A⊥R(M)” a generic element in
A⊥R(M). That is, a, b ∈ A⊥(R), m ∈M and a⊗m⊗ b stands for the corresponding
element in A⊥(R)⊗ sM ⊗A⊥(R) ⊂ A⊥(R).

Remark 1.3. These definitions are the same as the definitions given by al-
gebras over the minimal model of the operad of associative algebras and their
bimodules and goes back to the pioneering work [St].

Remark 1.4. Coderivations on A⊥(R) are the same as coderivations on T (sR)
that vanishes on k ⊂ T (sR).

It is well-known that a coderivation D on T (sR) is uniquely determined by
a simpler system of maps (D̃i : sR⊗i → sR)i≥0. The maps D̃i are given by the
composition of D with the projection T (sR)→ sR. The coderivation D is the sum
of the lifts of the maps D̃i to A⊥(R)→ A⊥(R). More precisely, for x1, . . . , xn ∈ sR,

D(x1, . . . , xn) =
∑
i≥0

n−i∑
j=0

±x1 ⊗ . . .⊗ D̃i(xj+1, . . . , xj+i)⊗ . . .⊗ xn(1.2)

where ± is the sign (−1)|Di|(|x1|+···+|xj |). Furthermore, there are isomorphisms of
graded modules Hom(sR⊗i, sR) 3 D̃i 7−→ Di ∈ s1−i Hom(R⊗i, R) defined by

Di(r1, . . . , ri) = (−1)i|D̃i|+
∑i−1

k=1
(k−1)|rk|D̃i(sr1, . . . , sri).(1.3)
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Note that the signs are given by the Koszul rule for signs. It follows that a coderiva-
tion D on T (sR) is uniquely determined by a system of maps (Di : R⊗i → R)i≥0.
Such a coderivation D is of degree k if and only if each Di is of degree k + 1 − i.
According to Remark 1.4 above, a coderivation D on A⊥(R) is one on T (sR) such
that D0 = 0.

Remark 1.5. We call the maps (Di : R⊗i → R)i≥0 the defining maps of the
associated coderivation D : T (sR) → T (sR). We also use similar terminology for
all other kind of coderivations appearing in the rest of the paper.

Similarly, a coderivation DA
R on A⊥R(M) (over D with D0 = 0) is given by a

system of maps (DM
i,j : R⊗i⊗M⊗R⊗j →M)i,j≥0. All of these properties are formal

consequences of the co-freeness of the tensor coalgebra (in the operadic setting).
Also a very detailed and down-to-earth account is given in [Tr1].

Remark 1.6. Given a coderivation D of degree 1 on A⊥(R) defined by a system
of maps

(
Di : R⊗i → R

)
i≥0

, it is well-known [St] that the condition (D)2 = 0 is
equivalent to an infinite number of equations quadratic in the Di’s. Namely, for
n ≥ 1, r1, . . . rn ∈ R,∑

i+j=n+1

i−1∑
k=0

±Di(r1, . . . , rk, Dj(rk+1, . . . , rk+j), rk+j+1, . . . , rn) = 0.(1.4)

In particular, if D1 = 0, Equation (1.4) implies that D2 is an associative multipli-
cation on R.

There are similar identities for the defining maps (DM
i,j : R⊗i ⊗M ⊗ R⊗j →

M)i,j≥0 of an A∞-bimodule [Tr1]. It is trivial to show that, when D1 = 0 and
DM

00 = 0, DM
10 and DM

01 respectively endows M with a structure of left and right
module over the algebra (R,D2).

Example 1.7. Any A∞-algebra (R,D) is a bimodule over itself with structure
maps given by DR

i,j = Di+1+j .

Remark 1.8. Similarly to coderivations, a map of graded coderivation F :
A⊥(R)→ A⊥(S) is uniquely determined by a simpler system of maps (Fi : R⊗i →
R)i≥1, where Fi is induced by composition of F with the projection on S. The
details are similar to those of Remark 1.4 and left to the reader. The maps Fi are
referred to as the defining maps of F .

1.2. Hochschild (co)homology. Let (R,D) be an A∞-algebra and M an
R-bimodule. We call a coderivation from k ⊕ A⊥(R) = T (sR) into A⊥R(M) a
coderivation of R into M . By definition it is a map f : T (sR) −→ A⊥R(M) such
that

δM ◦ f = (id⊗ f + f ⊗ id) ◦ δ.
As in Remark 1.5, such a coderivation is uniquely determined by a collection of
maps (fi : R⊗i → M)i≥0 where the fi are induced by the projections onto sM of
the map f restricted to sR⊗i (for instance see [Tr1]).

Definition 1.9. The Hochschild cochain complex of an A∞-algebra (R,D)
with values in an R-bimodule M is the space s−1CoDer(R,M) of coderivations of
R into M equipped with differential b given by

b(f) = DM ◦ f − (−1)|f |f ◦D.
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It is classical that b is well-defined and b2 = 0 see [GJ2]. We denoteHH∗(A,M)
its cohomology which is called the Hochschild cohomology of R with coefficients in
M .

Example 1.10. Let (R,m, d) be a differential graded algebra and (M, l, r, dM )
be a (differential graded) A-bimodule. Then R has a structure of an A∞-algebra
and M a structure of A∞-bimodule over R given by maps:

D1 = d, D2 = m and Di = 0 for i ≥ 3;(1.5)

DM
0,0 = dM , DM

1,0 = l, DM
0,1 = r and DM

i,j = 0 for i+ j ≥ 1.(1.6)

The converse is true: if R, M are, respectively, an A∞ algebra and a R-bimodule
with Di≥3 = 0 and DM

i,j = 0 (i + j ≥ 1), then the identities (1.5), (1.6) define a
differential graded algebra structure on R and a bimodule structure M . We call
this kind of structure a strict homotopy algebra or a strict homotopy bimodule.

We have seen that the k-module CoDer(R,M) is isomorphic to the k-module
Hom

(⊕
n≥0R

⊗n,M
)

by projection on sM , i.e. the map f 7→ (fi : R⊗i →M)i≥0.

Thus the differential b induces a differential on Hom
(⊕

n≥0R
⊗n,M

)
, which for a

homogeneous map f : R⊗n → M , is given by the sum b(f) = α(f) + β(f) where
α(f) : R⊗n →M and β(f) : R⊗n+1 →M are defined by

α(f)(a1, . . . , an) = (−1)|f |+1dM (f(a1, . . . , an))

+
n−1∑
i=0

(−1)i+|a1|+···+|ai|f(a1, . . . , d(ai+1), . . . , an)

β(f)(a0, . . . , an) = (−1)|f ||a0|+|f |l(a0, f(a1, . . . , an))

+(−1)n+|a0|+···+|an−1|+|f |r(f(a0, . . . , an−1), an)

−
n−1∑
i=0

(−1)i+|a0|+···+|ai|+|f |f(a0, . . . ,m(ai, ai+1), . . . , an).

Hence α+β is the differential in the standard bicomplex giving the usual Hochschild
cohomology of a differential graded algebra [Lo2]. Consequently Definition 1.9
coincides with the standard one for strict A∞-algebras, that is the one given by the
standard complex.

It is standard that the identity (D)2 = 0 restricted to A yields that (D1)2 = 0
and |D1| = |D| = 1. Therefore, (R,D1) is a chain complex whose cohomology
will be denoted H∗(R). Moreover the linear map D2 : R⊗2 → R passes to the
cohomology H∗(R) to define an associative algebra structure. Similarly DM

00 is a
differential on M and H∗(M) has a bimodule structure over H∗(R) induced by
DM

10 , and DM
01 . The link between the cohomology of H∗(A) and the one of A is

given by the following spectral sequence.

Proposition 1.11. Let (R,D) be an A∞-algebra and (M,DM ) an R-bimodule
with R, M , H∗(R), H∗(M) flat as k-modules. There is a converging spectral se-
quence

Ep,q2 = HHp+q(H∗(R), H∗(M))q =⇒ HH∗(R,M).
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The subscript q in HH∗(H∗(R), H∗(M))q stands for the piece of internal degree
q in the group HH∗(H∗(R), H∗(M)) (the internal degree is the degree coming from
the grading of H∗(R)).
Proof : There is a decreasing filtration of cochain complex F ∗≥0C∗(R,M) of
CoDer(R,M) where F pC∗(R,M) is the subspace of coderivation f such that

f(R⊗n) ⊂
⊕

p+i+j≤n

R⊗i ⊗M ⊗R⊗j .

The filtration starts at F0 because any coderivation f is determined by maps
R⊗i≥1 →M . It is thus a bounded above and complete filtration. Hence, it yields a
cohomological converging spectral sequence computing HH∗(R,M). The maps Di

and DM
j,k lower the degree of the filtration unless i = 1, j = k = 0. Consequently the

differential on the associated graded is the one coming from the inner differentials
D1 and DM

0,0. It follows by Künneth formula, that

E∗∗1
∼= CoDer

(
A⊥(H∗(R)), A⊥H∗(R)(H

∗(M))
)
.

The differential on the E∗∗1 term is induced by D2, DM
10 , DM

01 . These operations give
H∗(R) a structure of associative algebra and H∗(M) a bimodule structure. Hence
the differential d1 on E∗∗1 is the same as the differential defining the Hochschild
cohomology of the graded algebraH∗(R) with values inH∗(M). Now, Example 1.10
implies that E∗,∗2 = HH∗(H∗(R), H∗(M)). �

The Hochschild cohomology HH∗(R,R) of any A∞-algebras R has the struc-
ture of a Gerstenhaber algebra as was shown in [GJ2]. The product of two elements
f, g ∈ C∗(R,R) (with defining maps (fn), (gm)) is the coderivation µ(f, g) defined
by

(1.7) µ(f, g)(a1, . . . , an) =
∑

j≥2,r1,r2≥0

±(a1⊗. . .⊗Dj(. . . fr1 , . . . , gr2 , . . . )⊗. . . an).

In the formula the sign ± is the Koszul sign. There is also a degree 1 bracket
defined by [f, g] = f ◦̃g − (−1)(|f |+1)(|g|+1)g◦̃f where

f ◦̃g(a1, . . . , an) =
∑
i,j

±(a1 ⊗ . . .⊗ fi(. . . gj , . . . )⊗ . . . an).

Proposition 1.12. Let R be an A∞-algebra and take M = R as a bimodule.
Then (HH∗(R,R), µ, [ , ]) is a Gerstenhaber algebra and the spectral sequence E∗∗m≥2

is a spectral sequence of Gerstenhaber algebras.

Proof : The fact that the product µ and the bracket [ , ] make HH∗(R,R) a
Gerstenhaber algebra is well-known [GJ2, Tr2]. Also see Remark 1.13 below for
a sketch of proof.

The product map µ : F pC∗ ⊗ F qC∗ → F p+qC∗ and bracket [ , ] : F pC∗ ⊗
F qC∗ → F p+q−1C∗ are filtered maps of cochain complexes. Thus both operations
survive in the spectral sequence. At the level E0 of the spectral sequence, the
product µ boils down to

µ(f, g)(a0, . . . , an) =
∑

a0 . . .⊗D2(f(. . . ), g(. . . ))⊗ . . .⊗ an
which, after taking the homology for the differential d0, identifies with the usual
cup product in the Hochschild cochain complex Hom(H∗(R)⊗∗, H∗(R)) through
the isomorphism between coderivations and homomorphisms. Similarly the bracket
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coincides with the one introduced by Gerstenhaber in the Hochschild complex of
H∗(R). The Leibniz relation hence holds at level 2 and on the subsequent levels.
�

Remark 1.13. Actually, the product structure is the reflection of a A∞-
structure on C∗(R,R). It is easy to check that the maps γi : C∗(R,R)⊗i →
C∗(R,R) defined by

γi(f1, . . . , f i)(a1, . . . , an) =
∑

j≥i,r1,...,ri≥1

±(a1 ⊗ . . .⊗Dj(. . . f1
r1 , . . . , f

2
r2 , . . .

. . . , f iri
, . . . )⊗ . . .⊗ an)

together with γ1 = b, the Hochschild differential, give a A∞-structure to C∗(R,R).
Thus the map µ = γ2 gives an associative algebra structure to HH∗(R,R). More-
over it is straightforward to check that the Jacobi relation for [ , ] is satisfied on
C∗(R,R). The Leibniz identity and the commutativity of the product are obtained
as in Gerstenhaber fundamental paper [Ge].

The Hochschild homology of an A∞-algebra R was first defined in [GJ1]. Let
M be an R-bimodule and b : M ⊗ T (sR)→M ⊗ T (sR) be the map

b(m, a0, . . . , an) =
∑

p+q≤n

±DM
p,q(an−p+1, . . . , an,m, a1 . . . , aq)⊗ aq+1 · · · an−p

+
∑
i+j≤n

±m⊗ a1 ⊗ · · ·Dj+1(ai, . . . , ai+j)⊗ ai+j+1 ⊗ · · · an.

Definition 1.14. The Hochschild homology HH∗(R,M) of an A∞-algebra
(R,D) with values in the bimodule (M,DM ) is the homology of (M ⊗ T (sR), b).

The fact that b2 = 0 follows from a straightforward computation or from
Lemma 1.16 below.

Remark 1.15. Recall that we use a cohomological grading for R,M . Thus a
cycle x ∈ M i ⊂ M ⊗ T (sR) gives an element [x] ∈ HH−i(R,M) in homological
degree −i.

Given a bimodule M over R, there is a map γM : M ⊗ T (sR) → T sR(sM)
defined by

γM = τ ◦ (s id⊗ δ)

where τ is the map sending the last factor of M ⊗ T (sR) ⊗ T (sR) to the first of
T (sR)⊗M ⊗ T (sR).

Lemma 1.16. Given any coderivation ∂ of T sR(sM) over D, there is a unique
map ∂ : M ⊗ T (sR)→M ⊗ T (sR) that makes the following diagram commutative:

M ⊗ T (sR)
γM−→ T sR(sM)

∂ ↓ ↓ ∂
M ⊗ T (sR)

γM−→ T sR(sM).
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Proof : The map ∂ is the sum
∑
∂

[i]
, where ∂

[i]
takes value in M ⊗ sA⊗i. By

induction on i, it is straightforward that

γM
(
∂

[i])
=
∑n
i=0

( ∑
p+q=n−m

aj+1 ⊗ . . .⊗ ∂p,q(an−p+1, . . . , an,m, a1, . . .

. . . , aq)⊗ aq+1 ⊗ . . .⊗ ai +
m−1∑
j=i+1

±ai ⊗ . . .⊗Dn−m+2(aj ,

aj+1, . . . , aj+n−m+1)⊗ . . .⊗ an ⊗m⊗ a1 . . .⊗ ai

+
i−n+m−1∑

j=0

±ai ⊗ . . .⊗ an ⊗m⊗ a1 . . .⊗Dn−m+2(aj , . . .

. . . , aj+n−m+1)⊗ . . .⊗ ai
)
.

It follows that the map ∂ exists and satisfies

∂(m, a0 ⊗ . . .⊗ an) =
∑

p+q≤n

±∂p,q(an−p+1, . . . , an,m, a1 . . . , aq)⊗ aq+1 ⊗ · · ·

· · · ⊗ an−p +
∑
i+j≤n

±m⊗ a1 ⊗ · · · ⊗Dj+1(ai, . . .

· · · , ai+j)⊗ ai+j+1 ⊗ · · · ⊗ an.

�

Example 1.17. For ∂ = DR
M , (DR

M )2 is the trivial coderivation, hence (DR
M )2 =

(DR
M )2 = 0 and DR

M is a codifferential. Moreover DR
M ◦ γM = γM ◦ b, thus DR

M = b
and b2 = 0.

Example 1.18. Let (R, d,m) be a differential graded algebra and (M,dM , l, r)
a strict R-bimodule. The only non-trivial defining maps are D1 = d, D2 = m,
DM

00 = dM , DM
01 = r, DM

10 = l. Hence one has

b(m⊗ a1 ⊗ . . .⊗ an) = dM (m)⊗ a1 ⊗ · · · ⊗ an +
∑
±m⊗ · · · dai . . .⊗ an

+r(m, a1)⊗ a2 · · · ⊗ an +±l(an,m)⊗ a1 · · · ⊗ an
+
∑
±m⊗ a1 · · ·m(ai, ai+1) · · · ⊗ an

which is the usual Hochschild boundary for a differential graded algebra. Thus
Definition 1.14 is equivalent to the standard one for strict algebras and bimodules.

Theorem 1.19. Let R be an A∞-algebra and M an R-bimodule, flat as k-
modules. There is a converging spectral sequence

E2
pq = HHp+q(H∗(R), H∗(M))q =⇒ HHp+q(R,M).

The subscript q in HHn(A,B)q stands for the piece of HHn(A,B) of internal
homological degree q (thus of internal cohomological degree −q).
Proof : Consider the filtration Fp≥0C∗(R,M) =

⊕
i≤pM ⊗ sR⊗i dual to the

filtration of Proposition 1.11. It is an exhaustive bounded below filtration of chain
complex thus it gives a converging homology spectral sequence. Now the result
follows as in the proof of Proposition 1.11. �



HOCHSCHILD AND HARRISON (CO)HOMOLOGY OF C∞-ALGEBRAS . . . 11

2. C∞-algebras, C∞-bimodules, Harrison (co)homology

In this section we introduce the key definition of C∞-bimodules and also recall
the Harrison (co)homology of C∞-algebras for which there is not so much published
account.

2.1. Homotopy symmetric bimodules. Commutative algebras are asso-
ciative algebras with additional symmetry. Similarly a C∞-algebra could be seen
as a special kind of A∞-algebra. Indeed, this is the point of view we adopt here.
The shuffle product makes the tensor coalgebra (T (V ), δ) a bialgebra. It is defined
by the formula

sh(x1 ⊗ . . . ,⊗xp, xp+1 ⊗ . . .⊗ xp+q) =
∑
±xσ−1(1) ⊗ . . .⊗ xσ−1(p+q)

where the summation is over all the (p, q)-shuffles, that is to say the permutation of
{1, . . . , p+q} such that σ(1) < · · · < σ(p) and σ(p+1) < · · · < σ(p+q). The sign± is
the sign given by the Koszul sign convention. A (p1, . . . , pr)-shuffle is a permutation
of {1, . . . , p1 + · · ·+pr} such that σ(p1 + · · ·+pi+ 1) < · · · < σ(p1 + · · ·+pi+pi+1)
for all 0 ≤ i ≤ r − 1.

A B∞-structure on a k-module R is given by a product MB and a derivation
DB on the (shifted tensor) coalgebra A⊥(R) such that (A⊥(R), δ,MB , DB) is a
differential graded bialgebra [Ba]. A B∞-algebra is in particular an A∞-algebra
whose codifferential is DB .

Definition 2.1. • A C∞-algebra is an A∞-algebra (R,D) such that
the coalgebra A⊥(R), equipped with the shuffle product and the differential
D, is a B∞-algebra.
• A C∞-map between two C∞-algebras R,S is an A∞-algebra map R → S

which is also a map of algebras with respect to the shuffle product.

In particular there is a faithful functor from the category of C∞-algebras to the
category of A∞-algebras. Moreover a A∞ algebra defined by maps Di : R⊗i → R
is a C∞-algebra if and only if, for all n ≥ 2 and k + l = n, one has

(2.8) Dn(sh(x1 ⊗ . . .⊗ xk, y1 ⊗ . . .⊗ yl)) = 0.

Example 2.2. According to Example 1.10 and identity (2.8), any differential
graded commutative algebra (R,m, d) has a natural C∞-structure given by D1 = d,
D2 = m and Di = 0 for i ≥ 3.

Remark 2.3. Definition 2.1 is taken from [GJ2]. In characteristic zero, a
more classical and equivalent one is to say that a C∞-algebra structure on R is
given by a degree 1 differential on the cofree Lie coalgebra C⊥(R) := coLie(sR).
The equivalence between the two definitions follows from the fact that coLie(sR) =
A⊥(R)/sh is the quotient of A⊥(R) by the image of the shuffle multiplication sh :
A⊥≥1(R) ⊗ A⊥≥1(R) → A⊥(R). For arbitrary characteristic, Definition 2.1 is
slightly weaker (see Example 2.4 below) than the one given by the operad theory,
namely by a (degree 1) codifferential on C⊥(R).

Example 2.4. Since the universal enveloping coalgebra of a cofree Lie coalge-
bra coLie(V ) is the tensor coalgebra (T (V ), δ, sh) equipped with the shuffle product,
a degree 1 differential on the cofree Lie coalgebra C⊥(R) := coLie(sR) canonically
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yields a C∞-algebra structure on R. We call such a C∞-structure a strong C∞-
algebra structure. Note that strict C∞-algebras are strong C∞-algebras. Over a
ring k containing Q, all C∞-algebras are strong (Remark 2.3).

A bimodule over a C∞-algebra is a bimodule over this C∞-algebra viewed as
an A∞-one. However this notion does not capture all the symmetry conditions of a
C∞-algebra. In the following sections we will need up to homotopy generalization
of symmetric bimodules.

Definition 2.5. A C∞-bimodule structure on M is a bimodule over (R,D)
such that the structure maps DM

ij satisfy, for all n ≥ 1, a1, . . . , an ∈ R, x⊗m⊗y ∈
A⊥R(M), the following relation∑

i+j=n

±DM
(i+|x|)(j+|y|)

(
sh(x, a1 ⊗ . . .⊗ ai),m, sh(y, ai+1 ⊗ . . .⊗ an)

)
= 0.(2.9)

The sign ± is the Koszul sign of the two shuffle products multiplied by the sign
(−1)(|a1|+···+|ai|+i)(|m|+1). With Sweedler’s notation associated to the coproduct
structure of T (sR), identity (2.9) reads as∑

±DM
(
sh(x, a(1)),m, sh(y, a(2))

)
= 0.(2.10)

Example 2.6. Let (R,m, dR) be a graded commutative differential algebra and
(M, l, r, dM ) a graded differential R-bimodule. Then M has a bimodule structure
as explained in the previous section. Moreover this bimodule structure is a C∞-
bimodule structure if and only l(m, a) = (−1)|a||m|r(a,m) for all m ∈ M,a ∈ R,
that is, M is symmetric in the usual sense.

Example 2.7. If (R,D) is a C∞ algebra such that D1 = 0, then D2 : R ⊗
R → R is associative (Remark 1.6) and graded commutative by Equation (2.8).
Thus (R,D2) is a graded commutative algebra. Furthermore, if (M,DM ) is a C∞-
bimodule such that DM

00 = 0, Equation (2.10) implies that DM
01 and DM

10 give a
structure of symmetric bimodule over (R,D2) to M .

Example 2.8. Any C∞-algebra is a C∞-bimodule over itself. This follows from
identity (2.8) and the observation that, for any a⊗r⊗b ∈ A⊥R(R) and x ∈ A⊥∗≥1(R),
one has ∑

±
(
sh(a, x(1))⊗ r ⊗ sh(b, x(2))

)
= sh(a⊗ r ⊗ b, x).

A C∞-bimodule is a left (and right by commutativity) module over the shuffle
bialgebra. The module structure is the map ρ : A⊥R(M)⊗ A⊥(R)→ A⊥R(M) given
by the composition

A⊥R(M)⊗A⊥(R) id⊗δ−→ A⊥R(M)⊗A⊥(R)⊗A⊥(R)
(sh⊗id⊗sh)◦τ−→ A⊥R(M)

where the map τ

A⊥(R)⊗M ⊗A⊥(R)⊗A⊥(R)⊗A⊥(R) τ→ A⊥(R)⊗A⊥(R)⊗M ⊗A⊥(R)⊗A⊥(R)

is the permutation of the two A⊥(R) factors sitting in the middle.

Proposition 2.9. A R-bimodule M is a C∞-bimodule if and only if A⊥R(M)
is a differential module over the shuffle bialgebra A⊥(R). That is to say if the
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following diagram commutes

A⊥R(M)⊗A⊥(R)
ρ−→ A⊥R(M)

DM ⊗ id + id⊗D ↓ ↓ DM

A⊥R(M)⊗A⊥(R)
ρ−→ A⊥R(M).

Proof : The compatibility with the coalgebra structure is part of the definition
of a R-bimodule. It remains to prove the compatibility with the product. Let’s
denote by x • y the shuffle product sh(x, y). First we have to check that ρ defines
an action of (A⊥(R), sh). Using that sh is a coalgebra map it is equivalent, for all
u, x, y ∈ A⊥(R), m ∈M , to :

(u • x(1)) • y(1) ⊗m⊗ (v • x(2)) • y(2) = u • (x(1) • y(1))⊗m⊗ v • (x(2) • y(2))

which holds by associativity of sh.
Since D is both a coderivation and derivation, one has, for all a, b, x ∈ A⊥(R),

m ∈M ,

DM
(
ρ(a,m, b, x)

)
=
∑

a(1) • x(1) ⊗DM
∗∗

(
a(2) • x(2),m, x(3) • b(1)

)
⊗ b(2) • x(4)

+ρ
(
DM ⊗ id + id⊗D

)
(a,m, b, x).

The sum is over all decompositions δ3(x) =
∑
x(1) ⊗ x(2) ⊗ x(3) ⊗ x(4) such that

x(2) or x(3) is not in k. But then the difference DM ◦ ρ − ρ ◦
(
DM ⊗ id + id⊗D

)
is 0 if and only if DM satisfies the defining conditions of a C∞-bimodule. �

The strict notion of a symmetric bimodule is self-dual. However this is not true
for its homotopy analog. Thus we will also need the dual version of a C∞-bimodule,
that we call a Cop∞ -bimodule.

Definition 2.10. Let (R,D) be a C∞-algebra. A Cop∞ -bimodule structure on
M is an R-bimodule structure, such that the structure maps DM

ij satisfy for all
n ≥ 1, a1, . . . , an ∈ R, x⊗m⊗ y ∈ A⊥R(M):∑

i+j=n

±DM
(j+|x|)(i+|y|)

(
sh(x, ai+1 ⊗ . . .⊗ an),m, sh(y, a1 ⊗ . . .⊗ ai)

)
= 0.

As in Definition 2.5, the sign is given by the Koszul rule for signs.

Example 2.11. If M is a strict symmetric bimodule (over a strict algebra)
then it is a Cop∞ -bimodule.

Example 2.12. A C∞-algebra has no reason to be a Cop∞ -bimodule in general.
However its dual is always an Cop∞ -bimodule. More precisely, let (R,D) be a C∞-
algebra and write R? = Hom(R, k) for the dual module of R. Then the maps
DR?

kl : R⊗k ⊗R? ⊗R⊗l → R? given by

DR?

kl (r1, . . . , rk, f, rk+1, . . . , rk+l)(m) = ±f
(
Dk+l+1(rk+1, rk+l,m, r1, . . . , rk)

)
yields an A∞-bimodule structure on R?, see [Tr1] Lemma 3.9. The equation∑

i+j=n

±DR?

(j+|x|)(i+|y|)
(
sh(x, ai+1 ⊗ . . .⊗ an), f, sh(y, a1 ⊗ . . .⊗ ai)

)
= 0.

is equivalent to∑
i+j=n

±DR
(j+|x|)(i+|y|)

(
sh(y, a1 ⊗ . . .⊗ ai),m, sh(x, ai+1 ⊗ . . .⊗ an)

)
= 0.
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which is satisfied because R is a C∞-bimodule ( Definition 2.5).

The argument of Example 2.12 can be generalized to prove

Proposition 2.13. The dual M? = Hom(M,k) of any C∞-bimodule is a Cop∞ -
bimodule. The dual of any Cop∞ -bimodule is a C∞-bimodule.

The (operadic) notion of strong C∞-algebras (Example 2.4) gives rise to the
notion of strong C∞-bimodules which form a nice subclass of the C∞-bimodules be-
cause, under suitable freeness assumption, they are also Cop∞ -bimodules, see Propo-
sition 2.16 below. Let (R,D) be a strong C∞-algebra.

Definition 2.14. A strong C∞-bimodule structure on M over a strong C∞-
algebra (R,D) is a structure of strong C∞-algebra on R⊕M , given by a codifferential
DM on T (sR⊕ sM), satisfying

(1) DM
n (x1, . . . , xn) = 0 if at least two of the xis are in M , DM

n (x1, . . . , xn) ∈
M if exactly one of the xis is in M and DM

n (x1, . . . , xn) ∈ R if all xis are
in R;

(2) the restriction of DM to T (sR) is equal to the differential D defining the
(strong) C∞-structure on R.

In particular, a strong C∞-bimodule structure on M is uniquely determined by
maps DM

p,q : R⊗p ⊗M ⊗R⊗q →M . Furthermore, these defining maps DM
p,q satisfy

the relation (2.9), thus M is a C∞-bimodule. A strong C∞-algebra is a strong
C∞-bimodule over itself (with defining map as in Example 1.7).

Remark 2.15. If k contains Q, any C∞-bimodule is strong. This follows from
Remark 2.3, Proposition 2.9 and the proof of Proposition 2.16 below.

Moreover when M is free over k, one has

Proposition 2.16. Let M and R be free over k, and (R,D) be a strong C∞-
algebra (see Example 2.4). If M is a strong C∞-bimodule over (R,D), it is a
Cop∞ -bimodule and its dual M? is C∞-bimodule.

Proof : Denote D : T (sR)→ T (sR) the differential defining the A∞-structure and
DM the bimodule one. By duality and Proposition 2.13, it is sufficient to prove that
a strong C∞-bimodule M is also a Cop∞ -bimodule. Let us show that it is enough to
prove the result for the canonical bimodule structure over R. Note that there is a
splitting

(R⊕M)⊗i ∼= X ⊕R⊗i ⊕
i⊕

j=0

Rj ⊗M ⊗Ri−1−j .

Here X ⊂ (R ⊕ M)⊗i is the submodule generated by tensors with at least two
components in M . Consider the maps Bi : (R⊕M)⊗i → R⊕M defined to be zero
on X, Di on R⊗i and Dm

j,i−1−j on Rj ⊗M ⊗Ri−1−j . It is straightforward to check
that the maps (Bi)i≥1 give an A∞-structure on R ⊕M iff M is an A∞-bimodule.
Moreover, if M is a strong C∞-bimodule, R ⊕M is a strong C∞-algebra and it
remains to prove the statement for a strong C∞-algebra.

Let R be a strong C∞-algebra equipped with its canonical (strong) bimodule
structure over itself (Example 2.8). We have to prove that R is a Cop∞ -bimodule. De-
note D : T (sR)→ sR the projection of the differential D : T (sR)→ T (sR). Since
D defines a C∞-structure, D factors through the free Lie coalgebra CoLie(sR) →
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sR. By hypothesis its dual D
?

is a map (sR)? → Lie
(
(sR)?

)
the free Lie al-

gebra on (sR)?. Since R ↪→ R?? is injective, it is enough to prove that for any
F : (sR)? → Lie

(
(sR)?

)
, f ∈ (sR)? a1, . . . , an ∈ R and x ⊗m ⊗ y ∈ A⊥R(R), one

has

(2.11) F (f)
(
sh(x, ai+1 ⊗ . . .⊗ an),m, sh(y, a1 ⊗ . . .⊗ ai)

)
= 0.

We can work with homogeneous component and use induction, the result for order
one component of F (f) being trivial. Thus we can assume F (f) = [G,H] and G,H
satisfies identity (2.11). Then, writing z for the term to which we apply F (f), we
find

F (f)(z) =
∑

G(x(1) • a(2))H(x(2) • a(3),m, y • a(1))

+
∑

G(x • a(3),m, y(1) • a(1))H(y(2) • a(2))

−
∑

H(x(1) • a(2))G(x(2) • a(3),m, y • a(1))

−
∑

H(x • a(3),m, y(1) • a(1))G(y(2) • a(2)).

By definition G and H vanish on shuffles, thus all the terms of the first line for
which x(1) and a(2) are non trivial are zero. Moreover H satisfies identity (2.11).
Thus all the terms for which a(2) is trivial also cancel out. The same analysis works
for line 4. Thus for lines 1 and 4 we are left to the terms for which x(1) is trivial
and a(2) is not. Those terms cancels out each other by commutativity of k. Line 2
and 3 cancels out by a similar argument. �

Remark 2.17. In particular if k is a characteristic zero field, C∞ and Cop∞
bimodules coincide.

Remark 2.18. The author realized that C∞ and Cop∞ should coincide under
quite general hypothesis while reading [HL]. The proof of Proposition 2.16 is taken
from Lemma 7.9 in [HL].

Proposition 2.9 can be dualized too. A Cop∞ -bimodule is a left (and right by
commutativity) module over the shuffle bialgebra through the opposite action ρ̃.
The map ρ̃ : A⊥R(M)⊗A⊥(R)→ A⊥R(M) is the composition

A⊥R(M)⊗A⊥(R) id⊗t◦δ−→ A⊥R(M)⊗A⊥(R)⊗A⊥(R)
(sh⊗id⊗sh)◦τ−→ A⊥R(M)

where the map τ

A⊥(R)⊗M ⊗A⊥(R)⊗A⊥(R)⊗A⊥(R) τ→ A⊥(R)⊗A⊥(R)⊗M ⊗A⊥(R)⊗A⊥(R)

is the permutation of the middle A⊥(R) factors and t the transposition. Now
dualizing the argument of Proposition 2.9 yields

Proposition 2.19. A R-bimodule M is a Cop∞ -bimodule if and only if A⊥R(M)
is a differential module over the shuffle bialgebra A⊥(R) for the action ρ̃. That is
to say if the following diagram commutes

A⊥R(M)⊗A⊥(R)
ρ̃−→ A⊥R(M)

DM ⊗ id + id⊗D ↓ ↓ DM

A⊥R(M)⊗A⊥(R)
ρ̃−→ A⊥R(M).
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The equation satisfied by the defining maps DM
10 and DM

01 for being a C∞ or a
Cop∞ -bimodule are the same, namely

∀x ∈ R,m ∈M DM
10 (x,m) = (−1)|x||m|DM

01 (m,x).

From this observation follows the obvious

Proposition 2.20. If M is either a C∞ or a Cop∞ -bimodule over R, then
H∗(M) is a symmetric H∗(R)-module.

2.2. Harrison (co)homology with values in bimodules. In this section
we define Harrison (co)homology for a C∞-algebras. For simplicity, in this section,
we restrict attention to the case where k is a field and C∞-algebras and bimodules
are strong. In particular, applying Proposition 2.16 all modules are C∞ and Cop∞ -
bimodules.

We first deal with cohomology. Thus let (R,D) be a (strong) C∞-algebra
and let (M,DM ) be a (strong) C∞-bimodule over R. Recall that a coderivation
f ∈ CoDer

(
T (sR), A⊥R(M)

)
is determined by its projection f i : R⊗i≥0 → M .

Denote BDer(R,M) the subspace of CoDer
(
T (sR), A⊥R(M)

)
of coderivations f such

that the fi vanishes on the module generated by the shuffles i.e.,

fi
(
sh(x, y)

)
= 0 for i ≥ 2, x ∈ Rk≥1, y ∈ Ri−k≥1.

Lemma 2.21. The map b(f) = DM ◦ f − (−1)|f |f ◦ D sends BDer(R,M) to
itself and satisfies b2 = 0.

Proof : We already know that b maps coderivations into coderivations. Let x ∈
R⊗k≥1, y ∈ R⊗l≥1 and f ∈ BDer(R,M).

b(f)i
(
x • y

)
=

∑
±DM

i(1)i(3)

(
x(1) • y(1), fi(2)(x

(2) • y(2)), x(3) • y(3)
)

=
∑
±DM

i(1)i(3)

(
x(1) • y(1), fi(2)(x

(2)), x(3) • y(2)
)

+±DM
i(1)i(3)

(
x(1) • y(1), fi(2)(y

(2)), x(2) • y(3)
)

= 0.

The first line follows from the definition of BDer(R,M) and the other because M
is a C∞-bimodule.
The last statement follows from

b2(f) = D
(
DM ◦ f − (−1)|f |f ◦D

)
− (−1)|f |+1

(
DM ◦ f − (−1)|f |f ◦D

)
D

= (−1)|f |+1DM ◦ f ◦D + (−1)|f |DM ◦ f ◦D
= 0.

�

Definition 2.22. Let (R,D) be a strong C∞-algebra and (M,DM ) be a strong
C∞-bimodule over R, the Harrison cohomology Har∗(R,M) of R with values in M
is the cohomology of the complex CHar∗(R,M) := BDer(R,M) with differential
b(f) = DM ◦ f − (−1)|f |f ◦D.

Example 2.23. Let R be a non-graded commutative algebra and M a sym-
metric R-bimodule. Then the space of coderivations BDer(R,M) is isomorphic
to Hom(T (R)/sh,M) and is concentrated in positive degrees. Thus, as in Exam-
ple 1.10, the Harrison cohomology coincides with the usual one for strictly commu-
tative algebras in degree ≥ 1.
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Remark 2.24. The notation BDer is chosen to put emphasis on the fact that
the Harrison cochain complex BDer(R,M) is a space of B∞-derivation. More pre-
cisely: if R has a structure of B∞-algebra and A⊥R(M) is a differential graded
module over the bialgebra (T (sR), δ,MB), a derivation of B∞-algebra from R to
M is a map f : T (sR)→ A⊥R(M) which commutes with δ and M i.e.

δM ◦ f = (id⊗ f + f ⊗ id) ◦ δ and

f ◦MB = ρ(id⊗ f + f ⊗ id).
When R is a C∞-algebra and M a C∞-bimodule over R, BDer(R,M) is the space
of B∞-derivations from R to M for the B∞-structure given by the shuffle product
and the coderivation given by ρ.

We now define Harrison homology. Let R be a C∞-algebra and M a C∞-R-
bimodule. We denote T (sR)/sh the quotient of the shifted tensor coalgebra T (sR)
by the image of the shuffle product map A⊥(sR) ⊗ A⊥(sR) → T (sR). Reasoning
as in the first part of the proof of Lemma 2.21 yields

Lemma 2.25. Let R be a C∞-algebra and M a R-bimodule. If M is a C∞-
bimodule, the Hochschild differential b : M ⊗ T (sR) → M ⊗ T (sR) passes to the
quotient M ⊗ T (sR)/sh.

Definition 2.26. Let (R,D) be a strong C∞-algebra and (M,DM ) a strong
C∞-bimodule over R, the Harrison homology Har∗(R,M) of R with values in M
is the homology of the complex (CHar∗(R,M) := M ⊗ C⊥(R), b).

Example 2.27. If R, M are respectively a commutative algebra and a sym-
metric bimodule, the complex CHar∗(R,M) is the usual Harrison chain complex,
up to degree 0 terms.

Proposition 2.28. Let R be a strong C∞-algebra and M a strong C∞-bimodule
over R, flat as k-modules. There are converging spectral sequences

Epq2 = Harp+q(H∗(R), H∗(M))q =⇒ Harp+q(R,M),

E2
pq = Harp+q(H∗(R), H∗(M))q =⇒ Harp+q(R,M).

Proof : The shuffle product preserves the grading of T (sR) by tensor powers. Thus
the filtration FpC∗ of Proposition 1.19 induces a filtration on the Harrison chain
complex CHar∗(R,M). Similarly the filtration F pC∗ restricts to the Harrison
cochain complex. Now, the proof of Proposition 1.11 applies also in these cases. �

Remark 2.29. It is of course possible to work with more general ground ring
k and general C∞-algebras and bimodules. In that case, we have to assume that
M is a Cop∞ -bimodule in statements relative to homology (and a C∞-bimodule
in statement relative to cohomology). Henceforth we shall do so without further
comments when there is no risk for confusion, for instance in Theorem 3.1.

3. λ-operations and Hodge decomposition

This section is devoted to the definition and study of the Hodge decomposition
for Hochschild cohomology of C∞-algebras. We first recall quickly some basic facts
about λ-rings. The λ-operations are standard maps that exists on the Hochschild
and cyclic (co)homology of a commutative algebra [GS1, Lo1]. They yield a Hodge
decomposition in characteristic zero and give a structure of γ-ring with trivial
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multiplication to the (co)homology groups. A γ-ring with trivial multiplication
(A, (λk)) is a k-module A equipped with linear maps λn : A→ A (n ≥ 1) such that
λ1 is the identity map and

λp ◦ λq = λpq.

A γ-ring with trivial multiplication (A, (λn)) has a canonical decreasing filtra-
tion F γ• A. For n ≥ 1, denote γn =

∑n−1
i=0

(
k−1
i

)
(−1)k−i−1λk−i. It is standard

that λk acts as multiplication by kn on each associated graded module Gr(n)A =
F γnA/F

γ
n+1A. In many cases this filtration splits A into pieces A(i) which are the

ni-eigenspaces of the maps λn, see [Lo1] for more details.

The tensor coalgebra (T (sR), δ, •) is a graded bialgebra, indeed a Hopf algebra,
which is commutative as an algebra. Thus there exist maps ψp : T (sR) → T (sR)
defined by

ψp = shp−1 ◦ (δ)p−1(3.12)

which yield a γ-ring with trivial multiplication structure on T (sR) [Lo2, Lo3,
Pa]. These maps induce the γ-ring structure and Hodge structure in Hochschild
(co)homology.

When the ground ring k contains the rational numbers Q, there is a family
of orthogonal idempotents e(i) : T (sR) → T (sR) such that the tensor coalgebra
T (sR) =

⊕
n≥0 e

(i)(T (sR)) with e(0)(T (sR)) = k and

e(1)(T (sR)) = T (sR)/T (sR) • T (sR) ∼= T (sR)/sh

is the set of indecomposable of the shuffle bialgebra T (sR). Furthermore, the
idempotents e(i) are linear combinations of the maps ψn and e(i)(T (sR)) is the
ni-eigenspaces of the map ψn.

3.1. Hochschild cohomology decomposition. In this section we study the
λ-operations on Hochschild cohomology of a C∞-algebra R with values in a Cop∞ -
bimodule M .

A coderivation f ∈ CoDer(R,M) is uniquely defined by its components fi :
R⊗i≥0 →M . Thus, for n ≥ 1, we obtain the coderivation

λn(f) :=
(
fi ◦ ψn/R⊗i

)
i≥0

defined by the maps fi ◦ ψn : R⊗i →M .

Theorem 3.1. Let (R,D) be a C∞-algebra and (M,DM ) be a Cop∞ -bimodule
over R.

(1) The maps (λi)i≥0 give a γ-ring with trivial multiplication structure to the
Hochschild cochain complex (CoDer(R,M), b) and the Hochschild coho-
mology HH∗(R,M).

(2) If k contains Q, there is a natural Hodge decomposition

HH∗(R,M) =
∏
n≥0

HH∗(n)(R,M)

into eigenspaces for the maps λn. Moreover HH∗(1)(R,M) ∼= Har∗(R,M)
and HH∗(0)(R,M) ∼= H∗(M).
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(3) If k is a Z/pZ-algebra, there is a natural Hodge decomposition

HH∗(R,M) =
⊕

0≤n≤p−1

HH∗(n)(R,M)

with each λn acts by multiplication by ni on HH∗(i)(R,M). There is a nat-
ural linear map Har∗(R,M) → HH∗(1)(R,M) inducing an isomorphism
HH∗(1)(R,M)q≥∗−p+1 ∼= Har∗(R,M)q≥∗−p+1.

Proof : The identity λi ◦ λj = λij is immediate from ψj ◦ ψi = ψij . Moreover
λ1(f) = f . To prove the first part of the theorem it remains to check that the maps
λn are chain complex morphisms. By Definition 2.1, the differential D is both a
derivation and a coderivation. Thus the differential D commutes with the maps
ψp. Hence with the Eulerian idempotents when they are defined. By definition of
the differential b, it is sufficient to prove, for p ≥ 1, that

pr
(
DM (f(ψp+1))−DM (ψp+1(f))

)
= 0

where pr : T (sR) → sR is the canonical projection. Let x be in R⊗n. Since the
shuffle product • is a map of coalgebra, one has

pr
(
DM ◦ f(ψp+1(x))

)
=

∑
DM
∗∗
(
± x(1) • x(4) · · · • x(3p−2) ⊗ f∗

(
x(2) • x(5)•

· · · • x(3p−1)
)
⊗ x(3) • x(6) • · · · • x(3p)

)
where the sum is over all possible indexes (recall that we are using Sweedler’s
notation). By definition 2.10, the terms where x(3) or x(4) are not in k cancel out
each others (fixing all other components, it follows immediately from the definition).
The same argument works for the terms x(3i) or x(3i+1), i ≤ p − 1. Thus we are
left with

pr
(
DM ◦ f(ψp+1(x))

)
=
∑

DM
∗∗
(
± x(1) ⊗ f∗

(
x(2) • x(3) • · · · • x(p+1)

)
⊗ x(p+2)

)
= pr

(
DM (f ◦ ψp+1(x))

)
and the first part of the theorem follows.

If k ⊃ Q, the idempotents e(k) are defined. By the first part of the theorem the
Hochschild cochain space splits as the product

C∗(R,M) =
∏
i≥0

C∗(k)(R,M)

where C∗(i)(R,M) is the subspace of coderivation f whose defining maps fi fac-
tors through e(k)(T (sR)). We write C∗(i)(R,M) = CoDer

(
e(k)(T (sR)), A⊥R(M)

)
by

abuse of notation. This yields the Hochschild cohomology decomposition. It is
standard that ψn =

∑
i≥0 n

ie(i). Moreover

(C∗(0)(R,M), b) = (CoDer(k,A⊥R(M)), b) ∼=
(
Hom(k,M), DM

00

)
.

By section 2.2, Harrison cohomology is well defined. As e(1)(T (sR)) ∼= T (sR)/sh,
one has

C∗(1)(R,M) ∼= (Hom(T (sR)/sh, A⊥R(M)), b) ∼= (BDer(R,M), b) = CHar∗(R,M).
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If k is a Z/pZ-algebra, the operators e(i)
n =

∑
m≥0 e

(i+(p−1)m)
n : R⊗n → R⊗n

are well defined for 1 ≤ i ≤ p− 1 and n ≥ 1, see [GS2, Section 5]. Denote e(i) the

map induced by the operators e(i)
n for n varying. Note that e(i)

n = e
(i)
n for n ≤ p−1.

As above, the Hochschild differential commutes with the operators e(i), thus the
Hochschild cochain complex splits as

C∗(R,M) =
⊕

0≤i≤p−1

C∗(i)(R,M)

where C∗(i)(R,M) = CoDer(e(i)(T (sR)), A⊥R(M)). By [GS2], (e(1)(T (sR)) lies in
the quotient of the cotensor coalgebra T (sR)/sh. It follows that we have a canonical
map Har∗(R,M) → HH∗(1)(R,M) (see Definition 2.22) which is an isomorphism

when restricted to components of external degree q ≥ ∗− p+ 1 because e(1)
n = e

(1)
n

for n ≤ p − 1. Since p ∈ k is null, reasoning as above we get that the complexes
C∗(i≥1)(R,M) are ni-eigenspaces for λi. �

Remark 3.2. The γ-ring structure given by Proposition 3.1.(1) gives rise to
the canonical filtration of complexes F γ• (CoDer(R,M), b). Hence there is a spectral
sequence

Eγp,q1 = Hp+q(F γq F
γ
q+1) =⇒ HHp+q(R,M).

Denote Fn,(q)ind (R,M) := Im(Hn(F γq ) → HHp+q(R,M)), the induced filtration on
HH∗(R,M). The argument of [Lo1, Théorème 3.5] shows that Ep,21

∼= Harp(R,M)
and F

n,(q)
ind (R,M)∗≥n−q+2 ∼= 0, Fn,(1)

ind (R,M) ∼= HHn(R,M).

Example 3.3. By Proposition 2.19, the Hochschild cohomology HH∗(R,R?)
always has a γ-ring structure. When R is free and R is strong, HH∗(R,R) is also
a γ-ring according to Proposition 2.16.

Remark 3.4. The splitting of the differential graded bialgebra T (sR) (with
the differential giving the C∞-structure and the shuffle product) used in the proof
of Theorem 3.1 is also the one given in [WGS] for the shuffle bialgebra.

Theorem 3.1 applies to strict algebras. For a strict commutative algebra R, we
denote by Ω∗R the graded exterior algebra of the graded Kähler differential R-
module Ω1

R. The decompositions given by Theorem 3.1 agree with the classical
ones for strict algebras according to

Proposition 3.5. Let (R, d) be a differential graded commutative algebra and
M a symmetric bimodule. Then there exist λ-operations on HH∗(R,M). If k ⊃ Q,
the λ-operations yield a Hodge decomposition of the Hochschild cohomology of R:

HHn(R,M) =
n∏
i≥0

HHn
(i)(R,M) for n ≥ 1

Moreover one has:
i) If R is unital and k ⊃ Q, HHn

(j)(R,M) ⊃ Hn−j(HomR(ΩjR,M), d∗) for
n ≥ 1, j ≥ 0, this inclusion being an isomorphism if R is smooth;

ii) If R and M are non-graded, then the decomposition coincides with the one
of Gerstenhaber and Schack [GS1, GS2].
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Proof : By Example 2.11, we know that M is a Cop∞ -bimodule over R. By Exam-
ple 1.10, the Hochschild cochain complex of R as a C∞-algebra is isomorphic to its
usual Hochschild complex as an associative algebra. Through this isomorphism the
operation λi becomes

(3.13) f ∈ Hom(R⊗n,M) 7→ f ◦ ψi.
Thus when k ⊃ Q, the induced splitting coincides with the one of [GS1] and
ii) is proved. Theorem 3.1 implies that the Hochschild cohomology of R (with
its canonical C∞-structure) admits a Hodge type decomposition. We know from
Example 1.10 that this cohomology coincides with the usual Hochschild cohomology.

When R is furthermore unital, there is a canonical isomorphism of cochain
complexes

Hom(R⊗n,M) ∼= HomR(R⊗R⊗n,M)
where the differential on the right is dual to the Hochschild differential on the
Hochschild complex C∗(R,R) = R ⊗R⊗∗. There is the well-known canonical map
R ⊗ T (sR) π→ Ω∗R given by π(a0 ⊗ a1 ⊗ . . . ⊗ an) = a0∂a1 . . . ∂an which is a map
of complexes. The differential on Ω∗R is the one induced by the inner differential
d : R→ R. Hence we get a chain map

π∗ : (HomR(ΩjR,M), d∗)→ (CoDer(R,M), b).

It is known that ΩiR ∼= R⊗e(i)(R⊗i) [Lo2]. Thus the chain map π∗ splits and iden-
tifies HomR(ΩjR,M), d∗) as a subcomplex of C∗(i)(R,M). Also, when R is smooth,
the map π∗ is a quasi-isomorphism and Ω1

R is projective over R, thus π∗ is a quasi-
isomorphism too. �

Remark 3.6. • Proposition 3.5 applies to non unital algebras.
• If R and M are non-graded and moreover flat over k ⊃ Q, then assertion
ii) implies that

HHn
(i)(R,M) ∼= AQn−ii (R/k,M)

where AQ∗k(R/k,M) is the higher André-Quillen cohomology of R with
coefficients in M .

Recall that for any C∞-algebra (R,DC), the map D1 : R→ R is a differential
and that we denote H∗(R) the homology of (R,D1). Similarly, for an R-bimodule
M , H∗(M) is the homology of (M,DM

00 ). According to Proposition 1.11, there is
a spectral sequence abutting to HH∗(R,M). It is in fact a spectral sequence of
γ-rings.

Proposition 3.7. Let (R,D) be a C∞-algebra with R, H∗(R) flat as a k-
module and M be a Cop∞ -bimodule with M,H∗(M) flat.

• The spectral sequence E∗,∗2 = HH∗(H∗(R), H∗(M)) =⇒ HH∗(R,M) is a
spectral sequence of γ-rings (with trivial multiplication).

• If k ⊃ Q, then the above spectral sequence splits into pieces

AQn−i(i) (H∗(R), H∗(M)) =⇒ HH∗(i)(R,M).

Proof : The spectral sequence of Proposition 1.11 is induced by the filtration
F ∗C∗(R,M). The maps λn preserves the filtration, thus the γ-ring structure passes
to the spectral sequence. The E∗∗1 term corresponds to the Hochschild cochain
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complex of the commutative algebra H∗(R) with values in the symmetric bimod-
ule H∗(M). Example 1.10 ensures that the induced operations λn : E∗∗1 → E∗∗1
corresponds to Gerstenhaber-Schack standard ones on the cochain complex, hence
in its cohomology E∗∗2 .

When k ⊃ Q, the Hochschild cochain complex splits as a direct product of
complexes

∏
i≥0 C

∗
(k)(R,M). Furthermore, this splitting is induced by the Euler-

ian idempotent, which are linear combination of the maps λn. Thus the filtra-
tion on C∗(R,M) is identified with a product of filtered complexes F •C∗(i)(R,M).
As above, we find that the level E∗∗1 C∗(i)(R,M) is given by the weight i part
C∗(i)(H

∗(R), H∗(M)) of C∗(H∗(R), H∗(M)). The flatness and rational assump-
tions ensures that the cohomology of C∗(i)(H

∗(R), H∗(M)) is the André-Quillen
cohomology AQn−i(i) (H∗(R), H∗(M)) see [Lo2], Chapter 3. �

Remark 3.8. One easily checks that, when R is flat over k ⊃ Q, the weight
1 part of the spectral sequence coincides with the Harrison cohomology spectral
sequence 2.28. Notice that the spectral sequences also splits with respects to the
partial Hodge decomposition if k ⊃ Z/pZ.

Let F : (S,B) → (R,D) be a map of A∞-algebras and (M,DM ) be an R-
bimodule. Let BM be the coderivation of A⊥S (M) given by the defining maps(

BMpq : S⊗p ⊗M ⊗ S⊗q F⊗id⊗F−→ A⊥R(M) DM

−→ A⊥R(M)
pr−→M

)
p,q≥0

.

Lemma 3.9. The coderivation BM endows M with a structure of S-bimodule.
Furthermore, if F is a map of C∞-algebras and M is a Cop∞ -bimodule, then M is
also a Cop∞ -bimodule over S.

Proof : We have to check that (BM )2 = 0. For x ∈ A⊥R(M), the tensorBM
(
BM (x)

)
is a sum of three kinds of elements: the ones which only involve the maps Bn, the
ones which only involve the maps BMnm (m,n ≥ 0) and the ones which involve one
Bn and one BMpq (n, p, q ≥ 0). Since B ◦B = 0 the sum of elements of the first kind
vanishes. Since the degrees |B| = |BM | = 1 are odd, the sum of elements of the
third kind is also null. The sum of terms of the second kind vanishes because the
projections on M satisfies

pr
(∑

BMnm ◦ (F ⊗ id⊗ F ) (BM (x))
)

= pr
(
DM ◦DM (F ⊗ id⊗ F )

)
= 0.

When F is a C∞-map, each of its components Fi vanish on shuffles. It follows
that the coalgebra map F : A⊥(S)→ A⊥(R) is also a map of algebras (for the shuffle
product). Furthermore, according to Proposition 2.19, A⊥R(M) is a differential
module over the shuffle algebra A⊥(R). Thus A⊥S (M) is a differential module over
the shuffle algebra A⊥(S). Hence M is a C∞-bimodule over S. �

Proposition 3.10. Let (R,D) be an A∞-algebra, (M,DM ) an R-bimodule
and (S,B) be a A∞-algebras.

• If there is an A∞-map F : (S,B)→ (R,D), then there is a linear map

F ∗ : HH∗(R,M)→ HH∗(S,M)

which is an isomorphism if F1 : (S, dS)→ (R, dR) is a quasi-isomorphism.
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• If (N,DN ) is an R-bimodule and φ : (M,DM )→ (N,DN ) is a A-bimodule
map, then there is a linear map

φ∗ : HH∗(R,M)→ HH∗(R,N)

which is an isomorphism when φ1 : (M,dM ) → (N, dN ) is a quasi-
isomorphism.

• When R, S are C∞-algebras, M , N are C∞-bimodules and F , φ C∞-
morphisms, then F ∗ and φ∗ are maps of γ-rings.

Proof : Lemma 3.9 implies that M has an S-bimodule structure given by the map
BM . The morphism of differential coalgebras F induces a morphism of coderiva-
tions F ∗ : CoDer(R,M)→ CoDer(S,M). For any x in C∗(R,M) = CoDer(R,M),
one has,

b(F (x)) = BM (x(F ))− x(F (B))

= BM (x)(F )− x(D(F ))

hence F is a morphism of complex. If F1 is a quasi-isomorphism, then F̃1 is an
isomorphism at the page 1 of the spectral sequences associated to HH∗(R,M),
HH∗(S,M) by Proposition 1.11. The first assertion is proved. The second one is
analogous using the application φ∗ : F ∈ C∗(R,M) 7→ φ ◦ f ∈ C∗(R,N) instead of
F ∗.

Moreover when F is a C∞-map, then M is a C∞-bimodule by Lemma 3.9
and the λ-operations already commutes with F ∗ and φ∗ at the cochain level; the
compatibility is proved as in Theorem 3.1. �

A C∞-algebra (R,D) is said to be formal if there is a morphism

F : (H∗(R), D2)→ (R,D)

of C∞-algebras with F1 a quasi-isomorphism.

Corollary 3.11. Let (R,D) be a formal C∞-algebra, free as a k-module. If
there is a C∞-map F : (H∗(R), D2) → (R,D) with F1 a quasi-isomorphism, then
there is a natural isomorphism of γ-rings:

HH∗
(
R,R

) ∼= HH∗
(
H∗(R), H∗(R)

)
and if k ⊃ Q, an isomorphism of Hodge decomposition

HH∗(n)

(
R,R

) ∼= HH∗(n)

(
H∗(R), H∗(R)

)
for n ≥ 0.

Proof : We denote by φ : H∗(R) → R the morphism of C∞-bimodule induced by
F . Proposition 3.10 yields a zigzag

HH∗
(
R,R

) F̃∗−→ HH∗
(
H∗(R), R

) φ̃∗←− HH∗
(
H∗(R), H∗(R)

)
where the arrows are isomorphisms of γ-rings. Hence the result. �

Remark 3.12. The definition of formality that we use here is quite strong.
However, it is enough for our purpose. In the literature, one might find the definition
that (R,D) is formal if (H∗(R), D2) and (R,D) are connected by a chain of C∞-
quasi-isomorphisms. When k is a characteristic zero field, these two definitions
agree since one can check that C∞-quasi-isomorphisms are invertible. This is also
the case over any field if one only considers strong C∞-algebras. Details are left to
the reader.
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Proposition 3.13. Let (R,D) be a C∞-algebra and F1 : H∗(R)→ R a quasi-
isomorphism inducing the product structure on H∗(R). If

Harn(H∗(R), H∗(R))≤2−n = 0 for n ≥ 1

then R is formal.

Proof : The techniques of [GH2] for homotopy Gerstenhaber algebras apply mu-
tatis mutandis to C∞-algebras as well. Thus, given a quasi-isomorphism F1 :
H∗(R) → R, there is a C∞-structure (H∗(R), B) and a C∞-quasi-isomorphism
G : (H∗(R), B) → (R,D) such that B1 = 0, B2 = D2 and G1 = F1. When the
Harrison cohomology is concentrated in bidegree (1, ∗), for the bigrading induced
by the tensor power of maps and internal degree of H∗(R), there is a C∞-morphism
H : (H∗(R), D2)→ (H∗(R), B) with H1 being the identity map. The composition
of this two C∞-maps gives the formality map. �

Example 3.14. By a deep result of Tamarkin [Ta], it is now well-known that
the Hochschild cochain complex of any associative algebra A, over a characteristic
zero ring, has a G∞-structure, hence a C∞-one, which is (non-canonically) induced
by the cup-product and the braces of [GV]. For the algebra A = C∞(X) of smooth
functions on a manifold X, the Hochschild cochain complex C∗(A,A) of multilinear
and multidifferential operators on A is a formal C∞-algebra. Its cohomology is
Γ = Γ(X,ΛTX) the polyvector fields on X. We can apply Proposition 3.13 and
then Corollary 3.11 (because the Harrison cohomology of Γ vanish) to find

HH∗(j)(C
∗(A,A), C∗(A,A)) ∼= HH∗(j)

(
Λ∗Γ(X,ΛTX),Λ∗Γ(X,ΛTX)

)
∼= HomΓ(ΩjΓ,Γ)
∼= ΛjsΩΓ.

The last step follows from the Jacobi-Zariski exact sequence applied to the smooth
algebra Γ that leads to ΩΓ

∼= Γ ⊗R ΩR ⊕ s(ΩR)?. Moreover, the Hochschild chain
complex C∗(A,A) is a Cop∞ -bimodule by Proposition 2.19. From the previous argu-
ment one easily gets

HH∗(j)(C
∗(A,A), C∗(A,A)) ∼= HomΓ(ΩjΓ,Ω

∗
A).

Example 3.15. When formality does not hold, Proposition 3.7 can be used to
study HH∗

(
C∗(R,R), C∗(R,R)

)
. For instance, Let R be a semi-simple separable

algebra, then HH∗(R) = HH0(R) = Z(R) the center of R. It follows that the
spectral sequence E∗∗1 is concentrated in bidegree (∗, 0) hence collapses. Thus one
has

HH∗
(
C∗(R,R), C∗(R,R)

) ∼= HH∗
(
Z(R), Z(R)

)
which is an isomorphism of Gerstenhaber algebras and γ-rings on the associated
graded to the canonical filtration of A⊥(R).

Proposition 3.16. Let k be a characteristic zero field and (R,D) be a C∞-
algebra with D1 = 0. Assume that there is an element 1 ∈ R0 which is a unit for
D2. Let N be a Cop∞ -module.

• If (R,D2) is smooth, for any n ≥ 0, one has

HH∗(n)(R,N) ∼= HomR(ΩnR, N).
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• If (R,D2) is not necessarily smooth but satisfies D3(1, x, y) = D3(y, 1, x) =
0, then

HH∗(n)(R,N) ⊃ HomR(ΩnR, N).

Proof : Let πn : M ⊗ R⊗n → M ⊗(R,D2) Ωn(R,D2) be the canonical surjection.
It factors through M ⊗ e(n)(R⊗n). The C∞-differential D commutes with e(n).
Moreover the map Di≥2

(
R⊗n

)
⊂ R⊗≤n−1. Thus, as π∗ factors through M ⊗

e(n)(R⊗n), the map π∗ : (C∗(R,M), b) → (M ⊗(R,D2) Ω∗(R,D2), 0) is a chain map.
This is a generalization of a well-known fact for strict algebras [Lo2, chapter 4].
Therefore we obtain a morphism of cochain complexes

(HomR(ΩnR, N), 0) ↪→ (C∗(R,N), b).

The filtration by the exterior power of HomR(Ω∗(R,D2), R) yields a spectral sequence
computing HomR(Ω∗(R,D2), R). The complex map π∗ yields a map between this
spectral sequence and the one of Proposition 1.11 for HH∗(R,M). When (R,D2)
is smooth, the map π1 is an isomorphism at page 1 by the Hochschild Kostant
Rosenberg theorem, thus on the abutment. If D3 vanishes when one of the variable
is the unit, then the anti-symmetrization map εn : Ωn(R,D2) → M ⊗ R⊗n is well
defined modulo a boundary of (M ⊗ T (sR), b), as for strict commutative algebras.
Thus we have a well defined map

ε∗ : HH∗(R,M)→ HomR(ΩnR, N)

which is a section of π∗ up to multiplication by non zero scalars [Lo2]. �

Example 3.17. A C∞-algebra satisfying D1 = 0 is called a minimal C∞-
algebra. Formal Frobenius algebras are a huge class of examples [Ma].

3.2. Decomposition in Hochschild homology. In this section we define
and study the Hodge decomposition for Hochschild homology of C∞-algebras. We
denote λ

p
: M ⊗ T (sR) → M ⊗ T (sR) the map id ⊗ ψp for p ≥ 1, where ψp is

defined by formula (3.12).

Theorem 3.18. Let R be a C∞-algebra and M an C∞-bimodule over R.

(1) The maps (λ
i
)i≥1 define a γ-ring (with trivial multiplication) structure

on the Hochschild complex (M ⊗ T (sR), b) and on Hochschild homology
HH∗(R,M).

(2) If k contains Q, there is a Hodge decomposition

HH∗(R,M) =
⊕
i≥0

HH
(i)
∗ (R,M)

into eigenspaces for the maps λ
n

. Moreover HH(1)
∗ (R,M) ∼= Har∗(R,M)

and HH(0)
∗ (R,M) ∼= H∗(M,DM

00 ).
(3) If k is a Z/pZ-algebra, there is a Hodge decomposition

HH∗(R,M) =
⊕

0≤n≤p−1

HH
(n)
∗ (R,M)

with λ
n

acting by multiplication by ni on HH
(i)
∗ (R,M). Furthermore,

there is a natural linear map HH
(1)
∗ (R,M) → Har∗(R,M) inducing an

isomorphism HH
(1)
∗ (R,M)∗≤p−1−n ∼= Har∗(R,M)∗≤p−1−n.
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Proof : The proof is similar to the one of Theorem 3.1. The only slight difference
is the compatibility of the maps ψp+1 (p ≥ 1) with the differential DM . For
m ∈M,x ∈ T (sR) one has

DM
(
λ
p+1

(x)
)

=
∑

DM
∗∗

(
±x(3) • x(6) · · · • x(3p) ⊗m⊗ x(1) • x(4)•

· · · • x(3p−2)
)
⊗ x(2) • x(5) • · · · • x(3p−1)

All the terms for which x(3i+1) or x(3i) is non trivial (1 ≤ i ≤ p − 1) vanish by
definition of a C∞-module. Thus

DM
(
λ
p+1

(x)
)

= ±DM
∗∗

(
x(p+2) ⊗m⊗ x(1)

)
⊗ x(2) • x(3) • · · · • x(p+1)

= λ
p+1

(DM (x)).

�

Example 3.19. When R is a differential graded commutative algebra and M
a symmetric bimodule, the γ-ring structures and Hodge decompositions given by
Theorem 3.18 coincides with the classical ones [Lo1, Vi].

Remark 3.20. Similarly to Remark 3.2, the γ-ring structure given by The-
orem 3.18.(1) gives rise to a canonical filtration of complexes F γ• (M ⊗ T (sR), b)
and thus a spectral sequence Eγ1

p,q = Hp+q(F γq F
γ
q+1) =⇒ HHp+q(R,M). The in-

duced filtration F indn,(q)(R,M) := Im(Hn(F γq ) → HHp+q(R,M)) satisfies E1
p,2
∼=

Harp(R,M) and F indn,(q)(R,M)∗≥q−2−n ∼= 0, F indn,(1)(R,M) ∼= HHn(R,M).

Proposition 3.21. Let (R,D) be a C∞-algebra with R, H∗(R) flat as a k-
module and M be a Cop∞ -bimodule such that M and H∗(M) are flat.

• The spectral sequence E2
∗,∗ = HH∗(H∗(R), H∗(M)) =⇒ HH∗(R,M) (see

Theorem 1.19) is a spectral sequence of γ-rings (with trivial multiplica-
tion).
• If k ⊃ Q, the spectral sequence splits into pieces

AQ
(i)
n−i(H

∗(R), H∗(M)) =⇒ HH
(i)
∗ (R,M).

Proof : The proof is dual to the one of Theorem 1.19 and Proposition 3.7 using
the dual filtration FiC∗(R,M) = M ⊗R⊗∗≤i. �

Remark 3.22. One easily checks that when R is flat over k ⊃ Q, the weight
1 part of the spectral sequence coincides with the Harrison homology spectral se-
quence of Proposition 2.28.

When the bimodule M is the C∞-algebra R, the Hochschild complex is a C∞-
algebra. For i ≥ 2, let Bi :

(
R ⊗ T (sR)

)⊗i → R ⊗ T (sR) be the map defined, for
rk ⊗ xk ∈ R⊗ T (sR), k = 1 . . . i, by

Bi(r1⊗x1, . . . , ri⊗xi) =
∑
j≥i

±Dj

(
x

(3)
1 ⊗r1⊗x(1)

1 /· · ·/x(3)
i ⊗ri⊗x

(1)
i

)
⊗x(2)

1 •· · ·•x
(2)
i

where x⊗r1⊗y/x′⊗r2⊗y′ is obtained from the shuffle product x⊗r1⊗y•x′⊗r2⊗y′ by
taking only shuffles such that r1 appears before r2. Take the Hochschild differential
b for B1 and write B : C∗(R,R) ⊗ T (sC∗(R,R)) → C∗(R,R) ⊗ T (sC∗(R,R)) for
the codifferential induced by the maps Bi.
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Proposition 3.23. • (C∗(R,R), B) is a C∞-algebra. In particular B2

induces a structure of commutative algebra on HH∗(R,R).

• Bi(λk
⊗i

) = λk(Bi) and in particular the operations λk are multiplicative
in Hochschild homology.

• The spectral sequence E2
∗,∗ = HH∗(H∗(R), H∗(R)) =⇒ HH∗(R,R) is a

spectral sequence of algebras equipped with multiplicative operations λk.

Proof : By commutativity of the shuffle product, the vanishing of the maps Bi≥2

on shuffles amounts to the vanishing of

Dj≥p+q(x
(3)
1 r1x

(1)
1 / . . . / x(3)

p rpx
(1)
p • y

(3)
1 s1y

(1)
1 / . . . / y(3)

q sqy
(1)
q )

which follows since R is a C∞-algebra. Since

D(x1 • · · · • xi) =
∑
±x1 • · · · •D(xj) • · · · • xi,

the vanishing of B2 is equivalent to the equation∑
±D∗

(
x

(3)
1 r1x

(1)
1 / . . . / x

(3)
i rix

(1)
i / x

(4)
i+1 • · · · • x

(4)
j D∗

(
x

(5)
i+1ri+1x

(1)
i+1 / . . .

. . . x
(5)
j rjx

(1)
j

)
x

(2)
i+1 • · · · • x

(2)
j / x

(3)
j+1rj+1x

(1)
j+1 / . . . / x

(3)
n rnx

(1)
n

)
= 0.

This is the A∞-equation (1.4) applied to

x
(3)
1 r1x

(1)
1 / . . . / x(3)

n rnx
(1)
n

up to terms like

D∗(. . . D∗(x
(1)
i • x

(4)
i+1ri+1x

(1)
i+1 / . . . x

(4)
j rjx

(1)
j ) . . . )

which are trivial by Definition 2.1. Thus the Hochschild complex (C∗(R,R), B) is a
C∞-algebra. In particular its homology for the differential B1 = b is a commutative
algebra.

The maps λ
k

are algebras morphisms (with respect to the shuffle product). As

in the proof of Theorem 3.18 (which is the B1-case), we obtain that Bi(λk
⊗i

) =
λk(Bi). Furthermore, the map Bi (i ≥ 1) preserves the filtration F ∗(C∗(R,R)).
It follows that the spectral sequence E1

∗∗ is a spectral sequence of commutative
algebras. On the page E1, the product is given by the usual shuffle product on the
Hochschild complex of H∗(R). Since the λ

k
-operations on page 2 commutes with

the shuffle product, the result follows. �

Remark 3.24. When R is a strict commutative algebra, one recovers the usual
shuffle product of [GJ1].

The functorial properties of Hochschild cohomology holds for homology as well.

Proposition 3.25. Let (R,D) be an A∞-algebra, (M,DM ) an R-bimodule
and (S,B) be an A∞-algebra.

• An A∞-morphism F : (S,B)→ (R,D) induces a natural linear map

F∗ : HH∗(S,M)→ HH∗(R,M)

which is an isomorphism if F1 : (S,B1)→ (R,D1) is a quasi-isomorphism.
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• Let (N,DN ) be an R-bimodule and let φ : (M,DM ) → (N,DN ) be an
R-bimodule map. There is a natural linear map φ∗ : HH∗(R,M) →
HH∗(R,N) which is an isomorphism if φ1 : (M,DM

00 )→ (N,DN
00) is a

quasi-isomorphism.
• Moreover when R, S are C∞-algebras, M , N C∞-bimodules and F , φ
C∞-morphisms, then F∗ and φ∗ are maps of γ-rings.

Example 3.26. Recall that, for an associative algebra over a field of char-
acteristic zero, the Hochschild cochain complex C∗(A,A) is a C∞-algebra (Exam-
ple 3.14). It is moreover formal when A = C∞(X). Thus Proposition 3.25 gives an
isomorphism

HH∗(C∗(R,R), C∗(R,R)) ∼= Γ(X,Λ∗(TX)?)⊗Γ Ω∗Γ.

Recall that if (R,D) is a C∞-algebra such that D1 = 0, then (R,D2) is a graded
commutative algebra (Example 2.7)

Proposition 3.27. Let k be a characteristic zero field, (R,D) be a C∞-algebra
such that D1 = 0 and D2 unital, and M be a C∞-module.

• If (R,D2) is smooth, one has

HH
(n)
∗ (R,M) ∼= M ⊗(R,D2) Ωn(R,D2).

• If R is not necessarily smooth but D3(1, x, y) = D3(y, 1, x) = 0, then

HH
(n)
∗ (R,M) ⊃M ⊗(R,D2) Ωn(R,D2).

3.3. The augmentation ideal spectral sequence. In this section, we gen-
eralize results of [WGS] in the context of C∞-algebras. In particular, we study the
compatibility between the Hodge decomposition and the Gerstenhaber structure,
see Theorem 3.31 below.

Convention 3.28. In this section, the ground ring k is either torsion free or
a Z/pZ-algebra. Moreover all k-modules are assumed to be flat.

The (signed) shuffle bialgebra T (sR) has a canonical augmentation T (sR) →
k⊕ sR. We wrote I(sR) for its augmentation ideal. There is a decreasing filtration

· · · ⊂ I(sR)n ⊂ I(sR)n−1 ⊂ · · · ⊂ I(sR)1 ⊂ I(sR)0 = T (sR).

This filtration induces a filtration of Hochschild (co)chain spaces

· · · ⊂M⊗I(sR)n ⊂M⊗I(sR)n−1 ⊂ · · · ⊂M⊗I(sR)1 ⊂M⊗I(sR)0 = C∗(R,M),

C∗(R,M) =CoDer(I(sR)0, A⊥R(M))→ CoDer(I(sR)1, A⊥R(M))→ . . .

· · · → CoDer(I(sR)n−1, A⊥R(M))→ CoDer(I(sR)n, A⊥R(M))→ . . . .

We called these filtration the augmentation ideal filtration.

Lemma 3.29. Let R be a C∞-algebra, M and N respectively a C∞-bimodule
and a Cop∞ -bimodule over R. The augmentation ideal filtration of C∗(R,M) and
C∗(R,N) are filtration of (co)chain complexes.

Proof : Since the augmentation ideal filtration is induced by the shuffle product,
the result follows as in the proofs of Theorems 3.1, 3.18. �
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By Lemma 3.29, there are augmentation ideal spectral sequences

I1
pq(R,M) = Hp+q(M ⊗ I(sR)p/I(sR)p+1),(3.14)

Ipq1 (R,N) = Hp+q(CoDer(I(sR)p/I(sR)p+1, A⊥R(N)).(3.15)

Proposition 3.30. Let R be a C∞-algebra, M and N two R-bimodules which
are respectively a C∞-bimodule and a Cop∞ -bimodule.

(1) The spectral sequence I1
pq(R,M) converges to HHp+q(R,M) and the spec-

tral sequence Ipq1 (R,N) converges to HHp+q(R,N) if R ,M are concen-
trated in non-negative degrees and N in non-positive degrees.

(2) Let k be a field. Then I1∗
1 (R,N) ∼= Har∗+1(R,N) and I1

1∗(R,M) ∼=
Har∗+1(R,M).

(3) When R is free, I1∗
1 (R,R) is a spectral sequence of Gerstenhaber algebras.

Proof : It follows from the combinatorial observations of [WGS], Section 3 and
4. The only difficulty is to check that all the constructions are compatible with
the C∞-differential. This is straightforward since the differentials D, DM , DN

(defining the algebra and bimodules structures) are coderivations for the coproduct
and moreover compatible with the filtrations (Lemma 3.29). �

Theorem 3.31. Let k be a field and R be a strong C∞-algebra (see Exam-
ple 2.4).

• The Harrison cohomology Har∗(R,R) = HH∗(1)(R,R) is stable by the
Gerstenhaber bracket.

• If k ⊃ Q, the cup-product and Gerstenhaber bracket are filtered for the
Hodge filtration FpHH∗(R,R) =

⊕
n≤qHH

∗
(n)(R,R), in the sense that

FpHH∗(R,R) ∪ FqHH∗(R,R) ⊂ Fp+qHH∗(R,R) and

[FpHH∗(R,R),FqHH∗(R,R)] ⊂ Fp+q−1HH
∗(R,R)

Proof : Since k is a field, the convention 3.28 is satisfied and furthermore, The-
orem 3.1 gives a Hodge decomposition if k is of characteristic zero or a partial
Hodge decomposition if k is of positive characteristic. Moreover, the identification
of the Harrison cohomology also follows from Theorem 3.1. By Proposition 2.16,
R is a Cop∞ -bimodule over itself. Let g be in C∗(1)(R,M). Since each component
gi : R⊗i → R vanishes on shuffles, we obtain g(x • y) = g(x) • y+ (−1)|x||g|x • g(y).
Thus, for f, g ∈ C∗(1)(R,M),

pr([f, g](x • y)) = pr
(
f(g(x) • y) +±f(x • g(y))−±g(f(x) • y) +±g(x • f(y))

)
= 0.

Hence [f, g] ∈ C∗(1)(R,M).

When k ⊃ Q it is well-known that there is an isomorphism of algebras T (sR) ∼=
S(e(1)(sR)) where the product on T (sR) is the shuffle product. Furthermore
e(i)(sR) = Si(e(1)(sR)). Hence, the filtration FqHH∗(R,R) is the filtration induced
by the augmentation ideal filtration in cohomology. Let f ∈ FpHH∗(R,R) and
g ∈ FqHH∗(R,R); we have to prove that the defining maps (f∪g)m(x1•· · ·•xn) = 0
for n ≥ p + q, m ≥ 1 and xi ∈ e(1)(sR). The argument is similar to the first part
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of the proof. Indeed,

(f ∪ g)m(x1 • · · · • xn) =
∑

i+j+k=m+2

±Dk

(
x

(1)
1 • · · · • x(1)

n ⊗ fi(x
(2)
1 • · · · • x(2)

n )

⊗x(3)
1 • · · · • x(3)

n ⊗ gj(x
(4)
1 • · · · • x(4)

n )⊗ x(5)
1 • · · · • x(5)

n

)
.

Since m ≥ p+ q, we can assume that there is an index l such that x(2)
l = 1 = x

(4)
l

(if not either fi(x
(2)
1 • · · · • x(2)

n ) or gj(x
(4)
1 • · · · • x(4)

n ) is zero). It follows that
Dk

(
x

(1)
1 • · · · ⊗ fi(x

(2)
1 • · · · • x

(2)
n )⊗ · · · ⊗ gj(x(4)

1 • · · · • x
(4)
n ) · · · • x(5)

n

)
is equal to

Dk

((
x

(1)
1 • · · · ⊗ fi(x

(2)
1 • · · · • x(2)

n )⊗ · · · ⊗ gj(x(4)
1 • · · · • x(4)

n ) · · · • x(5)
n

)
• xl

)
which is zero since Dk vanishes on shuffles. Hence, f ∪ g ∈ Fp+qHH∗(R,R). A
similar argument shows that [f, g] ∈ Fp+q−1HH

∗(R,R). �

Remark 3.32. Theorem 3.31 applies in particular to differential graded com-
mutative algebras. For non-graded algebras it was first proved in [BW]. A careful
analysis of the proof of Theorem 3.31 shows that it holds whenever R is free over
a ground ring k which contains either Q or Z/pZ (p a prime).

Remark 3.33. Note that when the spectral sequence Ipq1 (R,R) converges, the
second assertion in Theorem 3.31 follows immediately from Proposition 3.30.

3.4. Hodge decomposition and cohomology of homotopy Poisson al-
gebras. In this section, for simplicity, we work over a ground ring containing Q. If
P is a Poisson algebra, the Hodge decomposition of the Hochschild (co)homology
of the underlying commutative algebra identifies with the first page of a spectral
sequence computing its Poisson cohomology [Fr2]. We want to prove that this
result makes sense for homotopy Poisson algebras (P∞-algebras for short) as well.
We briefly recall the definition of P∞-algebras and refer to [Gi] for more details.

Definition 3.34. Let R be a k-module and P⊥(R) := S
(
coLie(sR)

)
be the

symmetric coalgebra on the cofree Lie coalgebra over sR. A P∞-algebra structure
on R is given by a coderivation ∇ of degree 1 on P⊥(R) such that ∇2 = 0. A map
of P∞-algebra (R,∇) → (S,∇′) is a graded differential coalgebra map P⊥(R) →
P⊥(S).

The “coalgebra”-structure of P⊥(R) is obtained by the sum of the symmetric
coproduct (i.e. the free cocommutative one) and the lift as a coderivation of the Lie
coalgebra cobracket (see [Gi] for an explicit formula). As for A∞-algebras, a P∞-
structure on R is uniquely defined by maps ∇p1,...,pn

: R⊗p1 ⊗ . . .⊗R⊗pn → R such
that ∇(x1, . . . , xn) (xi ∈ R⊗pi) is antisymmetric with respect to the coordinates xi
and vanish if one of the xi is a shuffle. There is a forgetful functor from the category
of P∞-algebras to the one of C∞-algebras. It is determined by considering only the
map Dn : R⊗n → R which restricts to coLie(sR). When (R,∇) is a P∞-algebra,
we denote CoDer(R,R) the k-module of coderivations of P⊥(R).

Definition 3.35. The cohomology of the P∞-algebra (R,∇) is the cohomology
HP ∗(R,R) of the complex CoDer(R,R) equipped with the differential [−,∇]. More
precisely, one has

[f,∇] = f ◦ ∇ − (−1)|f |∇ ◦ f for f ∈ CoDer(R,R).
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Proposition 3.36. Let (P,∇) be a P∞-algebra, such that P is a Cop∞ -bimodule
over itself. There is a converging spectral sequence

Epq1 = HHq+p
(p) (P, P ) =⇒ HP p+q(P, P ).(3.16)

Proof : Since k ⊃ Q, the cofree Lie coalgebra coLie(sP ) is isomorphic to the
indecomposable space e(1)(T (sP )) and there is an isomorphism Sn(e(1))) ∼= e(n)

induced by the shuffle product. Hence

P⊥(P ) =
⊕
n≥1

SncoLie(sP ) ∼=
⊕

Sn(e(1)(A⊥(P ))) ∼=
⊕

e(n)(T (sP ))).

The space P⊥(P ) is filtered by the symmetric power of
⊕
SncoLie(sP ). On the

associated graded module E0, the differential reduces to the coderivation defined
by the maps (∇n : R⊗n → R)n≥1. Clearly, this is the coderivation defining the
C∞-structure of P . Since P is assumed to be a C∞-bimodule over its underlying
C∞-algebra structure, the differential

[
−,
∑
n≥1∇n

]
preserves the decomposition

P⊥(P ) =
⊕
e(n)(A⊥(P ))). It follows that Ep∗1 is the cohomology of the complex

CoDer
(
e(p)
(
A⊥(P )

)
, A⊥(P )

)
, where the coderivations are taken with respect to

the coalgebra structure of A⊥(P ), equipped with the Hochschild differential given
by the underlying C∞-algebra structure of P . Thus Ep∗1 ∼= HH∗(q)(P, P ), see the
proof of Theorem 3.1. �

Example 3.37. Let (P,m, [ ; ]) be a Poisson algebra. The maps D2 = m
and D1,1 = [ ; ] endow P with its canonical P∞-structure and the cohomology
of CoDer(P⊥(P ), P⊥(P )) is its Poisson cohomology HP ∗(P, P ). Proposition 3.36
implies that there is a spectral sequence converging to HP ∗(P, P ) whose E1 term
is the Hochschild cohomology of P . This spectral sequence is the dual of the one
found by Fresse [Fr1, Fr2].

Example 3.38. Let g be a Lie algebra. The free Poisson algebra on the Lie
algebra g is S∗g. Indeed the Lie bracket of g extends uniquely on S∗g in such a
way that the Leibniz rule is satisfied. Since S∗g is free as an algebra (thus smooth),
according to Proposition 3.5.i), the term E1 of spectral sequence (3.16) is equal to

HH∗(p)(S
∗g, S∗g) ∼= HHp

(p)(S
∗g, S∗g) ∼= HomS∗g(ΩpS∗g, S

∗g)
∼= SpHom(g, S∗g).

It follows that the spectral sequence collapses at level 2 with En2 = Hn
Lie(g, S∗g)

where H∗Lie stands for Lie algebra cohomology.

Example 3.39. A C∞-algebra is a P∞-algebra by choosing all other defining
maps to be trivial. Let R be a P∞-algebra with ∇p1,...,pn = 0 for n ≥ 2. Then
spectral sequence (3.16) collapses at level 1 since the maps ∇p1,...,pn

are null for
n ≥ 2. Hence

HP ∗(R,R) ∼=
⊕
p≥0

HH∗(p)(R,R).
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4. An exact sequence à la Jacobi-Zariski

It is well-known that if K → S → R is a sequence of strict commutative rings
with unit, there is an exact sequence relating the André Quillen (co)homology
groups of R viewed as a K-algebra with the ones of S viewed as a K-algebra
and R viewed as a S-algebra. This sequence is called the Jacobi-Zariski exact
sequence (or the transitivity exact sequence). Under flatness hypothesis and if
the rings contained Q, the André Quillen (co)homology corresponds to Harrison
(co)homology with degree shifted by one. In particular the exact sequence holds
for the Harrison groups of Definitions 2.22, 2.26. We prove here a similar result for
C∞-algebras with units. We first study the category of A∞ or C∞-algebras over a
C∞-one.

4.1. Relative A∞-algebras. In order to make sense of a Jacobi-Zariski exact
sequence, we shall first define the notion of a C∞-algebra over another one. The
theory makes sense for A∞-algebras over an A∞-algebra as well so that we start
working in this more general context. Let T⊥(R/S) be the coalgebra

T⊥(R/S) := T (R⊕ S) =
⊕

n,p0,...,pn≥0

S⊗p0 ⊗R⊗ S⊗p1 ⊗ . . .⊗R⊗ Spn .(4.17)

The coalgebra map is the one on T (R⊕ S), that is to say

δR/S(sp01 , . . . , s
p0
kp0
, a1, . . . , an, s

pn

1 , . . . , spn

kpn
) =∑

(sp01 , . . . , aj , s
pj

1 , . . . , s`pj
)⊗ (spj

`pj
+1, . . . , an, s

pn

1 , . . . , spn

`pn
).

The coalgebra T⊥(sR/sS) is co-augmented

k ↪→ T⊥(sR/sS) � A⊥(sR/sS).

It is straightforward that δR/S restricts to T (S) and T (R), hence the following
lemma.

Lemma 4.1. Both A⊥(S) and A⊥(R) are subcoalgebras of A⊥(R/S).

Denote A⊥+(R/S) the subspace of A⊥(R/S) which contains at least one factor
R so that

T⊥(sR/sS) = T (sS)⊕A⊥+(R/S), A⊥(R/S) = A⊥(S)⊕A⊥+(R/S).

Definition 4.2. Let (S,B) be an A∞-algebra and R a k-module.
• An S-algebra structure on R is an A∞-algebra structure on R ⊕ S such

that the natural inclusion S → S⊕R and the natural projection S⊕R→ S
are maps of A∞-algebras.

• A C∞-algebra over S structure on R is a C∞-algebra structure on R⊕ S
such that the natural inclusion S → S ⊕ R and the natural projection
S ⊕R→ S are maps of C∞-algebras.

The natural inclusion S → S⊕R is the coalgebra map F : T (sS)→ T (s(S⊕R))
with defining maps F1 = S ↪→ S ⊕R and Fi≥2 = 0 (see Remark 1.8). The natural
projection S ⊕ R → S is the map G : T (s(S ⊕ R)) → T (sS) with defining maps
G1 = S ⊕R � S and Gi≥2 = 0.

In terms of coderivations Definition 4.2 means
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Proposition 4.3. Let (S,B) be an A∞-algebra and R a k-module. A structure
of S-algebra on R is uniquely determined by a coderivation DR/S on A⊥(R/S) such
that

i): DR/S(A⊥(S)) ⊂ A⊥(S) and (DR/S)/A⊥(S) = B;
ii): DR/S(A⊥+(R/S)) ⊂ A⊥+(R/S);
iii): (DR/S)2 = 0.

If, in addition, (S,B) is a C∞-algebra, R is a C∞-algebra over S if (R,DR/S) is
an S-algebra such that the codifferential DR/S on A⊥(R/S) is a derivation for the
shuffle product on T⊥(sR/sS).

In plain English condition i) means that the codifferential DR/S restricts to
A⊥(S) and that this restriction DR/S/A

⊥(S) is equal to B.
Proof : We already know that an A∞-structure on R⊕S is given by a coderivation
of square zero. The claim i) and ii) follows from the fact that the natural inclusion
and natural projection are maps of A∞-algebras. The statement for C∞-structure
is an immediate consequence of Definition 2.1. �

Remark 4.4. The definition 4.2 put emphasis on homotopy algebras over
a fixed A∞ or C∞-structure (S,B). However, it makes perfect sense to study
coderivation DR/S : A⊥(R/S)→ A⊥(R/S) with (DR/S)2 = 0, restricting to A⊥(S)
and with DR/S(A⊥+(R/S)) ∈ A⊥+(R/S). Such a coderivation DR/S restricts into a
codifferential on A⊥(S), hence yielding an A∞-structure on S. Moreover (R,DR/S)
is a (S,DR/S/A⊥(S))-algebra in the sense of Definition 4.2.

Lemma 4.5. A structure of S-algebra on R is uniquely determined by maps

Dp0,...,pn
: S⊗p0 ⊗R⊗ S⊗p1 ⊗ . . .⊗R⊗ S⊗pn → R (n ≥ 1)

satisfying, for all sk = ak1 ⊗ · · · akpk
∈ S⊗pk (k = 0 . . . n) and r1, . . . rn ∈ R,∑

i+j=n−1

n−1−i∑
q=0

± Dk0,...,ki

(
s0, r1, . . . , ri, s

(1)
q , D`0,...,`j

(
s(2)
q , rq+1, . . .

. . . , rq+j , s
(1)
q+j

)
, s

(2)
q+j , rq+j+1, . . . , rn, sn

)
= 0.

Note that in the formula above, we use Sweedler’s notation s(1) ⊗ s(2) for the
deconcatenation coproduct of s ∈ S⊗m. The indexes k0, . . . , ki and `0, . . . , `j are
uniquely unambiguously defined by the sequences of elements to which they apply.
Proof : According to Remark 1.4, a structure of S-algebra on R is uniquely deter-
mined by maps

Dp0,...,pn
: S⊗p0 ⊗R⊗ S⊗p1 ⊗ . . .⊗R⊗ S⊗pn → R⊕ S (n ≥ 0).

The requirement DR/S(A⊥+(R/S)) ⊂ A⊥+(R/S) forces the composition of the maps
Dp0,...,pn

with the projection on S to be trivial for n ≥ 1. For n = 0, the maps
Dp0 = Bp0 : S⊗p0 → S are determined by the A∞-structure of S (Proposition 4.3).
The formula follows from Remark 1.6. �

Remark 4.6. Let (R,D) be an S-algebra. Lemmas 4.5 and 4.1 imply that the
maps Dn = D0,...,0 : R⊗n → R define a coderivation D̃ of A⊥(R). Since D2 = 0, it
follows that D̃2 = 0. Hence R is an A∞-algebra. Moreover it is a C∞-algebra if R
is a C∞-algebra over S.
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The notion of an A∞-bimodule over an S-algebra R ( R/S-bimodule for short)
is the same as in Definition 1.1 with A⊥(R) replaced by A⊥(R/S). In other words,
a structure of R/S-bimodule on M is given by a codifferential on A⊥R⊕S(M).

Remark 4.7. According to Section 1.1, an R/S-bimodule structure on M is
determined by maps

DM
p0,...,pn|q0,...,qm

: S⊗p0 ⊗R⊗ S⊗p1 ⊗ . . .⊗ Spn ⊗M ⊗ S⊗q0 ⊗R⊗ . . .⊗ Sqm →M

where {p0, . . . , pn}, {q0, . . . , qm} are allowed to be the empty set ∅.

Similarly an A∞-morphism of A∞-algebras over S (S-A∞-morphism for short)
is a map of A∞-algebra F : R⊕ S → R′ ⊕ S such that the composition

S → S ⊕R F→ R′ ⊕ S
is the natural inclusion and the composition

R⊕ S F→ R′ ⊕ S → S

is the natural projection. Equivalently, it is a map of A∞-algebra F : A⊥(R/S)→
A⊥(R′/S) such that F restricts to A⊥(S) as the identity and F (A⊥+(R/S)) ⊂
A⊥+(R′/S). A C∞-morphism over S is an S-A∞-morphism such that its defining
maps Fp0,...,pn

satisfies Fp0,...,pn
(x • y) = 0, i.e. vanish on shuffles.

Lemma 4.8. An A∞-morphism A⊥(R/S)→ A⊥(R′/S) is uniquely determined
by maps

Fp0,...,pn
: S⊗p0 ⊗R⊗ . . .⊗R⊗ S⊗pn → R′ (n ≥ 1)

such that the unique coalgebra map F defined by the system (S⊗p0 ⊗R⊗ . . .⊗R⊗
S⊗pn

Fp0,...,pn→ R′ ↪→ R′ ⊕ S) is a map F : (A⊥(R/S), DR/S)→ (A⊥(R′/S), DR′/S)
of differential coalgebras.

Proof : According to Section 1.1, a map of coalgebras F : A⊥(R/S)→ A⊥(R′/S)
is uniquely determined by maps

Fp0,...,pn : S⊗p0 ⊗R⊗ S⊗p1 ⊗ S⊗p1 . . . R⊗ S⊗pn → R′ ⊕ S.
The requirement F/C⊥(S) = id implies that F1 : S → R⊕S is the canonical inclusion
S ↪→ R′ ⊕ S and that Fn : S⊗n → R ⊕ S is trivial. Moreover F (A⊥+(R/S)) ⊂
A⊥+(R′/S) implies that the other defining maps take values in R ⊂ R⊕ S. �

Proposition 4.9. If R is an S-algebra, then R is canonically an S-bimodule.
Moreover, if R is a C∞-algebra, then R is a C∞-bimodule over S.

Proof : We denote Dp0,...,pn
the map defining the S-algebra structure. Note that

there is an inclusion TS(R)
i
↪→ A⊥(R/S) and that (i ⊗ i) ◦ δR = δ(i). Thus the

restriction DR
p,q := Dp,q defines a coderivation from T (sR) to A⊥S (R) of square

zero; hence a canonical S-bimodule structure. When S is a C∞-algebra, and R a
C∞-algebra over R, the vanishing of DR/S : A⊥(R⊕S) ⊃ TS(R)→ A⊥(R⊕S) on
shuffles is equivalent to Definition 2.5. �

Remark 4.10. Later on, we also will have to deal with different “ground”
homotopy structures on S at the same time. Thus, for two C∞-algebras (S,B),
(S′, B′), we define an A∞-morphism C⊥(R/S) → C⊥(R′/S′) to be a map of
differential coalgebras such that F restricts to A⊥(S) yielding an A∞-morphism
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(A⊥(S), B) → (A⊥(S′), B′). We further require that F (A⊥+(R/S)) ⊂ A⊥+(R′/S′).
Such a map is uniquely determined by the maps of Lemma 4.8 together with maps
Fn : S⊗n → S′ (the proof is the same).

In terms of Definition 4.2, such a map is an A∞-algebra morphism (R⊕S,D)→
(R′ ⊕ S′, D′) such that the composition

S → R⊕ S → R′ ⊕ S′ → S′

is a prescribed A∞-map F : S → S′ and moreover F commutes with natural
inclusions and projections i.e. the following diagrams commutes

(S,B) //

��

(R⊕ S,D)

��
(S′, B′) // (R′ ⊕ S′, D′),

(R⊕ S,D) //

��

(S,B)

��
(R′ ⊕ S′, D′) // (S′, B′).

Low degrees identities satisfied by an A∞-algebra over a C∞-algebra :
Let (S,B) be a C∞-algebra and (R,D) an A∞-algebra over S.

• The condition (D)2 = 0 implies that the degree one map D0,0 : R→ R is
a differential that we denote dR. We also denote dS = B1 : S → S.

• The maps D0,1 : R ⊗ S → R, D1,0 : S ⊗ R → R and D0,0,0 : R ⊗ R → R
are degree 0 maps. Moreover D0,0,0 is graded commutative if and only if
R is a C∞-algebra and D1,0(s, a) = (−1)|a|.|s|D0,1(a, s).

• Restricted to S⊗R, the condition (D)2 = 0 implies that D1,0 : S⊗R→ R
is a map of differential graded modules.

• Denote by the single letter d the differential induced by dR and dS on
A⊥(R⊕ S). The identities satisfied by Dp0,...,pn

on A⊥(R⊕ S)≤3 are

dR(D0,0,0,0(a, b, c)) +D0,0,0,0(dR(a, b, c)) = D0,0(D0,0(a, b), c)
−D0,0(a,D0,0(b, c))

dR(D0,1,0)(a, s, b) +D0,1,0(d(s, a, b)) = D0,0,0(D0,1(a, s), b)
+D0,0,0(a,D1,0(s, b))

dR(D1,0,0)(s, a, b) +D1,0,0(d(s, a, b)) = D1,0(s,D0,0(a, b))
+D0,0(D1,0(s, a), b)

dR(D2,0(s, t, a)) +D2,0(d(s, t, a)) = D1,0(DS2(s, t), a)
+D1,0(s,D1,0(t, a))

plus the equations similar to the last two ones involving D0,1,0, D0,0,1 and
D0,2 instead of D1,0,0 and D2,0.

These identities imply the following Proposition.

Proposition 4.11. Let R be an algebra over the C∞-algebra S and M an
R/S-bimodule. Then H∗(R) is an associative H∗(S)-algebra, which is graded com-
mutative if R is a C∞-algebra. Moreover H∗(M) := H∗(M,DM

∅|∅) is a bimodule
over the H∗(S)-algebra H∗(R).

4.2. Relative A∞-algebras over strict C∞-algebras. When S is a com-
mutative algebra, one can take k = S as ground ring. In particular, Definition 1.1
gives the notion of S-linear A∞-algebra (we also say A∞-algebra in the category
of S-modules); such a structure is a codifferential on AS⊥(R) :=

⊕
n≥0R

⊗S n, see
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Section 1.1, Definition 1.1. We have to make sure that this definition is equivalent
to Definition 4.2, where S is equipped with its canonical A∞-algebra structure.
This is the aim of the next Proposition and of Proposition 4.20 below.

Proposition 4.12. Let (S, d,m) be a strict C∞-algebra and (R,D) be an S-
linear A∞-algebra.

i): R has a natural structure of A∞-algebra over S (in the sense of Defini-
tion 4.2) given by

D0,0 = dR, D1,0(s, a) = s.a = ±D0,1(a, s),

D0,...,0(a1, . . . , an) = Dn(a1, . . . , an).
ii): If (M,DR

M ) is an S-linear R-bimodule, the maps

DM
∅|∅ = DM

0,0, DM
∅|1(m, s) = m.s, DM

1|∅(s,m) = s.m,

DM
0,...,0|0,...,0(r1, . . . , rp,m, r

′
1, . . . , r

′
q) = DM

p,q(r1, . . . , rp,m, r
′
1, . . . , r

′
q)

give M the structure of an R/S-bimodule.
iii): Let (S, d,m) be a strict C∞-algebra and R be an S-module. Assume

that (R,D) is a C∞-algebra over S such that

D1,0(s, a) = s.a = (−1)|a|.|s|D0,1(a, s).

Then the defining maps D0,...,0 are S-multilinear; hence defined a structure
of S-linear algebra on R.

Proof : For i), we need to prove that (DR/S)2 = 0, which reduces to the identities,

DR
n (a1, . . . , ai.s, ai+1, . . . , an) = DR

n (a1, . . . , ai, s.ai+1, . . . , an) 1 ≤ i ≤ n− 1

DR
n (a1, . . . , an.s) = DR

n (a1, . . . , an).s

DR
n (s.a1, . . . , an) = s.DR

n (a1, . . . , an)

These identities follows by S-linearity.
For ii), the fact that (DM )2 = 0 reduces to the S-linearity of the maps DM

p,q

and the vanishing of (DM )2 as in i).
The low degrees identities of A∞-algebras over a C∞-algebra of Section 4.1

imply that the maps D0,...,0 are S-linear. Then iii) follows easily. �

Example 4.13. It follows from Proposition 4.12 that if (S, d,m) is a strict C∞-
algebra and (R, dR,mR) is a strict commutative S-algebra, then R is a C∞-algebra
over S with structure maps Dp0,...,pn = 0 except for

D0 = dR, D0,0 = mR, and D0,1(r, s) = r.s, D1,0(s, r) = s.r

for all (r, s) ∈ R ⊗ S. Reciprocally, if R is an S-linear C∞-algebra whose only
nontrivial structure maps are D0, D0,1, D1,0, D0,0 then R is a strict S-algebra. This
follows easily from the low degrees relations satisfied by a C∞-algebra over S, see
Section 4.1.

Remark 4.14. Let S be a strict A∞-algebra and R a strict S-bimodule to-
gether with a pairing of differential graded module ν : R⊗R→ R left linear in the
first variable, right linear in the second and satisfying ν(r.s, r′) = ν(r, s.r′). Then
there is an S-linear A∞-structure on R given by

D0,0 = dR, D1,0(s, a) = s.a, D0,1(a, s) = a.s, D0,0,0 = ν.
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Proposition 4.12.i) also holds in the case where S is a strict A∞-algebra by requiring
that R is an A∞-algebra in the category of S-bimodules.

4.3. Weakly unital homotopy algebras. The standard Jacobi-Zariski ex-
act sequence holds for unital algebras. Its C∞-analogue in Section 4.5 also re-
quires unitality assumption. Details on unital A∞ and C∞-algebras can be found
in [Tr2, HL2, HL3]. In fact, we only need weaker unitality assumptions. A
weakly unital A∞-algebra (R,D) is an A∞-algebra equipped with a distinguished
element 1 ∈ R0 that satisfies D2(1, a) = D2(a, 1) = a for any a ∈ R. Thus unital
A∞-algebras (in the sense of [Tr2, HL2, HL3]) are in particular weakly unital. A
weakly unital C∞-algebra is a C∞-algebra which is weakly unital as an A∞-algebra.

Convention 4.15. Henceforth, when we write R has a unit, we mean R is
weakly unital.

Remark 4.16. The fact that D1 is a derivation for D2 implies that D1(1) = 0.
in other words, a weak unit is necessarily a cocycle (for D1).

Remark 4.17. If the A∞-algebra R has unit, then H∗(R) is a unital algebra.

Example 4.18. A strict A∞-algebra is weakly unital if and only if it is a
differential graded associative algebra with unit (in the usual sense). For instance
if A is a unital associative algebra, then its Hochschild cochain complex C∗(A,A)
is weakly unital with unit given by the unit of A viewed as an element of C0(A,A).
Also the cochain complex C∗(X) of a topological or simplicial set X is weakly
unital.

We need to extend the definition of weak unitality to the relative setting. Let
S be a weakly unital C∞-algebra, with (weak) unit 1S . Let R be an S-algebra.
The S-algebra R is said to be weakly unital if the element 0⊕ 1S ∈ R ⊕ S is
weak unit for the A∞-algebra R⊕ S.

Assume S is a strict unital C∞-algebra and (R,DR) is an S-linear A∞-algebra.
The action of the unit 1S ∈ S is trivial on R, thus 0⊕ 1S is a weak unit for R⊕ S.
Therefore we obtain

Proposition 4.19. Let (S, d,m) be a strict unital C∞-algebra and (R,DR) be
an S-linear A∞-algebra. Then R, equipped with the A∞-algebra structure over S
given by Proposition 4.12, is weakly unital if and only if (R,DR) is weakly unital
as an S-linear A∞-algebra.

4.4. (Co)homology groups for relative C∞-algebras. Let M be an R/S-
bimodule and let T⊥(sR/sS) be the coalgebra defined by Equation (4.17). The
Hochschild (co)homology groups of the S-algebra R with values in M are the (co)ho-
mology groups of the (co)chain complexes(

C∗(R/S,M), b
)

:= CoDer
(
T⊥(sR/sS), A⊥R⊕S(M)), b

)
,(4.18) (

C∗(R/S,M), b
)

:= M ⊗ T⊥(sR/sS), b
)
.(4.19)

The differential on the complex C∗(R/S,M) is the Hochschild differential on C∗(R⊕
S,M) ∼= C∗(R/S,M) corresponding to the A∞-algebra structure of R ⊕ S (see
Definition 4.2). The differential on C∗(R/S,M) is defined similarly. When R is a
C∞-algebra and M a C(op)

∞ -bimodule, R⊕S is automatically a C∞-algebra and we
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can define the Harrison (co)chain complexes(
CHar∗(R/S,M), b

)
:= BDer

(
R⊕ S,M), b

)
(4.20) (

CHar∗(R/S,M), b
)

:= M ⊗ C⊥(sR⊕ sS), b
)
.(4.21)

The (co)homology groups of the complexes (4.18), (4.19),(4.20) and (4.21) are de-
noted HH∗(R/S,M), HH∗(R/S,M), Har∗(R/S,M) and Har∗(R/S,M), respec-
tively.

When S is a strict C∞-algebra, and R is an S-linear A∞-algebra, we denote
HH∗S(R,M) and HHS

∗ (R,M) the Hochschild (co)homology groups of R over the
ground ring S,i.e., those given by Definitions 1.9 and 1.14. Similarly we will denote
Har∗S(R,M), HarS∗ (R,M) the Harrison (co)homology groups.

Proposition 4.20. Let S be a strict (unital) commutative algebra, R be a
A∞-algebra and M , N R-bimodules which are S-linear and flat over S. There are
natural isomorphisms

HH∗(R/S,M) ∼← HH∗S(R,M) : h∗, h∗ : HH∗(R/S,M) ∼→ HHS
∗ (R,M).

If R is a C∞-algebra, M a Cop∞ -bimodule, N a C∞-bimodule, then h∗ and h∗ are
isomorphisms of γ-rings. Furthermore, there are natural isomorphisms

Har∗(R/S,M) ∼= Har∗S(R,M), Har∗(R/S,N) ∼= HarS∗ (R,N).

Proof : Let D be the codifferential on AS⊥(R) defining the S-linear A∞-structure
on R. Let DR/S be the codifferential on A⊥(R/S) defining the A∞-algebra over S
structure on R. There is an obvious projection

h : A⊥(R/S) −→
⊕
n≥0

R⊗n −→
⊕
n≥0

R⊗Sn = AS⊥(R).

This map induces a complex morphism id⊗ h : M ⊗A⊥(R/S)→M ⊗AS⊥(R) by
S-linearity of the structure morphisms D0,...,0.

Filtrating M ⊗ A⊥(R/S) by the powers of R, we get a spectral sequence con-
verging to HH∗(R/S,M) whose E1 term is the homology of A⊥(R/S) for the dif-
ferential given by D0 = dR, D1,0 = l, D0,1 = r and the multiplication S ⊗ S → S.
In particular the differential restricted to

⊕
n≥0R⊗S⊗n⊗R coincides with the one

in the double Bar construction B(R,S,R). Since R is S-flat, the Bar construction
B(R,S,R) is quasi-isomorphic to R⊗S R. Hence

E1
∗∗
∼= H∗(M)⊗S H∗(R)⊗S . . .⊗S H∗(R).

The filtration by the powers of R of M⊗AS⊥(R) yields also a spectral sequence (see
Proposition 3.21) with isomorphic E1-term. Moreover, the map h1 is an isomor-
phism at page 1 hence is an isomorphism. The cohomology statement is analogous.

Clearly h is a map of coalgebra. Moreover, when R is a C∞-algebra, it is a map
of algebras (with respect to the shuffle product). Thus h commutes with the maps
ψk inducing the γ-ring structures in (co)homology. It also implies that h factors
through the quotient by the shuffles hence the result for Harrison (co)homology. �

A homomorphism F : S → R of commutative algebras induces a canonical
structure of commutative S-algebra on R. The following Proposition is the up to
homotopy analogue. First we fix some notation:
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Notation: If F : (S,DS)→ (R,D) is a morphism of C∞-algebras, we denote F [i]

the composition A⊥(S) F→ A⊥(R)
pr→ R⊗i, that is to say the component of F which

lies in the i-th power of R.

Proposition 4.21. Let F : (S,DS) → (R,DR) be a C∞-map. Then R has a
structure of a C∞-algebra over S given by the maps

Dp0,...,pn
(x0, r1, . . . , xn) =

∑
i=i0+···+in+n

DR
i (F [i0](x0), r1, . . . , rn, F

[in](xn)).

Proof : According to Lemma 4.5, we have to prove that the coderivation DR/S ,
induced by Dp0,...,pn

, is of square 0. Since DS is of square 0 and the degree of DR/S

is 1 we find that (DR/S)2(x0, r1, . . . , xn) is equal to∑
±DR

i

(
F [i0](x0), r1, . . . , D

R
j

(
F [jk](xk), . . . , F [jk+l](xk+l)

)
, . . . , rn, F

[in](xn)
)

+
∑
±DR

i

(
F [i0](x0), r1, . . . , F

[ip](DS(xp)), rp, . . . , rn, F [in](xn)
)

= (DR)2
(∑

F [i0](x0)⊗ r1 ⊗ · · · ⊗ rn ⊗ F [in](xn)
)

= 0

The last step follows from DR ◦ F = F ◦DS . �

Example 4.22. Let S be strict and R be a strict unital associative S-algebra.
If R is unital, then there is a ring map F : S → R and we have ν(s, r) = F (s).r
where ν denotes the S-action. We also denote F : (S,DS)→ (R,D) the associated
A∞-morphism. The structure of A∞-algebra over S given by Proposition 4.21 is
the same than the one given by Proposition 4.12.i) applied to R viewed as an
A∞-algebra in the category of S-modules.

Example 4.23. Let S be any (weakly unital) C∞-algebra. There is a C∞-map
F : (S,DS)→ (S,DS) given by F1 = id, Fn>1 = 0. In particular S has a canonical
C∞-structure over S (which is the canonical one if S is strict by the previous
example). Corollary 4.25 below states that these structure is (co)homologically
trivial as expected.

Proposition 4.24. Let M be an R/S-bimodule. Assume R, S, M and their
cohomology groups are k-flat. There are converging spectral sequences

E∗∗2 = HH∗(H∗(R)/H∗(S), H∗(M))⇒ HH∗(R/S,M)

and
E2
∗∗ = HH∗(H∗(R)/H∗(S), H∗(M))⇒ HH∗(R/S,M).

Proof : The spectral sequences are given by the filtration by the power of S. �

Corollary 4.25. Let S be a weakly unital C∞-algebra and let M be an S/S-
bimodule. There are isomorphisms

HH∗(S/S,M) = H∗(M), HH∗(S/S,M) = H∗(M).

Proof : Applying Proposition 4.24, it is sufficient to consider the case of H∗(S),
that is of a strict algebra. According to Proposition 4.20, the later case is the
well-known computation of Hochschild (co)homology of the ground algebra [Lo2].

�
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4.5. The Jacobi-Zariski exact sequence. In this section all C∞-algebras
are supposed to be weakly unital.

Theorem 4.26. Let K → S → R be a sequence of weakly unital C∞-maps,
with K, S, R and their cohomology k-flat. Then there is a long exact sequence

· · · → Har∗(S/K,M)→ Har∗(R/K,M)→ Har∗(R/S,M)
→ Har∗−1(S/K,M)→ Har∗−1(R/K,M)→ Har∗−1(R/S,M)→ . . .

and also a long exact sequence in cohomology

· · · → Har∗(R/S,M)→ Har∗(R/K,M)→ Har∗(S/K,M)
→ Har∗+1(R/S,M)→ Har∗+1(R/K,M)→ Har∗+1(S/K,M)→ . . .

where M is a C∞-bimodule over R in homology, respectively a Cop∞ -bimodule over
R in cohomology.

To prove Theorem 4.26, we use the following lemma.

Lemma 4.27. Let K F−→ S
G−→ R be a sequence of C∞-maps.

i): There is a C∞-morphism C⊥(S/K) G−→ C⊥(R/K) given by the defining
maps G1 = id, Gp0≥2 = 0 and for n ≥ 2

Gp0,...,pn
(x0, s1, . . . , xn) =

∑
i=i0+···+in+n

Gi(F [i0](x0), s1, . . . , sn, F
[in](xn)).

ii): There is a C∞-morphism C⊥(R/K) F−→ C⊥(R/S) given by

F p0 = Fp0 , F 00 = id and the other maps F p0,...,pn
= 0.

Proof : One has

DR/K(G(x0, s1, . . . , xn)) =
∑

D
(
G ◦ F (x(1)

0 ), G
(
F (x(2)

0 ), s1, . . . , x
(1)
k

)
,

F (x(2)
k ), . . . , G

(
F (x(2)

l ), sl, . . . , x(1)
n

)
, F (x(2)

n )
)

=
∑

G
(
DS(F (x(1)

0 ), F (x(2)
0 ), s1, . . . , x

(1)
k , . . . , F (x(2)

n )
)

= G(DS/K(x0, s1, . . . , xn)).

It proves i). The proof of ii) is similar. �

Proof of Theorem 4.26: Let F : C⊥(K) → C⊥(S), G : C⊥(S) → C⊥(R) be two
C∞-maps. By Lemma 4.27, they induce chain maps

M ⊗ C⊥(S/K) G→M ⊗ C⊥(R/K) and M ⊗ C⊥(R/K) F→M ⊗A⊥(R/S).

Let c(G) be the cone of the chain map G. That is to say

c(G) := M ⊗ C⊥(R/K)⊕M ⊗ C⊥(S/K)[1].

In particular we have an exact sequence

· · · → Har∗(S/K,M)→Har∗(R/K,M)→ H∗(c(G))→
Har∗−1(S/K,M)→ Har∗−1(R/K,M)→ . . .
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The homology spectral sequence will follow once we prove that there is a natural
isomorphism H∗(c(G)) ∼= Har∗(R/S,M). The morphism F induces a chain map

M ⊗ C⊥(R/K)⊕M ⊗ C⊥(S/K)[1] i−→M ⊗ C⊥(R/S)⊕M ⊗ C⊥(S/S)[1].

The target of i is isomorphic to the cone c(F ) of M ⊗C⊥(S/S)→M ⊗C⊥(R/S).
There is also the inclusion of chain complexes

M ⊗ C⊥(R/S)
j−→M ⊗ C⊥(R/S)⊕M ⊗ C⊥(S/S)[1].

Corollary 4.25 implies that Har∗(S/S) is trivial, thus H∗(c(F )) ∼= Har∗(R/S,M)
The spectral sequences of Proposition 4.24 also yield converging spectral sequences
for c(G) and c(F ). Applying the Jacobi Zariski exact sequence for strict commu-
tative unital rings, we get that, at page 1 of the spectral sequences, the map i1 is
a quasi-isomorphism. Similarly the map j1 is an isomorphism at page 1. It follows
that i and j are quasi-isomorphisms, hence H∗(c(G)) ∼= Har∗(R/S,M) as claimed.

The existence of the cohomology exact sequence is proved in the same way. �

5. Applications to string topology

In this section we apply the machinery of previous sections to string topology.
We assume that our ground ring k is a field of characteristic different from 2.

Let X be a topological space, the singular cochain C∗(X) is an associative
differential graded algebra (thus an A∞-algebra) and the singular chains C∗(X)
forms a differential graded coalgebra. String topology is concerned about algebraic
structures on Hochschild (co)homology of singular cochains because of

Theorem 5.1 (Jones [Jo]). If X is simply connected, then there are isomor-
phisms

HH∗(C∗(X), C∗(X)) ∼= H∗(LX),

HH∗(C∗(X), C∗(X)) ∼= H∗(LX).

Degree issues: one has to be careful that the isomorphisms in Theorem 5.1 above
are isomorphisms preserving the cohomological degree. As x ∈ Hi(LX) has coho-
mological degree −i, the isomorphism reads as HH−i(C∗(X), C∗(X)) ∼= Hi(LX)
and similarly in Hochschild homology. Note that our convention for the degree of
Hochschild cohomology is the opposite of the one in [FTV].

5.1. C∞-structures on cochain algebras. The chain coalgebra C∗(X) and
cochain algebra C∗(X) are not (co)commutative. Nevertheless the existence of
Steenrod’s ∪1-product leads to the existence of natural C∞-(co)algebras structures.
The definition of C∞-coalgebras is dual to C∞-algebras. More precisely

• A A∞-coalgebra structure on a k-module R is given by a square zero
derivation ∂ of degree -1 on A⊥(R) :=

∏
i≥1(sR)⊗n, the completed tensor

algebra equipped with the (continuous) concatenation

µ(sx1 . . . sxp, sy1, . . . syq) = sx1 ⊗ sx2 ⊗ . . . syq−1 ⊗ syq.

Coderivations on A⊥(R) are in one-to-one correspondence with family of
maps ∂i : R→ R⊗i by dualizing the argument of Remark 1.5.
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• The shuffle coproduct is defined by

∆sh(sx1 . . . sxn) =
∑
±
(
sxσ−1(1) ⊗ · · · ⊗ sxσ−1(p)

)
⊗
(
sxσ−1(p+1) ⊗ · · ·

· · · ⊗ sxσ−1(n)

)
where the sum is over shuffles σ ∈ Sn, making A⊥(R) a commutative bial-
gebra. A C∞-coalgebra is an A∞-coalgebra (R, ∂) such that (R,∆sh, µ, ∂)
is a differential graded bialgebra (in other words a B∞-coalgebra).

It is easy to define A∞-coalgebras maps, A∞-comodules and their C∞-analogs in
the same way [TZ].

Proposition 5.2. Let k be a field of characteristic zero. There exists a natural
C∞-coalgebra structure on C∗(X) and C∞-algebra structure on C∗(X), with C∗(X)
being a Cop∞ -module over C∗(X), such that ∂1 and D1 are the singular differentials
and, furthermore, the induced (co)algebras structures on H∗(X), H∗(X) are the
usual ones.

Proof : The singular cochains C∗(X) are equipped with a brace algebra struc-
ture [GV] and thus a B∞-structure. By a fundamental result of Tamarkin [Ta,
GH1], a B∞-structure yields a C∞-structure, (which is the restriction of a G∞-
structure), with defining maps Di : C∗(X)⊗i → C∗(X). Furthermore, D1 is the
usual differential on singular cochains and D2 induces the cup-product in cohomol-
ogy. The dual of the defining maps Di : C∗(X)⊗i → C∗(X) yield a C∞-coalgebra
structure on C∗(X). Moreover C∗(X) inherits a Cop∞ -comodule structure by Propo-
sition 2.19. Alternatively, one can use an acyclic models argument as in [Sm].
�

Remark 5.3. The Proposition above holds for non-simply connected spaces.
For simply connected X, Rational homotopy theory gives strict C∞-structures
equivalent to the differential graded algebra C∗(X).

For string topology applications, one needs a Poincaré duality between chains
and cochain. We use Tradler’s terminology [Tr1, Tr2]. Given any A∞-algebra
(R,DR), a A∞-inner product on R is a bimodule map G : R → R? (where
R? = Hom(R, k) is the dual of R). We denote DR, DR? , the codifferentials defining
the canonical R-module structure of R and R?. An A∞-algebra R is said to have
a Poincaré duality structure if R has an A∞-inner product together with a
bimodule map F : R? → R such that G :

(
A⊥R(R), DR

)
�
(
A⊥R(R?), DR?

)
: F

are quasi-isomorphisms which are quasi-inverse of each others (morphisms are not
assumed to be of degree 0).

For finely triangulated oriented spaces, one can find C∞-structures on chains
and cochains together with a Poincaré duality. By finely triangulated we mean that
the closure of every simplex has the homology of a point. The following Lemma is
taken from an appendix of Sullivan [Su] together with an application of Tradler and
Zeinalian [TZ]. We write C∗(X), C∗(X) for the simplicial complexes associated to
the triangulation of a space. Hopefully, the context should always makes clear if
we are working with singular chains or the ones from a triangulation. We denote
by d : C∗(X)→ C∗−1(X) the differential and by ∆ : C∗(X)→ C∗(X)⊗C∗(X) the
diagonal. We also write respectively d, ∪ for the differential and the cup-product
on C∗(X) (induced by ∆).
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Lemma 5.4. Let k be a field of characteristic different from 2 and 3 and X
be a triangulated oriented closed space with Poincaré duality such that the closure
of every simplex has the homology (with coefficient in k) of a point. There exists
a counital C∞-coalgebra structure on C∗(X) with structure maps δi : C∗(X) →
C∗(X)⊗i such that

i): δ1 is the simplicial differential and δ2 =
1
2

(∆ + ∆op);

ii): there exists a quasi-isomorphism of A∞-coalgebras F : (C∗(X), δ) →
(C∗(X), d+ ∆);

iii): the cochains C∗(X) inherits a unital C∞-structure by duality and there
is an A∞-algebra quasi-isomorphism F : (C∗(X), D)→ (C∗(X), d+ ∪);

iv): there is a Poincaré duality C∗(X) Ξ→ C∗(X) of A∞-modules inducing
the Poincaré duality isomorphism in (co)homology.

Proof : The triangulation of X yields a simplicial complex KX and a homeo-
morphism |KX | ∼= X. The complex C∗(X) is the simplicial space C∗(KX). By
assumption, the closure of a q-cell (aka q-simplex) of KX has the homology of a
point. Statement iv) is in [TZ] as well as A∞-analogs of i), iii). As in [TZ], a
map between simplicial complexes is said to be local if all simplexes c ∈ C∗(X) are
mapped to

∏
i≥1 C∗(c)

⊗i, where C∗(c) is the subcomplex generated by the closure c
of c. By assumption C∗(c) is contractible, i.e., is quasi-isomorphic to k concentrated
in degree 0. Let ∆ : C∗(X) → C∗(X) ⊗ C∗(X) be a cell approximation to the di-
agonal. For instance one can take the Alexander-Whitney diagonal. Assertion iii)
is obvious consequence of i) and ii). The proof of i) and ii) is essentially contained
in [Su]. Here we only assume that our field is of characteristic different from 2 and
3. Let us outlined the argument:

Similarly to Example 2.4, a strong C∞-coalgebra structure on C∗(X) is given
by a structure of differential graded Lie algebra on the free Lie algebra L(X) :=
Lie(C∗(X)[1]) generated by the vector space C∗(X)[1]. We denote δ : L(X)→ L(X)
the differential. A strong C∞-coalgebra is a C∞-coalgebra. Clearly δ is uniquely
determined by its restrictions δi : C∗(X) → C∗(X)⊗i. Note that, since k is of
characteristic different from 2 and 3, the identity δ2 = 0 is equivalent to [δ, δ] = 0
and the Jacobi identity for δ is equivalent to [δ, [δ, δ]] = 0. We proceed by induction
to construct both δ and the quasi-isomorphism F : (C∗(X), δ) → (C∗(X), d + ∆).
We define F1 = id and δ1 = d, which are local maps. Thus

(F ⊗ F ) ◦ δ = (d+ ∆) ◦ F +O(2)

where O(i) means that we restrict to components of L(X) lying in the subspace⊕
j≤i−1 C∗(X)⊗j . By i) we have to take δ2 =

1
2

(∆ + ∆op) which is local and

cocommutative, hence with values in L(X). The identity δ2 = 0 +O(3) boils down
to the fact that ∆ is a map of chain complexes. We have to find F2. We only have
to do so locally. The compatibility between F and δ in O(3) is equivalent to

[F2, d] =
1
2

(∆−∆op) .

The right part is a cocycle in the complex of endomorphisms
(
End

(
C∗(σ)

)
, [−, d]

)
for every simplex σ. Since C∗(σ) is contractible, the complex

(
End

(
C∗(σ))

)
, [−, d]

)
has trivial homology and the existence of F2 follows. Assume by induction that
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δ1, . . . , δn, F1, . . . , Fn have already been chosen and satisfy i), ii) and iii) up to
O(n+ 1).

We first define δn+1 : C∗(X)→ Ln(X). By hypothesis we have [δ, δ] = En+1 +
O(n + 1) with En+1 ⊂ Ln+1(X). Since δ2 = 1

2 [δ, δ], the Jacobi identity gives
[δ, [δ, δ]] = 0 and thus

[d, [δ, δ]] +O(n+ 2) = [d,En+1] +O(n+ 1) = 0 +O(n+ 2).

Thus [d,En+1] ⊂ Ln+1(X) is equal to zero. Again, the contractibility of each C(σ))
implies that we can find a local map δn+1 such that En+1 = [d, δn+1]. By definition
of En+1, we have

[δ + δn+1, δ + δn+1] = O(n+ 2)
that is i) up to O(n+ 2).

The induction hypothesis ensures that

F (δ) + (d+ ∆)(F ) = Gn+1 +O(n+ 2)

with Gn+1 ⊂ Fn(X) equal to∑
2≤k≤n

Fk(δn+2−k)−∆(Fn).

A straightforward computation of ρ2(F ) = 0, where ρ(F ) = F ◦ δ + (d + ∆) ◦ F ,
using that d+ ∆ gives an A∞-coalgebra structure on C∗(X), shows that

[d,Gn+1] + En+1 = 0.

Now a map Fn+1 : C∗(X)→ C∗(X)⊗n+1 makes F+Fn+1 satisfies ii) up to O(n+2)
if and only if

(5.22) [d, Fn+1] + δn+1 +Gn+1 = 0.

The map δn+1 +Gn+1 is a local cycle by above, hence a local map Fn+1 could be
chosen to satisfy (5.22). This concludes the induction. �

Remark 5.5. Lemma 5.4 actually holds when C∗(X) is replaced by any sim-
plicial complex in which the closure of any q-cell (q ≥ 0) is contractible. It seems
reasonable that it also holds if X is an oriented regular CW -complex. Note that
cellular approximation to the diagonal can be constructed using the same ideas,
see [Su, Remark A.3]. Also note that the C∞-structures given by Lemma 5.4 are
not canonical. Furthermore, the C∞-structure given by Lemma 5.4 is strong.

5.2. Hodge decomposition for string topology. Hochschild cohomology
of singular chains of any space X has a Hodge decomposition according to Propo-
sition 5.2.

Proposition 5.6. Let k be a characteristic zero field. There exists Hodge
decompositions

HH∗(C∗(X), C∗(X)) =
∏
i≥0

HH∗(i)(C
∗(X), C∗(X)),

HH∗(C∗(X), C∗(X)) =
∏
i≥0

HH∗(i)(C
∗(X), C∗(X)),

HH∗(C∗(X), C∗(X)) =
⊕
i≥0

HH
(i)
∗ (C∗(X), C∗(X)),
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HH∗(C∗(X), C∗(X)) =
⊕
i≥0

HH
(i)
∗ (C∗(X), C∗(X)).

The Hodge filtration FiHH∗(C∗(X), C∗(X)) =
⊕

n≤iHH
∗
(n)(C

∗(X), C∗(X)) is a
filtration of Gerstenhaber algebras. Moreover

HH∗(0)(C
∗(X), C∗(X)) = H∗(X) = HH

(0)
∗ (C∗(X), C∗(X)),

HH∗(0)(C
∗(X), C∗(X)) = H∗(X) = HH

(0)
∗ (C∗(X), C∗(X)).

For i ≥ 1 there are spectral sequences

HHp+q
(i) (H∗(X), H∗(X))p =⇒ HHp+q

(i) (C∗(X), C∗(X))

HHp+q
(i) (H∗(X), H∗(X))p =⇒ HHp+q

(i) (C∗(X), C∗(X))

HH
(i)
p+q(H

∗(X), H∗(X))p =⇒ HH
(i)
p+q(C

∗(X), C∗(X))

HH
(i)
p+q(H

∗(X), H∗(X))p =⇒ HH
(i)
p+q(C

∗(X), C∗(X)).

Proof : According to Proposition 5.2, C∗(X) is a C∞-algebra and C∗(X) is a
Cop∞ -bimodule. Propositions 2.16, 2.13 ensure that C∗(X) and C∗(X) are both C∞
and Cop∞ -bimodules. Now, the Hodge decompositions follow from Theorems 3.1,
3.18. Since D1 : C∗(X) → C∗(X) and ∂1 : C∗(X) → C∗(X) are the singular
differential, the identification of the weight 0-part is immediate. There is a filtration
of Gerstenhaber algebras according to Theorem 3.31. The spectral sequences are
given by Propositions 3.7, 3.21. �

In presence of Poincaré duality for chains, the Hochschild cohomology of the
cochain algebra lies in the realm of “string topology”. Indeed, there is an isomor-
phism

H∗(LX) ∼= HH∗(C∗(X), C∗(X)) ∼= HH∗(C∗(X), C∗(X))[d]
if X is an oriented manifold of dimension d [CJ, Mer, FTV2]. The isomor-
phism H∗(LX) ∼= HH∗(C∗(X), C∗(X)) is an isomorphism of algebras with re-
spect to Chas-Sullivan product [CS] on the left and the cup product on the right,
see [CJ, Co, Mer]. When X is a triangulated oriented Poincaré duality space,
applying Sullivan’s techniques as in Lemma 5.4, Tradler and Zeinalian proved that
the Hochschild cohomology

HH∗(C∗(X), C∗(X)) ∼= HH∗(C∗(X), C∗(X))[d]

is a BV-algebra (whose underlying Gerstenhaber algebra is the usual one) [TZ]. The
intrinsic reason for the existence of this BV structure is that a Poincaré duality is
a up to homotopy version of a Frobenius structure and that for Frobenius algebras,
the Gerstenhaber structure in Hochschild cohomology is always BV [Me]. This
result and our preliminary work leads to

Theorem 5.7. Let k be a field of characteristic different from 2 and 3 and X
be a triangulated oriented closed space with Poincaré duality (of dimension d), such
that the closure of every simplex has the homology of a point.

• There is a BV-structure on HH∗(C∗(X), C∗(X)) and a compatible γ-ring
structure.
• If X is simply connected, there is a BV-algebra structure on H∗(LX) :=
H∗+d(LX) and a compatible γ-ring structure. When X is a manifold the
underlying product of the BV-structure is the Chas-Sullivan loop product.
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By a BV-structure on a graded space H∗ and compatible γ-ring structure we
mean the following:

(1) H∗ is both a BV-algebra and a γ-ring.
(2) The BV -operator ∆ and the γ-ring maps λk satisfy

λk(∆) = k∆(λk).

(3) There is an “ideal augmentation” spectral sequence Jpq1 ⇒ Hp+q of BV
algebras.

(4) On the induced filtration Jp∗∞ of the abutment H∗, one has, for any x ∈ Jp∗∞
and k ≥ 1,

λk(x) = kpx mod Jp+1∗
∞ .

(5) If k ⊃ Q, there is a Hodge decomposition H∗ =
∏
i≥0H

∗
(i) (given by

the associated graded of the filtration J∗∗∞ ) such that the filtered space
FpH∗ :=

⊕
H∗(n≤p) is a filtered BV-algebra.

As a consequence of Theorem 5.7, Har∗(C∗(X), C∗(X)) has an induced Lie algebra
structure. Moreover J0∗

∞ /J
1∗
∞
∼= H∗(X) always splits.

Proof : We apply Lemma 5.4 to get a C∞-algebra structure (given by a differential
D) on C∗(X). Assertion iii) of this lemma ensures that there is a quasi-isomorphism
of A∞-algebras F : (C∗(X), D)→ (C∗(X), d+ ∪). Proposition 3.10 implies that

HH∗((C∗(X), D), (C∗(X), D))∼=HH∗((C∗(X), d+ ∪), (C∗(X), d+ ∪)).(5.23)

Thus we only need to prove the theorem for C∗(X) endowed with its C∞-structure.
The proof of 3.10 shows that the isomorphism (5.23) is the composition of the
following isomorphisms:

F∗ : HH∗((C∗(X), D), (C∗(X), D))→ HH∗((C∗(X), D), (C∗(X), d+ ∪)) and

HH∗((C∗(X), D), (C∗(X), d+ ∪))← HH∗((C∗(X), d+ ∪), (C∗(X), d+ ∪)) : F ∗.

Since (C∗(X), d + ∪) is an A∞-algebra, formula (1.7) yields a ring structure on
HH∗((C∗(X), D), (C∗(X), d+ ∪)) and F∗ and F ∗ are rings morphisms. Thus the
cohomology HH∗((C∗(X), D), (C∗(X), D)) and HH∗((C∗(X), d+∪), (C∗(X), d+
∪)) are isomorphic as rings.

By Theorem 3.1 there is a γ-ring structure on HH∗(C∗(X), C∗(X)). The
Poincaré duality structure quasi-isomorphism Ξ : C∗(X) → C∗(X) and Propo-
sition 3.10 implies that there is an isomorphism of γ-rings

HH∗(C∗(X), C∗(X)) ∼= HH∗(C∗(X), C∗(X)).

The compatibility between the γ-ring structure and the Gerstenhaber structure
follows from Proposition 3.30. The existence of the BV-structure is asserted by
Tradler-Zeinalian [TZ] as stated above. Note that the BV-structure identifies with
Connes’s operator B∗ : HH∗(C∗(X), C∗(X))→ HH∗(C∗(X), C∗(X)) through the
isomorphism HH∗(C∗(X), C∗(X)) ∼= HH∗(C∗(X), C∗(X)) [Tr2]. It is proved
in [Lo1] that kB(λk) = λk(B) on T (sR). Thus by duality we get the BV-
compatibility.

If X is simply connected, Theorem 5.1 ensures that

H∗(LX) ∼= HH∗((C∗(X), d+ ∪), (C∗(X), d+ ∪)) ∼= HH∗(C∗(X), C∗(X))
∼= HH∗−d(C∗(X), C∗(X))
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where the last isomorphism is induced by naturality and the Poincaré duality quasi-
isomorphism Ξ. Thus the BV -structure is transferred to H∗(LX). �

Example 5.8. Let X = S3 with its usual simplicial structure and the associ-
ated triangulation and k be a field of characteristic different from 2. Its cochain
complex is a C∞-algebra. The term Epq2 of the spectral sequence 3.7 is

HHp+q(H∗(S3), H∗(S3)) = HHp+q(k[y], k[y]) where |y| = 3.

It is a spectral sequence of γ-rings. An easy computation yields that this page of
the spectral sequence has a Hodge decomposition where the only non trivial terms
are

HH−2p
(p) (H∗(S3), H∗(S3)) = k, HH−2p+3

(p) (H∗(S3), H∗(S3)) = k (p ≥ 0).

The Hodge decomposition above holds even if char(k) > 0. In that case, the
computation yields a partial Hodge decomposition with the same terms but with
the subscript (p) being taken modulo char(k)− 1 for p > 0, i.e.

HH∗(p)(H
∗(S3), H∗(S3)) = HH∗(p+n(char(k)−1))(H

∗(S3), H∗(S3))

for 1 ≤ p ≤ char(k)− 1. The total degree of an element in HH∗(H∗(S3), H∗(S3))
enables to split off the various terms of the partial decomposition, thus giving the
claimed Hodge decomposition above. The higher differentials necessarily vanish
and one finds that HH∗(C∗(S3), C∗(S3)) has a decomposition

HH−2p+3(C∗(S3), C∗(S3)) = HH−2p+3
(p) (C∗(S3), C∗(S3)) = k,

HH−2p(C∗(S3), C∗(S3)) = HH−2p
(p) (C∗(S3), C∗(S3)) = k

where p ≥ 0. By Theorem 5.7, the BV-operator commutes with the λ-operations
and the ring structure is the same as the one of the Hochschild cohomology of its
singular cochains (viewed as an associative differential graded algebra). Thus we
have an isomorphism of rings

H∗(LS3) ∼= HH∗(C∗(S3), C∗(S3)) ∼= k[u, v] with |u| = 3, |v| = −2,

see [FTV] for example (the degrees are cohomological ones). The weight p-piece
of the cohomology is the component k[u]vp. In particular the λ-operations also
commute with the loop product and the Hodge decomposition is graded for the
BV-structure. An analogous computation using spectral sequence 3.21 gives

HH−2p(C∗(S3), C∗(S3)) = HH
(p)
−2p(H

∗(S3), H∗(S3)) = k and

HH−2p−3(C∗(S3), C∗(S3)) = HH
(p)
−2p−3(H∗(S3), H∗(S3)) = k

for p ≥ 0 and other terms are null.

The computation for S3 are straightforwardly generalized to all spheres. For
odd dimensional simply connected spheres one has isomorphism of rings (n ≥ 1)

H∗(LS2n+1) = HH∗(C∗(S2n+1), C∗(S2n+1)) = k[u, v]

with |u| = 2n+ 1, |v| = −2n and the weight p-component of the Hodge decompo-
sition is

H(p)
∗ (LS2n+1) = HH∗(p)(C

∗(S2n+1), C∗(S2n+1)) = kvp ⊕ kuvp.



48 GRÉGORY GINOT

For even dimensional (simply connected) spheres, one has an isomorphism of rings
(n ≥ 1)

H∗(LS2n) = HH∗(C∗(S2n), C∗(S2n)) = k[v, w]⊕ k[u]/(u2)

with |u| = 2n, |v| = 2 − 4n and |w| = 1. The weight p-component of the Hodge
decomposition is

H(p≥1)
∗ (LS2n) = kvp ⊕ kwvp−1, H(0)

∗ (LS2n) = k[u]/(u2).

In particular the BV-structure is graded with respect to the Hodge decomposition.
Furthermore, denoting s−ik =: k[i] the module k concentrated in cohomological
degree i (hence homological degree −i), the homology spectral sequence yields that
the groups

Hk(LS2n+1) ∼= HH−k(C∗(S2n+1), C∗(S2n+1)) and

Hk(LS2n) ∼= HH−k(C∗(S2n), C∗(S2n))
have Hodge decomposition where the weight p-pieces are

HH
(p≥0)
∗ (C∗(S2n+1), C∗(S2n+1)) = k[2p+ 2n+ 1]⊕ k[2p] and

HH
(p≥1)
∗ (C∗(S2n), C∗(S2n)) = k[p(4n− 2) + 2n]⊕ k[p(4n− 2)− 2n+ 1].

Of course HH(0)
∗ (C∗(S2n), C∗(S2n)) = H∗(S2n) = k[2n]⊕ k.

Example 5.9. If char(k) = 0, the Harrison (co)homology groups of C∗(Sn)
immediately follow from Theorem 3.1 and Example 5.8:

Har∗(C∗(S2n+1), C∗(S2n+1)) = k[−2n]⊕ k[1],

Har∗(C∗(S2n), C∗(S2n)) = k[2− 4n]⊕ k[1],

Har∗(C∗(S2n+1), C∗(S2n+1)) = k[2n+ 3]⊕ k[2],

Har∗(C∗(S2n), C∗(S2n)) = k[6n− 2]⊕ k[2n− 1]
where k[i] still means k concentrated in cohomological degree i. If char(k) = p > 0
then

Har∗(C∗(S2n+1), C∗(S2n+1)) =
∏
i≥0

k[−2n(pi− i+ 1)]⊕ k[1− 2n(pi− i)],

Har∗(C∗(S2n), C∗(S2n)) =
∏
i≥0

k[(2− 4n)(pi− i+ 1)]⊕ k[1 + i(2− 4n)(p− 1)].

Example 5.10. For X = CPn, the loop homology ring is H∗(X) = k[x]/(xn+1)
(where |x| = 2), see [CJY]. When k is of characteristic different from n + 1, the
spectral sequence 3.7 also collapses at page 2 and a straightforward computation
yields an isomorphism of rings

H∗(LCPn) ∼= HH∗(C∗(CPn), C∗(CPn)) ∼= k[u, v, w]/(un+1, unv, unw)

where |u| = 2, |v| = −2n and |w| = 1. Furthermore the Hodge decomposition is
given by

H
(p≥1)
∗ (LCPn) =

(
vpk[u]⊕ wvp−1k[u]

)
/(unv, unw)

and H(0)
∗ (LCPn) = k[u]/(un+1). As in Example 5.8, we get a Hodge decomposition

even if char(k) > 0. In particular, the Harrison cohomology groups are

Har∗(C∗(CPn), C∗(CPn)) =
(
k[u]/(un)

)
[−2n]⊕

(
k[u]/(un)

)
[1]
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if char(k) = 0 and

Har∗(C∗(CPn), C∗(CPn)) =
(
k[u]/(un)

)∏
i≥0

k[−2n(pi− i+ 1)]⊕ k[1− 2in(p− 1)]

if char(k) = p. The Hodge decomposition in Hochschild homology is given by

HH
(p)
∗ (C∗(CPn), C∗(CPn)) = k[x]/(xn)[2np− 2n+ 1]⊕ k[x]/(xn)[2np+ 2],

HH
(0)
∗ (C∗(CPn), C∗(CPn)) = k[x]/(xn+1)

where the degrees are cohomological degrees. In particular, if char(k) = 0, the only
non trivial Harrison homology groups are

Har2i−1(C∗(CPn), C∗(CPn)) = k for 1 ≤ i ≤ n,
Har2i(C∗(CPn), C∗(CPn)) = k for n+ 1 ≤ i ≤ 2n.

6. Concluding remarks

• At the same time as a first draft of this paper, Hamilton and Lazarev [HL]
(also see the recent updated versions [HL2, HL3, HL4]) wrote a paper
about cohomology of homotopy algebras, using Kontsevich framework of
formal non-commutative geometry. In particular they study Harrison and
Hochschild cohomology of C∞-algebras over a field of characteristic zero
and give a Hodge decomposition of HH∗(R,R) and HH∗(R,R?). Using
that the C∞-structure is determined by maps Di : R⊗i → R, it is easy to
check that their definitions are dual and equivalent to ours in this special
cases. They also prove that the above cohomology theories yields the good
obstruction theory. They finally apply it to (a different from our) issue
in string topology, namely the homotopy invariance of the Gerstenhaber
algebra structure.

• The Connes operator B : C∗(R,M) → C∗−1(R,M) is well defined for
C∞-algebras and commutes with the Hochschild differential, thus one can
define cyclic (co)homology of a C∞-algebra R see [GJ1, Tr2, HL]. Fur-
thermore, it is easy to check that the λ-operations and Hodge decom-
position passes to the various cyclic homology theories in characteristic
zero [HL]. In positive characteristic, the λ-operations passes to cyclic
(co)homology but not to negative cyclic (co)homology.

• Besides the BV-algebra structure, there are other string topology oper-
ations on H∗(LM) as well as in equivariant homology HS1

∗ (LM), which
come from an action of Sullivan chord diagram on LM . It seems inter-
esting to obtain compatibility conditions between the λ-operation/Hodge
decomposition and the full scope of string topology operation. It might
be achieved by combining the techniques of this paper and [TZ2].

• There are power maps γk : LM → LM which sends a loop f : S1 → M
to the loop u 7→ f(ku). It seems reasonable to expect that these power
maps coincides with our λ-operation for simply connected spaces.
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