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Abstract. We offer a new approach to large N limits using the Batalin-Vilkovisky formalism,
both commutative and noncommutative, and we exhibit how the Loday-Quillen-Tsygan Theorem
admits BV quantizations in that setting. Matrix integrals offer a key example: we demonstrate how
this formalism leads to a recurrence relation that in principle allows us to compute all multi-point
correlation functions. We also explain how the Harer-Zagier relations may be expressed in terms of
this noncommutative BV geometry.

As another application, we consider the problem of quantization in the large N limit and demon-
strate how the Loday-Quillen-Tsygan Theorem leads us to a solution in terms of noncommutative
geometry. These constructions are relevant to open topological field theories and string field theory,
providing a mechanism that relates moduli of categories of branes to moduli of brane gauge theories.

1. Introduction

Many constructions involving N ×N matrices exhibit surprising behavior in the limit as N goes
to infinity. The archetypal example — of deep and abiding interest to both physics and mathematics
— is the theory of random matrices à la Wigner, but stable patterns in the large N limit appear
in many domains, ranging from K-theory to gauge theory. Our central goal here is to offer a
new view on a class of large N phenomena by relating a homological result (the Loday-Quillen-
Tsygan theorem) to quantum and probabilistic systems (such as Gaussian random matrices). The
mechanism by which these domains interact is the Batalin-Vilkovisky (BV) formalism, which is a
homological approach to formulating the path integral. Although we end up constructing a general
and abstract relationship, this introduction will focus on a fundamental example first and then on
interpreting our results as an example of gauge-string duality.

Before jumping into details, however, a summary of our main ideas may be helpful; and we
phrase these for two audiences. From the perspective of physics, this paper shows that the BV
formalism offers a novel approach to large N gauge theory because it offers a mechanism for the
emergence of stringy phenomena, essentially by string field theory and the noncommutative BV
formalism. (We only examine zero-dimensional field theories in this paper; Movshev-Schwarz and
Costello-Li offer higher-dimensional examples.) From the perspective of homological algebra, this
paper shows that the Loday-Quillen-Tsygan (LQT) theorem admits a natural quantization when
applied to cyclic A∞-algebras.

In addition to studying BV quantizations of the LQT theorem, we also analyze how the LQT
map intertwines the deformation theory of a cyclic A∞-algebra A with the deformation theory of
the cyclic L∞-algebras glN (A). From a physical viewpoint, this amounts to understanding how the
moduli of noncommutative BV theories (a.k.a. topological string theories) controls the moduli of
associated commutative BV theories (a.k.a. brane gauge theories).

This work was supported by the Simons Foundation by grant 279462 and by the National Science Foundation by
grant 1812049.
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There is enormous prior work on all these topics, and it would be difficult (and possibly unhelpful)
to survey a substantive fraction of the literature. So far as we know, Movshev and Schwarz were
the first to intertwine the BV formalism with cyclic homology in the style advocated by this paper.
See [36] for a good starting point and survey of their beautiful and eye-opening body of work on
supersymmetric gauge theories [33, 34, 35]. Schwarz also influenced us via [38], where a relationship
between open topological field theories and generalized Chern-Simons theories is explained. More
recently in [12, 13], Costello and Li have used related ideas in examining how BCOV theory (a.k.a.
Kodaira-Spencer gravity) relates to holomorphic Chern-Simons theory in the large N limit. We
took inspiration from both of these predecessors, but our focus and context are rather different;
closer in spirit (but exhibiting nontrivial differences) to Barannikov’s lovely work [3]. Eventually
we hope our methods may be fruitful in field-theoretic contexts as well. We also expect a close
connection between our results and those of Berest, Ramadoss, and collaborators (see [5, 4] to
start) but do not explore that here.

Note that in [24, 25] there is a rather different approach to intertwining BV formalism, matrix
models, and Connesian noncommutative geometry by Iseppi and van Suijlekom.

Throughout the paper, we have used the odd/even terminology to indicate Z/2-graded objects.
In several discussions, this Z/2-grading is a remnant of a stronger Z-grading. While a Z-grading
might be richer, we have suppressed such subtleties in favor of continuity and ease. Experienced
readers will know how to provide the details needed to lift.

1.1. What is the LQT theorem and what would it mean to quantize it? Let K be a
characteristic zero field and A a unital associative algebra over K. In fact, we can take A to be a
differential graded (dg) associative algebra or an A∞-algebra. Then there is a sequence of maps

A = gl1(A) ↪→ gl2(A) ↪→ · · · ↪→ glN (A) ↪→ · · ·

where each map extends an N × N matrix to an (N + 1) × (N + 1) matrix by putting zeros in
the rightmost column and bottom row. These are maps of Lie algebras (or if A is dg, of dg Lie
algebras; or if A is A∞, of L∞-algebras). Let gl∞(A) denote the Lie (respectively, dg Lie or L∞)
algebra of countably infinite square matrices with only finitely many nonzero entries, so that

gl∞(A) = lim−→
N

glN (A),

the colimit of this diagram.
Taking Lie algebra homology, one finds a sequence of maps of graded vector spaces

H∗(gl1(A))→ · · · → H∗(glN (A))→ · · · → H∗(gl∞(A))

arising from a sequence of chain maps

C∗(gl1(A))→ · · · → C∗(glN (A))→ · · · → C∗(gl∞(A)).

What was found by Tsygan and (independently) Loday and Quillen, is that there is a simpler
chain complex defined directly in terms of the algebra A that encodes Lie algebra homology after
stabilization.

Theorem 1.1. For any unital A∞-algebra A over a field K of characteristic zero, there is a natural
quasi-isomorphism

C∗(gl∞(A))→ S(CC∗(A)[1])

where CC∗(A) denotes the cyclic chain complex of A and S(−) denotes the free graded-commutative
algebra. This construction is functorial in A.
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We will review this construction in our paper (including the definition of cyclic homology), but
it boils down to clever and concrete invariant theory calculations with matrices. The graded linear
dual map

Ŝ(CC∗(A)[−1])→ C∗(gl∞(A))

relates (the completed symmetric algebra on) cyclic cohomology to the stable Lie algebra cohomol-
ogy. For us, much of the interest is in the induced maps

Ŝ(CC∗(A)[−1])→ C∗(glN (A))

relating the cyclic cohomology to Lie algebra cohomology at some finite N .
The reader should (rightly!) wonder how this theorem could be quantized and what that could

mean. For the moment, we remark that when doing classical field theory in the BV formalism,
the classical observables form a dg commutative algebra that often admits a nice description as
C∗(g) for some L∞-algebra g. A particularly pertinent example is Chern-Simons theory on an
oriented 3-manifold X for the Lie algebra uN . In that case, working with connections on the trivial
principal UN -bundle, we have g = Ω∗(X) ⊗ uN , the algebra of uN -valued differential forms. Of
course, complexifying uN gives glN (C), which places us in a domain where the LQT theorem is
relevant. In particular,

C∗(g)⊗ C = C∗ (glN (Ω∗C(X))) ,

where on the right-hand side we consider complex valued differential forms Ω∗C(X) and work over
the ground field C. In this way, complex-valued observables occur through complexifying the Lie
algebra. The LQT theorem then says that the large N limit of classical Chern-Simons theory is

encoded by Ŝ(CC∗(Ω∗C(X))[−1]). Since the cyclic cohomology of the de Rham complex encodes the
rotation-equivariant homology of the free loop space LX (up to subtleties about the fundamental
group), the LQT theorem implies that the large N limit of classical Chern-Simons theory on X
describes something about the free loop space LX, which is manifestly relevant to string theory
and string topology. (In the remarkable [38], Schwarz lays out this relationship.)

It is then interesting to ask whether there is a quantum version, where quantization is also done
within the BV formalism. At the classical level, the observables are not only differential graded but
actually form a shifted Poisson dg algebra. In the case of Chern-Simons theory, the shifted Poisson
bracket arises from the bilinear pairing on fields g by combining the wedge product of forms with the
trace pairing on matrices. BV quantization amounts to deforming the differential on the classical
observables in a way that depends on the shifted Poisson bracket on those classical observables. In
this sense it resembles deformation quantization, except that a differential is deformed rather than
a multiplication. Below in Section 1.3 we revisit these ideas in a broader context, using branes and
functorial field theory.

More abstractly, the classical BV formalism can be seen as the study of cyclic L∞-algebras, i.e.
L∞-algebras with an invariant pairing of odd degree. (We give a precise and complete definition
of these inside the paper.) In this view, the underlying graded vector space of the L∞-algebra
encodes the field content and the brackets encode the homogeneous terms of the action functional.
The Chevalley-Eilenberg cochains of the L∞-algebra are the classical observables, and the cyclic
structure determines the (typically) shifted Poisson bracket.

On the other hand, given a cyclic A∞-algebra A, one obtains an infinite family of L∞-algebras
glN (A), with a canonical invariant pairing that combines the trace pairing on matrices with the
pairing on A. Hence, cyclic A∞-algebras provide a source of many examples for the classical BV
formalism. In this paper we refine the LQT theorem by showing that for a cyclic A∞-algebra A,
the LQT maps

Ŝ(CC∗(A)[−1])→ C∗(glN (A))
3



are shifted Poisson and that they admit a natural BV quantization. For gauge-type theories, these
provide BV quantizations that are “uniform in N .”

We wish to note something striking about the LQT map: the domain describes a free theory
in the sense that the differential is linear (and hence corresponds to a purely quadratic action
functional). In other words, there is a free theory governing the gauge theories in the large N limit.
This feature explains the remarkable simplicities that emerge in this limit. On the other hand,
the quantization we identify — which corresponds to the standard BV quantization on the Lie or
gauge-theoretic side — does not look like the “obvious” quantization of this free theory. Instead
the BV Laplacian (i.e., the deformation of the differential) has a fascinating structure, related to
ribbons.

Let us point out a drawback of our methods: they do not apply directly to infinite-dimensional
algebras, such as de Rham complexes, because we require strict non-degeneracy of the cyclic struc-
ture. True gauge theories, in all their glory, lie outside the scope of this paper and would require a
renormalized version of our methods. Nonetheless, interesting examples exist, as we explain below
when discussing branes.

1.2. The LQT Theorem and the Gaussian unitary ensemble. Let hN denote the vector
space of Hermitian N ×N matrices. Equip it with the Gaussian measure

µN :=
1

ZN
e−

1
2

Tr(X2)dX,

normalized so that
1

ZN

∫
hN

e−
1
2

Tr(X2)dX = 1.

In other words, we have identified a space of random matrices; in particular, physicists will recognize
that it is a space of random Hamiltonians for quantum mechanical systems with finite-dimensional
Hilbert spaces (without any time dependence). A wonderful surprise, discovered by Wigner, is the
emergence of simple patterns as N gets large. One goal of this paper is to offer an explanation for
some of these patterns via the Loday-Quillen-Tsygan theorem.

As the measure is naturally invariant under conjugation by unitary transformations, it is natural
to ask first about invariant functions of these random matrices. Define,

INk :=

∫
hN

Tr(Xk)dµN

to be the expected value of the single-trace operator Tr(Xk), which is a conjugation-invariant moment
of the Gaussian measure µN .

Recall the case N = 1, which is simply the Gaussian measure on the real line. The odd moments
vanish as the measure is an even function and an odd power is an odd function. Thus, only the
even moments are non trivial. A classic computation shows,

I1
2k =

∫
R
x2ke−

1
2
x2dx =

(2k)!

2kk!
,

= (2k − 1)!! := (2k − 1)(2k − 3)(2k − 5) · · · 5 · 3 · 1;

a result sometimes known as Wick’s lemma. These moments satisfy a simple recurrence relation,

I1
2k = (2k − 1)I1

2k−2.

For general N , Harer and Zagier obtained a remarkable closed formula for IN2k.
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Theorem 1.2 (Harer-Zagier).

(1.1) IN2k =
(2k)!

2kk!

k∑
m=0

2m
(
k

m

)(
N

m+ 1

)
Some patterns emerge upon careful inspection. For instance, the leading coefficient of the poly-

nomial IN2k is the integer (2k)!
k!(k+1)! , known as the kth Catalan number, which counts the number of

possible ways of gluing the edges of a 2k-gon to form a sphere. Similarly, the coefficient of the next
nonzero term (which has degree k − 1) is the number of ways that gluing the edges of a 2k-gon
results in a torus.

There is also a useful recurrence relation for k ≥ 2,

(1.2) IN2k =
(4k − 2)

(k + 1)
NIN2k−2 +

(k − 1)(2k − 1)(2k − 3)

(k + 1)
IN2k−4,

fully determined by the initial values IN0 = N and IN2 = N2. One can verify this recurrence
relation by elementary but nontrivial analysis using Hermite polynomials and their properties (see,
e.g., [26]), and thence deduce the closed formula (1.1).

A well-known consequence of the general formula (1.1) is Wigner’s celebrated semi-circle law,
which we formulate in a limited but simple form.

Theorem 1.3 (Wigner). For any polynomial f ∈ R[x],

lim
N→∞

1

N

∫
hN

Tr
(
f
(
X/
√
N
))

dµN =
1

2π

∫ 2

−2
f(x)

√
4− x2dx.

In other words, the expected value on matrices — as we deal with arbitrarily large matrices —
is given by integrating against the height of a circle with radius 2.

Proof of Wigner’s law as a consequence of Harer-Zagier recurrence. It suffices to prove the theo-
rem for each f(x) = x2n. The right hand side is a direct computation, and it recovers precisely the
Catalan number that was found for the left hand side. �

Our paper provides a homological approach to studying Gaussian random matrices, particularly
how to compute the expected values of conjugation-invariant observables. When we develop this
example, we will see how the large N limit of our approach encodes the Harer-Zagier result and
hence Wigner’s law.

The first step is to rephrase the case of finite N homologically. There is a standard way to do
this in the BV formalism [18], but we sketch the argument here. A traditional method for encoding
integration homologically is the de Rham complex. For a Gaussian measure µ = e−QdV on a real
vector space V , one can show that inside Ω∗C(V ), there is a subcomplex

Ω∗C,µ(V ) = {pe−Qdx1 ∧ · · · ∧ dxk : p polynomial, xi linear}

consisting of polynomial de Rham forms multiplied by e−Q. Since polynomials have finite moments
when integrated against a Gaussian measure, this subcomplex has one-dimensional cohomology
concentrated in the top degree. In particular, one can take V to be the Hermitian N ×N matrices
with measure µN .

We now state a key result which may be derived directly from the machinery of the BV formalism:
a BV quantization of C∗(glN (A)), where A is described below, encodes Gaussian integration over
Hermitian matrices. An explicit description appears in Section 5, but we sketch it here.

Let A denote the cochain complex C id−→ C concentrated in degrees 1 and 2, viewed as a dg
associative algebra with trivial multiplication. Then for every natural number N , there is an
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isomorphism of cochain complexes

Ω∗C,µN (hN )[−N2] ' (S(glN (A)∗[−1]), dLie + ∆N ),

where dLie denotes the differential on Chevalley-Eilenberg cochains C∗(glN (A)) and ∆N denotes a
deformation of the differential. There is a lot to unwind in that statement, but the important point
is that this polynomial de Rham complex is a deformation of a Lie algebra cochain complex after
shifting the de Rham complex into degrees [−N2, 0].

These isomorphisms suggest that this simple-minded algebra A might play a universal role in
studying the Gaussian Unitary Ensemble (GUE). Let us plug it into the LQT theorem and see
what happens.

Thankfully, the cyclic cochain complex of A is easy to describe. One can identify the degree 0
component of CC∗(A)[−1] with the maximal ideal 〈x〉 inside the polynomial ring C[x]. In degree
0 the Lie algebra cochains are S(glN (C)∗). The LQT map is also easy to describe in degree 0, and
it is

〈x〉 → S(glN (C)∗)
xn 7→ Tr(Xn).

That is, the LQT map produces the single-trace operators. When we extend our consideration to
the entire domain S(CC∗(A)[−1]) of the LQT map, it produces the multi-trace operators. At the
classical level, the LQT theorem focuses on the observables relevant to random matrix theory.

Our quantized LQT theorem then produces a BV quantization on the cyclic side that maps to the
BV quantization of C∗(glN (A)) encoding Gaussian integration. On the cyclic side, the Harer-Zagier
recurrence appears as a relation among cocycles, and the LQT map shows how that determines
relationships among the expected values of tracial moments. In this sense, our BV approach to the
large N limit captures Wigner’s law. Because the relationship is very explicit, we can also use this
to explore interesting multi-trace recurrences.

We remark that it is natural to consider close variants of this story, where we replace Hermitian
matrices by orthogonal or symplectic matrices. (In probability theory these are known as the GOE
and GSE.) There is an analogous variant of the cyclic cohomology known as dihedral cohomology.
Loday and Procesi [27] proved an analog of the LQT theorem, relating dihedral cohomology of an
involutive algebra A to the large N limit of Lie algebra cohomology for orthogonal or symplectic
matrices with values in A. Our techniques should be immediately applicable to this setting, so that
we obtain analogs of classic results (e.g., expected values of multitrace operators) for GOE and
GSE.

1.3. A version of gauge-string duality. Our results apply naturally to topological string the-
ories, as encoded via the extended 2-dimensional topological field theories known as open-closed
TFTs or as topological conformal field theories (TCFTs). We will mention physical terminology
but focus on mathematical statements.

Recall [10, 30] that a Calabi-Yau A∞-category C determines a TCFT ZC , which we view as
encoding a topological string theory. This category captures the open sector of the topological
string theory: one interprets C as the D-branes for the string theory, and we will suggestively call
an object B of C a brane. What the TCFT assigns to the circle ZC(S

1) captures the closed sector
of the string theory. The fundamental theorem of TCFTs says that given C, the canonical value is
ZC(S

1) ' Hoch∗(C), the Hochschild chains of the category. The state space of the closed string field
theory is, moreover, the cyclic chains CC∗(C). In [11], Costello shows how the TCFT determines
canonically a closed string field theory. (By that we mean a solution to the quantum master
equation in a BV algebra arising from the cyclic chains; Costello relates it to the Sen-Zwiebach
algebra. For us, a closed string field theory need not be a Lagrangian field theory on some manifold,
such as BCOV theory.)
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We now relate that story to ours. First, a cyclic A∞-algebra is a Calabi-Yau A∞-category with
a single object. Conversely, for any brane B from a Calabi-Yau category C, the endomorphisms
EndC(B) are modeled by a cyclic A∞-algebra. To be more accurate, this A∞-algebra has a non-
degenerate pairing at the level of cohomology, and if EndC(B) has finite-dimensional cohomology,
then one can find a representative A∞-algebra with a nondegenerate pairing on the cochain-level,
by homotopy transfer. (Often, however, the natural presentation of a brane yields an infinite-
dimensional A∞-algebra, an issue that we discuss below in the context of examples.) In this sense,
if one studies the TCFT associated to a single brane, one is in the setting of our results.

Now suppose one takes N coincident copies of the same brane, and let’s suppose that can be
modeled by an N -fold direct sum B⊕N . Then

EndC(B
⊕N ) ∼= glN (EndC(B)),

namely matrices with values in endomorphisms of B. Moreover, we can view glN (EndC(B)) as a
cyclic L∞-algebra and hence as presenting a classical BV theory. We interpret it as the brane gauge
theory arising from N coincident copies of the brane B.

Let us mention briefly two examples that might orient the reader.

• Let C denote an A∞-category enhancing the derived category of coherent sheaves on a
projective Calabi–Yau manifold X. Given an object F (e.g., a coherent sheaf), the derived
endomorphisms are REndOX

(F). (At the level of cohomology, it is the self-exts of F . One
can find a convenient cochain representative by taking the Dolbeault complex of a complex
of holomorphic vector bundles resolving F .) As X is projective, this A∞-algebra has finite-
dimensional cohomology, and so after transferring the A∞-structure to the cohomology, we
have a cyclic A∞-algebra, as desired. As a concrete example, take F = OX , in which case
the Hochschild cochains are modeled by polyvector fields on X, and the cyclic cochains
admit a model built from polyvector fields. Pursuing this example leads naturally to the
BCOV theory as studied in the BV formalism by Costello and Li [12]. Taking X to be
a Calabi–Yau 3-fold, the associated brane gauge theories are holomorphic Chern–Simons
theories on X.
• Let C denote an A∞-category encoding ∞-local systems on a closed oriented smooth man-

ifold X. Given such a local system, its derived endomorphisms form an A∞-algebra over
the de Rham complex of X. As X is closed, this A∞-algebra has finite-dimensional co-
homology, and so after transferring the A∞-structure to the cohomology, we have a cyclic
A∞-algebra, as desired. As a concrete example, take the trivial local system given by the
constant sheaf. Its derived endomorphisms are modeled by the de Rham complex itself.
If X is a 3-manifold, the associated brane gauge theories are precisely the perturbative
Chern–Simons theories already discussed. Note that Schwarz described this picture in his
remarkable paper [38].

There are many variants on these examples.
The Loday-Quillen-Tsygan theorem tells us that there is a canonical relationship between the

large N limit of the classical brane gauge theory for B and the state space of the closed string theory
determined by the brane B, as encoded in the cyclic cohomology of EndC(B). This map can be seen
as relating the moduli of closed string theory to the moduli of the brane gauge theory; we examine
this aspect in detail in Sections 6 and 7, which focus on deformation theory of commutative and
noncommutative BV theories. Alternatively, this map can be seen as relating classical observables
for the closed string theory and the brane gauge theories; our other results can be seen provide a
quantization of that relationship.

Note that this story also relates to the TCFT determined by the whole category C. A choice of
brane B can be viewed as choosing an A∞-functor from the single-object category with morphisms
EndC(B) into C. That determines a cochain map CC∗(C)→ CC∗(EndC(B)). It is natural to ask if
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the closed string field theory arising from the TCFT ZC maps to the quantization we produce for
the large N limit of the brane gauge theories. We hope that our quantization receives a canonical
map from that closed string field theory, and that our quantization is equivalent to that produced
by the TCFT arising from B. It is highly nontrivial to construct these functorial quantizations (cf.
[6, 7]), so we do not attempt to test these aspirations in the current paper.

We remark that our methods apply to configurations of branes and not just isolated branes.
If one takes a collection of branes, one can consider the subcategory they generate, which (in
good cases) admits a finite set of generators. Hence this subcategory is Morita equivalent to an
A∞-algebra, and so our techniques apply (so long as the cohomology is finite).

1.4. Layout of the paper. In Section 2 we recall the basic homological algebra that provides the
underpinnings of our approach to large N phenomena. Here we recall the definitions of cyclic A∞
and L∞-algebras and their cohomology. We also review a number of fundamental results, in the
context of infinity-algebras; such as Morita invariance, the Loday-Quillen-Tsygan Theorem and the
invariance of Chevalley-Eilenberg cohomology under the action of a semisimple Lie algebra.

Section 3 reviews the basic framework of the Batalin-Vilkovisky formalism. This includes both
the familiar commutative framework and the noncommutative framework that follows the style of
Kontsevich. Here we explain how cyclic A∞ and L∞-structures, along with their cohomology, may
be encoded within this framework.

In Section 4 we continue our description of the noncommutative BV formalism. We then pro-
ceed to explain the connection between the material of the first two sections. In particular, we
describe how the LQT map intertwines the noncommutative BV formalism with its commutative
counterpart.

Section 5 discusses the application of the preceding results to random matrix theory. Here we
largely limit ourselves to explaining the role of noncommutative geometry and the Loday-Quillen-
Tsygan Theorem in describing the k-point correlation functions. It is possible to use this framework
to describe the large N asymptotic behavior of these correlation functions; but to keep the current
paper within reasonable limits, we intend to pursue this subject elsewhere.

In Section 6 we introduce a general framework in which to discuss quantization in the Batalin-
Vilkovisky formalism which applies equally well to both the commutative and noncommutative
incarnations presented in this paper. We identify, both abstractly and for our examples, the
cohomology theories controlling this process. Here we prove an appropriate analogue of the inverse
function theorem: a map that induces an isomorphism on cohomology yields a bijection between
moduli spaces of quantizations. We apply this theorem to both commutative and noncommutative
examples.

Finally, in Section 7 we explain how this general framework applies to quantization in the large
N limit. Here it is necessary to have a quantization at each rank N of the theory. We explain that,
crudely speaking, the Loday-Quillen-Tsygan Theorem tells us that we must build this quantization
using the noncommutative BV formalism.

1.5. Acknowledgements. We are grateful to a number of collaborators and colleagues who have
spoken with us as we pursued these ideas, notably Gaëtan Borot, Dmitri Pavlov, and Kevin Costello.
We are grateful for the convivial atmosphere and financial support that MPIM supplied. Subse-
quently, OG was lucky to draw AH into collaboration on this topic thanks to support from the
Simons Foundation. Surya Raghavendran and Philsang Yoo gave helpful feedback on a draft of this
paper, which clarified several points. During work on this project, the National Science Founda-
tion supported OG through DMS Grant No. 1812049. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.
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1.6. Notation and conventions. Throughout the paper we work over a field K of characteristic
zero. We denote the algebra of N ×N matrices with entries in K by MN (K).

Our convention will be to work with cohomologically graded objects, hence the suspension ΣV of
a graded vector space V is defined by ΣV i := V i+1. In fact, for much of the paper, we will generally
work just with a Z/2-grading (i.e., with super vector spaces), leaving it to the reader to lift to a
Z-grading, as interested. (Our results hold at that level but one must then track the degrees of,
say, the odd pairings and give ~ a cohomological degree.) When it is informative, such as Section 5,
we will specifically specify the lift.

A profinite vector space V is an inverse limit

V = lim←−
α∈I

Vα

of finite-dimensional vector spaces Vα. Such a presentation induces upon V the inverse limit topol-
ogy. A morphism of profinite vector spaces is a continuous linear map. Since any vector space is
the direct limit of its finite-dimensional subspaces, the category of ordinary vector spaces is anti-
equivalent to the category of profinite vector spaces under the functor that takes a vector space to
its linear dual. Since in this paper it is necessary for us to work with cohomology, profinite vector
spaces and their associated constructions will accordingly make their appearance.

We define the completed tensor product of two profinite vector spaces U and V by

U⊗̂V := lim←−
α,β

Uα ⊗ Vβ.

This corresponds to the usual tensor product under the above equivalence of categories.
We denote the symmetric group by Sn. Given a profinite vector space V we define the completed

tensor and symmetric algebras by

T̂ V :=

∞∏
n=0

V ⊗̂n and ŜV :=

∞∏
n=0

[
V ⊗̂n

]
Sn ;

where we make use of the convention that denotes coinvariants by a subscript and invariants by a
superscript. We will also use the notation

T̂+V :=
∞∏
n=1

V ⊗̂n and Ŝ+V :=
∞∏
n=1

[
V ⊗̂n

]
Sn .

We note that the standard symmetric and tensor algebras are defined in the usual way:

TV :=
∞⊕
n=0

V ⊗n and SV :=
∞⊕
n=0

[
V ⊗n

]
Sn .

2. A∞-algebras, Morita invariance and the Loday-Quillen-Tsygan Theorem

In this section we collect some of the basic facts about A∞ and L∞-algebras that will underlie
our approach to quantization in the large N limit. Here we formulate, in the context of homotopy
algebras, some of the essential results concerning the cohomology of these algebras. This includes
the Morita invariance of Hochschild cohomology and the Loday-Quillen-Tsygan Theorem on the
N -stable cohomology of glN (A). These results will provide the main tools for our work in the later
sections.

9



2.1. A∞-algebras and cyclic cohomology. We begin by recalling the definition of an A∞-
algebra A and its cyclic cohomology.

Definition 2.1. An A∞-algebra is a vector space A together with a continuous derivation,

(2.1) m : T̂ΣA∗ → T̂ΣA∗

of degree one such that m2 = 0. Furthermore, this formal vector field should vanish at zero in the

sense that its image is contained in T̂+ΣA∗.

Under the identification of T̂ΣA∗ with the dual (TΣA)∗ of the tensor algebra on ΣA, an A∞-
structure m on a vector space A is dual to a system of structure maps;

(2.2) mk : A⊗k → A, k ≥ 1.

The equation m2 = 0 encodes the homotopy coherence relations.

Definition 2.2. We say that an A∞-structure m on a vector space A is unital if there is an element
1 ∈ A such that:

• For all a ∈ A, m2(1, a) = a = m2(a, 1).
• For all k 6= 2, the structure map mk(a1, . . . , ak) vanishes whenever any argument ai is equal

to 1.

The next step is to explain how matrices inherit an A∞-structure. Given an A∞-algebra A
consider the space,

(2.3) MN (A) = A⊗MN (K)

of N × N matrices with entries in A. This has the natural structure of an A∞-algebra which we
now describe.

Definition 2.3. Given an A∞-algebra A, the A∞-structure on MN (A) is defined by tensoring the
structure maps (2.2) with the maps;

MN (K)⊗k → MN (K), X1 ⊗X2 ⊗ · · · ⊗Xk 7→ X1X2 · · ·Xk.

One can easily check that this defines a new A∞-structure on MN (A) which generalizes the usual
associative algebra structure on matrices that occurs when A is a strictly associative algebra.

Next we recall the definition of the cyclic cohomology of an A∞-algebra. This is the cohomology
theory that will ultimately emerge in the N -stable limit to control the quantization process and
the calculation of expectation values within the Batalin-Vilkovisky formalism.

Definition 2.4. Given an A∞-algebra A, the A∞-structure (2.1) induces a differential on

CC (A) :=
∞∏
k=1

[
(ΣA∗)⊗̂k

]
Z/kZ.

The cohomology of the complex CC (A) is called the cyclic cohomology of A.

Now we discuss the notion of a cyclic A∞-algebra, which requires that we have a symmetric
nondegenerate bilinear form 〈−,−〉 on A. In particular, A must be finite-dimensional.

Definition 2.5. We say that an A∞-structure m on A is cyclic if the multilinear maps

(2.4) a0, . . . , ak 7→ 〈mk(a0, . . . , ak−1), ak〉, k ≥ 1

coming from the structure maps (2.2) are cyclically antisymmetric.

We note that if A is a cyclic A∞-algebra then so is MN (A), where we combine the bilinear form
on A with the trace pairing on matrices.
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2.2. L∞-algebras and Chevalley-Eilenberg cohomology. Here we recall the definition of an
L∞-algebra and its Chevalley-Eilenberg cohomology.

Definition 2.6. An L∞-algebra consists of a vector space g and a continuous derivation,

l : ŜΣg∗ → ŜΣg∗

of degree one satisfying l2 = 0. As in Definition 2.1 it must also vanish at the origin, meaning that

its image is contained in Ŝ+Σg∗. The cohomology of the complex ŜΣg∗ with respect to l is called
the Chevalley-Eilenberg cohomology of g (with trivial coefficients). Since it splits off as a summand;
we will, by an abuse of terminology, also refer to the subcomplex

CE+ (g) := Ŝ+Σg∗

as the Chevalley-Eilenberg cochain complex, although it is more properly referred to as the reduced
Chevalley-Eilenberg cochain complex.

As before, an L∞-structure l is dual to a system of antisymmetric structure maps;

lk : g⊗k → g, k ≥ 1.

The equation l2 = 0 imposes the homotopy Jacobi identities.

Definition 2.7. If g is endowed with a symmetric nondegenerate bilinear form 〈−,−〉, then we say
that an L∞-structure l on g is cyclic if the multilinear maps

(2.5) y0, . . . , yk 7→ 〈lk(y0, . . . , yk−1), yk〉, k ≥ 1

are antisymmetric.

The L∞-structures that we consider in this paper come from commutator algebras, which we
now describe.

Definition 2.8. Any continuous derivation on the completed tensor algebra naturally induces such
a derivation on the completed symmetric algebra. Given an A∞-structure on A, we refer to the
L∞-structure induced on A in this way as the commutator L∞-structure. In particular, we will
denote by glN (A) the commutator L∞-algebra formed by N × N matrices with entries in A that
comes from Definition 2.3.

We note that one immediate consequence of the above definition is that there is a map of
complexes

(2.6) CC (MN (A))→ CE+ (glN (A)) .

Now we consider the action of glN (K) on the Chevalley-Eilenberg complex. The Lie algebra

glN (K) acts on glN (A) in the standard way on the righthand factor of (2.3). On ŜΣglN (A)∗ it
acts by derivations of this algebra. This action commutes with the commutator L∞-structure
l, since glN (K) acts by derivations on the algebra MN (K). Consequently, the glN (K)-invariants
form a subcomplex of the Chevalley-Eilenberg complex. In fact, if A is unital then this action is
nullhomotopic; given a matrix B in glN (K), we have

B = [hB, l],

where hB is the derivation on ŜΣglN (A)∗ given by contracting with the matrix

Σ1A ⊗B ∈ ΣglN (A).

This follows from the identities of Definition 2.2.
We have the following basic fact, which is a consequence of Weyl’s Theorem on the representation

theory of semisimple Lie algebras, cf. [41] Proposition 9.10.3.
11



Theorem 2.9. Given a unital A∞-algebra A, the inclusion of the invariants[
ŜΣglN (A)∗

]glN (K)
−→ ŜΣglN (A)∗

induces an isomorphism in Chevalley-Eilenberg cohomology.

2.3. Morita Invariance. Morita invariance is an important property of the Hochschild cohomol-
ogy of associative algebras. Here we provide a formulation of this result that applies in the context
of A∞-algebras.

Given an A∞-algebra A, denote the A∞-structures on A and MN (A) by mA and mMN (A) respec-
tively. We define maps of complexes

M :
(
T̂+ΣA∗,mA

)
�
(
T̂+ΣMN (A)∗,mMN (A)

)
: R

as follows. The map R is the restriction map, dual to the map that arises from embedding A into
the top left corner of MN (A).

To define M, consider the multilinear maps;

(2.7) tk : MN (K)⊗k → K, X1, . . . , Xk 7→ Tr(X1 · · ·Xk);

given by taking the trace of a product of matrices. The map M takes a k-multilinear form on ΣA
to a k-multilinear form on ΣMN (A) = ΣA⊗MN (K) by tensoring with the form tk.

Since the multilinear forms (2.7) are cyclically symmetric, the maps M and R descend to the
cyclic complexes. We are now ready to provide the statement on the Morita invariance of cyclic
cohomology.

Theorem 2.10. Given a unital A∞-algebra A, the maps

M : CC (A) � CC (MN (A)) : R

are quasi-isomorphisms, mutually inverse on homology, satisfying

R ◦M = id .

Proof. Consider the descending filtrations of the above cyclic complexes given by filtering by the
order k of the tensors. These are complete bounded above filtrations compatible with the above
maps. The differential on page zero of the spectral sequences is just the one induced from the
differential m1 on the A∞-algebra A. The cohomology HA of the A∞-algebra A with respect to
m1 is a unital strictly associative algebra. On page one of our spectral sequence the differential
is just the usual cyclic differential coming from the strictly associative algebra structure on HA.
Hence on page one of our spectral sequence the above maps M and R induce an isomorphism by
the classical theorem on Morita invariance, cf. [29] Theorem 2.4.6. The result now follows from
the Eilenberg-Moore Comparison Theorem, cf. [41] Theorem 5.5.11. �

2.4. The Loday-Quillen-Tsygan Theorem. The Loday-Quillen-Tsygan Theorem, discovered
independently by Loday-Quillen [28] and Tsygan [40], provides a description of the N -stable coho-
mology of glN (A) in terms of the cyclic cohomology of A. It will play a central role in our exploration
of large N phenomena by allowing us to simultaneously handle all the possible phenomena arising
for different values of N through the use of an appropriate universal object.

Given an A∞-algebra, consider the composite map

Ŝ+ (CC (A)) −→ Ŝ+ (CC (Mn(A))) −→ Ŝ+ (CE+ (glN (A))) −→ CE+ (glN (A)) ,

where the left-hand map is induced by the map M from Theorem 2.10, the next is induced by
(2.6) and the last map applies multiplication (so an n-fold symmetric product goes to the product
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of the n-terms). Since the multilinear forms (2.7) are glN (K)-invariant, this map lands in the
glN (K)-invariants. This leads to a system of commuting maps,

(2.8) Ŝ+ (CC (A))

))vv

[CE+ (glN (A))]glN (K) [
CE+

(
glN+1(A)

)]glN+1(K)oo

in which the horizontal arrows are the restriction maps dual to the canonical inclusions of glN (A)
into glN+1(A).

We are now ready to provide a statement of the Loday-Quillen-Tsygan Theorem, which we
formulate for an A∞-algebra A. Although the original results [28, 40] of Loday-Quillen and Tsygan
applied only to associative algebras, the arguments in these original sources prove the theorem for
A∞-algebras, with no additions needed.

Theorem 2.11. The diagram (2.8) establishes Ŝ+ (CC (A)) as an inverse limit,

Ŝ+ (CC (A)) = lim←−
N

(
[CE+ (glN (A))]glN (K)

)
.

Moreover, the same applies to the cohomology of these complexes:

(2.9) H•
(
Ŝ+ (CC (A))

)
= lim←−

N

H•
(

[CE+ (glN (A))]glN (K)
)
.

Remark 2.12. We emphasize that in the above statement, A does not need to be a unital A∞-
algebra.

3. The Batalin-Vilkovisky formalism and noncommutative geometry

In this section, we recall the basic framework of the Batalin-Vilkovisky formalism in both its com-
mutative [39] and noncommutative contexts [2, 19, 23]. Noncommutative symplectic geometry was
introduced in [23] by Kontsevich where it was used to describe the cohomology of the moduli space
of Riemann surfaces. In the subsequent sections we will see how this noncommutative geometry
appears in the large N limit when we try to handle all ranks N of the theory simultaneously.

3.1. The commutative Batalin-Vilkovisky formalism. We begin by briefly recalling the stan-
dard geometric framework of the Batalin-Vilkovisky formalism. Let V be a graded vector space
with a symplectic form 〈−,−〉 of odd degree. The inverse form 〈−,−〉−1 on V ∗ is defined by the
commutative diagram

(3.1) K

V ⊗ V

〈−,−〉
;;

Dl⊗Dr // V ∗ ⊗ V ∗

〈−,−〉−1
dd

where Dl(y) := 〈y,−〉 and Dr(y) := 〈−, y〉. While the form 〈−,−〉 is skew-symmetric, the Koszul
sign rule implies that the inverse form 〈−,−〉−1 is symmetric.

From the inverse form we define a Poisson bracket {−,−} of odd degree on both SV ∗ and ŜV ∗

by extending 〈−,−〉−1 to the commutative algebras using the Leibniz rule.

Definition 3.1. For a vector space V with an odd symplectic form, we define

P [V ] := SV ∗

and
P̂ [V ] := ŜV ∗
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to be the Poisson algebras with odd Poisson bracket {−,−}.

This structure is sometimes known as a shifted Poisson algebra. Note that one can generate
many other shifted Poisson algebras from these, as follows. Pick a degree zero element S such that
{S, S} = 0, so that the degree 1 derivation {S,−} determines a differential on the original algebra
and hence a dg shifted Poisson algebra. We will discuss the moduli of such shifted Poisson algebras
in Sections 6 and 7.

Every function f in a Poisson algebra determines a Hamiltonian vector field {f,−}. In our
setting, with V symplectic, this relationship provides a canonical isomorphism from S+V

∗ to the
Lie algebra of symplectic vector fields (i.e., derivations on SV ∗ preserving the symplectic form),
as constant terms do not affect a Hamiltonian vector field. Similarly, the symplectic vector fields

acting on ŜV ∗ are given by Ŝ+V
∗.

There is a natural quantization of these shifted Poisson algebras P [V ] and P̂ [V ] in the Batalin-
Vilkovisky sense: there is a deformation of the differential determined by the Poisson bracket. To

whit, the BV-Laplacian ∆ is the unique operator on P [V ] or P̂ [V ] satisfying

(3.2) ∆(ab) = (∆a)b+ (−1)aa(∆b) + {a, b}
and vanishing on S<2V ∗ (i.e., on linear terms in V ∗ and constant terms in K).

Definition 3.2. For a vector space V with an odd symplectic form, we define

P~ [V ] := K[~]⊗ SV ∗

and

P̂~ [V ] := K[[~]]⊗̂ŜV ∗

to be the differential graded Lie algebra with odd bracket given by extending {−,−} linearly with
respect to ~ and with differential ~∆ defined in the same manner. Note that here the formal
variable ~ has degree zero.

This differential graded Lie algebra encodes the standard framework for quantization and the
calculation of expectation values in the Batalin-Vilkovisky formalism. It is not a dg commutative
algebra because the differential is not a derivation for the commutative product. Note, however,
that the Lie bracket has odd degree and acts by derivations on the commutative product, which
has even degree; this type of structure is sometimes referred to as a Beilinson-Drinfeld algebra.

The quotients P~ [V ] /〈~〉 and P̂~ [V ] /〈~〉 are shifted Poisson algebras because they have both a
commutative product and a differential that is a derivation (because it is trivial). Viewing the
quotient as a way of setting ~ = 0, we can see these algebras as “quantizations” of shifted Poisson
algebras.

3.2. The noncommutative Batalin-Vilkovisky formalism. Now we describe a noncommuta-
tive counterpart to the geometric framework described above. The following definition is due to
Kontsevich [23], which he introduced as a cyclic analogue of the Lie algebra of Hamiltonian vector
fields on a symplectic vector space.

Definition 3.3. Given a vector space V with a symplectic form 〈−,−〉 of odd degree, we define a
Lie bracket of odd degree on

H [V ] :=

∞⊕
k=0

[
(V ∗)⊗k

]
Z/kZ,

and

Ĥ [V ] :=
∞∏
k=0

[
(V ∗)⊗̂k

]
Z/kZ,
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by the formula

{(a1 · · · am), (b1 · · · bn)} :=
m∑
i=1

n∑
j=1

±〈ai, bj〉−1(ai+1 · · · ama1 · · · ai−1bj+1 · · · bnb1 · · · bj−1),

where a1, . . . am, b1, . . . bn ∈ V ∗ and the sign is determined canonically by the Koszul sign rule.

There is also a Lie cobracket of odd degree on H [V ],

∇ : H [V ]→ (H [V ]⊗H [V ])S2 ,

given by the formula

(3.3) ∇(a1 · · · an) :=
∑

1≤i<j≤n
±〈ai, aj〉−1(ai+1 · · · aj−1)⊗ (aj+1 · · · ana1 · · · ai−1).

Again, the sign is determined by the Koszul sign rule. The same formula equips Ĥ [V ] with a
Lie cobracket of odd degree (technically this cobracket lands in the completed symmetric tensor
product, although we will ignore this distinction). This construction of ∇ was first described by

Movshev in [32]. These structures turn H [V ] and Ĥ [V ] into Lie bialgebras.
Note that there is a subspace

H+ [V ] :=

∞⊕
k=1

[
(V ∗)⊗k

]
Z/kZ

of H [V ], and there is a subspace

Ĥ+ [V ] :=

∞∏
k=1

[
(V ∗)⊗̂k

]
Z/kZ

of Ĥ [V ]. This notation is parallel to the notation S+V for the augmentation ideal of SV . We will

use ν to denote the generator of the “constant” term (V ∗)⊗0 inside H [V ] or Ĥ [V ]. Thus,

H [V ] = Kν ⊕H+ [V ] ,

and similarly for Ĥ [V ].

3.3. Relation to cyclic infinity-structures. We now explain how the constructions of the pre-
ceding subsection can be used to encode cyclic infinity-structures and their cohomology. As we will
describe below, the Lie algebras defined in Definition 3.1 and Definition 3.3 may be identified with
the cyclic and Chevalley-Eilenberg complexes when they are equipped with a differential that arises
through the adjoint action of an element representing the cyclic infinity structure, see Equation
(3.5) and (3.6) below.

Let A be a cyclic A∞-algebra with inner product 〈−,−〉 of odd degree. Since this bilinear form
is symmetric it gives rise to a symplectic form, also denoted by 〈−,−〉, on ΣA.

(3.4) K

A⊗A

〈−,−〉
;;

Σ⊗Σ // ΣA⊗ ΣA

〈−,−〉
dd

Consider the family of cyclically antisymmetric multilinear forms (2.4) on A determined by the
A∞-structure m on A. These give rise to cyclically symmetric tensors on ΣA and hence to an
element of,

∞∏
k=2

[
(ΣA∗)⊗k

]Z/kZ ∼= ∞∏
k=2

[
(ΣA∗)⊗k

]
Z/kZ ⊂ Ĥ [ΣA] .
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We denote the corresponding element of Ĥ [ΣA] by m̃. Note, importantly, that the above isomor-
phism is defined so that it takes a cyclically invariant k-fold tensor αk on the left to the cyclically
coinvariant tensor 1

kαk on the right. The homotopy coherence relations are then equivalent to the
equation {m̃, m̃} = 0. In this way, the moduli space of cyclic A∞-structures on A may be identified

with the Maurer-Cartan moduli space that is associated to the Lie subalgebra of Ĥ [ΣA] consisting
of quadratic and higher order elements.

We can also describe the cohomology of cyclic infinity-structures using the constructions of the

preceding subsection. We note that Ĥ+ [ΣA] is the underlying space of the cyclic complex and that
the Hochschild differential satisfies

m(α) = −{m̃, α}, α ∈
∞∏
k=1

[
(ΣA∗)⊗k

]
Z/kZ.

Hence the cyclic complex may be identified within the BV formalism as

(3.5) CC (A) =
(

Ĥ+ [ΣA] ,−{m̃,−}
)
,

a relationship that plays a key role in this paper.
A story similar to that described above holds for cyclic L∞-structures. Given a cyclic L∞-algebra

g the family (2.5) of antisymmetric tensors on g that arises from the L∞-structure l on g yields an
element of,

∞∏
k=2

[
(Σg∗)⊗k

]Sk ∼= ∞∏
k=2

[
(Σg∗)⊗k

]
Sk
⊂ ŜΣg∗.

We denote the corresponding element in ŜΣg∗ by l̃. Again, we note that here the above isomorphism
is defined so that it takes an invariant k-fold tensor αk on the left to the coinvariant tensor 1

k!αk on

the right. The homotopy Jacobi identities are then equivalent to the equation {l̃, l̃} = 0. In this way,
the moduli space of cyclic L∞-structures on g may be identified with the Maurer-Cartan moduli

space of quadratic and higher order elements in the Lie algebra ŜΣg∗. Via the BV formalism, the
Chevalley-Eilenberg complex may then be identified similarly as

(3.6) CE+ (g) :=
(
Ŝ+Σg∗,−{l̃,−}

)
,

another relationship that plays a key role in this paper.

3.4. The action of glN (K). We now explain how the action of glN (K) described in Section 2.2
is compatible with the structures of the Batalin-Vilkovisky formalism. Recall that given a cyclic

A∞-algebra A whose inner product has odd degree, the Lie algebra glN (K) acts on ŜΣglN (A)∗.
The latter has the structure of a BV-algebra, cf. Equation (3.2), where the pairing on glN (A)
combines the pairing on A with the trace pairing on matrices. The action by glN (K) respects this
structure in the following sense.

Lemma 3.4. For all f, g ∈ ŜΣglN (A)∗ and B ∈ glN (K):

(1) B · (fg) = (B · f)g + f(B · g),
(2) B · {f, g} = {Bf, g}+ {f,Bg},
(3) ∆(B · f) = B ·∆f .

Proof. (1) is tautological and since {−,−} is a Poisson bracket and hence acts by derivations on

ŜΣglN (A)∗, it suffices to verify (2) for f and g in ΣglN (A)∗; this follows as the trace vanishes on
commutators. To prove (3), we note that it follows from (1), (2) and Equation (3.2) that [∆, B] is

a derivation on ŜΣglN (A)∗ and hence must be zero since it vanishes on ΣglN (A)∗. �
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It follows that the glN (K)-invariants form a BV-subalgebra of ŜΣglN (A)∗ and hence that,

P̂~ [ΣglN (A)]glN (K) = K[[~]]⊗̂
[
ŜΣglN (A)∗

]glN (K)

is a differential graded Lie subalgebra of P̂~ [ΣglN (A)].

4. Morita Invariance and the Loday-Quillen-Tsygan Theorem in the
Batalin-Vilkovisky formalism

In this section we begin to describe how Morita invariance and the Loday-Quillen-Tsygan The-
orem fit into the homological algebra of the Batalin-Vilkovisky formalism.

4.1. Relating the commutative and noncommutative formalisms. We are now in a position
to describe a key relationship for our paper. We will show that, first, there is a canonical map from
the noncommutative object built from an odd symplectic vector space V to the commutative BV
object built from V and, second, that a noncommutative BV quantization determines canonically
a commutative BV quantization. These relationships provide the first step toward a quantized
Loday-Quillen-Tsygan theorem.

Both H [V ] and P [V ] are, as graded vector spaces, quotients of the tensor algebra TV ∗. Hence
there is a canonical quotient map

(4.1) σ : H [V ] =
∞⊕
k=0

[
(V ∗)⊗k

]
Z/kZ −→

∞⊕
k=0

[
(V ∗)⊗k

]
Sk

= P [V ]

sending a cyclic word in k letters to a symmetric word in k letters, because Z/kZ ⊂ Sk. Note that
ν goes to 1. By direct inspection, σ is a map of Lie algebras with odd bracket: on both sides, the
bracket arises by pairing off two elements in a word in all possible ways, whether the word is cyclic
or symmetric.

Similarly, there is a canonical map of Lie algebras

σ̂ : Ĥ [V ] =
∞∏
k=0

[
(V ∗)⊗̂k

]
Z/kZ −→

∞∏
k=0

[
(V ∗)⊗̂k

]
Sk

= P̂ [V ] ,

by replacing direct sum with product.
Any map g→ P from a Lie algebra to a Poisson algebra determines canonically a map of Poisson

algebras Sg→ P , where the commutative algebra Sg generated by g has a canonical Poisson bracket
given by extending the Lie bracket of g using the Leibniz rule and the Poisson map is the canonical
map of commutative algebras. Hence we have maps of shifted Poisson algebras

(4.2) σP : S (H [V ]) −→ P [V ]

and

(4.3) σ̂P :

∞⊕
i=0

[
Ĥ [V ]⊗̂i

]
Si
−→ P̂ [V ] .

Observe that

S(H [V ]) = K[ν]⊗ S(H+ [V ]),

and so we can describe these maps concretely as

νm(a11 · · · a1k1) · · · (an1 · · · ankn) 7→ a11 · · · a1k1 · · · an1 · · · ankn ,
sending a symmetric product of cyclic words to the symmetric product of all the terms. These
maps send ν to 1. Note that there is a commuting square for these maps induced by the inclusions

H [V ] ↪→ Ĥ [V ] and P [V ] ↪→ P̂ [V ].
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Remark 4.1. We have worked only with the direct sum for the domain of (4.3). One cannot extend

the map to the completion Ŝ(Ĥ [V ]) as it is not continuous; that is the map sends ν to 1 and hence,

for instance, any formal power series f(ν) from Ŝ(Ĥ [V ]) would be sent to f(1), which is (in general)
not well-defined.

These maps relate two examples of the commutative BV formalism at the classical level. It is
natural to ask whether we can quantize these maps, and we will formulate two answers. The first
quantization is quite straightforward.

Definition 4.2. Given a vector space V with a symplectic form 〈−,−〉 of odd degree, we define

Pnc
~ [V ] = K[~]⊗ S (H [V ])

to be the differential graded Lie algebra with odd bracket given by extending the bracket on S(H [V ])
linearly over ~ and with differential ~(δ +∇), where δ denotes the Chevalley-Eilenberg differential
associated to the Lie algebra H [V ] (it arises by extending the bracket as a coderivation on the
commutative coalgebra S (H [V ])) and the cobracket ∇ defined by (3.3) on H [V ] is extended to
S (H [V ]) as a derivation.

Similarly, let

P∧nc
~ [V ] = K[~]⊗

( ∞⊕
i=0

[
Ĥ [V ]⊗̂i

]
Si

)
denote the corresponding construction.

It follows from the Lie bialgebra axioms for H [V ] that the differential has square zero and acts as
a derivation for the bracket. Note that it is well-known that S (H [V ]) is canonically a BV-algebra
when equipped with the Chevalley-Eilenberg differential δ. This remains true when δ is replaced
by (δ +∇), as above, as ∇ is a derivation.

Proposition 4.3. The map (4.2) extends ~-linearly to a map

σ~ : Pnc
~ [V ] −→ P~ [V ]

of differential graded Lie algebras.
Likewise, the map (4.3) extends ~-linearly to a map

σ̂~ : P∧nc
~ [V ] −→ P̂~ [V ]

of differential graded Lie algebras.

The statement of this result looks rather technical, but it has an interesting interpretation. It
says that there is a non-obvious “commutative” BV quantization of the Poisson algebra S(H [V ])
that maps by passing to the usual “commutative” BV quantization P~ [V ]. In conjunction with the
Loday-Quillen-Tsygan Theorem, this relationship will connect the noncommutative BV formalism
with the commutative formalism at all ranks N .

Proof. We have already seen that, modulo ~, these are maps of Lie algebras, and so, as the maps
are ~-linear extensions, these maps are still Lie algebra maps. What we need to check is that they
are cochain maps.

We begin by noting that for all x = (x1 · · ·xk) ∈ H [V ],

(4.4) ∆σP (x) = σP∇(x).

This is a consequence of Equation (3.2), since it follows from this that ∆ contracts all pairs of
tensors xi ∈ V ∗ in x using the inverse bilinear form 〈−,−〉−1.
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It suffices now to analyze the differentials on simple terms that span both the domain and range.
Consider a symmetric product of cyclic words

α = a1 · a2 · · · an, ai ∈ H [V ]

in Pnc
~ [V ]. Now from Equation (3.2) and the fact that (4.2) is a map of Poisson algebras, it follows

that

∆σ~(α) = ∆(σP (a1) · · ·σP (an))

=
∑

1≤i<j≤n
±{σP (ai), σP (aj)} · σP (a1) · · · σ̂P (ai) · · · σ̂P (aj) · · ·σP (an)

+
∑

1≤i≤n
±∆(σP (ai)) · σP (a1) · · · σ̂P (ai) · · ·σP (an)

=σP δ(α) + σP∇(α) = σ~(δ +∇)(α)

where on the last line we have used Equation (4.4). �

There is another quantization, motivated by the relationship between the noncommutative BV
formalism and the moduli space of Riemann surfaces and with topological field theory. An extensive
discussion can be found in [19], which motivates many of the choices and parameters below.

Definition 4.4. For a vector space V having a symplectic form of odd degree, define

P̂nc
γ,ν [V ] := K[[γ]]⊗̂Ŝ+(Ĥ [V ]),

=
[
νK[[γ, ν]]

]
×
[
K[[γ, ν]]⊗̂Ŝ+(Ĥ+ [V ])

]
.

It is a differential graded Lie algebra with differential

∆K := ∇+ γ δ

and with bracket {−,−}, where we extend the structures on Ŝ+(Ĥ [V ]) linearly with respect to γ.

Proposition 4.5. The map σK : P̂nc
γ,ν [V ]→ P̂~ [V ] given by

σK
(
γiνj(a11 · · · a1k1) · · · (an1 · · · ankn)

)
= ~2i+j+n−1a11 · · · a1k1 · · · an1 · · · ankn

is a map of differential graded Lie algebras.

Proof. The map σK can be understood as being built out of a couple of pieces. First, it sends γ

to ~2. Second, it weights a symmetric product of n cyclic words from Ĥ [V ] by a factor of ~n−1,

regardless of whether the words come from Ĥ+ [V ] or are the ‘empty’ word ν. In the proof of
Proposition 4.3, we saw

∆σP = σP (∇+ δ).

Note that ∇ increases the symmetric degree by one, whereas δ decreases it by one. Hence it follows
that for α ∈ Sn(H [V ]),

σK(∇α+ γδα) = ~nσP∇α+ ~2~n−2σP δα

= ~n∆σPα = ~∆σKα.

Note also that the Lie bracket decreases the total symmetric degree by one and so a similar calcu-
lation demonstrates that σK also respects the Lie brackets. �

There are further variations on quantization but we do not need them in this paper.
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4.2. Morita invariance and quantizing the Loday-Quillen-Tsygan maps. We now turn to
putting the construction just developed into dialogue with the Loday-Quillen-Tsygan Theorem. As
a first step note that if V is a vector space with odd symplectic pairing 〈−,−〉, then V ⊗MN (K)
has an odd symplectic pairing:

〈a⊗X, b⊗ Y 〉N = 〈a, b〉Tr(XY ).

Consider now the map

M+ : Ĥ+ [V ]→ Ĥ+ [V ⊗MN (K)] .

arising from the map M of Theorem 2.10, which is defined by tensoring with the multilinear
forms (2.7). (Recall that this mapM is built from traces of products of matrices.) We can extend
it to a map

M : Ĥ [V ]→ Ĥ [V ⊗MN (K)] .

by sending ν to Nν. (In Sections 5 and 7, this scaling of ν will play a critical role.) Let M denote
as well the map from H [V ] to H [V ⊗MN (K)].

This choice has a nice feature.

Lemma 4.6. The map M is a map of Lie bialgebras.

This claim may be verified by direct computation – the calculations are similar to those performed
in Section 4.5, see in particular Equation (4.16) – although we will not take this approach here
since we will provide an alternative proof based on a more general fact about tensoring V with an
associative Frobenius algebra M . This particular generalization is quite appealing: it can be seen
as coupling the BV theory arising from V to an open topological field theory associated to M . The
proof of Lemma 4.6 and this generalization will be deferred to Section 4.5.

As a consequence of the above lemma, we see that there is a canonical map

(4.5) MP : S(H [V ]) −→ S(H [V ⊗MN (K)])

of shifted Poisson algebras. Similarly, replacing H [V ] with Ĥ [V ], we have a map of shifted Poisson
algebras

M̂P :
∞⊕
i=0

[
Ĥ [V ]⊗̂i

]
Si
−→

∞⊕
i=0

[
Ĥ [V ⊗MN (K)]⊗̂i

]
Si
.

Moreover, as the multilinear maps (2.7) are glN (K)-invariant, the image lands in the glN (K)-
invariant subspace of the target.

Combining the above with (4.2) and (4.3), we obtain the following.

Lemma 4.7. The maps

σP ◦MP : S(H [V ]) −→ P [V ⊗MN (K)]glN (K) ⊂ P [V ⊗MN (K)]

and

σ̂P ◦ M̂P :

∞⊕
i=0

[
Ĥ [V ]⊗̂i

]
Si
−→ P̂ [V ⊗MN (K)]glN (K) ⊂ P̂ [V ⊗MN (K)]

are maps of shifted Poisson algebras.

We interpret these maps as saying that the noncommutative theory arising from V encodes the
conjugation-invariant piece of the commutative theory arising from V ⊗MN (K) for every rank N .
In other words, it captures something common to all such theories.

It is natural to ask whether this relationship lifts to the quantizations (of both kinds), which

indeed it does. Denote by M~ the ~-linear extension of MP to Pnc
~ [V ] and likewise for M̂P .
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Theorem 4.8. The maps

σ~ ◦M~ : Pnc
~ [V ] −→ P~ [V ⊗MN (K)]glN (K) ⊂ P~ [V ⊗MN (K)]

and

σ̂~ ◦ M̂~ : P∧nc
~ [V ] −→ P̂~ [V ⊗MN (K)]glN (K) ⊂ P̂~ [V ⊗MN (K)]

are maps of differential graded Lie algebras.

Proof. It remains only to check that these are cochain maps. As we know σ~ is a cochain map,
we only need to verify that M~ intertwines the differentials, which follows directly from Lemma
4.6. �

Similarly, there is the following result for the second quantization, whose proof we also defer to

Section 4.5. Consider the γ-linear extension of the map (4.5) to the complete space P̂nc
γ,ν [V ] and

denote this map by

(4.6) M̂γ,ν : P̂nc
γ,ν [V ] −→ P̂nc

γ,ν [V ⊗MN (K)] .

Theorem 4.9. The map M̂γ,ν is a map of differential graded Lie algebras. Consequently the
composition

σK ◦ M̂γ,ν : P̂nc
γ,ν [V ] −→ P̂~ [V ⊗MN (K)]glN (K)

is also a map of differential graded Lie algebras.

4.3. The quantized Loday-Quillen-Tsygan theorems. We now extend the constructions just
developed to the much more interesting setting of cyclic A∞- and L∞-algebras.

Recall from (3.5) that for a cyclic A∞-algebra A whose inner product is odd, we have

CC (A) =
(

Ĥ+ [ΣA] ,−{m̃,−}
)

where m̃ ∈ Ĥ+ [ΣA] represents the cyclic A∞-structure. If we consider the underlying symplectic

vector space V = ΣA and ignore the A∞-structures, then Ĥ+ [ΣA] = Ĥ+ [V ] is precisely what we’ve
been working with so far. Similarly, by (3.6), we know that for a cyclic L∞-algebra g with odd
inner product,

CE+ (g) =
(
Ŝ+Σg∗,−{l̃,−}

)
,

where l̃ ∈ Ŝ+Σg∗ represents the cyclic L∞-structure. If we consider the underlying symplectic vector

space V = Σg, then ŜΣg∗ = P̂ [V ] is also precisely what we’ve been working with so far. Recall
from Definition 2.8 that every cyclic A∞-algebra determines a commutator cyclic L∞-algebra.

Remark 4.10. Note here that the completed versions are used, namely Ĥ+ [ΣA] and Ŝ+Σg∗, because
an arbitrary A∞- or L∞-algebra has infinitely many operations and so the product of cyclic or
symmetric powers is needed, rather than the direct sum. If the algebra has only finitely many
nontrivial operations, however, one can work with H+ [ΣA] and S+Σg∗. Here we will state the
maps in the completed setting, but the reader can formulate the uncompleted versions as needed.

The Lie algebra morphism σ defined by (4.1) induces a map between the corresponding Maurer-
Cartan sets; that is to say, following the discussion in Section 3.3, that it maps cyclic A∞-structures
to cyclic L∞-structures. This is just the commutator algebra construction of Definition 2.8; that
is to say that l̃ := σ(m̃) is the commutator cyclic L∞-structure associated to m̃.

Similarly, given a cyclic A∞-algebra A, the cyclic A∞-structures m̃A and m̃MN (A) on A and
MN (A) respectively (cf. Definition 2.3) correspond under the maps M and R of Theorem 2.10:

M(m̃A) = m̃MN (A), R(m̃MN (A)) = m̃A.
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In light of this, turning on a nontrivial A∞-structure m̃A on A with V = ΣA, one finds that
the maps constructed in Theorems 4.8 and 4.9 are extensions of the Loday-Quillen-Tsygan map of

Section 2.4. More precisely, Ĥ [V ] sits inside both of the Lie algebras P∧nc
~ [V ] and P̂nc

γ,ν [V ] as a Lie

subalgebra. Hence the adjoint map {m̃A,−} determines a differential on them. Similarly, if l̃glN (A)

denotes the commutator L∞-structure on matrices, it follows from Lemma 3.4(2) that {l̃glN (A),−}
defines a differential on P̂~ [ΣglN (A)]glN (K) since l̃glN (A) is glN (K)-invariant.

We have the following refinements of Theorems 4.8 and 4.9, explaining how these theorems may
be viewed as quantizations of the Loday-Quillen-Tsygan Theorem.

Theorem 4.11. Given a (not necessarily unital) cyclic A∞-algebra A whose inner product is odd
and an integer N ≥ 1, the map

σ̂~ ◦ M̂~ : P∧nc
~ [ΣA]→ P̂~ [ΣglN (A)]glN (K)

not only intertwines the differentials and Lie brackets defined in Sections 3.1 and 4.1, but also
the differentials {m̃A,−} and {l̃glN (A),−} defined above. Modulo ~ and ν, this map becomes the
Loday-Quillen-Tsygan map of Theorem 2.11.

Remark 4.12. We note that if A has only finitely many nonzero operations (i.e., m̃n = 0 for all n
sufficiently large), then the above may be replaced by the map

(4.7) σ~ ◦M~ : Pnc
~ [ΣA]→ P~ [ΣglN (A)]glN (K) .

Proof. A simple proof may be given as follows. For all x ∈ P∧nc
~ [ΣA],

σ̂~M̂~{m̃A, x} = {σ̂~M̂~(m̃A), σ̂~M̂~(x)}

= {σ̂~(m̃MN (A)), σ̂~M̂~(x)} = {l̃glN (A), σ̂~M̂~(x)}.

�

Likewise, we have the following.

Theorem 4.13. Given a (not necessarily unital) cyclic A∞-algebra A whose inner product is odd
and an integer N ≥ 1, the map

(4.8) σK ◦ M̂γ,ν : P̂nc
γ,ν [ΣA] −→ P̂~ [ΣglN (A)]glN (K)

not only intertwines the differentials and Lie brackets defined in Sections 3.1 and 4.1, but also the
differentials {m̃A,−} and {l̃glN (A),−} defined above.

Remark 4.14. It should be noted that for P̂~ [ΣglN (A)], both ∆ and {l̃glN (A),−} are differentials

on this Lie algebra, but (∆ + {l̃glN (A),−}) is typically not. This will hold only if

∆l̃glN (A) +
{
l̃glN (A), l̃glN (A)

}
= 0,

which in the case above is equivalent to

(4.9) ∆l̃glN (A) = 0

since the right-hand term already vanishes. Similar remarks apply to both P∧nc
~ [ΣA] and P̂nc

γ,ν [ΣA].
There is one particular case where (4.9) applies, namely when the cyclic A∞-structure consists

of just a differential d with no multiplication or higher order operations, so that m̃A is a purely

quadratic term of even degree. In this case we can deform the BV-Laplacian on P̂~ [ΣglN (A)] to

(d+ ~∆). Again, similar remarks apply to both P∧nc
~ [ΣA] and P̂nc

γ,ν [ΣA].
22



4.4. Map of differential graded Lie algebras. In this section we recall from [21] the construc-
tion of a map of differential graded Lie algebras that appears in the noncommutative BV formalism
and arises from a two-dimensional open topological field theory. The latter entities are known to
correspond to Frobenius algebras. We will use this construction to give a proof of Lemma 4.6 and
Theorem 4.9 by applying this construction to the Frobenius algebra MN (K) of N ×N matrices. It
is in this case that we will see a remarkable simplification in the structure maps of our open topo-
logical field theory which will ultimately allow us to connect them to the maps (2.8) that appear
in the Loday-Quillen-Tsygan Theorem.

Let M be a Frobenius algebra which, for our purposes, we assume to be concentrated in degree
zero. Let 〈−,−〉 denote the symmetric inner product on M and

〈−,−〉−1 = xi ⊗ yi ∈M ⊗M

be the inverse inner product, where the repeated index i indicates a summation. We will define a
family of tensors,

µg,bk1,...,km : M⊗k1 ⊗ · · · ⊗M⊗km → K; g, b ≥ 0, k1, . . . km > 0.

The tensor µg,bk1,...,km is the structure map associated, by the open topological field theory determined

by M , to a genus g surface with b free boundary components and m remaining boundary compo-
nents, each of which respectively contain ki parameterized embedded intervals. We will provide
below a concrete description of these tensors, taken from [21]. For this reason, we do not labor to
explain precisely what is meant by the term ‘open topological field theory’ in this context, since
a precise formulation in terms of modular operads is provided in [8] as well as [21] based on the
Atiyah-Segal axioms [1], and since it will be sufficient for our purposes here to merely recite the
results of [21]. Nonetheless, we feel obliged to explain the conceptual origins of these tensors.

We begin by defining

(4.10) µ0,0
k1,...,km

(c11, . . . c1k1 ; . . . ; cm1, . . . , cmkm) :=

tm (xim , . . . , xi1) tk1+···+km+m

(
yi1 , c11, . . . c1k1 , . . . , y

im , cm1, . . . , cmkm
)
,

where the repeated indices indicate a summation and the multilinear form tk is defined by

tk : M⊗k → K, tk(c1, . . . ck) = 〈c1 · · · ck−1, ck〉.

Next we define maps β, γ : M →M by

(4.11) β(c) := xiy
ic

and

(4.12) γ(c) := xixjy
iyjc.

Finally we may define
(4.13)

µg,bk1,...,km (c11, . . . c1k1 ; . . . ; cm1, . . . , cmkm) := µ0,0
k1,...,km

(
βbγg(c11), . . . c1k1 ; . . . ; cm1, . . . , cmkm

)
.

In fact formula (4.13) remains unchanged regardless of which arguments the maps β and γ are
applied to.

Given a symplectic vector space V whose symplectic form has odd degree, we use these tensors
to define a map

ΦM : P̂nc
γ,ν [V ]→ P̂nc

γ,ν [V ⊗M ] .
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This map is defined on each subspace γgνbŜm
(

Ĥ+ [V ]
)
⊂ P̂nc

γ,ν [V ] by the commutative diagram

V ∗⊗k1 ⊗ · · · ⊗ V ∗⊗km
−⊗µg,bk1,...,km //

��

(V ∗⊗k1 ⊗ · · · ⊗ V ∗⊗km)⊗ (M∗⊗k1 ⊗ · · · ⊗M∗⊗km)

(V ⊗M)∗⊗k1 ⊗ · · · ⊗ (V ⊗M)∗⊗km

��

γgνbŜm
(

Ĥ+ [V ]
)

ΦM // γgνbŜm
(

Ĥ+ [V ⊗M ]
)

where the vertical maps are the canonical quotient maps, multiplied by the factor γgνb.
The following result is a direct consequence of the axioms for an open topological field theory;

cf. [21], Theorem 5.1.

Theorem 4.15. The map ΦM is a well-defined map of differential graded Lie algebras.

4.5. Calculation for the Frobenius algebra of N ×N matrices. In this section we will cal-
culate the open topological field theory tensors (4.13) for the Frobenius algebra M := MN (K) and
hence the map ΦM of Theorem 4.15. If Eij denotes the matrix whose ijth entry is 1 and all of
whose other entries are 0 then we have the following elementary identities:

EijEj′k = δjj′Eik, A =
N∑

i,j=1

aijEij , Tr(EijEkl) = δjkδil;

AEij =

N∑
k=1

akiEkj , EijA =

N∑
k=1

ajkEik.

The inverse inner product on MN (K) is

〈−,−〉−1 =

n∑
i,j=1

Eij ⊗ Eji.

We begin by computing the maps β and γ defined by (4.11) and (4.12) respectively:

β(A) =

N∑
i,j=1

EijEjiA = N

N∑
i=1

EiiA = N

N∑
i,k=1

aikEik = NA,(4.14)

γ(A) =

N∑
i,j,k,l=1

EijEklEjiElkA =

N∑
i,j=1

EijEjiEjiEijA =

N∑
i=1

EiiA = A.(4.15)

Next we compute the tensor (4.10):

µ0,0
k1,...,km

(
A11, . . . A1k1 ; . . . ;Am1, . . . , Amkm

)
=

N∑
i1,j1;...;im,jm=1

Tr
(
Eimjm · · ·Ei1j1

)
Tr
(
Ej1i1A

11 · · ·A1k1 · · ·EjmimAm1 · · ·Amkm
)
.
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For convenience, we introduce the notation Ar := Ar1 · · ·Arkr . The entries of the matrix Ar will
be denoted by αrij . We continue our calculation:

(4.16) µ0,0
k1,...,km

(
A11, . . . A1k1 ; . . . ;Am1, . . . , Amkm

)
= . . .

=
N∑

i1,...,im=1

Tr
(
Eimi1A

1Ei1i2A
2 · · ·Eim−2im−1A

m−1Eim−1imAm
)
,

=

N∑
i1,l1;...;im,lm=1

α1
i1l1α

2
i2l2 · · ·α

m−1
im−1lm−1

αmimlmTr
(
Eiml1Ei1l2 · · ·Eim−2lm−1Eim−1lm

)
,

=
N∑

i1,...,im=1

α1
i1i1α

2
i2i2 · · ·α

m−1
im−1im−1

αmimim = Tr(A1) · · ·Tr(Am).

Combining (4.14) and (4.15) with (4.16) concludes our calculation of the open topological field
theory associated to MN (K) and yields

(4.17) µg,bk1,...,km

(
A11, . . . A1k1 ; . . . ;Am1, . . . , Amkm

)
= N bTr(A11 · · ·A1k1) · · ·Tr(Am1 · · ·Amkm).

We may now give a proof of Theorem 4.9.

Proof of Theorem 4.9. It follows from Equation (4.17) that the map M̂γ,ν coincides with the map
ΦMN (K), which is a morphism of differential graded Lie algebras by Theorem 4.15. �

As a Corollary, we get a proof of Lemma 4.6.

Proof of Lemma 4.6. The Lie algebra Ĥ [V ] sits inside P̂nc
γ,ν [V ] as a Lie subalgebra. The restriction

of the Lie algebra morphism M̂γ,ν to the Lie subalgebra Ĥ [V ] is the map

M : Ĥ [V ]→ Ĥ [V ⊗MN (K)] ,

which hence must also be a map of Lie algebras.

To prove that M respects the cobrackets we use the fact that M̂γ,ν must commute with the

differentials on P̂nc
γ,ν [V ] and P̂nc

γ,ν [V ⊗MN (K)]. Applying this to x ∈ Ĥ [V ] ⊂ P̂nc
γ,ν [V ] we get,

∇M(x) = (∇+ γδ)M(x) = (∇+ γδ)M̂γ,ν(x)

= M̂γ,ν(∇+ γδ)(x) = M̂γ,ν∇(x) = (M⊗̂M)∇(x).

�

5. Random matrices and Hermitian matrix integrals

Having introduced the basic mathematical objects, structures and theorems underlying our ap-
proach to studying large N phenomena in the preceding sections of the paper, we are now ready
to describe in this section some of the applications of this cohomological framework to Hermitian
matrix integrals. We would like to emphasize here that the scope of our inquiries will be essentially
limited to explaining the appearance of noncommutative geometry in the large N limit of these
matrix models and describing how the family of maps (4.8) may be used to analyze the depen-
dence of these models upon the rank N . For a suitable and particularly simple choice of cyclic
A∞-algebra, the machinery of the previous section may be employed in the analysis and calculation
of certain expectation values in these matrix models. In order to keep the current paper within
reasonable limits, we intend that a full account of our results, including a description of the large
N asymptotic behavior of these quantities, will appear in a subsequent article.
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5.1. Expected values of multi-trace operators. Let hN denote the real subspace of glN (C)
consisting of Hermitian matrices. The trace pairing on glN (C) restricts to a positive definite
symmetric bilinear form on hN . We will be principally interested in the expected value of the
multi-trace operator:

(5.1) INi1,i2,...,ik :=

∫
hN

Tr(Xi1)Tr(Xi2) · · ·Tr(Xik)e−
1
2

Tr(X2)dX∫
hN
e−

1
2

Tr(X2)dX
.

We note that while the integrals in both the numerator and denominator of (5.1) depend upon a

linear identification of hN with R(n+1)n/2; the ratio, of course, does not.

5.2. A cohomological approach through the noncommutative Batalin-Vilkovisky for-
malism. We now define an extremely simple cyclic A∞-algebra which, upon plugging into the
map (4.7) below Theorem 4.11 and setting ~ = 1, leads to a description of the integrals (5.1)
appearing in random matrix theory. Consider the two-dimensional complex vector space that is
freely spanned by two generators a and b of degrees 1 and 2 respectively. This has a symmetric
pairing and a compatible differential;

(5.2) 〈a, b〉 = 1, da = b.

We may regard this complex as a cyclic A∞-algebra A in which the multiplication and all higher
homotopies vanish.

Throughout the remainder of this section, we use Pnc
~=1 [ΣA] and P~=1 [ΣglN (A)] to indicate the

complexes Pnc
~ [ΣA] and P~ [ΣA] modulo the ideal (~− 1). Here we emphasize that we include the

differential d from the cyclic A∞-algebra A, cf. Remark 4.14. We may realize these concretely as
BV-algebras as follows. P~=1 [ΣglN (A)] has underlying shifted Poisson algebra P [ΣglN (A)] and is
equipped with the differential (d+∆). Pnc

~=1 [ΣA] has underlying shifted Poisson algebra S(H [ΣA])
and is equipped with the differential (d+ δ +∇).

The following is a simple and direct consequence of Lemma 4.7 and Theorem 4.11.

Proposition 5.1. For every positive integer N , the map

(5.3) Pnc
~=1 [ΣA] −→ P~=1 [ΣglN (A)]

obtained by specializing the map (4.7) to ~ = 1 is a map of BV-algebras.

This abstract statement will be unwound to something extremely concrete:

• for a polynomial p(x) =
∑
anx

n, viewed as a degree zero cocycle in Pnc
~=1 [ΣA] where x is

dual to the generator a, its image is the functional p(X) =
∑
anTr(Xn) on X a N × N -

matrix, and
• at the level of cohomology, the cohomology class [p(x)] is a polynomial in ν whose value at
ν = N is the expected value of the operator p(X).

Much of the rest of this section is devoted to demonstrating these claims.
Consider the real subspace hN of ΣglN (A) consisting of Hermitian matrices, which sits in the

degree zero part of

ΣglN (A) = ΣA⊗ glN (C)

and corresponds to the generator a of ΣA (which has degree zero after the shift). Restricting a
polynomial superfunction from P~=1 [ΣglN (A)] to this subspace yields a complex-valued function
on hN , which we may integrate against the Gaussian measure to define the expected value

(5.4) 〈−〉 : P~=1 [ΣglN (A)] −→ C
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by

〈f〉 :=

∫
hN
f(X)e−

1
2

Tr(X2)dX∫
hN
e−

1
2

Tr(X2)dX
.

Proposition 5.2. The map (5.4) is a quasi-isomorphism of complexes whose one-sided inverse is
the inclusion of C inside P~=1 [ΣglN (A)] as the constant polynomials.

Proof. We begin by explaining the story over the ground field K := R. We may write the complex
vector space A as the complexification of a real vector space AR that is spanned by the same
generators a and b and which is equipped with the same cyclic infinity-structure given by (5.2).
The induced cyclic L∞-structure on

hAN := AR ⊗
R
hN ,

in which hN is equipped with the trace pairing, is represented by a quadratic monomial

σ := d̃ ∈ P~=1

[
ΣhAN

]
,

cf. Section 3.3. If we identify the space hN of Hermitian matrices with the subspace of

ΣhAN = ΣAR ⊗
R
hN

that sits in degree zero and corresponds to the generator a of ΣAR, then on this subspace

σ(X) =
1

2
Tr(X2), X ∈ hN .

Consider the map

(5.5) P~=1

[
ΣhAN

]
−→ R, f 7→

∫
hN
fe−σ∫

hN
e−σ

;

where we have again identified hN with the subspace of ΣhAN that sits in degree zero. We must
show that (5.5) is a cocycle. However, note that

(5.6) ∆e−σ = ({σ, σ} −∆σ)e−σ = 0,

as {σ, σ} vanishes due to the L∞-constraint and ∆σ vanishes as σ is an even quadratic form.
Therefore, ∫

hN

(∆f + d∗f)e−σ =

∫
hN

(∆f − {σ, f})e−σ,

=

∫
hN

∆(fe−σ) = 0;

where we have used (3.2), (3.6) and (5.6). The last integral vanishes as hN is a Lagrangian subspace
of ΣhAN and so completely routine results from the Batalin-Vilkovisky formalism apply here to show
that the integral is indeed zero; cf. for instance Corollary 5.17 of [22], which contains a standard
treatment of these basic results.

We claim in fact that (5.5) is a quasi-isomorphism. Consider the ascending filtration of the
complex P~=1

[
ΣhAN

]
,

FpP~=1

[
ΣhAN

]
:=

p⊕
i=0

[((
ΣhAN

)∗)⊗i]
Si
.

This filtration is bounded below and exhaustive and hence the associated spectral sequence con-
verges. Since the complex AR is acyclic, it is apparent that (5.5) induces an isomorphism on the
first page of this spectral sequence.
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Now, returning to the main story over the ground field K := C, we use the simple well-known
fact that glN (C) is the complexification of hN ;

ΣglN (A) = C⊗
R

ΣhAN .

From this it is apparent that the map (5.4) is the complexification of the map (5.5). The result
now follows. �

To provide a noncommutative analogue of Proposition 5.2, consider the following. The polyno-
mial ring C[ν] appears as a summand in,

Pnc
~=1 [ΣA] = C[ν]⊗ S(H+ [ΣA]) = C[ν]⊕ [C[ν]⊗ S+(H+ [ΣA])] .

Proposition 5.3. The canonical inclusion

C[ν] −→ Pnc
~=1 [ΣA]

is a quasi-isomorphism of complexes.

Proof. We may simply repeat the same spectral sequence argument that was applied in Proposition
5.2 above. �

In summary, for every positive integer N we have the commutative diagram

(5.7) C[ν] //

ν=N

��

Pnc
~=1 [ΣA]

��
C / P~=1 [ΣglN (A)]
〈f〉← [f
o

in which the horizontal arrows are quasi-isomorphisms and the vertical arrows are given by (5.3).

5.3. Examples of calculations with A. Now we are ready to explain how the cyclic A∞-algebra
A may be used to describe and calculate the multi-trace expectation values (5.1).

First we introduce some notation. Recall that ΣA is a symplectic vector space whose symplectic
form is given by (3.4),

〈b, a〉 = 1 = −〈a, b〉.
If a∗ and b∗ denote the elements of ΣA∗ that are dual to a and b respectively then define,

x := a∗ and ξ := −b∗.
According to (3.1) we have

{x, ξ} = 1 = {ξ, x} and d∗ξ = −x.
Note that x has degree zero and ξ has degree minus-one.

We will denote by xi the corresponding monomial in H [ΣA] and by

(5.8) (xi1)(xi2) · · · (xik) ∈
[
H [ΣA]⊗k

]
Sk

the corresponding element in Pnc
~=1 [ΣA] = S(H [ΣA]). Now (5.8) is a cocycle in Pnc

~=1 [ΣA] and so
by Proposition 5.3, its cohomology class is represented by a unique polynomial

pi1,i2,...,ik(ν) ∈ C[ν].

Proposition 5.4. For every positive integer N ,

pi1,i2,...,ik(N) = INi1,i2,...,ik =

∫
hN

Tr(Xi1)Tr(Xi2) · · ·Tr(Xik)e−
1
2

Tr(X2)dX∫
hN
e−

1
2

Tr(X2)dX
.
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Proof. This follows from Proposition 5.1, Proposition 5.2 and Proposition 5.3 as the image of (xi)
under the right-hand map of (5.7) is the function sending X to Tr(Xi) for X ∈ glN (C). �

The preceding proposition is the first clue that the homological algebra of the complex Pnc
~=1 [ΣA]

which arises through the noncommutative Batalin-Vilkovisky formalism captures features of random
matrix theory.

We now demonstrate in some simple cases how these results may be applied to compute single
and multi-trace expectation values. For instance,

x2 = −d∗(xξ) ≈ ∆(xξ) = ∇(xξ) = ν2

and hence p2(ν) = ν2.
Before proceeding further we stop to note that pi1,i2,...,ik(ν) is equal to zero whenever the sum of

the indices ij is odd. This is because ∆ is an order two operator and d∗ is an order zero operator.
Continuing we have,

(x)(x) = −d∗((x)(ξ)) ≈ ∆((x)(ξ)) = ν

and hence p1,1(ν) = ν.
Using our preceding calculations we may compute p4(ν) as follows:

x4 = −d∗(x3ξ) ≈ ∆(x3ξ) = ∇(x3ξ),

= 2νx2 + (x)(x) ≈ 2ν3 + ν.

Hence p4(ν) = 2ν3 + ν.
Moving on we calculate

(x)(x3) = −d∗((ξ)(x3)) ≈ ∆((ξ)(x3)) = 3(x2) ≈ 3ν2,

(x2)(x2) = −d∗((xξ)(x2)) ≈ ∆((xξ)(x2)) = ∇(xξ)(x2) + {(xξ), (x2)},
= ν2(x2) + 2(x2) ≈ ν2(ν2 + 2),

(x6) = −d∗(x5ξ) ≈ ∆(x5ξ) = ∇(x5ξ),

= 2ν(x4) + 2(x)(x3) + (x2)(x2),

≈ 2ν2(2ν2 + 1) + 6ν2 + ν2(ν2 + 2) = ν2(5ν2 + 10);

and therefore

p1,3(ν) = 3ν2,

p2,2(ν) = ν4 + 2ν2,

p6(ν) = 5ν4 + 10ν2.

Using the above method, the reader may similarly verify

p1,5(ν) = 10ν3 + 5ν,

p2,4(ν) = 2ν5 + 9ν3 + 4ν,

p3,3(ν) = 12ν3 + 3ν,

p8(ν) = 14ν5 + 70ν3 + 21ν,

p1,7(ν) = 35ν4 + 70ν2,

p2,6(ν) = 5ν6 + 40ν4 + 60ν2,

p3,5(ν) = 45ν4 + 60ν2,

p4,4(ν) = 4ν6 + 40ν4 + 61ν2,

p10(ν) = 42ν6 + 420ν4 + 483ν2.
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We emphasize that, in principle, any single or multi-trace expectation value may be computed using
these techniques. Here is a simple relation that may be deduced using this method.

Proposition 5.5. For every positive integer N ,

2k−1∑
i=1

INi,2k−i = IN2k+2 − 2NIN2k.

Proof. We compute

x2k+2 = −d∗(x2k+1ξ) ≈ ∆(x2k+1ξ) = ∇(x2k+1ξ),

=
2k+1∑
i=1

(xi−1)(x2k+1−i),

= 2ν(x2k) +

2k−1∑
i=1

(xi)(x2k−i).

�

And finally, we can give a very simple description of these expectation values in the following
special case.

Proposition 5.6. For every positive integer N ,

IN1, 1, . . . , 1︸ ︷︷ ︸
2n terms

= Nn(2n− 1)!!

Proof. We compute

(x)2n = −d∗((x)2n−1(ξ)) ≈ ∆((x)2n−1(ξ)) = δ((x)2n−1(ξ))

= (2n− 1)ν(x)2n−2

≈ (2n− 1)(2n− 3)ν2(x)2n−4

≈ (2n− 1)!!νn

�

As mentioned earlier, a more complete discussion of this subject and the large N asymptotics of
the correlation functions (5.1) will be provided in a subsequent article. We note however, that the
Harer-Zagier recurrence relation is encoded in our framework as follows.

Theorem 5.7. The polynomials p2k satisfy the Harer-Zagier recurrence relation:

(5.9) (k + 1)p2k(ν) = (4k − 2)νp2k−2(ν) + (k − 1)(2k − 1)(2k − 3)p2k−4(ν).

Proof. By Proposition 5.4, evaluating (5.9) at ν = N yields (1.2). Since this equation holds for all
N and a nontrivial polynomial may have only finitely many roots, the theorem follows. �

As noted earlier, this recurrence relation implies Wigner’s semicircle law as well as the closed
formula (1.1) for p2k of Harer-Zagier.
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6. Obstruction theory for the quantum master equation

Having addressed the relevance of our framework to random matrix theory in the previous section,
we now move on to describe how it may be used to analyze the problem of quantization within
the Batalin-Vilkovisky formalism in the large N limit. Strictly speaking, this will be the subject
of Section 7, as in the current section we will be occupied with the construction of a framework in
which to describe most generally the problem of quantization in the Batalin-Vilkovisky formalism.
Here we will explain how the examples from Section 3.1 and 4.1 fit into this general framework.
This work will be necessary for what follows in the final section.

Following the introduction of our general framework, we prove a theorem that allows us to deduce
a one-to-one correspondence between moduli spaces of quantizations, provided that a mapping
induces an isomorphism between the cohomology theories controlling the quantization process.
Experts will probably substantively recognize this theorem as the well-known theorem of Goldman-
Milson, Theorem 2.4 of [17]; which also appears elsewhere in the literature in various guises, see
e.g. [16] and Theorem 2.1 of [15]. Although the method of proof presented here is largely the same,
differences arise; for example our differential graded Lie algebras are not nilpotent and our notion
of a filtration differs slightly from the standard one. This prevents us from merely citing the results
from the above sources.

6.1. General framework.

6.1.1. Definitions. Our starting point is a differential Z/2Z-graded Lie algebra

(g, d, {−,−})

whose Lie bracket {−,−} has odd degree. We require this to come equipped with a filtration of
the type which we now specify.

Definition 6.1. A strong filtration on g is a complete Hausdorff decreasing filtration

F0g ⊃ F1g ⊃ · · ·

satisfying

F0g = g.
{Fpg, Fqg} ⊂ Fp+qg; p, q ≥ 0.
d(Fpg) ⊂ Fp+1g, p ≥ 0.

(6.1)

One consequence of this definition is that the Fpg are differential graded ideals. We note that
the above definition differs from the customary notion of a filtered differential graded Lie algebra
in that the differential is now required to increase the filtration degree. We assume, for the rest of
this section, that our differential graded Lie algebras come equipped with a strong filtration.

6.1.2. Examples. In our paper we have already encountered several examples.

Example 6.2. Given a symplectic vector space V with an odd symplectic form, the differential
graded Lie algebra

P̂~ [V ] =
(
K[[~]]⊗̂ŜV ∗, {−,−}, ~∆

)
admits the strong filtration

(6.2) FpP̂~ [V ] := ~pP̂~ [V ]

by powers of ~.
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Example 6.3. Given a symplectic vector space V whose symplectic form is odd, consider the

differential graded Lie algebra P̂nc
γ,ν [V ] whose underlying space is

K[[γ]]⊗̂Ŝ+(Ĥ [V ]) ⊂ K[[γ]]⊗̂Ŝ(Ĥ [V ]) = K[[γ, ν]]⊗̂Ŝ(Ĥ+ [V ]).

Define the order of γ to be 2, the order of ν to be 1 and the order of an element in the k-fold

symmetric power of Ĥ+ [V ] to be (k − 1) so that an element

γiνjh1h2 · · ·hk ∈ P̂nc
γ,ν [V ]

has order (2i+j+k−1), where hr ∈ Ĥ+ [V ]. This notion of order determines a descending filtration

FpP̂
nc
γ,ν [V ] := ‘everything of order ≥ p’

that is strong.

Example 6.4. Given a cyclic A∞-algebra A whose inner product has odd degree, consider the
differential graded Lie algebra

P̂~ [ΣglN (A)]glN (K)

formed by taking the glN (K)-invariants of P̂~ [ΣglN (A)]. This is a strongly filtered differential
graded Lie algebra where the filtration is the one induced by (6.2).

6.2. Maurer-Cartan elements.

6.2.1. Definitions. Consider the Maurer-Cartan functor that assigns to a strongly filtered differen-
tial graded Lie algebra g, its Maurer-Cartan set

MC (g) :=

{
x ∈ g0 : dx+

1

2
[x, x] = 0

}
.

The subspace F1g
1 acts on MC (g) by the formula

(6.3) exp(y) · x := x+
∞∑
i=0

1

(i+ 1)!
{y,−}i (dy + {y, x}) ; y ∈ F1g

1, x ∈MC (g) ,

where {y,−} : a 7→ {y, a} denotes the adjoint map. We insist that y lie in F1g
1 in order for the

above sum to converge, where we rely on the fact that the filtration is complete.

Remark 6.5. Note that since the Lie bracket on g is odd, the Maurer-Cartan elements live in degree
zero rather than one. This particular feature also explains other minor variations in, for instance,
signs in formulas such as (6.3) above, that the reader well-acquainted with Maurer-Cartan spaces
might pick up on.

The twisted action defined by (6.3) corresponds to the standard adjoint action on the semi-direct
product of g with (the shift of) K, where K acts on g using the differential d, cf. [37] Section 3.
As such, standard formulae apply to this action, including the Baker-Campbell-Hausdorff formula.
Define

(6.4) z ? y :=
∞∑
k=1

(−1)k−1

k

∑
i1+j1>0

...
ik+jk>0

{zi1yj1 · · · zikyjk}(∑k
l=1(il + jl)

)(∏k
m=1(im!jm!)

) ; y, z ∈ F1g
1;

where

{zi1yj1 · · · zikyjk} := {z, {z, {z, · · ·︸ ︷︷ ︸
i1 times

{y, {y, {y, · · ·︸ ︷︷ ︸
j1 times

{· · · }} · · · }
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is a Lie monomial in y and z. Then F1g
1 forms a group under ? with the identity given by 0 and the

inverse of an element y in F1g
1 given by −y. Note that the sum in (6.4) converges as the filtration

is complete. In fact, (6.3) is a group action,

exp(z) · (exp(y) · x) = exp(z ? y) · x; y, z ∈ F1g
1, x ∈MC (g) ,

by the Baker-Campbell-Hausdorff Theorem. We will view the quotient of the set MC (g) by the
action of the group F1g

1 as a moduli space.
In the Batalin-Vilkovisky approach to quantization, one begins at the classical level, which means

in the shifted Lie algebra. This notion admits a nice formulation in the strongly filtered setting.

Definition 6.6. A solution to the classical master equation is an element

x0 ∈MC (g/F1g) .

Remark 6.7. In our examples, the quotient algebras g/F1g are exactly the “classical” aspect of the
commutative and noncommutative BV formalisms, cf. Section 6.2.2.

Note that by (6.1) the differential on g/F1g is zero and hence the Maurer-Cartan constraint in
this case is simply {x0, x0} = 0. Now the quotient map from g to g/F1g induces a map

MC (g)→MC (g/F1g)

which we view as a kind of dequantization map.

Definition 6.8. Given a solution to the classical master equation x0 ∈ MC (g/F1g), we use
MC|x0 (g) to denote the fiber of this dequantization map. An element of this fiber will be called a
quantization of x0. Note that F1g

1 acts on this fiber by (6.3). The moduli space of quantizations
of x0 is then the quotient of this fiber by the action of F1g

1. We will denote this moduli space of

quantizations by M̃C|x0 (g).

We can refine this set of quantizations to a groupoid of quantizations, as follows. Using (6.3), we
define the notion of a morphism between two quantizations of a solution x0 to the classical master
equation.

Definition 6.9. Given two quantizations x, x′ ∈MC|x0 (g), a morphism from x to x′ is an element
y ∈ F1g

1 satisfying

x′ = exp(y) · x.
We denote the set of all such morphisms by Mor (x, x′).

Note that given any x ∈MC (g) and any element η ∈ F1g
0, the element

dη + {η, x} ∈ F1g
1,

will be a morphism from x to itself. This assertion follows from the well-known fact that any
Maurer-Cartan element x can be used to twist the differential d to a new differential:

z 7→ dz + {z, x}.

This leads to the following definition.

Definition 6.10. Two morphisms y, y′ ∈ F1g
1 from a quantization x to a quantization x′ of x0

will be called homotopy equivalent if

y′ = y ? (dη + {η, x})

for some η ∈ F1g
0. We denote the set of homotopy equivalence classes of such morphisms by

M̃or (x, x′).
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6.2.2. Examples of solutions to the classical master equation. We describe the solutions to the
classical master equation for our main examples.

Example 6.11. For P̂~ [V ] with its strong filtration by powers of ~, we have

P̂~ [V ] /F1P̂~ [V ] =
(
ŜV ∗, {−,−}

)
.

In particular, it follows from the discussion in Section 3.3 that any cyclic L∞-structure l on the

space Σ−1V yields a solution x0 := l̃ to the classical master equation for P̂~ [V ]. More generally, the

set of all solutions of P̂~ [V ] will consist of precisely all of the so-called curved cyclic L∞-structures;
see [9, 31] for a definition.

Example 6.12. For P̂nc
γ,ν [V ] with its strong filtration by order, we have

P̂nc
γ,ν [V ] /F1P̂nc

γ,ν [V ] =
(

Ĥ [V ] , {−,−}
)
.

Again, it follows from the discussion in Section 3 that any cyclic A∞-structure m on the space

A := Σ−1V yields a solution x0 := m̃ to the classical master equation for P̂nc
γ,ν [V ]. Likewise, the

set of all solutions consists of precisely all the curved cyclic A∞-structures.

Example 6.13. For P̂~ [ΣglN (A)]glN (K), we have

P̂~ [ΣglN (A)]glN (K) /F1P̂~ [ΣglN (A)]glN (K) =

([
ŜΣglN (A)∗

]glN (K)
, {−,−}

)
.

The cyclic commutator L∞-structure lN on glN (A) arising from the cyclic A∞-structure on A is
glN (K)-invariant and hence gives rise to a solution,

x0 := l̃N ∈MC
([
ŜΣglN (A)∗

]glN (K)
)

to the classical master equation for P̂~ [ΣglN (A)]glN (K).

6.3. Obstruction theory. The process of building a quantization of a solution to the classical
master equation is a step-by-step process controlled by a cohomology theory similar to the process
of deforming other algebraic structures, cf. [14]. In this section we describe the general obstruction
theory and cohomology theory controlling this process and its morphisms. Since this material is
ultimately quite standard and well-known in other contexts, our intention here will be to be quite
brief, sketching the details of proofs and providing references to the reader interested in a fuller
treatment.

6.3.1. Finite level structures. Again, we start with a differential graded Lie algebra g equipped with
a strong filtration. This filtration provides a (finite) strong filtration on the quotient g/Fm+1g and
this leads to the notion of a finite level structure.

Definition 6.14. For m ≥ 0, an element

xm ∈MC (g/Fm+1g)

is called a level m structure.

Note that under this definition, a level 0 structure is precisely a solution to the classical master
equation, as described in the preceding section. The natural quotient map induces a canonical map

(6.5) MC (g/Fm+2g)→MC (g/Fm+1g) ,
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from level (m+ 1) structures to level m structures. The first step is to characterize the nonempty
fibers of this map in terms of a certain cohomology theory. First note that if x0 ∈ g/F1g is a level 0
structure then the adjoint map;

{x0,−} : Fkg/Fk+1g→ Fkg/Fk+1g, k ≥ 0;

is a differential.

Proposition 6.15. There is a well-defined obstruction map on the moduli space of level m quan-
tizations of x0:

M̃C|x0 (g/Fm+1g) → H1 (Fm+1g/Fm+2g, {x0,−}) ,
xm 7→ Obs (xm) := dxm + 1

2{xm, xm}.

A level m structure xm ∈ MC|x0 (g/Fm+1g) may be lifted to a level (m + 1) structure under the
map (6.5) if and only if the cohomology class Obs (xm) vanishes.

Proof. Picking a choice of representative x̃m ∈ g0 for a level m structure xm ∈ MC|x0 (g/Fm+1g)
we have tautologically that

dx̃m +
1

2
{x̃m, x̃m} ∈ Fm+1g.

Furthermore, replacing x̃m with a different choice of representative only changes the above expres-
sion by a {x0,−}-coboundary, after killing terms in Fm+2g using (6.1). Additionally, if we act on
x̃m using (6.3), then since the adjoint action is a morphism of Lie algebras, the above expression
changes through the application of the operator exp({y,−}), which only contributes terms coming
from Fm+2g. The only step that requires any work is proving that the above expression is a {x0,−}-
cocycle. However, this argument proceeds – mutatis mutandis – exactly according to Theorem 5.1
of [20], but cf. also the primary Proposition 2 in Chapter I of [14].

Given ξm+1 ∈ Fm+1g
0 consider the lift x̃m+1 := x̃m + ξm+1 of x̃m, then

(6.6) dx̃m+1 +
1

2
{x̃m+1, x̃m+1} = dx̃m +

1

2
{x̃m, x̃m}+ {x0, ξm+1} mod Fm+2g.

Hence to lift a level m structure, the obstruction must vanish. �

Now suppose that we are given a level m structure xm ∈MC|x0 (g/Fm+1g) and let

MC|xm (g/Fm+2g)

denote the fiber of the map (6.5) over the point xm. Then Fm+1g
1/Fm+2g

1 acts on this fiber via
(6.3) and we denote the corresponding moduli space by

M̃C|xm (g/Fm+2g) ,

which we call the moduli space of extensions of xm. In fact a simple calculation shows that

(6.7) exp(y) · xm+1 = xm+1 + {y, x0}

for xm+1 ∈MC|xm (g/Fm+2g) and y ∈ Fm+1g
1/Fm+2g

1.

Proposition 6.16. The cohomology group H0 (Fm+1g/Fm+2g, {x0,−}) acts freely and transitively

on the moduli space M̃C|xm (g/Fm+2g) of extensions of xm by

ξm+1 · xm+1 = xm+1 + ξm+1.

Proof. This follows from Equation (6.6) and Equation (6.7). �
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6.3.2. Examples of associated cohomology theory.

Example 6.17. For P̂~ [V ] with its strong filtration by powers of ~ and a cyclic L∞-structure l,
which solves the classical master equation, we may use (3.6) to identify the cohomology theory
associated to the corresponding level 0 structure x0 as the Chevalley-Eilenberg cohomology of the
L∞-algebra,

(6.8)
(
FmP̂~ [V ] /Fm+1P̂~ [V ] , {x0,−}

)
=
(
ŜV ∗,−l

)
.

Example 6.18. For P̂nc
γ,ν [V ] with its strong filtration by order and a cyclic A∞-structure m on

the space A := Σ−1V given by a solution x0 := m̃ to the classical master equation, we may use
(3.5) to identify the relevant cohomology theories that are associated to the level 0 structure x0 in
terms of the cyclic cohomology of the A∞-algebra A:

(6.9)
(
FmP̂nc

γ,ν [V ] /Fm+1P̂nc
γ,ν [V ] ,−{x0,−}

)
=

∏
i,j,k≥0:
j+k>0

2i+j+k=m+1

γiνj
[
CC (A)⊗̂k

]
Sk
.

Example 6.19. Recall that any cyclic A∞-structure on A determines a cyclic commutator L∞-
structure lN on glN (A) that is glN (K)-invariant and which in turn yields a solution x0 to the classical

master equation for P̂~ [ΣglN (A)]glN (K). The cohomology theory associated to this solution is
(6.10)(

FmP̂~ [ΣglN (A)]glN (K) /Fm+1P̂~ [ΣglN (A)]glN (K) , {x0,−}
)

=

([
ŜΣglN (A)∗

]glN (K)
,−lN

)
.

Provided that the A∞-algebra A is unital, it follows from Theorem 2.9 that this complex computes
the Chevalley-Eilenberg cohomology of glN (A).

6.3.3. Finite level morphisms. Having just described the obstruction theory that applies to produc-
ing solutions of the quantum master equation, we now repeat this process for morphisms between
two quantizations of a solution x0 to the classical master equation.

Definition 6.20. Given two level m structures xm, x
′
m ∈ MC|x0 (g/Fm+1g), a level m morphism

from xm to x′m is an element
ym ∈ F1g

1/Fm+1g
1

such that
x′m = exp(ym) · xm.

We denote the set consisting of all such level m morphisms by

Morm
(
xm, x

′
m

)
.

Two level m morphisms ym, y′m from xm to x′m are said to be homotopy equivalent if

ym = y′m ? (dη + {η, xm})
for some η ∈ F1g

0/Fm+1g
0. The set of homotopy equivalence classes of level m morphisms will be

denoted by

M̃orm
(
xm, x

′
m

)
.

Suppose that xm+1 and x′m+1 are two level (m+ 1) quantizations of x0 that lift level m quanti-
zations xm and x′m respectively. The quotient map induces a natural map

(6.11) Morm+1

(
xm+1, x

′
m+1

)
→ Morm

(
xm, x

′
m

)
from level (m + 1) morphisms to level m morphisms. As before, we wish to characterize the
nonempty fibers of this map.
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Proposition 6.21. There is a well-defined obstruction map on the set of homotopy equivalence
classes of level m morphisms:

M̃orm (xm, x
′
m) → H0 (Fm+1g/Fm+2g, {x0,−}) ,

ym 7→ Obs (ym) := x′m+1 − exp(ym) · xm+1.

A level m morphism ym ∈ Morm (xm, x
′
m) may be lifted to a level (m+ 1) morphism under the map

(6.11) if and only if the cohomology class Obs (ym) vanishes.

Proof. Choosing a representative ỹm ∈ F1g
1/Fm+2g

1 for ym ∈ F1g
1/Fm+1g

1, we have tautologically
that

x′m+1 − exp(ỹm) · xm+1 ∈ Fm+1g/Fm+2g.

Since this is the difference between two extensions of x′m, it follows from Proposition 6.16 that this
is a {x0,−}-cocycle. Now if

ỹ′m = ỹm + ξm+1, ξm+1 ∈ Fm+1g
1/Fm+2g

1;

is another choice of representative for ym then using (6.1),

(6.12) x′m+1 − exp(ỹ′m) · xm+1 = x′m+1 − exp(ỹm) · xm+1 + {x0, ξm+1}.
Hence the expression for Obs (ym) differs only by a coboundary. It is trivial to observe that this
expression does not change under a homotopy equivalence.

Now it follows from Equation (6.12) that the level m morphism ym lifts to a level (m + 1)
morphism ym+1 = ỹm + ξm+1 if and only if the cohomology class Obs (ym) vanishes. �

Given a level m morphism ym ∈ Morm (xm, x
′
m), denote the fiber of the map (6.11) over the

point ym by

Mor
|ym
m+1

(
xm+1, x

′
m+1

)
.

Define two extensions ym+1 and y′m+1 in this fiber to be homotopy equivalent if for some η ∈
Fm+1g

0/Fm+2g
0, we have

y′m+1 = ym+1 ? (dη + {η, xm+1})
= ym+1 + {x0, η}.

(6.13)

Denote the set of homotopy equivalence classes of the fiber by

M̃or
|ym
m+1

(
xm+1, x

′
m+1

)
.

Proposition 6.22. The cohomology group H1 (Fm+1g/Fm+2g, {x0,−}) acts freely and transitively

on the set M̃or
|ym
m+1

(
xm+1, x

′
m+1

)
of homotopy equivalence classes of extensions of ym by

ξm+1 · ym+1 = ym+1 + ξm+1.

Proof. This follows from Equation (6.12) and Equation (6.13). �

6.4. Correspondence of moduli spaces. In this section we use the results of the preceding
subsection to establish sufficient criteria for a map between two strongly filtered differential graded
Lie algebras to produce a one-to-one correspondence between the corresponding moduli spaces of
quantizations.

Suppose that Φ : g → h is a filtration-respecting map of strongly filtered differential graded
Lie algebras. Given a solution x0 ∈ MC (g/F1g) to the classical master equation for g, we have a
solution

x′0 := Φ(x0) ∈MC (h/F1h)

to the classical master equation for h. The map Φ induces a map

(6.14) Φ : M̃C|x0 (g)→ M̃C|x′0 (h)
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between the moduli spaces of quantizations of these solutions.

Theorem 6.23. If the map Φ : g→ h induces isomorphisms

Φ : H• (Fmg/Fm+1g, {x0,−}) −→ H• (Fmh/Fm+1h, {Φ(x0),−})
for all m ≥ 1, then (6.14) is a bijection.

Proof. The method of proof follows a standard technique, cf. Theorem 2.4 of [17], which we
demonstrate here for the sake of completeness. The first step is to prove that (6.14) is surjective.

Given a quantization x′ ∈MC|x′0 (h), denote the corresponding finite level structures by

x′m ∈MC|x′0 (h/Fm+1h) , m ≥ 0.

We construct, by induction on m, sequences of finite level structures and morphisms:

(6.15)
xm ∈MC|x0 (g/Fm+1g) , m ≥ 0;
ym ∈ Morm (Φ(xm), x′m) , m ≥ 0;

such that each xm+1 and ym+1 is an extension of xm and ym respectively. Since the filtrations on
g and h are complete Hausdorff filtrations, these finite level structures and morphisms will lift to
elements

x ∈MC|x0 (g) ,

y ∈ Mor
(
Φ(x), x′

)
.

This will show that (6.14) is surjective.
Assume that the structures (6.15) have been constructed up to level m. Since x′m lifts to a level

(m+ 1) structure x′m+1, it follows from Proposition 6.15 that

0 = Obs
(
x′m
)

= Obs (Φ(xm)) = Φ (Obs (xm)) .

Since Φ is injective we have Obs (xm) = 0, so xm must lift to a level (m+ 1) structure x̄m+1.
Choose an element ȳm+1 ∈ F1h

1/Fm+2h
1 that lifts the element ym ∈ F1h

1/Fm+1h
1. Then,

Φ(x̄m+1) and exp(−ȳm+1) · x′m+1,

are both level (m + 1) structures extending Φ(xm). Therefore by Proposition 6.16 there exists a
{x′0,−}-cocycle ξ′m+1 ∈ Fm+1h

0/Fm+2h
0 such that we have equivalent extensions,

Φ(x̄m+1) + ξ′m+1 ≈ exp(−ȳm+1) · x′m+1.

Since Φ is surjective, there is a {x0,−}-cocycle ξm+1 ∈ Fm+1g
0/Fm+2g

0 such that

Φ(x̄m+1 + ξm+1) = Φ(x̄m+1) + Φ(ξm+1) ≈ exp(−ȳm+1) · x′m+1.

Hence there is a βm+1 ∈ Fm+1h
1/Fm+2h

1 such that

exp(βm+1) · Φ(x̄m+1 + ξm+1) = exp(−ȳm+1) · x′m+1

exp(ȳm+1 ? βm+1) · Φ(x̄m+1 + ξm+1) = x′m+1.

The inductive step is completed by setting

xm+1 := x̄m+1 + ξm+1,

ym+1 := ȳm+1 ? βm+1 = ȳm+1 + βm+1.

To prove that (6.14) is injective, consider quantizations x, x′ ∈MC|x0 (g). The map Φ induces a
map

Φ : M̃or
(
x, x′

)
−→ M̃or

(
Φ(x),Φ(x′)

)
on homotopy equivalence classes of morphisms. It suffices to prove that this map is surjective,
which is accomplished in exactly the same fashion as before using Proposition 6.21 and Proposition
6.22. �

38



6.5. Examples of Theorem 6.23. We consider here some applications of Theorem 6.23 to our
running examples.

Let A be a unital cyclic A∞-algebra whose inner product has odd degree, and consider the map

M̂γ,ν : P̂nc
γ,ν [ΣA] −→ P̂nc

γ,ν [ΣMN (A)]

given by (4.6). This map is a map of strongly filtered differential graded Lie algebras, where the
filtrations on each side are those defined by Example 6.3. The cyclic A∞-structure mA on A yields

a solution x0 := m̃A to the classical master equation for P̂nc
γ,ν [ΣA]. The corresponding cyclic A∞-

structure mMN (A) on matrices yields a solution x′0 = M̂γ,ν(x0) to the classical master equation for

P̂nc
γ,ν [ΣMN (A)].

Theorem 6.24. For A a unital cyclic A∞-algebra whose inner product has odd degree, the map

M̂γ,ν induces a one-to-one correspondence

M̂γ,ν : M̃C|x0
(

P̂nc
γ,ν [ΣA]

)
−→ M̃C|x′0

(
P̂nc
γ,ν [ΣMN (A)]

)
between these moduli spaces of quantizations.

Proof. It follows from Equation (6.9), Theorem 4.9 and Theorem 2.10 that M̂γ,ν satisfies the
hypothesis of Theorem 6.23. �

For another application of this theorem, recall from Example 6.13 that the cyclic commutator
L∞-structure lN on glN (A) determined by the unital cyclic A∞-structure on A yields a solution x0

to the classical master equation for P̂~ [ΣglN (A)]glN (K) and likewise for P̂~ [ΣglN (A)]. Consider the
inclusion,

(6.16) P̂~ [ΣglN (A)]glN (K) −→ P̂~ [ΣglN (A)]

of the differential graded Lie subalgebra of invariants.

Theorem 6.25. For A a unital cyclic A∞-algebra whose inner product has odd degree, the map
(6.16) induces a one-to-one correspondence,

M̃C|x0
(

P̂~ [ΣglN (A)]glN (K)
)
−→ M̃C|x0

(
P̂~ [ΣglN (A)]

)
between these moduli spaces of quantizations.

Proof. It follows from Equation (6.8), Equation (6.10) and Theorem 2.9 that (6.16) satisfies the
hypothesis of Theorem 6.23. �

Remark 6.26. This theorem tells us that a quantization of our cyclic commutator L∞-structure
lN is essentially the same thing as a conjugation invariant quantization of our L∞-structure; or
more precisely, that any quantization of lN may be replaced by an equivalent conjugation invariant
quantization that is unique up to gauge equivalence. For this reason, in the following section we
will focus only on such invariant quantizations. The fundamental theorem of invariant theory for
glN (K) (upon which the proof of the Loday-Quillen-Tsygan Theorem is based) tells us essentially
what such invariant quantizations of the action must look like; they must be generated by the trace
maps (2.7) on matrices.

7. Noncommutative geometry in the large N limit

In this section we explain how the noncommutative geometry of Section 3 and 4 emerges naturally
by considering the problem of the Batalin-Vilkovisky quantization of Chern-Simons type gauge
theories in the large N limit. In order to examine the large N behavior of observables within the
Batalin-Vilkovisky formalism, it is necessary to define a quantization of your action at each rank
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N of your theory. This leads us directly to the problem of simultaneous quantization; we must
carry out the quantization process so that it works simultaneously at every rank N . It is this
problem that the differential graded Lie algebra constructed in Definition 4.4 solves, and it is the
Loday-Quillen-Tsygan Theorem that explains why. The family (4.8) of maps from this object that
target each rank N of the theory clearly provides a mechanism for any quantization that is built in
this object to yield a quantization at all ranks N . In this way, this differential graded Lie algebra
plays the role of a universal object, and any quantization built in it plays the role of a quantization
that is ‘universal in N .’ One of the main purposes of this section is to explain to what extent
this construction is necessary, and we prove what we consider to be a reasonable converse; the
obstructions to quantization vanish at all ranks N of the theory if and only if the obstruction to
quantization vanishes in this universal object built using noncommutative geometry.

Let us explain in more detail. Our starting point is a cyclic A∞-algebra A whose inner product
has odd degree. We emphasize that for the purposes of this section, this algebra does not need to
be unital and that all the results of this section hold for nonunital algebras. From the viewpoint
of Chern-Simons theory our motivating example would be to take A to be the de Rham algebra
on a closed odd-dimensional manifold; however, this of course is not finite-dimensional and so does
not comport with Definition 2.5. Nonetheless, to keep this motivating point of view alive we may
imagine that a finite-dimensional A has been obtained from such an example through the homotopy
transfer theorem. Denote the solution to the classical master equation corresponding to our cyclic
A∞-structure by

m̃ ∈MC
(

Ĥ [ΣA]
)
,

and likewise denote by

l̃N ∈MC
([
ŜΣglN (A)∗

]glN (K)
)
, N ≥ 1,

the solutions to the classical master equations that are formed by the corresponding commutator
L∞-structures, as in Example 6.13.

Consider the diagram of strongly filtered differential graded Lie algebras (with, we emphasize,
no horizontal arrows)

(7.1) P̂nc
γ,ν [ΣA]

······uu �� )) ······

,,P̂~ [Σgl1(A)]gl1(K) P̂~ [ΣglN (A)]glN (K) P̂~
[
ΣglN+1(A)

]glN+1(K)

formed from the family of maps (4.8). Applying the Maurer-Cartan functor to this yields a diagram
of moduli spaces of quantizations:

M̃C|m̃
(

P̂nc
γ,ν [ΣA]

)
······
��

······

++

M̃C|l̃N
(

P̂~ [ΣglN (A)]glN (K)
)

M̃C|l̃N+1

(
P̂~
[
ΣglN+1(A)

]glN+1(K)
)

It follows from this picture that any quantization of the cyclic A∞-structure m̃ living in P̂nc
γ,ν [ΣA]

yields conjugation invariant quantizations of the corresponding Chern-Simons type theories for each
rank N of the theory. These quantizations are formed by the images of the quantization of m̃ under
the above family of mappings.
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Remark 7.1. Consider the horizontal mappings

P̂~ [ΣglN (A)]glN (K) ←− P̂~
[
ΣglN+1(A)

]glN+1(K)

that arise from the inclusion of glN (A) into glN+1(A). These are not maps of differential graded
Lie algebras. Consequently, there is no natural way to pass from a quantization at some rank N of
the Chern-Simons type theory to a quantization at some lower rank. This emphasizes the utility
of noncommutative geometry in the above in being able to produce quantizations at all ranks N .

Furthermore, we should mention that these horizontal maps do not make the above diagram
commute and hence the rank N quantizations that are produced from a quantization of the cyclic
A∞-structure m̃ are not related by these mappings. The reason for this is the peculiar behavior of
the parameter ν under the map (4.6) which is sensitive to the rank N of the theory.

The purpose of the rest of this section is to describe a partial converse to this result. Consider
the problem of simultaneously quantizing the Chern-Simons type actions l̃N at each rank N of the
theory. As we know from Section 6, this will require the corresponding family of obstructions to
vanish. We will see in Theorem 7.3 that, as a consequence of the Loday-Quillen-Tsygan Theorem,
this will happen if and only if the obstruction to quantizing the action m̃ vanishes. In this sense
the problem of simultaneously quantizing the Chern-Simons type actions at every rank N leads us

to build our quantization in the differential graded Lie algebra P̂nc
γ,ν [ΣA].

We require the following lemma, which follows as a simple consequence of the Loday-Quillen-
Tsygan Theorem.

Lemma 7.2. Consider, for any fixed p ≥ 1, the family of maps

(7.2) H•(FpP̂
nc
γ,ν [ΣA] /Fp+1P̂nc

γ,ν [ΣA] , {m̃,−}) −→

H•(FpP̂~ [ΣglN (A)]glN (K) /Fp+1P̂~ [ΣglN (A)]glN (K) , {l̃N ,−}), N ≥ 1;

defined for a cyclic A∞-algebra A whose inner product has odd degree, which are induced by the
maps (7.1) of strongly filtered differential graded Lie algebras. The intersection of the kernels of
this family of maps is the zero subspace.

Proof. First, using (6.9) and (6.10) we may write;

(7.3) H•(FpP̂
nc
γ,ν [ΣA] /Fp+1P̂nc

γ,ν [ΣA] , {m̃,−}) =
∏

i,j,k≥0:
j+k>0

2i+j+k=p+1

γiνjH•
([
CC (A)⊗̂k

]
Sk

)

=

 ∏
i≥0,j≥1:

2i+j=p+1

γiνjK

×
 ∏

i,j≥0,k≥1:
2i+j+k=p+1

γiνjH•
([
CC (A)⊗̂k

]
Sk

)
and

(7.4) H•(FpP̂~ [ΣglN (A)]glN (K) /Fp+1P̂~ [ΣglN (A)]glN (K) , {l̃N ,−}) =

H•
([
Ŝ(ΣglN (A)∗)

]glN (K)
, lN

)
= K×H•

(
[CE+ (glN (A))]glN (K)

)
.

The maps (7.2) respect the decompositions (7.3) and (7.4). Therefore it makes sense to begin by
examining the behavior of these maps on the left-hand factors:∏

i≥0,j≥1:
2i+j=p+1

γiνjK −→ K, γiνj 7→ N j ; N ≥ 1.
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Since we work in characteristic zero, and since a nontrivial polynomial may have only finitely many
roots, it follows that the intersection of the kernels of the above maps is trivial.

Now we examine the behavior of the maps (7.2) on the right-hand factors of (7.3) and (7.4),
which we rewrite as follows:

(7.5)
∏

i,j≥0,k≥1:
2i+j+k=p+1

γiνjH•
([
CC (A)⊗̂k

]
Sk

)
// H•

(
[CE+ (glN (A))]glN (K)

)

∏p
j=0 ν

j

(∏[ p−j
2 ]

i=0 γiH•
([
CC (A)⊗̂p+1−2i−j

]
Sp+1−2i−j

))
33

where the top row is the map (7.2) and the diagonal map may be described as follows. Denote the
natural projection maps of the inverse limit (2.9) by

πN :
∞∏
k=1

H•
([
CC (A)⊗̂k

]
Sk

)
= H•

(
Ŝ+ (CC (A))

)
−→ H•

(
[CE+ (glN (A))]glN (K)

)
.

Then the diagonal map of (7.5) is the map

p∑
j=0

νjzj 7→
p∑
j=0

N jπN (zj), zj ∈
[ p−j

2 ]∏
i=0

γiH•
([
CC (A)⊗̂p+1−2i−j

]
Sp+1−2i−j

)
,

where γiH•
([
CC (A)⊗̂k

]
Sk

)
is identified with H•

([
CC (A)⊗̂k

]
Sk

)
by setting γ := 1.

Now suppose that the element z =
∑p

j=0 ν
jzj lies in the kernel of every map (7.2), then for all

M ≥ N ≥ 1,
p∑
j=0

M jπM (zj) = 0 and therefore

p∑
j=0

M jπN (zj) = 0;

where in the last equation we have applied the horizontal arrows of the inverse limit (2.8). Just as
before, since we work in characteristic zero, it follows that

πN (zj) = 0, for all N ≥ 1 and j = 0, . . . , p.

From (2.9) it follows that each zj = 0. �

Now we may formulate and prove our theorem on quantization in the large N limit.

Theorem 7.3. Let A be a cyclic A∞-algebra whose inner product has odd degree and let

xk ∈ M̃C|m̃
(

P̂nc
γ,ν [ΣA] /Fk+1P̂nc

γ,ν [ΣA]
)

be a level k quantization of the cyclic A∞-structure m̃. Consider the corresponding family

wNk ∈ M̃C|l̃N
(

P̂~ [ΣglN (A)]glN (K) /Fk+1P̂~ [ΣglN (A)]glN (K)
)
, N ≥ 1,

of level k quantizations of the cyclic L∞-structures l̃N that is determined by the diagram (7.1) of
strongly filtered differential graded Lie algebras.

The level k quantization xk of m̃ extends to a level (k+ 1) quantization if and only if every level

k quantization wNk of l̃N extends to a level (k + 1) quantization for all N ≥ 1.
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Proof. Obviously any level (k+ 1) extension xk+1 of the level k quantization xk yields level (k+ 1)
extensions of the level k quantizations wNk for all N ≥ 1 by considering the images of xk+1 under
the maps (7.1).

Conversely suppose that each level k quantization wNk extends to a level (k+ 1) quantization for
every N ≥ 1. By Proposition (6.15) the family of obstructions

Obs
(
wNk
)
∈ H•

(
Fk+1P̂~ [ΣglN (A)]glN (K) /Fk+2P̂~ [ΣglN (A)]glN (K) , {l̃N ,−}

)
, N ≥ 1;

must all vanish. Since these obstructions are the images of the obstruction Obs (xk) under the
family of maps (7.2) it follows from Lemma 7.2 that the obstruction Obs (xk) must vanish and
hence by Proposition 6.15 that the level k quantization xk may be extended to a level (k + 1)
quantization. �

Remark 7.4. To reiterate, let us lay out once more how the above theorem explains the emergence
of noncommutative geometry in the large N limit quantization of Chern-Simons type theories. We
begin with a solution x0 to the classical master equation and in order to quantize every Chern-
Simons type action wN0 we must, by the above theorem, be able to extend x0 to a level 1 quantization
x1. This solution x1 leads to level 1 quantizations wN1 for all N ≥ 1 by virtue of Diagram (7.1) and
in order to extend all of these we must, again by the above theorem, be able to extend x1 to a level

2 quantization x2... and so the process goes on with us building our quantization x in P̂nc
γ,ν [ΣA].

We can also formulate an analogue of Theorem 7.3 for morphisms, which is naturally more
technical.

Theorem 7.5. Let A be a cyclic A∞-algebra whose inner product has odd degree and let

xk, x
′
k ∈MC|m̃

(
P̂nc
γ,ν [ΣA] /Fk+1P̂nc

γ,ν [ΣA]
)

be two level k quantizations of the cyclic A∞-structure m̃. Suppose that

xk+1, x
′
k+1 ∈MC|m̃

(
P̂nc
γ,ν [ΣA] /Fk+2P̂nc

γ,ν [ΣA]
)

are two level (k + 1) quantizations extending xk and x′k respectively. Suppose further that we are
given a level k morphism

yk ∈ M̃or
(
xk, x

′
k

)
.

Now consider the quantizations and morphisms

wNk , w
′N
k ∈MC|l̃N

(
P̂~ [ΣglN (A)]glN (K) /Fk+1P̂~ [ΣglN (A)]glN (K)

)
wNk+1, w

′N
k+1 ∈MC|l̃N

(
P̂~ [ΣglN (A)]glN (K) /Fk+2P̂~ [ΣglN (A)]glN (K)

)
Y N
k ∈ M̃or

(
wNk , w

′N
k

) , N ≥ 1;

which are the respective images of the preceding quantizations and morphisms under the family of
maps (7.1).

The level k morphism yk from xk to x′k extends to a level (k + 1) morphism from xk+1 to x′k+1

if and only if for all N ≥ 1, the level k morphism Y N
k from wNk to w′Nk extends to a level (k + 1)

morphism from wNk+1 to w′Nk+1.

Proof. The proof follows the proof of Theorem 7.3 mutatis mutandis using Proposition 6.21 and
Lemma 7.2. �
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