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Abstract. — Let M be a differential manifold. Using different methods, Kontsevich
and Tamarkin have proved a formality theorem, which states the existence of a Lie
homomorphism “up to homotopy” between the Lie algebra of Hochschild cochains on
C∞(M) and its cohomology (Γ(M, ΛTM), [−,−]S). Suppose M is a Poisson man-
ifold equipped with a Poisson tensor π; then one can deduce from this theorem the
existence of a star product ⋆ on C∞(M). In this paper we prove that the formality
theorem can be extended to a Lie (and even Gerstenhaber) homomorphism “up to
homotopy” between the Lie (resp. Gerstenhaber “up to homtoptopy”) algebra of
Hochschild cochains on the deformed algebra (C∞(M), ∗) and the Poisson complex
(Γ(M, ΛTM), [π,−]S). We will first recall Tamarkin’s proof and see how the for-
mality maps can be deduced from Etingof-Kazhdan’s theorem using only homotopies
formulas. The formality theorem for Poisson manifolds will then follow.

0. Introduction

Let M be a differential manifold. Formality theorems link commutative objects
with non-commutative ones. More precisely, one can define two graded Lie algebras
g1 and g2. The first one g1 = Γ(M,ΛTM) is the space of multivector fields on M . It
is endowed with a graded Lie bracket [−,−]S called the Schouten bracket (see [Kos]).

The space g1 can be identified with the cohomology of a cochain complex g2 =
C(A,A) =

⊕
k≥0 C

k(A,A), the space of regular Hochschild cochains (generated by

differential k-linear maps from Ak to A and support preserving), where A = C∞(M)
is the algebra of smooth differential functions over M . The vector space g2 is also
endowed with a graded Lie algebra structure given by the Gerstenhaber bracket
[−,−]G [GV]. The differential b = [m,−]G (where m ∈ C2(A,A) is the commu-
tative multiplication in A) makes g2 into a graded differential Lie algebra and the
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cohomology H∗(g2, b) of g2 with respect to b coincides with g1. More precisely, one
can construct a quasi-isomorphism φ1 : g1 → g2, (the Hochschild-Kostant-Rosenberg
quasi-isomorphism, see [HKR]) between the complexes (g1, 0) and (g2, b); it is de-
fined, for α ∈ g1, f1, · · · , fn ∈ A, by

α 7→
(
(f1, . . . , fn) 7→ 〈α, df1 ∧ · · · ∧ dfn〉

)
.

This map φ1 is not a Lie algebra morphism, but the only obstructions for it to
be are given by boundaries for the differential b. In fact, Kontsevich’s formality
theorem states that φ1 induces a morphism if one relaxes the Lie algebras structures
on g1 and g2 into Lie algebras “up to homotopy” structures. In other words, setting
φ0 = m ∈ C2(A,A), formality theorems can be seen as a construction of a collection
of homotopies φn : Λn

g1 → g2 such that φ1 is the Hochschild-Kostant-Rosenberg
morphism and the map φ =

∑
n≥0 φ

n : Λ·
g1 → g2 satisfies

[φ, φ]G = φ ◦m1,1
1 (0.1)

where m1,1
1 : Λ·

g1 → Λ·
g1 is the canonical extension of the Schouten Lie bracket on

g1.

The existence of such homotopies was proven by Kontsevich (see [Ko1] and [Ko2])
and Tamarkin (see [Ta]). They use different methods in their proofs. Nevertheless
the two approaches are connected (see [KS]). In this paper we will use Tamarkin’s
methods (which are also well explained in [Hi]) to obtain a version of the formality
theorem when the manifold M is equipped with a Poisson structure. Moreover, as
in Tamarkin’s proof, we will suppose that M = R

n. In some cases the results can
be globalized using techniques of Cattaneo, Felder and Tomassini (see [CFT]). More
precisely, all our results are valid for an arbitrary manifold up to Section 5 where
acyclicity of the de Rham complex only holds for M = R

n and thus globalization is
needed.

One of the goals of this paper is to make the maps φn given by Tamarkin’s proof as
explicit as possible. We could try to construct them by induction starting from φ1 (the
Hochschild-Kostant-Rosenberg quasi-isomorphism), but we would meet cohomological
obstructions to build (φn)n≥2. Thus a natural idea consists in enlarging the structures
in order to reduce the obstructions. More precisely, we know that the graded space
g1 = Γ(M,ΛTM) equipped with the Lie bracket [−,−]S and the exterior product ∧
has a graded Gerstenhaber algebra structure.

Although the complex g2 equipped with the Gerstenhaber bracket and the cup-
product is not a Gerstenhaber algebra, Tamarkin [Ta] has proved that g2 can be
endowed with a structure of Gerstenhaber algebras up to homotopy (see Section 1)
and established the existence of a quasi-isomorphism of Gerstenhaber algebras up to
homotopy between g1 and g2.

The paper is organized as follows:

– In Section 1, taking our inspiration from the language of operads, we recall the
definitions of Lie algebras up to homotopy (L∞-algebras for short) and refor-
mulate the problem as follows: the (differential) graded Lie algebra structure on
g1 and g2 are equivalent to codifferentials d1 and d2 on the exterior coalgebras
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Λ·
g1 and Λ·

g2. A morphism of Lie algebras up to homotopy between g1 and g2

is a morphism of differential coalgebras

φ : (Λ·
g1, d1) → (Λ·

g2, d2).

We will also recall the definition of Gerstenhaber algebras “up to homotopy” or
G∞-algebras (similarly given by a differential d on a peculiar coalgebra Λ·

g
⊗·)

and morphism between them.
– In Section 2 we recall Tamarkin’s construction of the G∞-structure on g2, given

by a differential d2 on Λ·
g
⊗·
2 .

– In Section 3 we prove (still following Tamarkin’s approach) that there exists a
G∞-structure on g1, given by a differential d′1 on Λ·

g
⊗·
1 , and that there exists a

G∞-morphism ψ : (Λ·
g
⊗·
1 , d′1) → (Λ·

g
⊗·
2 , d2).

– In Section 4 we establish the existence of a G∞-morphism ψ′ : (Λ·
g
⊗·
1 , d1) →

(Λ·
g
⊗·
1 , d′1), where d1 defines the Gerstenhaber structure on g1 described in

Section 1. We deduce this fact from the acyclicity of the complex
(
Hom(Λ·

g
⊗·
1 ), [m1,1

1 +m2
1,−]

)
,

where [−,−] denotes the graded commutator of morphisms,.

– In Section 5 we prove that the complex
(
Hom(Λ·

g
⊗·
1 ), [m1,1

1 +m2
1,−]

)
is acyclic

for M = R
n and that homotopy formulas can be written out.

– In Section 6 we show that the G∞-morphism φ = ψ ◦ ψ′ : (Λ·
g
⊗·
1 , d1) →

(Λ·
g
⊗·
2 , d2) induces the desired L∞-morphism between g1 and g2 and also in the

same way an associative algebra morphism “up to homotopy” between these
two spaces. Moreover when the manifold M is a Poisson manifold equipped
with a Poisson tensor field π ∈ Γ(M,Λ2TM) satisfying [π, π]S = 0, then there
exists a star-product on M , that is to say a deformation m⋆ of the product
m on A whose linear term is π (see [BFFLS1] and [BFFLS2]). In this case
(g1, [−,−]S, [π,−]S) becomes a graded differential Lie algebra (and even a Ger-
stenhaber algebra) and (g2, [−,−]G, b⋆), where b⋆ is the Hochschild differential
corresponding to the deformed product m⋆, is a new graded differential Lie
algebra.

– In Section 7 we prove a formality theorem between the two differential graded
Lie (and even Gerstenhaber “up to homotopy”) algebras (g1⋆, [−,−]S , [π,−]S)
and (g2⋆, [−,−]G, b⋆) following the same steps as in Sections 2, 3 and 4.

Remark: In this paper we emphasize the Lie structures of g1 and g2, not their
associative algebra structures. Hence, our gradings for the spaces g1, g2, . . . are
shifted by one from what is usually done in the literature.

1. Definitions and notations

Let g be any graded vector space. The exterior coalgebra Λ·
g is the cofree com-

mutative coalgebra on the vector space g. In this paper we deal with graded space.
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Henceforth, for any graded vector space g, we choose the following degree on Λ·
g : if

X1, . . . , Xk are homogeneous elements of respective degree |X1|, . . . |Xk|, then

|X1 ∧ · · · ∧Xk| = |X1| + · · · + |Xk| − k.

In particular the component g = Λ1
g ⊂ Λ·

g is the same as the Lie algebra g with
degree shifted by one. The coalgebra Λ·

g being cofree, any degree one map dk : Λk
g →

g (k ≥ 1) extends into a derivation dk : Λ·
g → Λ·

g of the coalgebra Λ·
g.

Let us recall the definition of Lie algebras “up to homotopy”, denoted L∞-algebras
henceforth.

Definition 1.1. — A vector space g is endowed with a L∞-algebra structure if there
are degree one linear maps m1,...,1 : Λk

g → g such that if we extend them to maps
Λ·

g → Λ·
g, then d ◦ d = 0 where d is the derivation

d = m1 +m1,1 + · · · +m1,...,1 + · · · .

For more details on L∞-structures, see [LS]. It follows from the definition that a
L∞-algebra structure induces a differential coalgebra structure on Λ·

g and that the
map m1 : g → g is a differential.

The Lie algebra structure on g1 =Γ(M,ΛTM) is given by the Schouten bracket (see
[Kos]) which extends the Lie bracket of vector fields in the following way:

[α, β ∧ γ]S = [α, β]S ∧ γ + (−1)
|α|(|β|+1)

β ∧ [α, γ]S (1.2)

for α, β, γ ∈ g1. For f ∈ Γ(M,Λ0TM) = C∞(M) and α ∈ Γ(M,Λ1TM) we set
[α, f ]S = α · f , the action of the vector field α on f . The grading on g1 is defined by
|α| = n⇔ α ∈ Γ(M,Λn+1TM)

We reformulate the graded Lie algebra structure of g1 into a L∞-algebra structure
as follows: the Schouten Lie bracket [−,−]S on g1 is equivalent to a (degree one) map

m1,1
1 : Λ2

g1 → g1 that we can extend canonically to m1,1
1 : Λ·

g1 → Λ·
g1. The Jacobi

identity satisfied by [−,−]S then corresponds to the identity:

d1 ◦ d1 = 0,

where d1 = m1,1
1 . Hence the map m1,1

1 defines a L∞-algebra structure on g1.

In the same way, the Lie algebra structure on the vector space g2 = C(A,A) is
given by the Gerstenhaber bracket [−,−]G defined, for D,E ∈ g2, by

[D,E]G = {D|E} − (−1)
|E||D|

{E|D},

where

{D|E}(x1, . . ., xd+e−1) =
∑

i≥0

(−1)|E|·iD(x1, . . ., xi, E(xi+1, . . ., xi+e), . . .).

The space g2 has a grading defined by |D |= k ⇔ D ∈ Ck+1(A,A) and its differential
is b = [m,−]G, where m ∈ C2(A,A) is the commutative multiplication on A.

The Gerstenhaber bracket on C(A,A) is equivalent to a map m1,1
2 : Λ2

g2 → g2

and the differential b is a degree one map m1
2 : g2 → g2. These maps extends to

maps Λ·
g2 → Λ·

g2. All identities defining the differential Lie algebra structure on
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g2 (Jacobi relations for [−,−]G, b2 = 0, compatibility between b and [−,−]G) can be
summarized in the unique relation

d2 ◦ d2 = 0,

where d2 = m1
2 +m1,1

2 . Hence the maps b and [−,−]G defines a L∞-structure on g2.

In fact any differential Lie algebra (g, b) has a L∞-structure, with m1
2 = b, m1,1

2 is
given by its bracket and m1,...,1 : Λk≥3

g → g = 0.

Definition 1.2. — A L∞-morphism between two L∞-algebras (g1, d1 = m1
1 + . . . )

and (g2, d2 = m1
2 + . . . ) is a morphism of differential coalgebras

φ : (Λ·
g1, d1) → (Λ·

g2, d2). (1.3)

Such a map φ is uniquely determined by a collection of maps φn : Λn
g1 → g2 as the

differential coalgebras Λ·
g1 and Λ·

g2 are cofree. In the case g1 and g2 are respectively
the graded Lie algebra (Γ(M,ΛTM), [−,−]S) and the differential graded Lie algebra
(C (C∞(M), C∞(M)) , [−,−]G) it is easy to check that Definition (0.1) (from the
introduction) and Definition (1.3) coincide.

A shuffle (of length n) is a permutation of {1, ..., n} (n ≥ 1) such that there exist
p, q ≥ 1 with p+ q = n and the following inequalities hold:

σ(1) < · · · < σ(p), σ(p+ 1) < · · · < σ(p+ q).

For any permutation σ of {1, ..., n} and any graded variables x1, . . . , xn in g (with
degree shifted by minus one) we define the sign ε(σ) (the dependence on x1, . . . xn is
implicit) by the identity

x1 . . . xn = ε(σ)xσ−1(1) . . . xσ−1(n)

which holds in the free graded commutative algebra generated by x1, . . . xn. For any
graded vector space g, each shuffle σ acts on g

⊗n by the formula:

σ · (a1 ⊗ · · · ⊗ an) = ε(σ)aσ−1(1) ⊗ · · · aσ−1(n)

for a0, · · · , an ∈ g. We denote g
⊗n the quotient of g

⊗n by the image of all the maps
shufp,q =

∑
σ.(−), where the sum is over all shuffles of length n = p + q with p, q

fixed. The graded vector space ⊕n≥0g
⊗n a quotient coalgebra of the tensor coalgebra

⊕n≥0g
⊗n. It is well known (see [GK] for example) that this coalgebra ⊕n≥0g

⊗n is
the cofree Lie coalgebra on the vector space g (with degree shifted by minus one).

Henceforth, for any space g, we denote Λ·
g
⊗· the graded space ⊕

m≥1, p1+···+pn=m
g
⊗p1∧

· · · ∧ g
⊗pn . We will use the following grading on Λ·

g
⊗·: for x1

1, · · · , x
pn
n ∈ g, we define

|x1
1 ⊗ · · · ⊗ xp1

1 ∧ · · · ∧ x1
n ⊗ · · · ⊗ xpn

n | =

p1∑

i1

|xi1
1 | + · · · +

pn∑

in

|xin
n | − n.

Notice that the induced grading on Λ·
g ⊂ Λ·

g
⊗· is the same as the one introduced

above. The cobracket on ⊕g
⊗· and the coproduct on Λ·

g extend to a cobracket and

a coproduct on Λ·
g
⊗·. The sum of the cobracket and the coproduct give rise to
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a Gerstenhaber coalgebra structure on Λ·
g
⊗·. It is well known that this coalgebra

structure is cofree (see [Gi],Section 3 for example).

Definition 1.3. — A structure of Gerstenhaber algebra “up to homotopy” (G∞-
algebra for short) on a graded vector space g is given by a collection of degree one
maps

mp1,...,pn : g
⊗p1 ∧ · · · ∧ g

⊗pn → g

indexed by p1, . . . pn ≥ 1 such that their canonical extension: Λ·
g
⊗· → Λ·

g
⊗· satisfies

d ◦ d = 0 where

d =
∑

l≥1, p1+···pn=l

mp1,...,pn .

More details on G∞-structures are given in [Gi]. Again, as the coalgebra structure
of Λ·

g
⊗· is cofree, the map d makes Λ·

g
⊗· a differential coalgebra.

Definition 1.4. — A morphism of G∞-algebras between two G∞-algebras (g1, d1)
and (g2, d2) is a map φ : (Λ·

g
⊗·
1 , d1) → (Λ·

g
⊗·
2 , d2) of codifferential coalgebras.

The Lie algebra g1 of multivectorfields is in fact a Gerstenhaber algebra that is to
say a graded Lie algebra structure with a graded commutative algebra structure (for
the same space with grading shifted by −1) and a compatibility between the bracket
and the product (expressing that the bracket is a derivation for the product) as in
(1.2). On the space g1 = Γ(M,ΛTM), the commutative structure is given by the
exterior product:

∀α, β ∈ Γ(M,ΛTM), α ∧ β = (−1)
(|α|+1)(|β|+1)

β ∧ α. (1.4)

We can reformulate the graded Gerstenhaber structure into a G∞-algebra structure
as follows. The graded Lie algebra structure is still given by a map m1,1

1 : Λ2
g1 → g1,

and the commutative graded algebra structure is given by a map m2
1 : g

⊗2
1 → g1

(because g
⊗2
1 is the quotient of g

⊗2
1 by the 2-shuffles, that is to say the elements

a ⊗ b + (−1)
(|a|+1)(|b|+1)

b ⊗ a). The maps m1,1
1 , m2

1 above extend into degree one
derivations

m1,1
1 , m2

1 : ∧·
g
⊗·
1 → ∧·

g
⊗·
1 .

All the identities defining the Gerstenhaber-algebra structure on g1 can be summa-
rized into the unique relation

d1 ◦ d1 = 0

where d1 = m1,1
1 + m2

1. Hence the Gerstenhaber bracket and the exterior prod-
uct define a G∞-algebra structure on g1. More generally, any Gerstenhaber algebra
(g,m, [−,−]) has a canonical G∞-structure given by m2 = m, m1,1 = [−,−], the
other maps being zero.
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2. A G∞-structure on g2 = C(A,A)

The Lie algebra g2 is also endowed with an associative product. It is the “cup”
product ∪ defined, for D,E ∈ g2 and x1, . . . , x|D|+|E|+2 ∈ A, by

(D ∪ E)(x1, . . ., x|D|+|E|+2) = (−1)γD(x1, . . ., x|D|+1)E(x|D|+2, . . ., x|D|+|E|+2)

where γ = (|E| + 1)(|D| + 1). The projection of this product on the cohomology of
(g2, b) is the exterior product ∧, but unfortunately (g2, [−,−]G,∪, b) is not a Ger-
stenhaber algebra. However the relations (1.2), (1.4) are satisfied up to a boundary
for b.
Tamarkin stated the existence of a G∞-structure on g2. Our aim in this section is
to build this G∞-structure more explicitly. By Definition 1.3. we have to exhibit a
differential d2 on Λ·

g
⊗·
2 satisfying, if

d2 = m1
2 +m1,1

2 +m2
2 + · · · +mp1,...,pn

2 + · · · ,

1. m1
2 is the map b and m1,1

2 is the map [−,−]G.
2. d2 ◦ d2 = 0.

We first reformulate this problem: let L2 = ⊕ g
⊗n
2 be the cofree Lie coalgebra on

g2 (see Section 1 for the notation). Since L2 is a cofree coalgebra, a Lie bialgebra
structure on L2 is given by degree one maps ln2 : g

⊗n
2 → g2, corresponding to the

differential, and maps lp1,p2

2 : g
⊗p1

2 ∧ g
⊗p2

2 → g2, corresponding to the Lie bracket.

These maps extend uniquely into a coalgebra derivation L2 → L2 and a coalgebra
map L2 ∧ L2 → L2 (still denoted lm2 and lp,q

2 ). The following lemma is well known.

Lemma 2.1. — Suppose we have a differential Lie bialgebra structure on the Lie
coalgebra L2, with differential and Lie bracket respectively determined by maps ln2 and
lp1,p2

2 as above. Then g2 has a G∞-structure given, for all p, q, n ≥ 1, by

mn
2 = ln2 , mp,q

2 = lp,q
2 and mp1,...,pr

2 = 0 for r ≥ 3.

Proof : The map d2 =
∑

i≥0 l
i
2 +

∑
p1,p2≥0 l

p1,p2

2 : Λ·L2 → Λ·L2 is the Chevalley-
Eilenberg differential on the differential Lie algebra L2; it satisfies d2 ◦ d2 =0. �

Thus to obtain the desiredG∞-structure on g2, it is enough to define a Lie bialgebra
structure on L2 given by maps ln2 and lp1,p2

2 with l12 = b and l1,1
2 = [−,−]G.

Let us now give an equivalent formulation of our problem, which is stated in terms
of the associated operads in [Ta]:

Proposition 2.2. — Suppose we have a differential bialgebra structure on the cofree
tensorial coalgebra T2 = ⊕n≥0 g

⊗n
2 with differential and multiplication given respec-

tively by maps an : V ⊗n → V and ap1,p2 : V ⊗p1 ⊗ V ⊗p2 → V . Then we have a
differential Lie bialgebra structure on the Lie coalgebra L2 = ⊕n≥0 g

⊗n
2 , with differ-

ential and Lie bracket respectively determined by maps ln2 and lp1,p2

2 where l12 = a1

and l1,1
2 is the anti-symmetrization of a1,1.

A differential bialgebra structure on the cofree tensorial coalgebra ⊕V ⊗n associated
to a vector space V is often called a B∞-structure on V , see [Ba].



8 GREGORY GINOT & GILLES HALBOUT

Proof : We follow the proof in [Ta]. Let V be a finite-dimensional vector space and
V ∗ be the dual space. A differential bialgebra structure on T = ⊕n≥0 V

⊗n is given
by maps an : V ⊗n → V (n ≥ 2), corresponding to the differential, and maps ap1,p2 :
V ⊗p1 ⊗ V ⊗p2 → V (p1, p2 ≥ 0), corresponding to the product. We can define dual
maps of the maps

∑
n≥0 a

n : T → T and
∑

p1,p2≥0 a
p1,p2 : T ⊗ T → T , namely

D : T̂ → T̂ and ∆ : T̂ → T̂ ⊗̂T̂ , where T̂ is the completion of the tensor algebra
⊕n≥0V

∗⊗n. The maps D and ∆ are given by maps an∗ : V ∗ → V ∗⊗n and ap1,p2∗ :
V ∗ → V ∗⊗p1 ⊗ V ∗⊗p2 , and define a differential bialgebra structure on the complete
free algebra T̂ . The tensor algebra ⊕n≥0V

∗⊗n is now graded as follows: |x| = p when
x ∈ V ∗⊗p.

Similarly, if we consider a differential Lie bialgebra structure on the cofree Lie
coalgebra L = ⊕n≥0 V

⊗n, the dual maps d and δ of the structure maps
∑

n≥0 l
n

and
∑

p1,p2≥0 l
p1,p2 induce a differential Lie bialgebra structure on L̂, the completion

of the free Lie algebra ⊕n≥0Lie(V
∗)(n) on V ∗, where Lie(V ∗)(n) is the subspace of

element of degree n.
We now replace formally each element x of degree n in T̂ (resp. L̂) by hnx, where

h is a formal parameter. Letting |h| = −1, we easily see that a differential associative
(resp. Lie) bialgebra structure on the associative (resp. Lie) algebras (⊕n≥0V

∗⊗n)[[h]]
(resp. (⊕n≥0Lie(V

∗)(n))[[h]]) with the product and coproduct being of degree zero
is equivalent to a differential associative (resp. Lie) bialgebra structure on the asso-

ciative (resp. Lie) algebra T̂ (resp. L̂). Thus we have a differential free coalgebra

(T̂ [[h]], D,∆).

We can apply now Etingof-Kazhdan’s dequantization theorem for graded diffen-
tial bialgebras (see [EK2] and Appendix of B. Enriquez for a proof in the graded
differential “super” case) to our particular case: this proves that there exists a Lie

bialgebra (L̂′, [−,−], δ), generated as a Lie algebra by V ∗ and an injective map IEK :

L̂′[[h]] → (⊕n≥0V
∗⊗n)[[h]] such that

1. the restriction IEK : V ∗ → V ∗ is the identity,

2. IEK([a, b]) = IEK(a)IEK(b) − IEK(b)IEK(a) +O(h), for all a, b ∈ L̂′[[h]],
3. (∆ − ∆op) IEK = hIEKδ +O(h2),
4. the maps IEK, δ and [−,−] are given by universal formulas depending only on

∆ and the product of T̂ ,
5. if we apply Etingof-Kazhdan’s quantization functor (see [EK1]) to the Lie bial-

gebra (⊕n≥0Lie(V
∗)n[[h]], δ) we get the bialgebra ((⊕n≥0V

∗⊗n)[[h]],∆) back.

The last condition implies that L̂′ is free as a Lie algebra because T̂ is free as an
algebra. Moreover, there exist a differential d such that IEK ◦ d = D ◦ IEK so that
(L̂′, d, δ) is a differential free Lie coalgebra. Taking now dual maps, we get the result.

�

Since the map IEK defined in the precedent proof is the identity on V ∗, the first
terms a1

2 and l12 of the differentials will be the same on T2 = ⊕g
⊗n
2 and on L2 =

⊕n≥0 g
⊗n
2 . For the same reason the first term l1,1

2 of the Lie bracket on L2 will be

the antisymmetrization of the first term a1,1
2 of the cobracket on T2.
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By Proposition 2.2, the problem of defining a Lie bialgebra structure on L2 given
by maps ln2 and lp1,p2

2 with l12 = b and l1,1
2 = [−,−]G, is equivalent to defining a

differential bialgebra structure on T2 given by maps an
2 : g

⊗n
2 → g2 and ap1,p2

2 :

g
⊗p1

2 ⊗ g
⊗p2

2 → g2 where a1
2 = b and a1,1

2 is the product {−|−} defined in Section 1.
Indeed, the anti-symmetrization of {−|−} is by definition [−,−]G. The latter can be
achieved using the braces (defined in [GV]) acting on the Hochschild cochain complex

g2 = C(A,A) for any algebra A. The braces operations are maps a1,p
2 : g2⊗g

⊗p
2 → g2

(p ≥ 1) defined, for all homogeneous D,E1, . . . , Ep ∈ g
⊗p+1
2 and x1, . . . , xd ∈ A (with

d = |D| + |E1| + · · · + |Ep| + 1), by

a1,p
2 (D1 ⊗ (E1 ⊗ . . .⊗ Ep))(x1 ⊗ · · · ⊗ xd) =

∑
(−1)τD(x1, . . ., xi1 , E1(xi1+1, . . .), . . ., Ep(xip+1, . . .), . . .)

where τ =
∑p

k=1 ik(|Ek| + 1). The maps a1,p
2 : g2 ⊗ g

⊗p
2 → g2 and aq≥2,p

2 = 0 give a

unique bialgebra structure on the cofree cotensorial algebra T2 = ⊕n≥0g
⊗n
2 . Similarly

taking a1
2 to be the Hochschild coboundary b and a2

2 to be the cup-product ∪, and

aq≥3
2 = 0, gives a unique differential bialgebra structure on the tensor coalgebra T2.

Theorem 3.1 in [Vo] asserts that these maps yield a differential bialgebra structure
on the cofree coalgebra T2 (the proof is a straightforward computation, also see [GV]
and [Kh]).

Using this result, we can successively apply Proposition 2.2 and Lemma 2.1 to
obtain the desired G∞-structure on g2 given by maps mp1,...,pk

2 such that m1
2 = b and

m1,1
2 = [−,−]G. By construction, the maps mp1,...,pk

2 are 0 for k > 2. Moreover, the
map m2

2 coincides, up to a Hochschild coboundary, with the cup-product ∪ because,
when passing to cohomology, they both give the same map m2

1, corresponding to the
product ∧ of the Gerstenhaber algebra (g1, [−,−]S,∧).

3. A G∞-morphism ψ : (Λ·
g
⊗·
1 , d′1) → (Λ·

g
⊗·
2 , d2)

The objective of this section is to prove the following proposition.

Proposition 3.1. — There exist a differential d′1 on Λ·
g
⊗·
1 and a morphism of differ-

ential coalgebras ψ : (Λ·
g
⊗·
1 , d′1) → (Λ·

g
⊗·
2 , d2) such that the induced map ψ1 : g1 → g2

is the Hochschild-Kostant-Rosenberg map of Section 0.

Proof : For i = 1, 2 and n ≥ 0, let us set

V
[n]
i =

⊕

p1+···+pk=n

g
⊗p1

i ∧ · · · ∧ g
⊗pk

i

and V
[≤n]
i =

∑
k≤n V

[k]
i . Let dp1,...,pk

2 : g
⊗p1

2 ∧ · · · ∧ g
⊗pk

2 → g2 be the components

of the differential d2 defining the G∞-structure of g2 (see Definition 1.3) and denote
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d
[n]
2 and d

[≤n]
2 the sums

d
[n]
2 =

∑

p1+···+pk=n

dp1,...,pk

2 and d
[≤n]
2 =

∑

p≤n

d
[p]
2 .

Clearly, d2 =
∑

n≥1 d
[n]
2 . In the same way, we denote

d′
[n]
1 =

∑

p1+···+pk=n

d
′p1,...,pk

1 and d′
[≤n]
1 =

∑

1≤k≤n

d′
[k]
1 .

We know from Section 1 that a morphism ψ : (Λ·
g
⊗·
1 , d′1) → (Λ·

g
⊗·
2 , d2) is uniquely

determined by its components ψp1,...,pk : g
⊗p1

1 ∧ · · · ∧ g
⊗pk

1 → g2. Similarly we set

ψ[n] =
∑

p1+···+pk=n

ψp1,...,pk and ψ[≤n] =
∑

1≤k≤n

ψ[k].

Again, we have d′1 =
∑

n≥1 d
′[n]
1 and ψ =

∑
n≥1 ψ

[n].

We have to build both the differential d′1 and the morphism of codifferential ψ. In

fact we will build the maps d′
[n]
1 and ψ[n] by induction. For the first terms, we set

d′
[1]
1 = 0 and ψ[1] = φ1,

the Hochschild-Kostant-Rosenberg map (see Section 0).

Suppose we have built maps (d′
[i]
1 )i≤n−1 and (ψ[i])i≤n−1 satisfying

ψ[≤n−1] ◦ d′
[≤n−1]
1 = d

[≤n−1]
2 ◦ ψ[≤n−1]

on V
[≤n−1]
1 and d′

[≤n−1]
1 ◦ d′

[≤n−1]
1 = 0 on V

[≤n]
1 . These conditions are enough to

insure that d′1 is a differential and ψ a morphism of differential coalgebras. If we

reformulate the identity ψ ◦ d′1 = d2 ◦ ψ on V
[n]
1 , we get

ψ[≤n] ◦ d′
[≤n]
1 = d

[≤n]
2 ◦ ψ[≤n]. (3.5)

If we take now into account that d′
[1]
1 = 0, and that on V

[n]
1 we have ψ[k] ◦ d′

[l]
1 =

d
[k]
2 ◦ ψ[l] = 0 for k + l > n+ 1, the identity (3.5) becomes

ψ[1]d′
[n]
1 +B = d

[1]
2 ψ[n] +A (3.6)

where B =
∑n−1

k=2 ψ
[≤n−k+1]d′

[k]
1 and A = d

[1]
2 ψ[≤n−1] +

∑n
k=2 d

[k]
2 ψ[≤n−k+1] (we now

omit the composition sign ◦). The term d
[1]
2 in (3.6) is the Hochschild coboundary

b. So thanks to the Hochschild-Kostant-Rosenberg theorem (3.6) is equivalent to the
cochains B − A being Hochschild cocycles. Therefore, in order to prove existence of

d′
[n]
1 and ψ[n], it is sufficient to prove that

d
[1]
2 (B −A) = 0 (3.7)

and to show that for any choice of those maps, we have

d′
[≤n]
1 d′

[≤n]
1 = 0 on V

[≤n+1]
1 . (3.8)
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• We will first construct d′1
[2]

: for n = 2, we get A = d
[1]
2 ψ[1] + d

[2]
2 ψ[1] and B = 0 so

that

ψ[1]d′
[2]
1 = d

[1]
2 (ψ[2] + ψ[1]) + d

[2]
2 ψ[1].

Thus d′1
[2] is the image of d

[2]
2 through the projection on the cohomology of g2 and as

the Hochschild-Kostant-Rosenberg map ψ[1] is injective from g1 = H(g2, b = d
[1]
2 ) to

g2, we get

d′1
[2]

= d
[2]
1 .

• Let us prove (3.7): we have d
[1]
2 (−A) = −

∑n
k=2 d

[1]
2 d

[k]
2 ψ[≤n−k+1]. Using d2d2 = 0,

we get

d
[1]
2 (−A) =

n∑

k=2

(
k∑

l=2

d
[l]
2 d

[k+1−l]
2

)
ψ[≤n−k+1]

=
n∑

l=2

d
[l]
2

(
n∑

k=l

d
[k+1−l]
2 ψ[≤n−k+1]

)
.

Clearly, we have
∑n

k=l d
[k+1−l]
2 ψ[≤n−k+1] =

∑n−l+1
k=1 d

[k]
2 ψ[≤n−k+2−l]. Using once

again d
[a]
1 d

[b]
1 ψ

[c] = 0 on V
[n]
1 for a+b+c > n+2, we add terms (ψ[n−k+2−l+k′ ])0≤k′≤k−1

to ψ[≤n−k+2−l] without changing the previous equality. Thus we have

d
[1]
2 (−A) =

n∑

l=2

d
[l]
2

(
n−l+1∑

k=1

d
[k]
2

)
ψ[≤n+1−l] =

n∑

l=2

d
[l]
2 d

[≤n+1−l]
2 ψ[≤n+1−l].

Since
(
d
[l]
2

)
l≥2

map V
[≤k]
2 into V

[≤k−1]
2 , the previous equality has non-trivial terms

only on V
[≤n−1]
1 . Thus we can apply the induction hypothesis ψ[≤k]d′

[≤k]
1 = d

[≤k]
2 ψ[≤k]

on V
[≤k]
1 for k ≤ n− 1. We get

d
[1]
2 (−A) =

n∑

l=2

d
[l]
2 ψ

[≤n+1−l]d′
[≤n+1−l]
1 .

We have now

d
[1]
2 (B −A) = d

[1]
2

n−1∑

k=2

ψ[≤n−k+1]d′
[k]
1 +

n∑

l=2

d
[l]
2 ψ

[≤n+1−l]d′
[≤n+1−l]
1 .

The term corresponding to l = n vanishes since d′
[1]
1 = 0. Using a previous argument

on V
[n]
1 for d

[a]
2 ψ[b]d′

[c]
1 , we add maps ψ[p+p′] (p′ ≥ 0) to ψ[≤p]. If we then reindex the

sum with respect to the terms d′
[l]
1 , we get

d
[1]
2 (B −A) =

n−1∑

l=2

d
[≤n+1−l]
2 ψ[≤n−1]d′1

[l]
.
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Therefore we have proved that d
[1]
2 (B − A) =

∑n−1
l=2 d

[≤n+1−l]
2 ψ[≤n+1−l]d′1

[l]
. Since

d′
[l]
1

(
V

[≤k]
1

)
⊂ V

[≤k−1]
1 , we can again apply the induction hypothesis, thus getting

d
[1]
2 (B −A) =

n−1∑

l=2

ψ[≤n+1−l]d′
[≤n+1−l]
1 d′

[l]
1 = 0

because d′
[1]
1 = 0 and d′

[≤n−1]
1 d′

[≤n−1]
1 = 0 on V

[≤n]
1 ,again by the induction hypothesis.

• We will finally prove (3.8) that is to say d′
[≤n]
1 d′

[≤n]
1 = 0 on V

[≤n+1]
1 . As ψ[1] is

a quasi-isomorphism between (g1, 0) and (g2, b = d
[1]
2 ), this is equivalent to say that

ψ[1] d′
[≤n]
1 d′

[≤n]
1 is a boundary on V

[≤n+1]
1 . Using a previous degree argument, we get

the following identity on V
[≤n+1]
1 :

ψ[1] d′
[≤n]
1 d′

[≤n]
1 = ψ[≤n] d′

[≤n]
1 d′

[≤n]
1 .

By definition of d′
[≤n]
1 we can write ψ[≤n] d′

[≤n]
1 = d

[≤n]
2 ψ[≤n] as d′

[≤n]
1 maps V

[≤n+1]
1

to V
[≤n]
1 . Thus it is sufficient to prove that d

[≤n]
2 ψ[≤n]d′

[≤n]
1 is a boundary when

restricted to V
[≤n+1]
1 .

Now we have

d
[≤n]
2 ψ[≤n]d′

[≤n]
1 = bψ[≤n]d′

[≤n]
1 +

∑

2≤k≤n

d
[≤k]
2 ψ[≤n]d′

[≤n]
1 .

Since
∑

2≤k≤n d
[≤k]
2 maps V

[≤k]
2 to V

[≤k−1]
2 , the linear combination of maps

∑

2≤k≤n

d
[≤k]
2 ψ[≤n]d′

[≤n]
1

has non-trivial summands only on V
[≤n+1]
1 . On the latter space we have

∑

2≤k≤n

d
[≤k]
2 ψ[≤n] d′

[≤n]
1 =

∑

2≤k≤n

d
[≤k]
2 d

[≤n]
2 ψ[≤n],

by definition of d′
[≤n]
1 . Hence, the following identities hold on V

[≤n+1]
1 :

d
[≤n]
2 ψ[≤n] d′

[≤n]
1 = bψ[≤n] d′

[≤n]
1 − b d

[≤n]
2 ψ[≤n] + d

[≤n]
2 d

[≤n]
2 ψ[≤n]

= b ψ[≤n] d′
[≤n]
1 − b d

[≤n]
2 ψ[≤n]

as d2d2 = 0. �

Conclusion : The only tool we have used in this section is the existence of a quasi-
isomorphism between the complexes (g1, 0) and (g2, b). Since we know explicit ho-
motopy formulas for such a quasi-isomorphism (see [DL], [Ha]), we obtain explicit

formulas for d′1
[k]

and ψ[k].
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4. A G∞-morphism ψ′ : (Λ·
g
⊗·
1 , d1) → (Λ·

g
⊗·
1 , d′1)

In this section, we will prove the following proposition.

Proposition 4.1. — If the complex
(
Hom(Λ·

g
⊗·
1 ,Λ·

g
⊗·
1 ), [m1,1

1 +m2
1,−]

)
is acyclic,

then there exists a G∞-morphism ψ′ : (Λ·
g
⊗·
1 , d1) → (Λ·

g
⊗·
1 , d′1) such that the induced

map ψ′[1] : g1 → g1 is the identity.

We will use the same notations for V
[n]
1 , V

[≤n]
1 , d′

[n]
1 and d′

[≤n]
1 as in Section 3. We

also denote

d1 =
∑

n≥1

d
[n]
1 and d

[≤n]
1 =

∑

1≤k≤n

d
[k]
1

and similarly

ψ′ =
∑

n≥1

ψ[n] and ψ′[≤n]
=

∑

1≤k≤n

ψ′[n]
.

Proof : We will build the maps ψ′[n]
by induction as in Section 3. For ψ′[1] we have

to set:

ψ′[1] = Id (the identity map).

Suppose we have built maps (ψ′[i])i≤n−1 satisfying

ψ′[≤n−1]
d
[≤n]
1 = d′1

[≤n]
ψ′[≤n−1]

on V
[≤n]
1 (d′1

[≤n]
maps V

[≤l]
1 to V

[≤l−1]
1 ). Expliciting the equation ψ′d1 = d′1ψ

′ on

V
[n+1]
1 , we get

ψ′[≤n]
d
[≤n+1]
1 = d′1

[≤n+1]
ψ′[≤n]

. (4.9)

If we now take into account that d
[i]
1 = 0 for i 6= 2, d′1

[1]
= 0 and that on V

[n+1]
1 we

have ψ′[k]
d
[l]
1 = d′1

[≤k]
ψ′[l] = 0 for k + l > n+ 2, the identity (4.9) becomes

ψ′[≤n]
d
[2]
1 =

n+1∑

k=2

d′1
[k]
ψ′[≤n−k+2]

.

We have seen in the previous section that d′1
[2] = d1

[2]. Thus (4.9) is equivalent to

d1
[2]ψ′[≤n]

− ψ′[≤n]
d1

[2] =
[
d1

[2], ψ′[≤n]
]

= −

n+1∑

k=3

d′1
[k]
ψ′[≤n−k+2]

.

Notice that d
[2]
1 = m1,1

1 +m2
1. By the acyclicity of the complex (End(Λ·

g
⊗·
1 ), [d

[2]
1 ,−]),

the construction of ψ′[≤n]
will be possible when

∑n+1
k=3 d

′
1
[k]
ψ′[≤n−k+2]

is a cocycle in
this complex. Thus, to finish the proof, we have to check that

[
d
[2]
1 ,

n+1∑

k=3

d′1
[k]
ψ′[≤n−k+2]

]
= 0 on V

[n+1]
1 . (4.10)
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We have

Dn =

[
d
[2]
1 ,

n+1∑

k=3

d′1
[k]
ψ′[≤n−k+2]

]
=

[
d
[2]
1 ,

n−1∑

k=1

d′1
[n+2−k]

ψ′[≤k]

]
.

It follows that we can write

−Dn =

n−1∑

k=1

[
d
[2]
1 , d′1

[n+2−k]
]
ψ′[≤k]

−

n−1∑

k=1

d′1
[n+2−k]

[
d
[2]
1 , ψ′[≤k]

]
. (4.11)

Using the induction hypothesis for
(
ψ′[≤k]

)
k≤n−1

, we get

[d1
[2], ψ′[≤k]

] = −

k+1∑

l=3

d′1
[l]
ψ′[≤k−l+2]

= −

k−1∑

l=1

d′1
[k+2−l]

ψ′[≤l]

on V
[≤k+1]
1 . The equation 4.11 then becomes

−Dn =

n−1∑

k=1

[
d
[2]
1 , d′1

[n+2−k]
]
ψ′[≤k]

+

n−1∑

k=1

d′1
[n+2−k]

(
k−1∑

l=1

d′1
[k+2−l]

ψ′[≤l]

)
.

Finally, we have

−Dn =

n−1∑

k=1

[
d
[2]
1 , d′1

[n+2−k]
]
ψ′[≤k]

+

n−2∑

l=1

(
n−1∑

k=l+1

d′1
[n+2−k]

d′1
[k+2−l]

)
ψ′[≤l]

.

This implies

−Dn =

n−1∑

k=1



[
d′1

[2]
, d′1

[n+2−k]
]

+

n−1∑

p=k+1

d′1
[n+2−p]

d′1
[p+2−k]


ψ′[≤k]

.

But the maps

[
d′1

[2]
, d′1

[n+2−k]
]

+
n−1∑

p=k+1

d′1
[n+2−p]

d′1
[p+2−k]

=
n+2−k∑

q=2

d′1
[q]
d′1

[n+4−q−k]

are zero because d′1d
′
1 = 0 on V

[≤n+2−k]
1 . This yields the result. �

5. Acyclicity of the complex
(
Hom(Λ·

g
⊗·
1 ,Λ·

g
⊗·
1 ), [m1,1

1 +m2
1,−]

)

In this section the manifold M is supposed to be the Euclidian space R
m for m ≥ 1.

We prove the following proposition:

Proposition 5.1. — If M = R
m, the cochain complex

(
End(Λ·

g
⊗·
1 ), [m1,1

1 +m2
1,−]

)

is acyclic.



A FORMALITY THEOREM FOR POISSON MANIFOLDS 15

Proof : Since coalgebras maps Λ·
g
⊗·
1 → Λ·

g
⊗·
1 are in one to one correspondence with

maps Λ·
g
⊗·
1 → g1, we are left to check that the cochain complex

(
Hom(Λ·

g
⊗·
1 , g1), [m

1,1
1 +m2

1,−]
)

is acyclic.
First we introduce an “external” bigrading on the cochain complex induced by

duality from the following bigrading on Λ·
g
⊗·
1 :

|x|e = (p1 − 1 + · · · + pn − 1, n− 1)

if x ∈ g
⊗p1

1 ∧ · · · ∧ g
⊗pn

1 . Let the internal degree of x ∈ g1 be |x|i = |x| + 1, where |x|

is the usual degree of an element of g1. One recovers the usual degree on Λ·
g
⊗·
1 by

|x| = |x|etot +
∑

i,k

|xk
i |

i

where |x|etot is the sum of the two components of |x|e.

The exterior product m2
1 makes g1 into an associative algebra which is graded

commutative for the inner degree. For any vector space V , the space g1 ⊗ V is a
g1-module equipped with a g1-action by multiplication on the first factor. Observe
that(

Hom(Λ·
g
⊗·
1 , g1), [m

1,1
1 +m2

1,−]
)
∼=
(
Homg1

(g1 ⊗ Λ·
g
⊗·
1 , g1), [m

1,1
1 +m2

1,−]
)
,

∼=
(
Homg1

(Λ·
g1

(g1 ⊗ g
⊗·
1 ), g1), [m

1,1
1 +m2

1,−]
)

where g1 acts (on the right and on the left) on itself by the multiplication m2
1.

We now prove acyclicity of this last cochain complex. The codifferential (δ)∗ =

[m1,1
1 +m2

1,−] splits in two parts (δ21)∗+(δ1,1
1 )∗ = (δ)∗ where (δ21)∗ is the codifferential

of bidegree (1, 0) induced by m2
1 and (δ1,1

1 )∗ is the one of bidegree (0, 1) induced by

m1,1
1 . Thus, Homg1

(Λ·
g1

g1 ⊗ g
⊗·
1 , g1) endowed with the bigrading | − |e is a bicomplex

lying in the first quadrant. The bigrading of an element x ∈ g1⊗g
⊗p1

1 ∧ ...∧g1 ⊗g
⊗pn

1

is |x|e = (p1 − 1 + ...+ pn − 1, n− 1).
The codifferential (δ21)

∗ is dual to a differential δ21 . It is a standard calculation
(see [Lo1], 1.5 for example) to show that δ21 , restricted to each summand g1 ⊗ g

⊗·
1 , is

the usual Harrison boundary, that is to say the image of the Hochschild differential d
acting on g

⊗·+1
1 onto its quotient g1 ⊗ g

⊗·
1 by the shuffles.

We now use the fact that (g1,m
2
1) = (Γ(M,ΛTM),∧) is a polynomial algebra.

Denote by Ωg1
the module of Kähler differential one-forms of the algebra g1. Let

J : g
⊗·+1
1 → Λ·Ωg1

be the map which sends x0 ⊗ · · · ⊗ xn to x0dx1 · · · dxn and

I : Λ·Ωg1
→ g

⊗·+1
1 be the anti-symmetrization map given by

J(x0dx1 · · ·dxn) =
∑

σ∈Sn

(−1)σ

n!
ε(σ)x0 ⊗ xσ−1(1) . . .⊗ xσ−1(n)

where Sn is the permutation group of {1, · · · , n}, (−1)σ is the sign of σ and ε(σ) the
Koszul-Quillen sign (see Section 1). It is easy to check that J ◦ I = Id.
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It is known from [Ha] that there exists a homotopy s : g
⊗·+1
1 → g

⊗·+2
1 such that

I ◦ J = Id + d ◦ s+ s ◦ d. We denote P the natural projection g
⊗·+1
1 → g1 ⊗ g

⊗·
1 . It is

a standard computation (see [Lo2]) that the map J factors through g1 ⊗ g
⊗·
1 to give

a map J ′ : g1 ⊗ g
⊗·
1 → Ωg1

. There is also a map I ′ = P ◦ J : Ωg1
→ g1 ⊗ g

⊗·
1 . Clearly

J ′ ◦ I ′ = Id. Since the map P commutes with the differential d, the map s′ = P ◦ s
satisfies

I ′ ◦ J ′ = Id + d ◦ s′ + s′ ◦ d.

The map s′ extends uniquely into a degree 1 homotopy h to Λ·
g1

g1 ⊗ g
⊗·
1 so that

ΛI ′ ◦ ΛJ ′ = Id + δ21 ◦ h + h ◦ δ21 , where ΛI ′, ΛJ ′ are the extensions of the degree
zero maps I ′ and J ′. Moreover ΛJ ′ ◦ ΛI ′ = Id and Λ·

g1
Ωg1

is a (special) deformation

retract of Λ·
g1

g1⊗g
⊗·
1 (see [Ha]). We denote p : Λ·

g1
g1⊗g

⊗·
1 → Λ·

g1
Ωg1

the projection.

Since Λ·
g1

g1 ⊗ g
⊗·
1 is a bicomplex with differential δ = δ21,1 + δ1,1

1 , it follows from

[Ka], Section 3 that there exists a map u : Λ·
g1

Ωg1
→ Λ·

g1
g1 ⊗ g

⊗·
1 and a (degree

one) map H : Λ·
g1

g1 ⊗ g
⊗·
1 → Λ·

g1
g1 ⊗ g

⊗·
1 [1] such that pu = Id and up = Id + δH +

Hδ. Hence the cohomology we are looking for is the cohomology of the complex(
Homg1

(Λ·
g1

Ωg1
, g1), δ

1,1
1

)
which sits in the complex

(
Hom(Λ·

g1, g1), δ
1,1
1

)
∼=
(
Homg1

(g1 ⊗ Λ·
g1, g1), δ

1,1
1

)
.

In particular, the differential δ1,1
1 is induced by the usual exterior derivative (see

[HKR]) on Homg1
(g1⊗Λ·

g
⊗·
1 , g1). To finish the proof, we proceed as in [Ta] and [Hi].

Recall from the introduction that A = C∞(Rm) is the algebra of smooth functions
on R

m. Let Der(A) = Ω∗
A be the space of smooth derivations on A. Since g1 is a

A-module, by transitivity of the space of Kähler differentials for smooth manifolds,
one has

Ωg1

∼= g1 ⊗A ΩA ⊕ Ωg1/A.

Since g1
∼= Λ∗

ADer(A), we find that Ωg1/A
∼= g1 ⊗ Der(A) (with grading shifted by

minus one on Der(A)). Hence (see [Ta].3.5) there is an isomorphism
(
Homg1

(Λ·
g1

Ωg1
, g1), δ

1,1
1

)
∼=
(
Λ1+·Ωg1

, ddR

)

where ddR is de Rham’s differential (the degree on the left hand of the isomorphism
is the one induced by the inner degree of g1). When g1 = Γ(Rn,ΛR

n) this complex
is acyclic. �

Remark: At every step of this proof, it is possible to construct explicit homotopy

formulas. So the coefficients ψ′[n] built in this section can be expressed in an explicit
way from the G∞-structure on g2.

Corollary 5.2. — If g1 = Γ(Rm,ΛTR
m), then there exists a G∞-morphism ψ′ :

(Λ·
g
⊗·
1 , d1) → (Λ·

g
⊗·
1 , d′1) such that the induced map ψ′[1] : g1 → g1 is the identity.

Proof : It is an immediate consequence of Propositions 4.1 and 5.1. �
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6. Consequences when M is a Poisson manifold

From the Sections 3, 4 and 5 we know that the map

φ = ψ ◦ ψ′ : (Λ·
g
⊗·
1 , d1) → (Λ·

g
⊗·
2 , d2)

is a G∞-morphism when M = R
m; in other words, we have the identity

φ ◦ d1 = d2 ◦ φ on Λ·
g
⊗·
1 . (6.12)

Since φ : Λ·
g
⊗·
1 → Λ·

g
⊗·
2 is a coalgebra map, it restricts to the subcoalgebra Λ·

g1

to give a coalgebra map Λ·
g1 → Λ·

g2. The restriction of d1 and d2 are respectively
the codifferential induced by m1,1

1 and the codifferential induced by b + m1,1
2 (see

the end of Section 2). When we restrict these maps to Λ·
g1 and Λ·

g2, the previous
equality (6.12) still holds with the difference that, now, d1 and d2 are the differential
defining the L∞-structures on g1 and g2 of Section 1. So the restriction of φ to these
coalgebras yields a morphism of differential coalgebras

φ : (Λ·
g1, d1) → (Λ·

g2, d2).

Thus we have constructed the desired L∞-morphism between (g1, d1) and (g2, d2).

Remark: Similarly to Definitions 1.1, 1.3, one can define, on a vector space g, a
C∞-algebra structure given by degree one maps am : g

⊗n → g such that if we extend

them to maps ⊕g
⊗· → ⊕g

⊗·, then D =
∑
am satisfies D ◦D = 0. In particular, a2

yields a commutative operation on g, a1 a differential and the product a2 is associative
up to homotopies for the differential a1. Let us then consider the free Lie coalgebras
⊕n≥0g1

⊗n and ⊕n≥0g2
⊗n. They are also subcoalgebras of respectively Λ·

g
⊗·
1 and

Λ·
g
⊗·
2 . Hence we can restrict φ into a coalgebra map φ : ⊕g1

⊗n → ⊕g2
⊗n. Denoting

D1 = m2
1 the codifferential induced by the exterior product ∧, and D2 the codiffer-

ential induced by
∑

n≥0m
n
2 , the map φ yields a differential coalgebra morphism

φ :
(
⊕g1

⊗n, D1

)
→
(
⊕g2

⊗n, D2

)
,

hence, a morphism of C∞-algebras between (g1, D1) and (g2, D2). Through the
Etingof-Kazhdan equivalence used in Proposition 2.2, this implies that there is a
morphism of A∞-algebras between (g1,∧) and (g2,∪). More precisely, it means that
there is a morphism

(
⊕g

⊗n
1 ,∧

)
→
(
⊕g

⊗n
2 , b+ ∪

)
of differential coalgebras between

the tensor coalgebras of g1 and g2. Details on C∞ and A∞-structures can be found
in [GK] and [St].

From now on, we will suppose that the manifold M is a Poisson manifold equipped
with a Poisson tensor π (satisfying [π, π]S = 0). The L∞-map φ allows us to construct
a star-product on M (see [BFFLS1]). If ~ is a formal parameter and if we impose
φ to be R[[~]]-linear, φ extends to a L∞-morphism between g1[[h]] and g2[[h]]. Set
Π~ =

∑
n≥0 ~

nΛnπ ∈ Λ·
g1, where Λnπ = π ∧ ... ∧ π︸ ︷︷ ︸

n times

(here ∧ is not the exterior



18 GREGORY GINOT & GILLES HALBOUT

product of tensor fields but a ∧ b is an element in g1 ∧ g1). If we define m⋆ = φ(Π~),
we get

[m⋆,m⋆]G = 0. (6.13)

This is a consequence of definition (0.1) of a L∞-morphism given in Section 0 and

of the fact that [π, π]S = 0 implies m1,1
1 (Π~) = 0. The map m⋆ being an element of

g2[[~]] of degree one, it defines a bilinear map in C2(A,A)[[~]], where Ck(A,A)[[~]]
denotes the set of k-R[[~]]-linear maps in Ck(A,A). The identity 6.13 implies that
m⋆ is an associative product on A[[~]]. Finally, by definition of φ, we have:

m⋆ = m+ ~φ1(π) +
∑

n≥2

~
nφn(π, . . . , π),

where φ1(π) = {·, ·} is the Poisson bracket. This proves that m⋆ is a star-product on
(M,π).

The spaces g1 and g2 can now be endowed with two new structures: the space
(g1, [−,−]S, [π,−]S) becomes a graded differential Lie algebra (and even a Gersten-
haber algebra) whereas (g2, [−,−]G, b⋆), where b⋆ is the Hochschild differential corre-
sponding to the deformed product m⋆, is a new graded differential Lie algebra. As in
the case when π = 0, we have the following result à la Hochschild-Kostant-Rosenberg.

Theorem 6.1. — The complexes (g2[[~]], b⋆) and (g1[[~]], [~π,−]S) are quasi-isomor-
phic.

Proof : Let us denote φ1
~

the R[[~]]-linear map g1[[~]] → g2[[~]] given by

α 7→ φ1
~
(α) =

∑

n≥0

~
nφn+1 (Λnπ ∧ α) = φg1


∑

n≥0

~
nΛnπ ∧ α




for α ∈ g1, where φg1
denotes the projection of φ on g1. Similarly, we write φg1∧g1

for the projection of φ on g1 ∧ g1. We get

φ1
~([~π, α]S) = φg1


∑

n≥0

~
nΛnπ ∧ [~π, α]S




= φg1


∑

n≥0

~
n+1m1,1

1

(
Λn+1π ∧ α

)



= m1,1
2


φg1∧g1


∑

n≥0

~
n+1Λn+1π ∧ α






=


φ


∑

n≥0

~
nΛnπ


 , φ


∑

n≥0

~
nΛnπ ∧ α






G

= [m⋆, φ
1
~(α)]G

= b⋆φ
1
~(α).
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Thus φ1
~

is a morphism of complexes between (g1, [~π,−]S) and (g2[[~]], b⋆). By

definition, we can write φ1
~
(α) = φ1(α) +

∑
n≥1 ~

nφ1,n
~

where φ1,n
~

are R[[~]]-linear
maps. The proof of the theorem is then a consequence of the following lemma. �

Lemma 6.2. — Let ϕ : (B, 0) → (D, d) be a quasi-isomorphism of cochain com-
plexes. Suppose we have two deformed complexes (B[[~]], b~) and (D[[~]], d~) with
b~ =

∑
n≥1 ~

nbn and d~ = d +
∑

n≥1 ~
ndn, where bi and di are R[[~]]-linear maps.

Suppose in addition that there exists a morphism of complexes ϕ~ = ϕ +
∑

n≥1 ϕn

between (B[[~]], b~) and (D[[~]], d~), where ϕi are R[[~]]-linear maps. Then ϕ~ is a
quasi-isomorphism.

Proof : Suppose δ~ =
∑

n≥0 ~
nδn ∈ D[[~]] satisfies d~δ~ = 0. We will construct

βn ∈ B by induction such that β~ =
∑

n≥0 βn satisfies b~β~ = 0 and ϕ~(β~) = δ~.

Since d~δ~ = 0, we have d0δ0 = 0, so that δ0 = ϕ0(β0), (β0 ∈ B with b0β0 = 0). This
follows from ϕ0 being a quasi-isomorphism between (B, 0) and (D, d0).
Suppose we have built β0, . . . , βn ∈ B such that for all k ≤ n,

δk =

k∑

i=0

ϕi(βk−i) (6.14)

and
k∑

i=0

biβk−i = 0. (6.15)

We have shown that Relations (6.14) and (6.15) hold for k = 0. We will now construct
βn+1 such that they hold for k = n+1. We can reformulate Relation (6.14) as follows:

ϕ0(βn+1) = δn+1 −

n+1∑

i=1

ϕi(βn+1−i).

Since ϕ0 is a quasi-isomorphism between (B, 0) and (D, d0), this is equivalent to say:

d0(δn+1) −

n+1∑

i=1

d0ϕi(βn+1−i) = 0. (6.16)

Since d~δ~ = 0 we have d0δn+1 = −
∑n+1

i=1 diδn+1−i. Therefore

(6.16) ⇐⇒

n+1∑

i=1

diδn+1−i +

n+1∑

i=1

d0ϕiβn+1−i = 0

⇐⇒

n+1∑

i=1

di

n+1−i∑

j=0

ϕj(βn+1−i−j) +

n+1∑

i=1

d0ϕiβn+1−i = 0

⇐⇒
n+1∑

i=0

n+1−i∑

j=0

diϕj(βn+1−j−i) = 0
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(βn+1 = 0 by convention). Since ϕ~ is a morphism of complexes, we obtain

n+1∑

i=0

n+1−i∑

j=0

diϕj(βn+1−j−i) =

n+1∑

i=0

n+1−i∑

j=0

ϕi(bjβn+1−j−i) = ϕ0




n+1∑

j=0

bjβn+1−j


 .

(6.17)

So (6.16) ⇐⇒ ϕ0

(∑n+1
j=0 bjβn+1−j

)
= 0. This relation will be satisfied provided we

have proved Relation (6.15) for k = n+1. As ϕ0 is a quasi-isomorphism of complexes

between (B, 0) and (D, d0) we only have to prove that ϕ0

(∑n+1
j=1 bjβn+1−j

)
is a

boundary. Using Relation (6.17), we have

ϕ0




n+1∑

j=0

bjβn+1−j


 =

n+1∑

i=0

n+1−i∑

j=0

diϕj(βn+1−j−i)

= d0

n+1∑

j=0

ϕj(βn+1−j) +

n+1∑

i=1

n+1−i∑

j=0

diϕj(βn+1−j−i)

= d0

n+1∑

j=0

ϕj(βn+1−j) +
n+1∑

i=1

diδn+1−i (thanks to (6.14))

= d0

n+1∑

j=0

ϕj(βn+1−j) − d0δn+1

because d~ β~ = 0. �

It is clear from the previous proof that we can build explicit homotopy formulas
for the map φ1

~
since in the proof of Theorem 6.1, we had φ1

~
= φ1 + O(~), with φ1

the Hochschild-Kostant-Rosenberg map.

Remark 6.3: Lemma 6.2 also holds for two cochain complexes (B, b) and (D, d),
where b~ = b+

∑
n≥1 ~

nbn with b 6= 0, but we have no explicit homotopy formulas.

The cochains complexes (B[[~]], b~) and (D[[~]], d~) are filtered by the powers of ~.
The p-component of the filtration is

F p(B[[~]]) = ~
pB[[~]] ⊂ B[[~]]

and similarly for D[[~]]. The filtrations are decreasing and the differentials b~ and d~

respects the filtrations as well as the morphism ϕ~. Therefore, there are two spectral
sequences with first terms given by

EBp,q
1 = Hp+q(F qB[[~]]/F q+1B[[~]])

and

EDp,q
1 = Hp+q(F qD[[~]]/F q+1D[[~]])

converging respectively to H ·(B[[~]], b~)) and H ·(D[[h]], d~). The morphism ϕ~ in-
duces a map of spectral sequences ϕ~

1 : EB·,·
1 −→ ED·,·

1 .
It is easy to check that EBp,q

1
∼= Hp+q(B)~q, EDp,q

1
∼= Hp+q(D)~q and that the

map ϕ~
1 is induced by the quasi-isomorphism ϕ, hence is an isomorphism for all p, q.
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As the spectral sequences are strongly convergent in the sense of [CE], Section 15.2,
it follows that ϕ~ induces an isomorphism H ·(B[[~]], b~)) ∼= H ·(D[[h]], d~).

Now, we are in the situation of Section 1: we have two graded differential Lie al-
gebras (g1, [−,−]S, [π,−]S) and (g2, [−,−]G, b⋆) such that H(g2, b⋆) ∼= H(g1, [π,−]S).
The quasi-isomorphism φ1

~
is not a Lie algebra morphism. The aim of the next section

is to construct a L∞-morphism between (g1, [π,−]S) and (g2, b⋆).

7. A formality theorem for a Poisson manifold

In this section we define d1⋆ the map d1⋆ = m1,1
1 +m2

1 + ~[π,−]S : Λ·
g
⊗·
1⋆ → Λ·

g
⊗·
1⋆ ,

where g1⋆ = g1[[~]]. As for the case π = 0, we will construct a G∞-structure on

g2⋆ = g2[[~]] given by a differential d2⋆ : Λ·
g
⊗·
2⋆ → Λ·

g
⊗·
2⋆ , where d2⋆ = m1

2⋆ +m1,1
2 + · · ·

withm1
2⋆ corresponding to the differential b⋆ = [m⋆,−]G. We will also prove, following

the same steps as in the π = 0 case, that there exists a G∞-morphism between the
G∞-algebras (g1⋆, d1⋆) and (g2⋆, d2⋆).

Theorem 7.1. — One can build a G∞-structure on g2[[~]] determined by a differ-

ential d2⋆ : Λ·
g
⊗·
2⋆ → Λ·

g
⊗·
2⋆ with d2⋆ = m1

2⋆ +m1,1
2⋆ + · · · +mp1,...,pn

2⋆ + · · · , where

mp1,...,pn

2⋆ : g2[[~]]⊗p1 ∧ · · · ∧ g2[[~]]⊗pn → g2[[~]]⊗p1 ∧ · · · ∧ g2[[~]]⊗pn ,

m1
2⋆ = b⋆ = [m⋆,−]G and m1,1

2⋆ = m1,1
2 is the Gerstenhaber bracket.

Proof : We can use the same arguments as in Section 2. Thanks to Lemma 2.1, it is
enough to define a differential Lie bialgebra structure on the cofree Lie coalgebraL2⋆ =
⊕g2[[~]]⊗n. Etingof-Kazhdan’s dequantization and quantization theorems can be used
in the same way to prove it is enough to have a differential bialgebra structure on the
cofree tensorial coalgebra T2⋆ = ⊕g2[[~]]⊗n since the correspondence in Proposition
2.2 was given by universal formulas.

So we want now to define a bialgebra structure on T2⋆ given by maps an
2⋆ and ap1,p2

2⋆

such that a1
2⋆ = b⋆ and a1,1

2⋆ is the product {−|−} defined in Section 1. This can be
done using braces as in the end of Section 2. This is because the braces inducing
a bialgebra structure on g2 are independent of the algebra structure on g2. Thus a
G∞-structure can be built on g⋆ with mp1,...,pn

2⋆ = 0 for n > 2. �

We can now state the analogue of Proposition 3.1.

Theorem 7.2. — There exist a G∞-structure on g1[[~]] corresponding to a differen-
tial d′1⋆ : Λ·

g
⊗·
1⋆ → Λ·

g
⊗·
1⋆ and a morphism of differential coalgebras

ψ⋆ : (Λ·
g
⊗·
1⋆ , d

′
1⋆) → (Λ·

g
⊗·
2⋆ , d2⋆)

such that the induced map g1 → g2 is the Hochschild-Kostant-Rosenberg map.
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Proof : We will follow the proof of Proposition 3.1 and use the same notations. Let
us denote

V
(n)
i⋆ =

n∑

k=0

~
kV

[n−k]
i and V

(≤n)
i⋆ =

n∑

k=0

V
(k)
i⋆ .

There is a decomposition d2⋆ =
∑

k≥0 ~
kd

{k}
2⋆ . We denote d

{k}p1,...,pl

2⋆ : g
p1

2 ∧ · · · ∧

g
pl

2 → g2 the components of d2⋆ : Λ·
g
⊗·
2 → Λ·

g
⊗·
2 . Similarly, we denote d

{k}[n]
2⋆ the

map from Λ·
g
⊗·
2 to itself defined by

d
{k}[n]
2⋆ =

∑

p1+···+pl=n

d
{k}p1,...,pl

2⋆ .

We have the obvious identity d
{k}
2⋆ =

∑
n≥1 d

{k}[n]
2⋆ . We can now define

d
(m)
2⋆ =

∑

k+n=m

d
{k}[n]
2⋆

and set

d2⋆ =
∑

m≥1

d
(m)
2⋆ , d

(≤m)
2⋆ =

m∑

i=1

d
(i)
2⋆ .

In the same way we set

d′1⋆ =
∑

m≥1

d′1⋆
(m)

, d′1⋆
(m)

=
∑

k+n=m

d′1⋆
{k}[n]

, d′1⋆
(≤m)

=

m∑

i=1

d′1⋆
(i)
,

ψ⋆ =
∑

m≥1

ψ⋆
(m), ψ⋆

(m) =
∑

k+n=m

ψ⋆
{k}[n] and ψ⋆

(≤m) =
m∑

i=1

ψ⋆
(i).

The proof of Proposition 3.1 can now be reproduced, formally replacing the super-

scripts [−] with (−). We can build maps d′1⋆ and ψ⋆ by induction setting d′1⋆
(1) = 0

and ψ
(1)
⋆ = φ1, the Hochschild-Kostant-Rosenberg map. The proof then relies again

only on the fact that φ1 is a quasi-isomorphism of complexes from (g1, 0) to (g2, b =

m1
2 = m

(1)
2⋆ ) (for which we have homotopy formulas). Moreover, at order two we have

again

d′1⋆
(2)

= d1⋆
(2) = ~[π,−]S + d1,1

1 + d2
1.

�

Using the grading (−) along the lines of the proof of Theorem 4.1, we can prove in
the same way the following.

Theorem 7.3. — If the complex
(
End(Λ·

g
⊗·
1 ),

[
m1,1

1 +m2
1 + ~[π,−]S ,−

])
is

acyclic, then there exists a G∞-morphism ψ′ : (Λ·
g
⊗·
1⋆ , d1⋆) → (Λ·

g
⊗·
1⋆ , d

′
1⋆) such

that the induced map g1 → g2 is the identity.

Theorems 7.2 and 7.3 hold for arbitrary Poisson manifolds.
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Corollary 7.4. — If g1 = Γ(Rm,ΛTR
m), there exists a G∞-morphism

ψ′ : (Λ·
g
⊗·
1⋆ , d1⋆) → (Λ·

g
⊗·
1⋆ , d

′
1⋆).

Proof : Using Theorem 7.3 it is enough to check that the cochain complex
(
Hom(Λ·

g
⊗·
1 ,Λ·

g
⊗·
1 ),

[
m1,1

1 +m2
1 + ~[π,−]S ,−

])

is for M = R
m. This follows from Proposition 5.1 and the following Lemma 7.5. �

Lemma 7.5. — If a complex (C, d0) is acyclic, then, for any differential d⋆ = d0 +∑
i≥1 ~

idi, the R[[~]]-linear complex (C[[~]], d0 +
∑

i≥1 ~
idi) is acyclic.

This follows from Remark 6.3. However, as we wish to be able to construct explicit
homotopies we give another proof.

Proof : Suppose we have x =
∑

i≥0 ~
ixi ∈ C[[~]] satisfying

d⋆x = 0. (7.18)

We will construct by induction y =
∑

i≥0 ~
iyi satisfying x = d⋆y.

Relation (7.18) at order 0 gives d0x0 = 0; so by hypothesis there exists y0 ∈ C such

that x0 = d0y0. Suppose we have built yi for i ≤ n−1 such that xk =
∑k

i=0 diyk−i for
all k ≤ n− 1. We want to build yn such that xn =

∑n
i=0 diyn−i. From the acyclicity

of the complex (C, d0) this is equivalent to

d0

(
xn −

n∑

i=1

diyn−i

)
= 0. (7.19)

We have

(7.19) ⇐⇒

n∑

i=1

dixn−i +

n∑

i=1

d0diyn−i = 0.

By the induction hypothesis, we obtain

(7.19) ⇐⇒

n∑

i=1

dixn−i −

n∑

i=1

i∑

j=1

djdi−jyn−i = 0

⇐⇒

n∑

i=1

dixn−i −

n∑

j=1

dj

n∑

i=j

di−jyn−i = 0

⇐⇒

n∑

i=1

dixn−i −

n∑

j=1

dj

n−j∑

i=0

diyn−i−j = 0

⇐⇒

n∑

i=1

dixn−i −

n∑

j=1

djxn−j = 0.

This proves the result. �



24 GREGORY GINOT & GILLES HALBOUT

As in Section 6, it is easy to see that φ⋆ = ψ′
⋆ ◦ψ⋆ is a G∞-morphism between g1⋆

and g2⋆. Moreover φ⋆ restricts to a L∞-morphism

φ̃⋆ : (g1[[~]], ~[π,−]S, [−,−]S) → (g2[[~]], b⋆, [−,−]G)

and also to a A∞-morphism

φ̌⋆ : (g1[[~]], ~[π,−]S ,∧) → (g2[[~]], b⋆,
∑

i≥2

mi
2⋆).

If we now restrict the map φ⋆ to φ
[1]
⋆ : g1[[~]] → g2[[~]], we have φ

[1]
⋆ ([~π, α]S) =

b⋆φ
[1]
⋆ (α) for any α ∈ g1. So we have constructed another morphism of complexes

(g1[[~]], ~[π,−]S) → (g2[[~]], b⋆). According to Lemma 6.2, the map φ
[1]
⋆ is a quasi-

isomorphism which is a priori different from the map φ1
~
. We leave the two following

questions unanswered:

Question 1: Are the two maps φ1
~

and φ
[1]
⋆ the same?

Question 2: To prove the existence of the G∞-morphism φ⋆, we have used the

grading (−) which imposes the initial condition ψ
[1]
⋆ = φ1, the Hochschild-Kostant-

Rosenberg morphism. Is it possible to build a map φ⋆ such that φ
[1]
⋆ = φ1

~
?

Remark: B. Keller helped us to give a partial answer to this second question, using
the following proposition (see K. Lefèvre [Le] for a proof in the A∞ case).

Proposition 7.6. — Let A and B be two L∞ (respectively A∞, or G∞)-algebras,
with structures determined by differentials

dA : Λ·A→ Λ·A (respectively A⊗· → A⊗· or Λ·A⊗· → Λ·A⊗·),

and dB defined in the same way. Denote dA =
∑

n≥0 d
n
A(,̇ . . . , )̇, where dn

A is a homo-

geneous component of dA (in the G∞ case, we write dA =
∑

l≥0,n1+···+np=l d
n1,...,np

A

with d
n1,...,np

A : A⊗n1Λ . . .ΛA⊗np → B and we order the maps d
n1,...,np

i such that
(n1, . . . , np) ≥ (m1, . . . ,mq) ⇔ (n1 + · · · + np > m1 + · · · +mq) or (n1 + · · · + np =
m1 + · · · +mq and (n1, . . . , np) ≥ (m1, . . . ,mq) for the lexicographic order). Suppose
there exists a “twisting” element a ∈ A such that

∑

n≥0

dn
A(a, . . . , a) = 0,

and a L∞ (respectively A∞, or G∞)-morphism ϕ =
∑

n≥0 ϕ
n (using the same con-

vention as above) between A and B. Then

(a) : = there exists a “twisted” L∞ (respectively A∞, or G∞)-algebra structure
on A with differential dAa

=
∑

n≥0 d
n
Aa

given by

dn
Aa

(·, . . . , ·) =
∑

i≥0

dn+i
A (. . . , a, . . . , a, . . . ),

where the element a is inserted i times;
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(b) : the element b ∈ B defined by

b =
∑

n≥0

ϕn(a, . . . , a)

satisfies ∑

n≥0

dn
B(b, . . . , b) = 0.

(c) : there exists a “twisted” L∞ (respectively A∞, or G∞)-algebra structure on
B with differential dBb

=
∑

n≥0 d
n
Bb

given by

dn
Bb

(·, . . . , ·) =
∑

i≥0

dn+i
B (. . . , b, . . . , b, . . . )

where the element b is inserted i times;
(d) : there exists a L∞ (respectively A∞, or G∞)-morphism between the two “twis-

ted” L∞ (respectively A∞, or G∞)-algebra structures on A and B given by
ϕab =

∑
n≥0 ϕ

n
ab, where

ϕn
ab(·, . . . , ·) =

∑

i≥0

ϕn+i(. . . , a, . . . , a, . . . )

where the element a is inserted i times.

In our case, where A = g1 and B = g2 and ϕ is Tamarkin’s L∞ (respectively A∞,
or G∞)-morphism, and a = π (the Poisson tensor field), we can apply the previous
proposition, but only in the L∞ case (because otherwise

∑
dk
1(π, . . . , π) 6= 0), and get

a deformed L∞-morphism between the graded Lie algebras (g1[[~]], ~[π,−]S , [−,−]S)
and (g2[[~]], b⋆, [−,−]G).

8. Appendix (B. Enriquez and P. Etingof): Etingof-Kazhdan’s
dequantization theorem for graded differential super-bialgebras

In this appendix, we prove the following theorem:

Theorem 8.1. — We have an equivalence of categories

DQΦ : DGQUE → DGLBAh

from the category of differential graded quantized universal enveloping super-algebras
to that of differential graded Lie super-bialgebras such that if U ∈ Ob(DGQUE) and
a = DQ(U), then U/hU = U(a/ha), where U is the universal algebra functor, taking
a differential graded Lie super-algebra to a differential graded super-Hopf algebra.

Recall the Etingof-Kazhdan quantization theorems. We denote by LBA the prop of
Lie bialgebras and UEcp the prop of co-Poisson universal enveloping algebras. UEcp

is a completion of the prop of co-Poisson cocommutative bialgebras. We let h be a
formal variable and we set LBAh = LBA[[h]] and UEcp,h = UEcp[[h]].
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We denote by QUE the prop of quantized universal enveloping algebras. QUE is
topologically free over k[[h]], it is a completion of the prop Bialgh of quasi-cocommuta-
tive bialgebras. We have a natural isomorphism QUE ⊗

k[[h]]
k = UEcp.

Theorem 8.2. — ([EK1], [EK2]): To any associator Φ, one can attach a prop
isomorphism QΦ : QUE → UEcp,h, whose reduction modh is

QUE ⊗
k[[h]]

k
∼
−→UEcp

∼
−→UEcp,h ⊗

k[[h]]
k.

Theorem 8.3. — (Propic Milnor-Moore theorem) : We have a symmetrization iso-
morphism

UEcp,h
∼
−→ Ŝ·(LBAh),

where Ŝ· is the completed symmetric algebra Schur functor.

This theorem (see [EE]) is based on Euler idempotents (see [Lo3]).

If P is a prop, we can attach to each symmetric tensor category S, the category of
S-representations of P , RepS(P ). Objects of RepS(P ) are pairs (V, ρ) of V ∈ Ob(S)
a prop morphism P → Prop(V ), where Prop(V ) is the prop attached to V (e.g.,
Prop(V )(n,m) = HomS(V ⊗n, V ⊗m)).

Corollary 8.4. — If S is any symmetric tensor category, QΦ gives rise to an equiv-
alence of categories

DQΦ,S : RepS(QUE) → RepS(LBAh),

whose reduction modh is the “S-primitive part” functor

RepS(UEcp) → RepS(LBA),

adjoint to the “S-universal enveloping algebra” functor RepS(LBA) → RepS(UEcp).

We will work with the symmetric category S = Complexes(Vect) of complexes (V ·, d·)
of topologically free k[[h]]-modules, where actions of the symmetric groups are the
same as those for super-vector spaces ( ⊕

i∈Z

V i is decomposed as
(

⊕
i∈2Z

V i
)
⊕
(

⊕
i∈2Z+1

V i
)
).

Let us describe precisely RepS(QUE) and RepS(LBAh) when S = Complexes(Vect).

– RepS(LBAh) is the category DGLBAh of complexes (V ·, d·), together with dif-
ferential graded maps µ : Λ2(V ·) → V · and δ : V · → Λ2(V ·), satisfying the Lie
bialgebra axioms in the Z/2Z-graded sense;

– RepS(QUE) is the category DGQUE, obtained as follows. Let DGLA be the
category of differential graded Lie super-algebras. The category of their uni-
versal enveloping algebras is denoted DGUE; DGUE is a full subsategory of
DGBialgcoco, which is the category of differential graded super-cocommutative
super-bialgebras. (DGUE is the subclass of algebras A characterized by the
Milnor-Moore condition ∪

n≥0
Ker(Id−η ◦ ε)⊗n ◦ ∆(n) = A.) DGQUE is the cat-

egory of formal deformations of DGUE in the category DGBialg of differential
graded super-bialgebras.
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Corollary 8.4 says that DQΦ,S induces an isomorphism of categories between DGQUE
and DGLBAh, which is Theorem 8.1.

ACKNOWLEDGEMENTS

We would like to thank D. Manchon and B. Keller for many useful suggestions and
B. Enriquez and P. Etingof who helped us to better understand the Etingof-Kazhdan
dequantization theorem and who wrote Theorem 8.1 and the Appendix. We also
would like to thank C. Kassel for having carefully read our paper.

References

[Ba] J. H. Baues, The double bar and cobar constructions, Compos. Math. 43 (1981),
331-341

[BFFLS1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Quantum
mechanics as a deformation of classical mechanics, Lett. Math. Phys. 1 (1975/77),
no. 6, 521–530

[BFFLS2] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation
theory and quantization, I and II, Ann. Phys. 111 (1977), 61-151

[CE] H. Cartan, S. Eilenberg, Homological algebra , Princeton University Press, Prince-
ton, N. J. (1956)

[CFT] A. S. Cattaneo, G. Felder, L. Tomassini, Fedosov connections on jet bundles
and deformation quantization, math.QA/0111290 (to appear in IRMA Lecture
Notes in Mathematics and Theoretical Physics : Deformation Quantization -
Proceedings of the Meeting between Mathematicians and Theoretical Physicists,
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