A FORMALITY THEOREM FOR POISSON MANIFOLDS

by

Gregory Ginot & Gilles Halbout

Abstract. — Let M be a differential manifold. Using different methods, Kontsevich and Tamarkin have proved a formality theorem, which states the existence of a Lie homomorphism "up to homotopy" between the Lie algebra of Hochschild cochains on $C^{\infty}(M)$ and its cohomology $(\Gamma(M, \Lambda TM), [-, -]_S)$. Suppose M is a Poisson manifold equipped with a Poisson tensor π ; then one can deduce from this theorem the existence of a star product \star on $C^{\infty}(M)$. In this paper we prove that the formality theorem can be extended to a Lie (and even Gerstenhaber) homomorphism "up to homotopy" between the Lie (resp. Gerstenhaber "up to homotoptopy") algebra of Hochschild cochains on the deformed algebra $(C^{\infty}(M), *)$ and the Poisson complex $(\Gamma(M, \Lambda TM), [\pi, -]_S)$. We will first recall Tamarkin's proof and see how the formality maps can be deduced from Etingof-Kazhdan's theorem using only homotopies formulas. The formality theorem for Poisson manifolds will then follow.

0. Introduction

Let M be a differential manifold. Formality theorems link commutative objects with non-commutative ones. More precisely, one can define two graded Lie algebras \mathfrak{g}_1 and \mathfrak{g}_2 . The first one $\mathfrak{g}_1 = \Gamma(M, \Lambda TM)$ is the space of multivector fields on M. It is endowed with a graded Lie bracket $[-, -]_S$ called the Schouten bracket (see [**Kos**]).

The space \mathfrak{g}_1 can be identified with the cohomology of a cochain complex $\mathfrak{g}_2 = C(A, A) = \bigoplus_{k\geq 0} C^k(A, A)$, the space of regular Hochschild cochains (generated by differential k-linear maps from A^k to A and support preserving), where $A = C^{\infty}(M)$ is the algebra of smooth differential functions over M. The vector space \mathfrak{g}_2 is also endowed with a graded Lie algebra structure given by the Gerstenhaber bracket $[-, -]_G$ [**GV**]. The differential $b = [m, -]_G$ (where $m \in C^2(A, A)$ is the commutative multiplication in A) makes \mathfrak{g}_2 into a graded differential Lie algebra and the

²⁰⁰⁰ Mathematics Subject Classification. — Primary 16E40, 53D55, Secondary 18D50, 16S80. Key words and phrases. — Deformation quantization, star-product, homotopy formulas, homological methods.

cohomology $H^*(\mathfrak{g}_2, b)$ of \mathfrak{g}_2 with respect to b coincides with \mathfrak{g}_1 . More precisely, one can construct a quasi-isomorphism $\phi^1 : \mathfrak{g}_1 \to \mathfrak{g}_2$, (the Hochschild-Kostant-Rosenberg quasi-isomorphism, see [**HKR**]) between the complexes $(\mathfrak{g}_1, 0)$ and (\mathfrak{g}_2, b) ; it is defined, for $\alpha \in \mathfrak{g}_1, f_1, \dots, f_n \in A$, by

$$\alpha \mapsto \big((f_1, \ldots, f_n) \mapsto \langle \alpha, df_1 \wedge \cdots \wedge df_n \rangle \big).$$

This map ϕ^1 is not a Lie algebra morphism, but the only obstructions for it to be are given by boundaries for the differential *b*. In fact, Kontsevich's formality theorem states that ϕ^1 induces a morphism if one relaxes the Lie algebras structures on \mathfrak{g}_1 and \mathfrak{g}_2 into Lie algebras "up to homotopy" structures. In other words, setting $\phi^0 = m \in C^2(A, A)$, formality theorems can be seen as a construction of a collection of homotopies ϕ^n : $\Lambda^n \mathfrak{g}_1 \to \mathfrak{g}_2$ such that ϕ^1 is the Hochschild-Kostant-Rosenberg morphism and the map $\phi = \sum_{n\geq 0} \phi^n : \Lambda^{\cdot} \mathfrak{g}_1 \to \mathfrak{g}_2$ satisfies

$$[\phi, \phi]_G = \phi \circ m_1^{1,1} \tag{0.1}$$

where $m_1^{1,1}: \Lambda^{\cdot}\mathfrak{g}_1 \to \Lambda^{\cdot}\mathfrak{g}_1$ is the canonical extension of the Schouten Lie bracket on \mathfrak{g}_1 .

The existence of such homotopies was proven by Kontsevich (see [Ko1] and [Ko2]) and Tamarkin (see [Ta]). They use different methods in their proofs. Nevertheless the two approaches are connected (see [KS]). In this paper we will use Tamarkin's methods (which are also well explained in [Hi]) to obtain a version of the formality theorem when the manifold M is equipped with a Poisson structure. Moreover, as in Tamarkin's proof, we will suppose that $M = \mathbb{R}^n$. In some cases the results can be globalized using techniques of Cattaneo, Felder and Tomassini (see [CFT]). More precisely, all our results are valid for an arbitrary manifold up to Section 5 where acyclicity of the de Rham complex only holds for $M = \mathbb{R}^n$ and thus globalization is needed.

One of the goals of this paper is to make the maps ϕ^n given by Tamarkin's proof as explicit as possible. We could try to construct them by induction starting from ϕ^1 (the Hochschild-Kostant-Rosenberg quasi-isomorphism), but we would meet cohomological obstructions to build $(\phi^n)_{n\geq 2}$. Thus a natural idea consists in enlarging the structures in order to reduce the obstructions. More precisely, we know that the graded space $\mathfrak{g}_1 = \Gamma(M, \Lambda TM)$ equipped with the Lie bracket $[-, -]_S$ and the exterior product \wedge has a graded Gerstenhaber algebra structure.

Although the complex \mathfrak{g}_2 equipped with the Gerstenhaber bracket and the cupproduct is not a Gerstenhaber algebra, Tamarkin [**Ta**] has proved that \mathfrak{g}_2 can be endowed with a structure of Gerstenhaber algebras up to homotopy (see Section 1) and established the existence of a quasi-isomorphism of Gerstenhaber algebras up to homotopy between \mathfrak{g}_1 and \mathfrak{g}_2 .

The paper is organized as follows:

- In Section 1, taking our inspiration from the language of operads, we recall the definitions of Lie algebras up to homotopy (L_{∞} -algebras for short) and reformulate the problem as follows: the (differential) graded Lie algebra structure on \mathfrak{g}_1 and \mathfrak{g}_2 are equivalent to codifferentials d_1 and d_2 on the exterior coalgebras

 $\Lambda^{\cdot}\mathfrak{g}_1$ and $\Lambda^{\cdot}\mathfrak{g}_2$. A morphism of Lie algebras up to homotopy between \mathfrak{g}_1 and \mathfrak{g}_2 is a morphism of differential coalgebras

$$\phi : (\Lambda^{\cdot}\mathfrak{g}_1, d_1) \to (\Lambda^{\cdot}\mathfrak{g}_2, d_2).$$

We will also recall the definition of Gerstenhaber algebras "up to homotopy" or G_{∞} -algebras (similarly given by a differential d on a peculiar coalgebra $\Lambda^{\circ} \underline{\mathfrak{g}}^{\otimes \circ}$) and morphism between them.

- In Section 2 we recall Tamarkin's construction of the G_{∞} -structure on \mathfrak{g}_2 , given by a differential d_2 on $\Lambda^{\cdot}\mathfrak{g}_2^{\otimes \cdot}$.
- In Section 3 we prove (still following Tamarkin's approach) that there exists a G_{∞} -structure on \mathfrak{g}_1 , given by a differential d'_1 on $\Lambda^{\cdot}\mathfrak{g}_1^{\otimes \cdot}$, and that there exists a G_{∞} -morphism $\psi : (\Lambda^{\cdot}\mathfrak{g}_1^{\otimes \cdot}, d'_1) \to (\Lambda^{\cdot}\mathfrak{g}_2^{\otimes \cdot}, d_2).$
- G_{∞} -morphism $\psi : (\Lambda \cdot \underline{\mathfrak{g}_{1}^{\otimes \cdot}}, d_{1}') \to (\Lambda \cdot \underline{\mathfrak{g}_{2}^{\otimes \cdot}}, d_{2}).$ – In Section 4 we establish the existence of a G_{∞} -morphism $\psi' : (\Lambda \cdot \underline{\mathfrak{g}_{1}^{\otimes \cdot}}, d_{1}) \to (\Lambda \cdot \underline{\mathfrak{g}_{1}^{\otimes \cdot}}, d_{1}')$, where d_{1} defines the Gerstenhaber structure on \mathfrak{g}_{1} described in Section 1. We deduce this fact from the acyclicity of the complex

$$\left(\operatorname{Hom}(\Lambda^{\cdot}\underline{\mathfrak{g}_{1}^{\otimes \cdot}}), [m_{1}^{1,1}+m_{1}^{2}, -]\right),$$

where [-, -] denotes the graded commutator of morphisms,.

- In Section 5 we prove that the complex $\left(\operatorname{Hom}(\Lambda^{\cdot}\mathfrak{g}_{1}^{\otimes \cdot}), [m_{1}^{1,1} + m_{1}^{2}, -]\right)$ is acyclic for $M = \mathbb{R}^{n}$ and that homotopy formulas can be written out.
- In Section 6 we show that the G_{∞} -morphism $\phi = \psi \circ \psi' : (\Lambda \underline{\mathfrak{g}}_1^{\otimes}, d_1) \rightarrow (\Lambda \underline{\mathfrak{g}}_2^{\otimes}, d_2)$ induces the desired L_{∞} -morphism between \mathfrak{g}_1 and \mathfrak{g}_2 and also in the same way an associative algebra morphism "up to homotopy" between these two spaces. Moreover when the manifold M is a Poisson manifold equipped with a Poisson tensor field $\pi \in \Gamma(M, \Lambda^2 TM)$ satisfying $[\pi, \pi]_S = 0$, then there exists a star-product on M, that is to say a deformation m_{\star} of the product m on A whose linear term is π (see [**BFFLS1**] and [**BFFLS2**]). In this case $(\mathfrak{g}_1, [-, -]_S, [\pi, -]_S)$ becomes a graded differential Lie algebra (and even a Gerstenhaber algebra) and $(\mathfrak{g}_2, [-, -]_G, b_{\star})$, where b_{\star} is the Hochschild differential Lie algebra.
- In Section 7 we prove a formality theorem between the two differential graded Lie (and even Gerstenhaber "up to homotopy") algebras $(\mathfrak{g}_{1\star}, [-, -]_S, [\pi, -]_S)$ and $(\mathfrak{g}_{2\star}, [-, -]_G, b_{\star})$ following the same steps as in Sections 2, 3 and 4.

Remark: In this paper we emphasize the Lie structures of \mathfrak{g}_1 and \mathfrak{g}_2 , not their associative algebra structures. Hence, our gradings for the spaces $\mathfrak{g}_1, \mathfrak{g}_2, \ldots$ are shifted by one from what is usually done in the literature.

1. Definitions and notations

Let \mathfrak{g} be any graded vector space. The exterior coalgebra $\Lambda^{\cdot}\mathfrak{g}$ is the cofree commutative coalgebra on the vector space \mathfrak{g} . In this paper we deal with graded space.

Henceforth, for any graded vector space \mathfrak{g} , we choose the following degree on $\Lambda^{\cdot}\mathfrak{g}$: if X_1, \ldots, X_k are homogeneous elements of respective degree $|X_1|, \ldots |X_k|$, then

$$|X_1 \wedge \dots \wedge X_k| = |X_1| + \dots + |X_k| - k.$$

In particular the component $\mathfrak{g} = \Lambda^1 \mathfrak{g} \subset \Lambda^* \mathfrak{g}$ is the same as the Lie algebra \mathfrak{g} with degree shifted by one. The coalgebra $\Lambda^* \mathfrak{g}$ being cofree, any degree one map $d^k : \Lambda^k \mathfrak{g} \to \mathfrak{g}$ $(k \geq 1)$ extends into a derivation $d^k : \Lambda^* \mathfrak{g} \to \Lambda^* \mathfrak{g}$ of the coalgebra $\Lambda^* \mathfrak{g}$.

Let us recall the definition of Lie algebras "up to homotopy", denoted L_{∞} -algebras henceforth.

Definition 1.1. — A vector space \mathfrak{g} is endowed with a L_{∞} -algebra structure if there are degree one linear maps $m^{1,\dots,1}$: $\Lambda^k \mathfrak{g} \to \mathfrak{g}$ such that if we extend them to maps $\Lambda^{\cdot}\mathfrak{g} \to \Lambda^{\cdot}\mathfrak{g}$, then $d \circ d = 0$ where d is the derivation

$$d = m^1 + m^{1,1} + \dots + m^{1,\dots,1} + \dots$$

For more details on L_{∞} -structures, see [LS]. It follows from the definition that a L_{∞} -algebra structure induces a differential coalgebra structure on $\Lambda^{\cdot}\mathfrak{g}$ and that the map $m^{1}:\mathfrak{g} \to \mathfrak{g}$ is a differential.

The Lie algebra structure on $\mathfrak{g}_1 = \Gamma(M, \Lambda TM)$ is given by the Schouten bracket (see **[Kos]**) which extends the Lie bracket of vector fields in the following way:

$$[\alpha, \beta \wedge \gamma]_S = [\alpha, \beta]_S \wedge \gamma + (-1)^{|\alpha|(|\beta|+1)} \beta \wedge [\alpha, \gamma]_S$$
(1.2)

for $\alpha, \beta, \gamma \in \mathfrak{g}_1$. For $f \in \Gamma(M, \Lambda^0 TM) = C^{\infty}(M)$ and $\alpha \in \Gamma(M, \Lambda^1 TM)$ we set $[\alpha, f]_S = \alpha \cdot f$, the action of the vector field α on f. The grading on \mathfrak{g}_1 is defined by $|\alpha| = n \Leftrightarrow \alpha \in \Gamma(M, \Lambda^{n+1}TM)$

We reformulate the graded Lie algebra structure of \mathfrak{g}_1 into a L_{∞} -algebra structure as follows: the Schouten Lie bracket $[-, -]_S$ on \mathfrak{g}_1 is equivalent to a (degree one) map $m_1^{1,1}: \Lambda^2\mathfrak{g}_1 \to \mathfrak{g}_1$ that we can extend canonically to $m_1^{1,1}: \Lambda^{\cdot}\mathfrak{g}_1 \to \Lambda^{\cdot}\mathfrak{g}_1$. The Jacobi identity satisfied by $[-, -]_S$ then corresponds to the identity:

$$d_1 \circ d_1 = 0,$$

where $d_1 = m_1^{1,1}$. Hence the map $m_1^{1,1}$ defines a L_{∞} -algebra structure on \mathfrak{g}_1 .

In the same way, the Lie algebra structure on the vector space $\mathfrak{g}_2 = C(A, A)$ is given by the Gerstenhaber bracket $[-, -]_G$ defined, for $D, E \in \mathfrak{g}_2$, by

$$[D, E]_G = \{D|E\} - (-1)^{|E||D|} \{E|D\},\$$

where

$$\{D|E\}(x_1,\ldots,x_{d+e-1}) = \sum_{i\geq 0} (-1)^{|E|\cdot i} D(x_1,\ldots,x_i,E(x_{i+1},\ldots,x_{i+e}),\ldots).$$

The space \mathfrak{g}_2 has a grading defined by $|D| = k \Leftrightarrow D \in C^{k+1}(A, A)$ and its differential is $b = [m, -]_G$, where $m \in C^2(A, A)$ is the commutative multiplication on A.

The Gerstenhaber bracket on C(A, A) is equivalent to a map $m_2^{1,1} : \Lambda^2 \mathfrak{g}_2 \to \mathfrak{g}_2$ and the differential b is a degree one map $m_2^1 : \mathfrak{g}_2 \to \mathfrak{g}_2$. These maps extends to maps $\Lambda^{\cdot}\mathfrak{g}_2 \to \Lambda^{\cdot}\mathfrak{g}_2$. All identities defining the differential Lie algebra structure on \mathfrak{g}_2 (Jacobi relations for $[-,-]_G$, $b^2 = 0$, compatibility between b and $[-,-]_G$) can be summarized in the unique relation

$$d_2 \circ d_2 = 0,$$

where $d_2 = m_2^1 + m_2^{1,1}$. Hence the maps b and $[-, -]_G$ defines a L_{∞} -structure on \mathfrak{g}_2 . In fact any differential Lie algebra (\mathfrak{g}, b) has a L_{∞} -structure, with $m_2^1 = b$, $m_2^{1,1}$ is given by its bracket and $m^{1,\dots,1} : \Lambda^{k\geq 3}\mathfrak{g} \to \mathfrak{g} = 0$.

Definition 1.2. — A L_{∞} -morphism between two L_{∞} -algebras ($\mathfrak{g}_1, d_1 = m_1^1 + ...$) and ($\mathfrak{g}_2, d_2 = m_2^1 + ...$) is a morphism of differential coalgebras

$$\phi : (\Lambda^{\cdot}\mathfrak{g}_1, d_1) \to (\Lambda^{\cdot}\mathfrak{g}_2, d_2).$$
(1.3)

Such a map ϕ is uniquely determined by a collection of maps $\phi^n : \Lambda^n \mathfrak{g}_1 \to \mathfrak{g}_2$ as the differential coalgebras $\Lambda^{\cdot}\mathfrak{g}_1$ and $\Lambda^{\cdot}\mathfrak{g}_2$ are cofree. In the case \mathfrak{g}_1 and \mathfrak{g}_2 are respectively the graded Lie algebra $(\Gamma(M, \Lambda TM), [-, -]_S)$ and the differential graded Lie algebra $(C(C^{\infty}(M), C^{\infty}(M)), [-, -]_G)$ it is easy to check that Definition (0.1) (from the introduction) and Definition (1.3) coincide.

A shuffle (of length n) is a permutation of $\{1, ..., n\}$ $(n \ge 1)$ such that there exist $p, q \ge 1$ with p + q = n and the following inequalities hold:

$$\sigma(1) < \dots < \sigma(p), \qquad \sigma(p+1) < \dots < \sigma(p+q).$$

For any permutation σ of $\{1, ..., n\}$ and any graded variables $x_1, ..., x_n$ in \mathfrak{g} (with degree shifted by minus one) we define the sign $\varepsilon(\sigma)$ (the dependence on $x_1, ..., x_n$ is implicit) by the identity

$$x_1 \dots x_n = \varepsilon(\sigma) x_{\sigma^{-1}(1)} \dots x_{\sigma^{-1}(n)}$$

which holds in the free graded commutative algebra generated by $x_1, \ldots x_n$. For any graded vector space \mathfrak{g} , each shuffle σ acts on $\mathfrak{g}^{\otimes n}$ by the formula:

$$\sigma \cdot (a_1 \otimes \cdots \otimes a_n) = \varepsilon(\sigma) a_{\sigma^{-1}(1)} \otimes \cdots \otimes a_{\sigma^{-1}(n)}$$

for $a_0, \dots, a_n \in \mathfrak{g}$. We denote $\mathfrak{g}^{\otimes n}$ the quotient of $\mathfrak{g}^{\otimes n}$ by the image of all the maps $\operatorname{shuf}_{p,q} = \sum \sigma(-)$, where the sum is over all shuffles of length n = p + q with p, q fixed. The graded vector space $\bigoplus_{n\geq 0}\mathfrak{g}^{\otimes n}$ a quotient coalgebra of the tensor coalgebra $\bigoplus_{n\geq 0}\mathfrak{g}^{\otimes n}$. It is well known (see $[\mathbf{GK}]$ for example) that this coalgebra $\bigoplus_{n\geq 0}\mathfrak{g}^{\otimes n}$ is the cofree Lie coalgebra on the vector space \mathfrak{g} (with degree shifted by minus one).

Henceforth, for any space \mathfrak{g} , we denote $\Lambda^{\underline{}} \underline{\mathfrak{g}^{\otimes \underline{}}}$ the graded space $\bigoplus_{m \ge 1, p_1 + \dots + p_n = m} \underline{\mathfrak{g}^{\otimes p_1}} \land \dots \land \underline{\mathfrak{g}^{\otimes p_n}}$. We will use the following grading on $\Lambda^{\underline{}} \underline{\mathfrak{g}^{\otimes \underline{}}}$: for $x_1^1, \dots, x_n^{p_n} \in \mathfrak{g}$, we define

$$|\underline{x_1^1 \otimes \cdots \otimes x_1^{p_1}} \wedge \cdots \wedge \underline{x_n^1 \otimes \cdots \otimes x_n^{p_n}}| = \sum_{i_1}^{p_1} |x_1^{i_1}| + \cdots + \sum_{i_n}^{p_n} |x_n^{i_n}| - n$$

Notice that the induced grading on $\Lambda^{\cdot}\mathfrak{g} \subset \Lambda^{\cdot}\mathfrak{g}^{\otimes}$ is the same as the one introduced above. The cobracket on $\oplus \mathfrak{g}^{\otimes}$ and the coproduct on $\Lambda^{\cdot}\mathfrak{g}$ extend to a cobracket and a coproduct on $\Lambda^{\cdot}\mathfrak{g}^{\otimes}$. The sum of the cobracket and the coproduct give rise to

a Gerstenhaber coalgebra structure on $\Lambda^{\cdot} \underline{\mathfrak{g}}^{\otimes \cdot}$. It is well known that this coalgebra structure is cofree (see [Gi],Section 3 for example).

Definition 1.3. — A structure of Gerstenhaber algebra "up to homotopy" (G_{∞} -algebra for short) on a graded vector space \mathfrak{g} is given by a collection of degree one maps

$$m^{p_1,\ldots,p_n}$$
 : $\mathfrak{g}^{\otimes p_1} \wedge \cdots \wedge \mathfrak{g}^{\otimes p_n} \to \mathfrak{g}$

indexed by $p_1, \ldots p_n \ge 1$ such that their canonical extension: $\Lambda^{\underline{\circ}} \underline{\mathfrak{g}}^{\otimes \underline{\circ}} \to \Lambda^{\underline{\circ}} \underline{\mathfrak{g}}^{\otimes \underline{\circ}}$ satisfies $d \circ d = 0$ where

$$d = \sum_{l \ge 1, p_1 + \dots + p_n = l} m^{p_1, \dots, p_n}.$$

More details on G_{∞} -structures are given in [**Gi**]. Again, as the coalgebra structure of $\Lambda^{\cdot}\underline{\mathfrak{g}}^{\otimes \cdot}$ is cofree, the map d makes $\Lambda^{\cdot}\underline{\mathfrak{g}}^{\otimes \cdot}$ a differential coalgebra.

Definition 1.4. — A morphism of G_{∞} -algebras between two G_{∞} -algebras (\mathfrak{g}_1, d_1) and (\mathfrak{g}_2, d_2) is a map $\phi : (\Lambda \cdot \underline{\mathfrak{g}_1^{\otimes}}, d_1) \to (\Lambda \cdot \underline{\mathfrak{g}_2^{\otimes}}, d_2)$ of codifferential coalgebras.

The Lie algebra \mathfrak{g}_1 of multivectorfields is in fact a Gerstenhaber algebra that is to say a graded Lie algebra structure with a graded commutative algebra structure (for the same space with grading shifted by -1) and a compatibility between the bracket and the product (expressing that the bracket is a derivation for the product) as in (1.2). On the space $\mathfrak{g}_1 = \Gamma(M, \Lambda TM)$, the commutative structure is given by the exterior product:

$$\forall \alpha, \ \beta \in \Gamma(M, \Lambda TM), \ \alpha \land \beta = (-1)^{(|\alpha|+1)(|\beta|+1)} \beta \land \alpha. \tag{1.4}$$

We can reformulate the graded Gerstenhaber structure into a G_{∞} -algebra structure as follows. The graded Lie algebra structure is still given by a map $m_1^{1,1} : \Lambda^2 \mathfrak{g}_1 \to \mathfrak{g}_1$, and the commutative graded algebra structure is given by a map $m_1^2 : \underline{\mathfrak{g}_1^{\otimes 2}} \to \mathfrak{g}_1$ (because $\underline{\mathfrak{g}_1^{\otimes 2}}$ is the quotient of $\mathfrak{g}_1^{\otimes 2}$ by the 2-shuffles, that is to say the elements $a \otimes b + (-1)^{(|a|+1)(|b|+1)}b \otimes a$). The maps $m_1^{1,1}$, m_1^2 above extend into degree one derivations

$$m_1^{1,1}, \ m_1^2 \ : \ \wedge^{\cdot} \mathfrak{g}_1^{\otimes \cdot} \to \wedge^{\cdot} \mathfrak{g}_1^{\otimes \cdot}.$$

All the identities defining the Gerstenhaber-algebra structure on \mathfrak{g}_1 can be summarized into the unique relation

$$d_1 \circ d_1 = 0$$

where $d_1 = m_1^{1,1} + m_1^2$. Hence the Gerstenhaber bracket and the exterior product define a G_{∞} -algebra structure on \mathfrak{g}_1 . More generally, any Gerstenhaber algebra $(\mathfrak{g}, m, [-, -])$ has a canonical G_{∞} -structure given by $m^2 = m, m^{1,1} = [-, -]$, the other maps being zero.

2. A G_{∞} -structure on $\mathfrak{g}_2 = C(A, A)$

The Lie algebra \mathfrak{g}_2 is also endowed with an associative product. It is the "cup" product \cup defined, for $D, E \in \mathfrak{g}_2$ and $x_1, \ldots, x_{|D|+|E|+2} \in A$, by

$$(D \cup E)(x_1, \dots, x_{|D|+|E|+2}) = (-1)^{\gamma} D(x_1, \dots, x_{|D|+1}) E(x_{|D|+2}, \dots, x_{|D|+|E|+2})$$

where $\gamma = (|E|+1)(|D|+1)$. The projection of this product on the cohomology of (\mathfrak{g}_2, b) is the exterior product \wedge , but unfortunately $(\mathfrak{g}_2, [-, -]_G, \cup, b)$ is not a Gerstenhaber algebra. However the relations (1.2), (1.4) are satisfied up to a boundary for b.

Tamarkin stated the existence of a G_{∞} -structure on \mathfrak{g}_2 . Our aim in this section is to build this G_{∞} -structure more explicitly. By Definition 1.3. we have to exhibit a differential d_2 on $\Lambda^{\cdot}\mathfrak{g}_2^{\otimes \cdot}$ satisfying, if

$$d_2 = m_2^1 + m_2^{1,1} + m_2^2 + \dots + m_2^{p_1,\dots,p_n} + \dots,$$

1. m_2^1 is the map b and $m_2^{1,1}$ is the map $[-,-]_G$.

2. $d_2 \circ d_2 = 0.$

We first reformulate this problem: let $L_2 = \bigoplus \underline{\mathfrak{g}_2^{\otimes n}}$ be the cofree Lie coalgebra on \mathfrak{g}_2 (see Section 1 for the notation). Since L_2 is a cofree coalgebra, a Lie bialgebra structure on L_2 is given by degree one maps $l_2^n : \underline{\mathfrak{g}_2^{\otimes n}} \to \mathfrak{g}_2$, corresponding to the differential, and maps $l_2^{p_1,p_2} : \underline{\mathfrak{g}_2^{\otimes p_1}} \land \underline{\mathfrak{g}_2^{\otimes p_2}} \to \mathfrak{g}_2$, corresponding to the Lie bracket. These maps extend uniquely into a coalgebra derivation $L_2 \to L_2$ and a coalgebra map $L_2 \land L_2 \to L_2$ (still denoted l_2^m and $l_2^{p,q}$). The following lemma is well known.

Lemma 2.1. — Suppose we have a differential Lie bialgebra structure on the Lie coalgebra L_2 , with differential and Lie bracket respectively determined by maps l_2^n and $l_2^{p_1,p_2}$ as above. Then \mathfrak{g}_2 has a G_{∞} -structure given, for all $p, q, n \geq 1$, by

$$m_2^n = l_2^n, \qquad m_2^{p,q} = l_2^{p,q} \quad and \quad m_2^{p_1,\dots,p_r} = 0 \text{ for } r \ge 3.$$

Proof: The map $d_2 = \sum_{i\geq 0} l_2^i + \sum_{p_1,p_2\geq 0} l_2^{p_1,p_2} : \Lambda^{\cdot}L_2 \to \Lambda^{\cdot}L_2$ is the Chevalley-Eilenberg differential on the differential Lie algebra L_2 ; it satisfies $d_2 \circ d_2 = 0$.

Thus to obtain the desired G_{∞} -structure on \mathfrak{g}_2 , it is enough to define a Lie bialgebra structure on L_2 given by maps l_2^n and $l_2^{p_1,p_2}$ with $l_2^1 = b$ and $l_2^{1,1} = [-, -]_G$.

Let us now give an equivalent formulation of our problem, which is stated in terms of the associated operads in [Ta]:

Proposition 2.2. — Suppose we have a differential bialgebra structure on the cofree tensorial coalgebra $T_2 = \bigoplus_{n\geq 0} \mathfrak{g}_2^{\otimes n}$ with differential and multiplication given respectively by maps $a^n : V^{\otimes n} \to V$ and $a^{p_1,p_2} : V^{\otimes p_1} \otimes V^{\otimes p_2} \to V$. Then we have a differential Lie bialgebra structure on the Lie coalgebra $L_2 = \bigoplus_{n\geq 0} \mathfrak{g}_2^{\otimes n}$, with differential and Lie bracket respectively determined by maps l_2^n and $l_2^{p_1,p_2}$ where $l_2^1 = a^1$ and $l_2^{1,1}$ is the anti-symmetrization of $a^{1,1}$.

A differential bialgebra structure on the cofree tensorial coalgebra $\oplus V^{\otimes n}$ associated to a vector space V is often called a B_{∞} -structure on V, see [**Ba**].

Proof: We follow the proof in [**Ta**]. Let V be a finite-dimensional vector space and V^{*} be the dual space. A differential bialgebra structure on $T = \bigoplus_{n\geq 0} V^{\otimes n}$ is given by maps $a^n : V^{\otimes n} \to V$ ($n \geq 2$), corresponding to the differential, and maps $a^{p_1, p_2} : V^{\otimes p_1} \otimes V^{\otimes p_2} \to V$ ($p_1, p_2 \geq 0$), corresponding to the product. We can define dual maps of the maps $\sum_{n\geq 0} a^n : T \to T$ and $\sum_{p_1, p_2\geq 0} a^{p_1, p_2} : T \otimes T \to T$, namely $D : \hat{T} \to \hat{T}$ and $\Delta : \hat{T} \to \hat{T} \hat{\otimes} \hat{T}$, where \hat{T} is the completion of the tensor algebra $\bigoplus_{n\geq 0} V^{*\otimes n}$. The maps D and Δ are given by maps $a^{n*} : V^* \to V^{*\otimes n}$ and $a^{p_1, p_2*} : V^* \to V^{*\otimes n} \otimes V^{*\otimes p_2}$, and define a differential bialgebra structure on the complete free algebra \hat{T} . The tensor algebra $\bigoplus_{n\geq 0} V^{*\otimes n}$ is now graded as follows: |x| = p when $x \in V^{*\otimes p}$.

Similarly, if we consider a differential Lie bialgebra structure on the cofree Lie coalgebra $L = \bigoplus_{n\geq 0} \underline{V^{\otimes n}}$, the dual maps d and δ of the structure maps $\sum_{n\geq 0} l^n$ and $\sum_{p_1,p_2\geq 0} l^{p_1,p_2}$ induce a differential Lie bialgebra structure on \hat{L} , the completion of the free Lie algebra $\bigoplus_{n\geq 0} Lie(V^*)(n)$ on V^* , where $Lie(V^*)(n)$ is the subspace of element of degree n.

We now replace formally each element x of degree n in \hat{T} (resp. \hat{L}) by $h^n x$, where h is a formal parameter. Letting |h| = -1, we easily see that a differential associative (resp. Lie) bialgebra structure on the associative (resp. Lie) algebras $(\bigoplus_{n\geq 0} L^{*\otimes n})[[h]]$ (resp. $(\bigoplus_{n\geq 0} Lie(V^*)(n))[[h]]$) with the product and coproduct being of degree zero is equivalent to a differential associative (resp. Lie) bialgebra structure on the associative (resp. Lie) bialgebra structure on the associative (resp. Lie) bialgebra structure on the associative (resp. Lie) algebra \hat{T} (resp. \hat{L}). Thus we have a differential free coalgebra $(\hat{T}[[h]], D, \Delta)$.

We can apply now Etingof-Kazhdan's dequantization theorem for graded diffential bialgebras (see [**EK2**] and Appendix of B. Enriquez for a proof in the graded differential "super" case) to our particular case: this proves that there exists a Lie bialgebra $(\hat{L}', [-, -], \delta)$, generated as a Lie algebra by V^* and an injective map I_{EK} : $\hat{L}'[[h]] \to (\bigoplus_{n>0} V^{*\otimes n})[[h]]$ such that

- 1. the restriction $I_{\rm EK}: V^* \to V^*$ is the identity,
- 2. $I_{\text{EK}}([a,b]) = I_{\text{EK}}(a)I_{\text{EK}}(b) I_{\text{EK}}(b)I_{\text{EK}}(a) + O(h)$, for all $a, b \in \hat{L}'[[h]]$,
- 3. $(\Delta \Delta^{\mathrm{op}}) I_{\mathrm{EK}} = h I_{\mathrm{EK}} \delta + O(h^2),$
- 4. the maps $I_{\rm EK}$, δ and [-, -] are given by universal formulas depending only on Δ and the product of \hat{T} ,
- 5. if we apply Etingof-Kazhdan's quantization functor (see [**EK1**]) to the Lie bialgebra $(\bigoplus_{n\geq 0} Lie(V^*)^n[[h]], \delta)$ we get the bialgebra $((\bigoplus_{n\geq 0} V^{*\otimes n})[[h]], \Delta)$ back.

The last condition implies that \hat{L}' is free as a Lie algebra because \hat{T} is free as an algebra. Moreover, there exist a differential d such that $I_{\text{EK}} \circ d = D \circ I_{\text{EK}}$ so that (\hat{L}', d, δ) is a differential free Lie coalgebra. Taking now dual maps, we get the result.

Since the map I_{EK} defined in the precedent proof is the identity on V^* , the first terms a_2^1 and l_2^1 of the differentials will be the same on $T_2 = \bigoplus \mathfrak{g}_2^{\otimes n}$ and on $L_2 = \bigoplus_{n\geq 0} \mathfrak{g}_2^{\otimes n}$. For the same reason the first term $l_2^{1,1}$ of the Lie bracket on L_2 will be the antisymmetrization of the first term $a_2^{1,1}$ of the cobracket on T_2 .

By Proposition 2.2, the problem of defining a Lie bialgebra structure on L_2 given by maps l_2^n and $l_2^{p_1,p_2}$ with $l_2^1 = b$ and $l_2^{1,1} = [-,-]_G$, is equivalent to defining a differential bialgebra structure on T_2 given by maps $a_2^n : \mathfrak{g}_2^{\otimes n} \to \mathfrak{g}_2$ and $a_2^{p_1,p_2} :$ $\mathfrak{g}_2^{\otimes p_1} \otimes \mathfrak{g}_2^{\otimes p_2} \to \mathfrak{g}_2$ where $a_2^1 = b$ and $a_2^{1,1}$ is the product $\{-|-\}$ defined in Section 1. Indeed, the anti-symmetrization of $\{-|-\}$ is by definition $[-,-]_G$. The latter can be achieved using the braces (defined in $[\mathbf{GV}]$) acting on the Hochschild cochain complex $\mathfrak{g}_2 = C(A, A)$ for any algebra A. The braces operations are maps $a_2^{1,p} : \mathfrak{g}_2 \otimes \mathfrak{g}_2^{\otimes p} \to \mathfrak{g}_2$ $(p \ge 1)$ defined, for all homogeneous $D, E_1, \ldots, E_p \in \mathfrak{g}_2^{\otimes p+1}$ and $x_1, \ldots, x_d \in A$ (with $d = |D| + |E_1| + \cdots + |E_p| + 1$), by

$$a_2^{1,p}(D_1 \otimes (E_1 \otimes \ldots \otimes E_p))(x_1 \otimes \cdots \otimes x_d) =$$
$$\sum_{j=1}^{r} (-1)^{\tau} D(x_1, \dots, x_{i_1}, E_1(x_{i_1+1}, \dots), \dots, E_p(x_{i_p+1}, \dots), \dots)$$

where $\tau = \sum_{k=1}^{p} i_k(|E_k|+1)$. The maps $a_2^{1,p} : \mathfrak{g}_2 \otimes \mathfrak{g}_2^{\otimes p} \to \mathfrak{g}_2$ and $a_2^{q\geq 2,p} = 0$ give a unique bialgebra structure on the cofree cotensorial algebra $T_2 = \bigoplus_{n\geq 0}\mathfrak{g}_2^{\otimes n}$. Similarly taking a_2^1 to be the Hochschild coboundary b and a_2^2 to be the cup-product \cup , and $a_2^{q\geq 3} = 0$, gives a unique differential bialgebra structure on the tensor coalgebra T_2 . Theorem 3.1 in [**Vo**] asserts that these maps yield a differential bialgebra structure on the cofree coalgebra T_2 (the proof is a straightforward computation, also see [**GV**] and [**Kh**]).

Using this result, we can successively apply Proposition 2.2 and Lemma 2.1 to obtain the desired G_{∞} -structure on \mathfrak{g}_2 given by maps $m_2^{p_1,\ldots,p_k}$ such that $m_2^1 = b$ and $m_2^{1,1} = [-,-]_G$. By construction, the maps $m_2^{p_1,\ldots,p_k}$ are 0 for k > 2. Moreover, the map m_2^2 coincides, up to a Hochschild coboundary, with the cup-product \cup because, when passing to cohomology, they both give the same map m_1^2 , corresponding to the product \wedge of the Gerstenhaber algebra $(\mathfrak{g}_1, [-,-]_S, \wedge)$.

3. A
$$G_{\infty}$$
-morphism ψ : $(\Lambda^{\cdot}\underline{\mathfrak{g}_{1}^{\otimes \cdot}}, d_{1}') \rightarrow (\Lambda^{\cdot}\underline{\mathfrak{g}_{2}^{\otimes \cdot}}, d_{2})$

The objective of this section is to prove the following proposition.

Proposition 3.1. — There exist a differential d'_1 on $\Lambda^{\cdot} \underline{\mathfrak{g}_1^{\otimes}}$ and a morphism of differential coalgebras $\psi : (\Lambda^{\cdot} \underline{\mathfrak{g}_1^{\otimes}}, d'_1) \to (\Lambda^{\cdot} \underline{\mathfrak{g}_2^{\otimes}}, d_2)$ such that the induced map $\psi^1 : \mathfrak{g}_1 \to \mathfrak{g}_2$ is the Hochschild-Kostant-Rosenberg map of Section 0.

Proof: For i = 1, 2 and $n \ge 0$, let us set

$$V_i^{[n]} = \bigoplus_{p_1 + \dots + p_k = n} \underline{\mathfrak{g}_i^{\otimes p_1}} \wedge \dots \wedge \underline{\mathfrak{g}_i^{\otimes p_k}}$$

and $V_i^{[\leq n]} = \sum_{k \leq n} V_i^{[k]}$. Let $d_2^{p_1, \dots, p_k} : \underline{\mathfrak{g}_2^{\otimes p_1}} \wedge \dots \wedge \underline{\mathfrak{g}_2^{\otimes p_k}} \to \mathfrak{g}_2$ be the components of the differential d_2 defining the G_∞ -structure of \mathfrak{g}_2 (see Definition 1.3) and denote

 $d_2^{[n]}$ and $d_2^{[\leq n]}$ the sums

$$d_2^{[n]} = \sum_{p_1 + \dots + p_k = n} d_2^{p_1, \dots, p_k}$$
 and $d_2^{[\leq n]} = \sum_{p \leq n} d_2^{[p]}$

Clearly, $d_2 = \sum_{n \ge 1} d_2^{[n]}$. In the same way, we denote

$$d'_{1}^{[n]} = \sum_{p_{1} + \dots + p_{k} = n} d'_{1}^{p_{1}, \dots, p_{k}} \quad \text{and} \quad d'_{1}^{[\leq n]} = \sum_{1 \leq k \leq n} d'_{1}^{[k]}.$$

We know from Section 1 that a morphism $\psi : (\Lambda \cdot \underline{\mathfrak{g}_1^{\otimes}}, d_1) \to (\Lambda \cdot \underline{\mathfrak{g}_2^{\otimes}}, d_2)$ is uniquely determined by its components $\psi^{p_1, \dots, p_k} : \underline{\mathfrak{g}_1^{\otimes p_1}} \wedge \dots \wedge \underline{\mathfrak{g}_1^{\otimes p_k}} \to \mathfrak{g}_2$. Similarly we set

$$\psi^{[n]} = \sum_{p_1 + \dots + p_k = n} \psi^{p_1, \dots, p_k} \quad \text{and} \quad \psi^{[\leq n]} = \sum_{1 \leq k \leq n} \psi^{[k]}.$$

Again, we have $d'_1 = \sum_{n \ge 1} d'_1^{[n]}$ and $\psi = \sum_{n \ge 1} \psi^{[n]}$.

We have to build both the differential d'_1 and the morphism of codifferential ψ . In fact we will build the maps $d'_1^{[n]}$ and $\psi^{[n]}$ by induction. For the first terms, we set

$$d'_{1}^{[1]} = 0$$
 and $\psi^{[1]} = \phi^{1}$,

the Hochschild-Kostant-Rosenberg map (see Section 0).

Suppose we have built maps $(d'_1^{[i]})_{i \leq n-1}$ and $(\psi^{[i]})_{i \leq n-1}$ satisfying $\psi^{[\leq n-1]} \circ d'_1^{[\leq n-1]} = d_2^{[\leq n-1]} \circ \psi^{[\leq n-1]}$

on $V_1^{[\leq n-1]}$ and $d'_1^{[\leq n-1]} \circ d'_1^{[\leq n-1]} = 0$ on $V_1^{[\leq n]}$. These conditions are enough to insure that d'_1 is a differential and ψ a morphism of differential coalgebras. If we reformulate the identity $\psi \circ d'_1 = d_2 \circ \psi$ on $V_1^{[n]}$, we get

$$\psi^{[\leq n]} \circ d'_1^{[\leq n]} = d_2^{[\leq n]} \circ \psi^{[\leq n]}.$$
(3.5)

If we take now into account that $d'_1^{[1]} = 0$, and that on $V_1^{[n]}$ we have $\psi^{[k]} \circ d'_1^{[l]} = d_2^{[k]} \circ \psi^{[l]} = 0$ for k + l > n + 1, the identity (3.5) becomes

$$\psi^{[1]}d'_{1}^{[n]} + B = d_{2}^{[1]}\psi^{[n]} + A \tag{3.6}$$

where $B = \sum_{k=2}^{n-1} \psi^{[\leq n-k+1]} d'_1^{[k]}$ and $A = d_2^{[1]} \psi^{[\leq n-1]} + \sum_{k=2}^n d_2^{[k]} \psi^{[\leq n-k+1]}$ (we now omit the composition sign \circ). The term $d_2^{[1]}$ in (3.6) is the Hochschild coboundary b. So thanks to the Hochschild-Kostant-Rosenberg theorem (3.6) is equivalent to the cochains B - A being Hochschild cocycles. Therefore, in order to prove existence of $d'_1^{[n]}$ and $\psi^{[n]}$, it is sufficient to prove that

$$d_2^{[1]}(B-A) = 0 (3.7)$$

and to show that for any choice of those maps, we have

$$d'_{1}^{[\leq n]}d'_{1}^{[\leq n]} = 0 \text{ on } V_{1}^{[\leq n+1]}.$$
(3.8)

• We will first construct $d'_1{}^{[2]}$: for n = 2, we get $A = d_2^{[1]}\psi^{[1]} + d_2^{[2]}\psi^{[1]}$ and B = 0 so that

$$\psi^{[1]}{d'}_1^{[2]} = d_2^{[1]}(\psi^{[2]} + \psi^{[1]}) + d_2^{[2]}\psi^{[1]}.$$

Thus $d'_1^{[2]}$ is the image of $d^{[2]}_2$ through the projection on the cohomology of \mathfrak{g}_2 and as the Hochschild-Kostant-Rosenberg map $\psi^{[1]}$ is injective from $\mathfrak{g}_1 = H(\mathfrak{g}_2, b = d^{[1]}_2)$ to \mathfrak{g}_2 , we get

$$d_1'^{[2]} = d_1^{[2]}.$$

• Let us prove (3.7): we have $d_2^{[1]}(-A) = -\sum_{k=2}^n d_2^{[1]} d_2^{[k]} \psi^{[\leq n-k+1]}$. Using $d_2 d_2 = 0$, we get

$$d_2^{[1]}(-A) = \sum_{k=2}^n \left(\sum_{l=2}^k d_2^{[l]} d_2^{[k+1-l]} \right) \psi^{[\le n-k+1]}$$
$$= \sum_{l=2}^n d_2^{[l]} \left(\sum_{k=l}^n d_2^{[k+1-l]} \psi^{[\le n-k+1]} \right).$$

Clearly, we have $\sum_{k=l}^{n} d_2^{[k+1-l]} \psi^{[\leq n-k+1]} = \sum_{k=1}^{n-l+1} d_2^{[k]} \psi^{[\leq n-k+2-l]}$. Using once again $d_1^{[a]} d_1^{[b]} \psi^{[c]} = 0$ on $V_1^{[n]}$ for a+b+c > n+2, we add terms $(\psi^{[n-k+2-l+k']})_{0 \leq k' \leq k-1}$ to $\psi^{[\leq n-k+2-l]}$ without changing the previous equality. Thus we have

$$d_2^{[1]}(-A) = \sum_{l=2}^n d_2^{[l]} \left(\sum_{k=1}^{n-l+1} d_2^{[k]} \right) \psi^{[\le n+1-l]} = \sum_{l=2}^n d_2^{[l]} d_2^{[\le n+1-l]} \psi^{[\le n+1-l]}.$$

Since $\binom{[l]}{l\geq 2}$ map $V_2^{[\leq k]}$ into $V_2^{[\leq k-1]}$, the previous equality has non-trivial terms only on $V_1^{[\leq n-1]}$. Thus we can apply the induction hypothesis $\psi^{[\leq k]}d'_1^{[\leq k]} = d_2^{[\leq k]}\psi^{[\leq k]}$ on $V_1^{[\leq k]}$ for $k \leq n-1$. We get

$$d_2^{[1]}(-A) = \sum_{l=2}^n d_2^{[l]} \psi^{[\leq n+1-l]} d'_1^{[\leq n+1-l]}.$$

We have now

$$d_2^{[1]}(B-A) = d_2^{[1]} \sum_{k=2}^{n-1} \psi^{[\leq n-k+1]} d_1^{\prime [k]} + \sum_{l=2}^n d_2^{[l]} \psi^{[\leq n+1-l]} d_1^{\prime [\leq n+1-l]}.$$

The term corresponding to l = n vanishes since $d'_1^{[1]} = 0$. Using a previous argument on $V_1^{[n]}$ for $d_2^{[a]}\psi^{[b]}d'_1^{[c]}$, we add maps $\psi^{[p+p']}$ $(p' \ge 0)$ to $\psi^{[\le p]}$. If we then reindex the sum with respect to the terms $d'_1^{[l]}$, we get

$$d_2^{[1]}(B-A) = \sum_{l=2}^{n-1} d_2^{[\leq n+1-l]} \psi^{[\leq n-1]} d_1^{\prime [l]}.$$

Therefore we have proved that $d_2^{[1]}(B-A) = \sum_{l=2}^{n-1} d_2^{[\leq n+1-l]} \psi^{[\leq n+1-l]} d_1^{[l]}$. Since $d'_1^{[l]} \left(V_1^{[\leq k]}\right) \subset V_1^{[\leq k-1]}$, we can again apply the induction hypothesis, thus getting

$$d_2^{[1]}(B-A) = \sum_{l=2}^{n-1} \psi^{[\leq n+1-l]} d'_1^{[\leq n+1-l]} d'_1^{[l]} = 0$$

because $d'_{1}^{[1]} = 0$ and $d'_{1}^{[\leq n-1]} d'_{1}^{[\leq n-1]} = 0$ on $V_{1}^{[\leq n]}$, again by the induction hypothesis. • We will finally prove (3.8) that is to say $d'_{1}^{[\leq n]} d'_{1}^{[\leq n]} = 0$ on $V_{1}^{[\leq n+1]}$. As $\psi^{[1]}$ is a quasi-isomorphism between $(\mathfrak{g}_{1}, 0)$ and $(\mathfrak{g}_{2}, b = d_{2}^{[1]})$, this is equivalent to say that $\psi^{[1]} d'_{1}^{[\leq n]} d'_{1}^{[\leq n]}$ is a boundary on $V_{1}^{[\leq n+1]}$. Using a previous degree argument, we get the following identity on $V_{1}^{[\leq n+1]}$:

$$\psi^{[1]} \, d'_{1}^{[\leq n]} \, d'_{1}^{[\leq n]} = \psi^{[\leq n]} \, d'_{1}^{[\leq n]} \, d'_{1}^{[\leq n]}$$

By definition of $d'_1^{[\leq n]}$ we can write $\psi^{[\leq n]} d'_1^{[\leq n]} = d_2^{[\leq n]} \psi^{[\leq n]}$ as $d'_1^{[\leq n]} \operatorname{maps} V_1^{[\leq n+1]}$ to $V_1^{[\leq n]}$. Thus it is sufficient to prove that $d_2^{[\leq n]} \psi^{[\leq n]} d'_1^{[\leq n]}$ is a boundary when restricted to $V_1^{[\leq n+1]}$.

Now we have

$$d_2^{[\leq n]}\psi^{[\leq n]}d'_1^{[\leq n]} = b\psi^{[\leq n]}d'_1^{[\leq n]} + \sum_{2\leq k\leq n} d_2^{[\leq k]}\psi^{[\leq n]}d'_1^{[\leq n]}$$

Since $\sum_{2 \le k \le n} d_2^{[\le k]}$ maps $V_2^{[\le k]}$ to $V_2^{[\le k-1]}$, the linear combination of maps

$$\sum_{2 \le k \le n} d_2^{[\le k]} \psi^{[\le n]} {d'}_1^{[\le n]}$$

has non-trivial summands only on $V_1^{[\leq n+1]}$. On the latter space we have

$$\sum_{2 \le k \le n} d_2^{[\le k]} \, \psi^{[\le n]} \, d'_1^{[\le n]} = \sum_{2 \le k \le n} d_2^{[\le k]} \, d_2^{[\le n]} \, \psi^{[\le n]},$$

by definition of $d'_1^{[\leq n]}$. Hence, the following identities hold on $V_1^{[\leq n+1]}$:

$$\begin{aligned} d_2^{[\leq n]} \,\psi^{[\leq n]} \,d_1'^{[\leq n]} &= b\psi^{[\leq n]} \,d_1'^{[\leq n]} - b \,d_2^{[\leq n]} \,\psi^{[\leq n]} + d_2^{[\leq n]} \,d_2^{[\leq n]} \,\psi^{[\leq n]} \\ &= b \,\psi^{[\leq n]} \,d_1'^{[\leq n]} - b \,d_2^{[\leq n]} \,\psi^{[\leq n]} \end{aligned}$$

as $d_2 d_2 = 0$.

Conclusion: The only tool we have used in this section is the existence of a quasiisomorphism between the complexes $(\mathfrak{g}_1, 0)$ and (\mathfrak{g}_2, b) . Since we know explicit homotopy formulas for such a quasi-isomorphism (see [**DL**], [**Ha**]), we obtain explicit formulas for $d_1^{[k]}$ and $\psi^{[k]}$.

4. A
$$G_{\infty}$$
-morphism ψ' : $(\Lambda^{\cdot}\mathfrak{g}_{1}^{\otimes \cdot}, d_{1}) \to (\Lambda^{\cdot}\mathfrak{g}_{1}^{\otimes \cdot}, d_{1}')$

In this section, we will prove the following proposition.

Proposition 4.1. — If the complex $\left(\operatorname{Hom}(\Lambda^{\underline{\mathfrak{g}}_{1}^{\otimes \cdot}}, \Lambda^{\underline{\mathfrak{g}}_{1}^{\otimes \cdot}}), [m_{1}^{1,1} + m_{1}^{2}, -]\right)$ is acyclic, then there exists a G_{∞} -morphism $\psi' : (\Lambda^{\underline{\mathfrak{g}}_{1}^{\otimes \cdot}}, d_{1}) \to (\Lambda^{\underline{\mathfrak{g}}_{1}^{\otimes \cdot}}, d'_{1})$ such that the induced map $\psi'^{[1]} : \mathfrak{g}_{1} \to \mathfrak{g}_{1}$ is the identity.

We will use the same notations for $V_1^{[n]}$, $V_1^{[\leq n]}$, $d'_1^{[n]}$ and $d'_1^{[\leq n]}$ as in Section 3. We also denote

$$d_1 = \sum_{n \ge 1} d_1^{[n]}$$
 and $d_1^{[\le n]} = \sum_{1 \le k \le n} d_1^{[k]}$

and similarly

$$\psi' = \sum_{n \geq 1} \psi^{[n]} \qquad \text{and} \qquad \psi'^{[\leq n]} = \sum_{1 \leq k \leq n} \psi'^{[n]}.$$

Proof: We will build the maps $\psi'^{[n]}$ by induction as in Section 3. For $\psi'^{[1]}$ we have to set:

$$\psi^{\prime[1]} = \text{Id} \text{ (the identity map).}$$

Suppose we have built maps $(\psi'^{[i]})_{i \leq n-1}$ satisfying

$$\psi'^{[\leq n-1]} d_1^{[\leq n]} = d_1'^{[\leq n]} \psi'^{[\leq n-1]}$$

on $V_1^{[\leq n]}$ $(d'_1{}^{[\leq n]} maps V_1^{[\leq l]}$ to $V_1^{[\leq l-1]}$). Expliciting the equation $\psi' d_1 = d'_1 \psi'$ on $V_1^{[n+1]}$, we get

$$\psi'^{[\leq n]} d_1^{[\leq n+1]} = d_1'^{[\leq n+1]} \psi'^{[\leq n]}.$$
(4.9)

If we now take into account that $d_1^{[i]} = 0$ for $i \neq 2$, $d_1'^{[1]} = 0$ and that on $V_1^{[n+1]}$ we have $\psi'^{[k]}d_1^{[l]} = d_1'^{[\leq k]}\psi'^{[l]} = 0$ for k+l > n+2, the identity (4.9) becomes

$$\psi'^{[\leq n]} d_1^{[2]} = \sum_{k=2}^{n+1} d_1'^{[k]} \psi'^{[\leq n-k+2]}.$$

We have seen in the previous section that $d'_1^{[2]} = d_1^{[2]}$. Thus (4.9) is equivalent to

$$d_1^{[2]}\psi'^{[\leq n]} - \psi'^{[\leq n]}d_1^{[2]} = \left[d_1^{[2]}, \psi'^{[\leq n]}\right] = -\sum_{k=3}^{n+1} d_1'^{[k]}\psi'^{[\leq n-k+2]}.$$

Notice that $d_1^{[2]} = m_1^{1,1} + m_1^2$. By the acyclicity of the complex $(\operatorname{End}(\Lambda^{\cdot}\underline{\mathfrak{g}_1^{(\varepsilon)}}), [d_1^{[2]}, -])$, the construction of $\psi'^{[\leq n]}$ will be possible when $\sum_{k=3}^{n+1} d_1'^{[k]} \psi'^{[\leq n-k+2]}$ is a cocycle in this complex. Thus, to finish the proof, we have to check that

$$\left[d_1^{[2]}, \sum_{k=3}^{n+1} d_1'^{[k]} \psi'^{[\leq n-k+2]}\right] = 0 \text{ on } V_1^{[n+1]}.$$
(4.10)

We have

$$D_n = \left[d_1^{[2]}, \sum_{k=3}^{n+1} d_1'^{[k]} \psi'^{[\leq n-k+2]} \right] = \left[d_1^{[2]}, \sum_{k=1}^{n-1} d_1'^{[n+2-k]} \psi'^{[\leq k]} \right]$$

It follows that we can write

$$-D_n = \sum_{k=1}^{n-1} \left[d_1^{[2]}, d_1'^{[n+2-k]} \right] \psi'^{[\leq k]} - \sum_{k=1}^{n-1} d_1'^{[n+2-k]} \left[d_1^{[2]}, \psi'^{[\leq k]} \right].$$
(4.11)

Using the induction hypothesis for $\left(\psi'^{[\leq k]}\right)_{k\leq n-1}$, we get

$$[d_1^{[2]}, \psi'^{[\leq k]}] = -\sum_{l=3}^{k+1} d_1'^{[l]} \psi'^{[\leq k-l+2]} = -\sum_{l=1}^{k-1} d_1'^{[k+2-l]} \psi'^{[\leq l]}$$

on $V_1^{[\leq k+1]}$. The equation 4.11 then becomes

$$-D_n = \sum_{k=1}^{n-1} \left[d_1^{[2]}, d_1'^{[n+2-k]} \right] \psi'^{[\leq k]} + \sum_{k=1}^{n-1} d_1'^{[n+2-k]} \left(\sum_{l=1}^{k-1} d_1'^{[k+2-l]} \psi'^{[\leq l]} \right).$$

Finally, we have

$$-D_n = \sum_{k=1}^{n-1} \left[d_1^{[2]}, d_1'^{[n+2-k]} \right] \psi'^{[\leq k]} + \sum_{l=1}^{n-2} \left(\sum_{k=l+1}^{n-1} d_1'^{[n+2-k]} d_1'^{[k+2-l]} \right) \psi'^{[\leq l]}.$$

This implies

$$-D_n = \sum_{k=1}^{n-1} \left(\left[d_1'^{[2]}, d_1'^{[n+2-k]} \right] + \sum_{p=k+1}^{n-1} d_1'^{[n+2-p]} d_1'^{[p+2-k]} \right) \psi'^{[\leq k]}.$$

But the maps

$$\left[d_1'^{[2]}, d_1'^{[n+2-k]}\right] + \sum_{p=k+1}^{n-1} d_1'^{[n+2-p]} d_1'^{[p+2-k]} = \sum_{q=2}^{n+2-k} d_1'^{[q]} d_1'^{[n+4-q-k]}$$

are zero because $d_1'd_1' = 0$ on $V_1^{[\leq n+2-k]}$. This yields the result.

5. Acyclicity of the complex
$$\left(\operatorname{Hom}(\Lambda^{\cdot}\underline{\mathfrak{g}_{1}^{\otimes \cdot}}, \Lambda^{\cdot}\underline{\mathfrak{g}_{1}^{\otimes \cdot}}), [m_{1}^{1,1} + m_{1}^{2}, -]\right)$$

In this section the manifold M is supposed to be the Euclidian space \mathbb{R}^m for $m \ge 1$. We prove the following proposition:

Proposition 5.1. — If $M = \mathbb{R}^m$, the cochain complex $\left(\operatorname{End}(\Lambda^{\underline{\mathfrak{g}}_1^{\otimes \cdot}}), [m_1^{1,1} + m_1^2, -]\right)$ is acyclic.

Proof: Since coalgebras maps $\Lambda^{\cdot} \underline{\mathfrak{g}_1^{\otimes \cdot}} \to \Lambda^{\cdot} \underline{\mathfrak{g}_1^{\otimes \cdot}}$ are in one to one correspondence with maps $\Lambda^{\cdot} \mathfrak{g}_1^{\otimes \cdot} \to \mathfrak{g}_1$, we are left to check that the cochain complex

$$\left(\operatorname{Hom}(\Lambda^{\cdot}\underline{\mathfrak{g}_{1}^{\otimes \cdot}},\mathfrak{g}_{1}),[m_{1}^{1,1}+m_{1}^{2},-]\right)$$

is acyclic.

First we introduce an "external" bigrading on the cochain complex induced by duality from the following bigrading on $\Lambda^{\cdot}\mathfrak{g}_{1}^{\otimes \cdot}$:

$$|x|^{e} = (p_1 - 1 + \dots + p_n - 1, n - 1)$$

if $x \in \underline{\mathfrak{g}_1^{\otimes p_1}} \wedge \cdots \wedge \underline{\mathfrak{g}_1^{\otimes p_n}}$. Let the internal degree of $x \in \mathfrak{g}_1$ be $|x|^i = |x| + 1$, where |x| is the usual degree of an element of \mathfrak{g}_1 . One recovers the usual degree on $\Lambda^{\cdot}\mathfrak{g}_1^{\otimes \cdot}$ by

$$|x| = |x|_{\text{tot}}^{\text{e}} + \sum_{i,k} |x_i^k|^{\frac{1}{2}}$$

where $|x|_{\text{tot}}^{\text{e}}$ is the sum of the two components of $|x|^{\text{e}}$.

The exterior product m_1^2 makes \mathfrak{g}_1 into an associative algebra which is graded commutative for the inner degree. For any vector space V, the space $\mathfrak{g}_1 \otimes V$ is a \mathfrak{g}_1 -module equipped with a \mathfrak{g}_1 -action by multiplication on the first factor. Observe that

$$\begin{split} \left(\operatorname{Hom}(\Lambda^{\cdot}\underline{\mathfrak{g}_{1}^{\otimes \cdot}},\mathfrak{g}_{1}), [m_{1}^{1,1}+m_{1}^{2},-] \right) &\cong \left(\operatorname{Hom}_{\mathfrak{g}_{1}}(\mathfrak{g}_{1}\otimes\Lambda^{\cdot}\underline{\mathfrak{g}_{1}^{\otimes \cdot}},\mathfrak{g}_{1}), [m_{1}^{1,1}+m_{1}^{2},-] \right), \\ &\cong \left(\operatorname{Hom}_{\mathfrak{g}_{1}}(\Lambda^{\cdot}_{\mathfrak{g}_{1}}(\mathfrak{g}_{1}\otimes\underline{\mathfrak{g}_{1}^{\otimes \cdot}}),\mathfrak{g}_{1}), [m_{1}^{1,1}+m_{1}^{2},-] \right) \end{split}$$

where \mathfrak{g}_1 acts (on the right and on the left) on itself by the multiplication m_1^2 .

We now prove acyclicity of this last cochain complex. The codifferential $(\delta)^* = [m_1^{1,1} + m_1^2, -]$ splits in two parts $(\delta_1^2)^* + (\delta_1^{1,1})^* = (\delta)^*$ where $(\delta_1^2)^*$ is the codifferential of bidegree (1,0) induced by m_1^2 and $(\delta_1^{1,1})^*$ is the one of bidegree (0,1) induced by $m_1^{1,1}$. Thus, $\operatorname{Hom}_{\mathfrak{g}_1}(\Lambda_{\mathfrak{g}_1}^{\cdot}\mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes}, \mathfrak{g}_1)$ endowed with the bigrading $|-|^e$ is a bicomplex lying in the first quadrant. The bigrading of an element $x \in \mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes p_1} \wedge \ldots \wedge \mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes p_n}$ is $|x|^e = (p_1 - 1 + \ldots + p_n - 1, n - 1)$.

The codifferential $(\delta_1^2)^*$ is dual to a differential δ_1^2 . It is a standard calculation (see [Lo1], 1.5 for example) to show that δ_1^2 , restricted to each summand $\mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes}$, is the usual Harrison boundary, that is to say the image of the Hochschild differential d acting on $\mathfrak{g}_1^{\otimes +1}$ onto its quotient $\mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes}$ by the shuffles.

We now use the fact that $(\mathfrak{g}_1, m_1^2) = (\Gamma(M, \Lambda TM), \wedge)$ is a polynomial algebra. Denote by $\Omega_{\mathfrak{g}_1}$ the module of Kähler differential one-forms of the algebra \mathfrak{g}_1 . Let $J : \mathfrak{g}_1^{\otimes \cdot +1} \to \Lambda^{\cdot}\Omega_{\mathfrak{g}_1}$ be the map which sends $x_0 \otimes \cdots \otimes x_n$ to $x_0 dx_1 \cdots dx_n$ and $I : \Lambda^{\cdot}\Omega_{\mathfrak{g}_1} \to \mathfrak{g}_1^{\otimes \cdot +1}$ be the anti-symmetrization map given by

$$J(x_0 dx_1 \cdots dx_n) = \sum_{\sigma \in S_n} \frac{(-1)^{\sigma}}{n!} \varepsilon(\sigma) \, x_0 \otimes x_{\sigma^{-1}(1)} \dots \otimes x_{\sigma^{-1}(n)}$$

where S_n is the permutation group of $\{1, \dots, n\}$, $(-1)^{\sigma}$ is the sign of σ and $\varepsilon(\sigma)$ the Koszul-Quillen sign (see Section 1). It is easy to check that $J \circ I = \text{Id}$.

It is known from [**Ha**] that there exists a homotopy $s: \mathfrak{g}_1^{\otimes \cdot +1} \to \mathfrak{g}_1^{\otimes \cdot +2}$ such that $I \circ J = \mathrm{Id} + d \circ s + s \circ d$. We denote P the natural projection $\mathfrak{g}_1^{\otimes \cdot +1} \to \mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes \cdot}$. It is a standard computation (see [**Lo2**]) that the map J factors through $\mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes \cdot}$ to give a map $J': \mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes \cdot} \to \Omega_{\mathfrak{g}_1}$. There is also a map $I' = P \circ J: \Omega_{\mathfrak{g}_1} \to \mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes \cdot}$. Clearly $J' \circ I' = \mathrm{Id}$. Since the map P commutes with the differential d, the map $s' = P \circ s$ satisfies

$$I' \circ J' = \mathrm{Id} + d \circ s' + s' \circ d$$

The map s' extends uniquely into a degree 1 homotopy h to $\Lambda_{\mathfrak{g}_1}^{\cdot}\mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes}$ so that $\Lambda I' \circ \Lambda J' = \mathrm{Id} + \delta_1^2 \circ h + h \circ \delta_1^2$, where $\Lambda I'$, $\Lambda J'$ are the extensions of the degree zero maps I' and J'. Moreover $\Lambda J' \circ \Lambda I' = \mathrm{Id}$ and $\Lambda_{\mathfrak{g}_1}^{\cdot}\Omega_{\mathfrak{g}_1}$ is a (special) deformation retract of $\Lambda_{\mathfrak{g}_1}^{\cdot}\mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes}$ (see [Ha]). We denote $p : \Lambda_{\mathfrak{g}_1}^{\cdot}\mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes} \to \Lambda_{\mathfrak{g}_1}^{\cdot}\Omega_{\mathfrak{g}_1}$ the projection. Since $\Lambda_{\mathfrak{g}_1}^{\cdot}\mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes}$ is a bicomplex with differential $\delta = \delta_{1,1}^2 + \delta_1^{1,1}$, it follows from [Ka], Section 3 that there exists a map $u : \Lambda_{\mathfrak{g}_1}^{\cdot}\Omega_{\mathfrak{g}_1} \to \Lambda_{\mathfrak{g}_1}^{\cdot}\mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes}$ and a (degree one) map $H : \Lambda_{\mathfrak{g}_1}^{\cdot}\mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes} \to \Lambda_{\mathfrak{g}_1}^{\cdot}\mathfrak{g}_1 \otimes \mathfrak{g}_1^{\otimes} [1]$ such that $pu = \mathrm{Id}$ and $up = \mathrm{Id} + \delta H + H\delta$. Hence the cohomology we are looking for is the cohomology of the complex ($\mathrm{Hom}_{\mathfrak{g}_1}(\Lambda_{\mathfrak{g}_1}^{\cdot}\Omega_{\mathfrak{g}_1},\mathfrak{g}_1), \delta_1^{1,1}$) which sits in the complex

$$\left(\operatorname{Hom}(\Lambda^{\cdot}\mathfrak{g}_{1},\mathfrak{g}_{1}),\delta_{1}^{1,1}\right)\cong\left(\operatorname{Hom}_{\mathfrak{g}_{1}}(\mathfrak{g}_{1}\otimes\Lambda^{\cdot}\mathfrak{g}_{1},\mathfrak{g}_{1}),\delta_{1}^{1,1}\right)$$

In particular, the differential $\delta_1^{1,1}$ is induced by the usual exterior derivative (see $[\mathbf{HKR}]$) on $\operatorname{Hom}_{\mathfrak{g}_1}(\mathfrak{g}_1 \otimes \Lambda^{\cdot} \mathfrak{g}_1^{\otimes \cdot}, \mathfrak{g}_1)$. To finish the proof, we proceed as in $[\mathbf{Ta}]$ and $[\mathbf{Hi}]$. Recall from the introduction that $A = C^{\infty}(\mathbb{R}^m)$ is the algebra of smooth functions on \mathbb{R}^m . Let $\operatorname{Der}(A) = \Omega_A^*$ be the space of smooth derivations on A. Since \mathfrak{g}_1 is a A-module, by transitivity of the space of Kähler differentials for smooth manifolds, one has

$$\Omega_{\mathfrak{g}_1} \cong \mathfrak{g}_1 \otimes_A \Omega_A \oplus \Omega_{\mathfrak{g}_1/A}.$$

Since $\mathfrak{g}_1 \cong \Lambda_A^* \operatorname{Der}(A)$, we find that $\Omega_{\mathfrak{g}_1/A} \cong \mathfrak{g}_1 \otimes \operatorname{Der}(A)$ (with grading shifted by minus one on $\operatorname{Der}(A)$). Hence (see [**Ta**].3.5) there is an isomorphism

$$\left(\operatorname{Hom}_{\mathfrak{g}_1}(\Lambda_{\mathfrak{g}_1}^{\cdot}\Omega_{\mathfrak{g}_1},\mathfrak{g}_1),\delta_1^{1,1}\right) \cong \left(\Lambda^{1+\cdot}\Omega_{\mathfrak{g}_1},d_{dR}\right)$$

where d_{dR} is de Rham's differential (the degree on the left hand of the isomorphism is the one induced by the inner degree of \mathfrak{g}_1). When $\mathfrak{g}_1 = \Gamma(\mathbb{R}^n, \Lambda \mathbb{R}^n)$ this complex is acyclic.

Remark: At every step of this proof, it is possible to construct explicit homotopy formulas. So the coefficients $\psi'^{[n]}$ built in this section can be expressed in an explicit way from the G_{∞} -structure on \mathfrak{g}_2 .

Corollary 5.2. If $\mathfrak{g}_1 = \Gamma(\mathbb{R}^m, \Lambda T\mathbb{R}^m)$, then there exists a G_∞ -morphism ψ' : $(\Lambda^{\cdot}\mathfrak{g}_1^{\otimes \cdot}, d_1) \to (\Lambda^{\cdot}\mathfrak{g}_1^{\otimes \cdot}, d_1')$ such that the induced map $\psi'^{[1]} : \mathfrak{g}_1 \to \mathfrak{g}_1$ is the identity.

Proof: It is an immediate consequence of Propositions 4.1 and 5.1.

6. Consequences when M is a Poisson manifold

From the Sections 3, 4 and 5 we know that the map

$$\phi = \psi \circ \psi' : (\Lambda^{\underline{}} \underline{\mathfrak{g}_1^{\otimes \cdot}}, d_1) \to (\Lambda^{\underline{}} \underline{\mathfrak{g}_2^{\otimes \cdot}}, d_2)$$

is a G_{∞} -morphism when $M = \mathbb{R}^m$; in other words, we have the identity

$$\phi \circ d_1 = d_2 \circ \phi \text{ on } \Lambda^{\cdot} \underline{\mathfrak{g}_1^{\otimes \cdot}}.$$
 (6.12)

Since $\phi : \Lambda \mathfrak{g}_1^{\otimes} \to \Lambda \mathfrak{g}_2^{\otimes}$ is a coalgebra map, it restricts to the subcoalgebra $\Lambda \mathfrak{g}_1$ to give a coalgebra map $\Lambda \mathfrak{g}_1 \to \Lambda \mathfrak{g}_2$. The restriction of d_1 and d_2 are respectively the codifferential induced by $m_1^{1,1}$ and the codifferential induced by $b + m_2^{1,1}$ (see the end of Section 2). When we restrict these maps to $\Lambda \mathfrak{g}_1$ and $\Lambda \mathfrak{g}_2$, the previous equality (6.12) still holds with the difference that, now, d_1 and d_2 are the differential defining the L_{∞} -structures on \mathfrak{g}_1 and \mathfrak{g}_2 of Section 1. So the restriction of ϕ to these coalgebras yields a morphism of differential coalgebras

$$\phi : (\Lambda^{\cdot}\mathfrak{g}_1, d_1) \to (\Lambda^{\cdot}\mathfrak{g}_2, d_2).$$

Thus we have constructed the desired L_{∞} -morphism between (\mathfrak{g}_1, d_1) and (\mathfrak{g}_2, d_2) .

Remark: Similarly to Definitions 1.1, 1.3, one can define, on a vector space \mathfrak{g} , a C_{∞} -algebra structure given by degree one maps $a^m : \mathfrak{g}^{\otimes n} \to \mathfrak{g}$ such that if we extend them to maps $\oplus \mathfrak{g}^{\otimes \cdot} \to \oplus \mathfrak{g}^{\otimes \cdot}$, then $D = \sum a^m$ satisfies $D \circ D = 0$. In particular, a^2 yields a commutative operation on \mathfrak{g} , a^1 a differential and the product a^2 is associative up to homotopies for the differential a^1 . Let us then consider the free Lie coalgebras $\bigoplus_{n\geq 0}\mathfrak{g}_1^{\otimes n}$ and $\bigoplus_{n\geq 0}\mathfrak{g}_2^{\otimes n}$. They are also subcoalgebras of respectively $\Lambda \cdot \mathfrak{g}_1^{\otimes \cdot}$ and $\Lambda \cdot \mathfrak{g}_2^{\otimes \cdot}$. Hence we can restrict ϕ into a coalgebra map $\phi : \oplus \mathfrak{g}_1^{\otimes n} \to \oplus \mathfrak{g}_2^{\otimes n}$. Denoting $D_1 = m_1^2$ the codifferential induced by the exterior product \wedge , and D_2 the codifferential induced by $\sum_{n\geq 0} m_2^n$, the map ϕ yields a differential coalgebra morphism

$$\phi : (\oplus \underline{\mathfrak{g}_1}^{\otimes n}, D_1) \to (\oplus \underline{\mathfrak{g}_2}^{\otimes n}, D_2),$$

hence, a morphism of C_{∞} -algebras between (\mathfrak{g}_1, D_1) and (\mathfrak{g}_2, D_2) . Through the Etingof-Kazhdan equivalence used in Proposition 2.2, this implies that there is a morphism of A_{∞} -algebras between (\mathfrak{g}_1, \wedge) and (\mathfrak{g}_2, \cup) . More precisely, it means that there is a morphism $(\oplus \mathfrak{g}_1^{\otimes n}, \wedge) \to (\oplus \mathfrak{g}_2^{\otimes n}, b + \cup)$ of differential coalgebras between the tensor coalgebras of \mathfrak{g}_1 and \mathfrak{g}_2 . Details on C_{∞} and A_{∞} -structures can be found in **[GK]** and **[St]**.

From now on, we will suppose that the manifold M is a Poisson manifold equipped with a Poisson tensor π (satisfying $[\pi, \pi]_S = 0$). The L_{∞} -map ϕ allows us to construct a star-product on M (see [**BFFLS1**]). If \hbar is a formal parameter and if we impose ϕ to be $\mathbb{R}[[\hbar]]$ -linear, ϕ extends to a L_{∞} -morphism between $\mathfrak{g}_1[[\hbar]]$ and $\mathfrak{g}_2[[\hbar]]$. Set $\Pi_{\hbar} = \sum_{n\geq 0} \hbar^n \Lambda^n \pi \in \Lambda^{\cdot}\mathfrak{g}_1$, where $\Lambda^n \pi = \underbrace{\pi \wedge \ldots \wedge \pi}_{n \text{ times}}$ (here \wedge is not the exterior product of tensor fields but $a \wedge b$ is an element in $\mathfrak{g}_1 \wedge \mathfrak{g}_1$). If we define $m_\star = \phi(\Pi_\hbar)$, we get

$$[m_{\star}, m_{\star}]_G = 0. \tag{6.13}$$

This is a consequence of definition (0.1) of a L_{∞} -morphism given in Section 0 and of the fact that $[\pi, \pi]_S = 0$ implies $m_1^{1,1}(\Pi_{\hbar}) = 0$. The map m_{\star} being an element of $\mathfrak{g}_2[[\hbar]]$ of degree one, it defines a bilinear map in $C^2(A, A)[[\hbar]]$, where $C^k(A, A)[[\hbar]]$ denotes the set of k- $\mathbb{R}[[\hbar]]$ -linear maps in $C^k(A, A)$. The identity 6.13 implies that m_{\star} is an associative product on $A[[\hbar]]$. Finally, by definition of ϕ , we have:

$$m_{\star} = m + \hbar \phi^{1}(\pi) + \sum_{n \ge 2} \hbar^{n} \phi^{n}(\pi, \dots, \pi),$$

where $\phi^1(\pi) = \{\cdot, \cdot\}$ is the Poisson bracket. This proves that m_{\star} is a star-product on (M, π) .

The spaces \mathfrak{g}_1 and \mathfrak{g}_2 can now be endowed with two new structures: the space $(\mathfrak{g}_1, [-, -]_S, [\pi, -]_S)$ becomes a graded differential Lie algebra (and even a Gerstenhaber algebra) whereas $(\mathfrak{g}_2, [-, -]_G, b_\star)$, where b_\star is the Hochschild differential corresponding to the deformed product m_\star , is a new graded differential Lie algebra. As in the case when $\pi = 0$, we have the following result à la Hochschild-Kostant-Rosenberg.

Theorem 6.1. — The complexes $(\mathfrak{g}_2[[\hbar]], b_{\star})$ and $(\mathfrak{g}_1[[\hbar]], [\hbar\pi, -]_S)$ are quasi-isomorphic.

Proof: Let us denote ϕ_{\hbar}^1 the $\mathbb{R}[[\hbar]]$ -linear map $\mathfrak{g}_1[[\hbar]] \to \mathfrak{g}_2[[\hbar]]$ given by

$$\alpha \mapsto \phi_{\hbar}^{1}(\alpha) = \sum_{n \ge 0} \hbar^{n} \phi^{n+1} \left(\Lambda^{n} \pi \wedge \alpha \right) = \phi_{\mathfrak{g}_{1}} \left(\sum_{n \ge 0} \hbar^{n} \Lambda^{n} \pi \wedge \alpha \right)$$

for $\alpha \in \mathfrak{g}_1$, where $\phi_{\mathfrak{g}_1}$ denotes the projection of ϕ on \mathfrak{g}_1 . Similarly, we write $\phi_{\mathfrak{g}_1 \wedge \mathfrak{g}_1}$ for the projection of ϕ on $\mathfrak{g}_1 \wedge \mathfrak{g}_1$. We get

$$\begin{split} \phi_{\hbar}^{1}([\hbar\pi,\alpha]_{S}) &= \phi_{\mathfrak{g}_{1}}\left(\sum_{n\geq 0}\hbar^{n}\Lambda^{n}\pi\wedge[\hbar\pi,\alpha]_{S}\right) \\ &= \phi_{\mathfrak{g}_{1}}\left(\sum_{n\geq 0}\hbar^{n+1}m_{1}^{1,1}\left(\Lambda^{n+1}\pi\wedge\alpha\right)\right) \\ &= m_{2}^{1,1}\left(\phi_{\mathfrak{g}_{1}\wedge\mathfrak{g}_{1}}\left(\sum_{n\geq 0}\hbar^{n+1}\Lambda^{n+1}\pi\wedge\alpha\right)\right) \right) \\ &= \left[\phi\left(\sum_{n\geq 0}\hbar^{n}\Lambda^{n}\pi\right), \phi\left(\sum_{n\geq 0}\hbar^{n}\Lambda^{n}\pi\wedge\alpha\right)\right]_{G} \\ &= [m_{\star},\phi_{\hbar}^{1}(\alpha)]_{G} \\ &= b_{\star}\phi_{\hbar}^{1}(\alpha). \end{split}$$

Thus ϕ_{\hbar}^1 is a morphism of complexes between $(\mathfrak{g}_1, [\hbar \pi, -]_S)$ and $(\mathfrak{g}_2[[\hbar]], b_{\star})$. By definition, we can write $\phi_{\hbar}^1(\alpha) = \phi^1(\alpha) + \sum_{n\geq 1} \hbar^n \phi_{\hbar}^{1,n}$ where $\phi_{\hbar}^{1,n}$ are $\mathbb{R}[[\hbar]]$ -linear maps. The proof of the theorem is then a consequence of the following lemma. \Box

Lemma 6.2. — Let $\varphi : (B,0) \to (D,d)$ be a quasi-isomorphism of cochain complexes. Suppose we have two deformed complexes $(B[[\hbar]], b_{\hbar})$ and $(D[[\hbar]], d_{\hbar})$ with $b_{\hbar} = \sum_{n\geq 1} \hbar^n b_n$ and $d_{\hbar} = d + \sum_{n\geq 1} \hbar^n d_n$, where b_i and d_i are $\mathbb{R}[[\hbar]]$ -linear maps. Suppose in addition that there exists a morphism of complexes $\varphi_{\hbar} = \varphi + \sum_{n\geq 1} \varphi_n$ between $(B[[\hbar]], b_{\hbar})$ and $(D[[\hbar]], d_{\hbar})$, where φ_i are $\mathbb{R}[[\hbar]]$ -linear maps. Then φ_{\hbar} is a quasi-isomorphism.

Proof: Suppose $\delta_{\hbar} = \sum_{n\geq 0} \hbar^n \delta_n \in D[[\hbar]]$ satisfies $d_{\hbar} \delta_{\hbar} = 0$. We will construct $\beta_n \in B$ by induction such that $\beta_{\hbar} = \sum_{n\geq 0} \beta_n$ satisfies $b_{\hbar}\beta_{\hbar} = 0$ and $\varphi_{\hbar}(\beta_{\hbar}) = \delta_{\hbar}$. Since $d_{\hbar}\delta_{\hbar} = 0$, we have $d_0\delta_0 = 0$, so that $\delta_0 = \varphi_0(\beta_0)$, $(\beta_0 \in B \text{ with } b_0\beta_0 = 0)$. This follows from φ_0 being a quasi-isomorphism between (B, 0) and (D, d_0) . Suppose we have built $\beta_0, \ldots, \beta_n \in B$ such that for all $k \leq n$,

$$\delta_k = \sum_{i=0}^k \varphi_i(\beta_{k-i}) \tag{6.14}$$

and

$$\sum_{i=0}^{k} b_i \beta_{k-i} = 0. \tag{6.15}$$

We have shown that Relations (6.14) and (6.15) hold for k = 0. We will now construct β_{n+1} such that they hold for k = n+1. We can reformulate Relation (6.14) as follows:

$$\varphi_0(\beta_{n+1}) = \delta_{n+1} - \sum_{i=1}^{n+1} \varphi_i(\beta_{n+1-i}).$$

Since φ_0 is a quasi-isomorphism between (B, 0) and (D, d_0) , this is equivalent to say:

$$d_0(\delta_{n+1}) - \sum_{i=1}^{n+1} d_0 \varphi_i(\beta_{n+1-i}) = 0.$$
(6.16)

Since $d_{\hbar}\delta_{\hbar} = 0$ we have $d_0\delta_{n+1} = -\sum_{i=1}^{n+1} d_i\delta_{n+1-i}$. Therefore

$$(6.16) \iff \sum_{i=1}^{n+1} d_i \delta_{n+1-i} + \sum_{i=1}^{n+1} d_0 \varphi_i \beta_{n+1-i} = 0$$
$$\iff \sum_{i=1}^{n+1} d_i \sum_{j=0}^{n+1-i} \varphi_j (\beta_{n+1-i-j}) + \sum_{i=1}^{n+1} d_0 \varphi_i \beta_{n+1-i} = 0$$
$$\iff \sum_{i=0}^{n+1} \sum_{j=0}^{n+1-i} d_i \varphi_j (\beta_{n+1-j-i}) = 0$$

 $(\beta_{n+1} = 0$ by convention). Since φ_{\hbar} is a morphism of complexes, we obtain

$$\sum_{i=0}^{n+1} \sum_{j=0}^{n+1-i} d_i \varphi_j(\beta_{n+1-j-i}) = \sum_{i=0}^{n+1} \sum_{j=0}^{n+1-i} \varphi_i(b_j \beta_{n+1-j-i}) = \varphi_0\left(\sum_{j=0}^{n+1} b_j \beta_{n+1-j}\right).$$
(6.17)

So (6.16) $\iff \varphi_0\left(\sum_{j=0}^{n+1} b_j \beta_{n+1-j}\right) = 0$. This relation will be satisfied provided we have proved Relation (6.15) for k = n+1. As φ_0 is a quasi-isomorphism of complexes between (B,0) and (D,d_0) we only have to prove that $\varphi_0\left(\sum_{j=1}^{n+1} b_j \beta_{n+1-j}\right)$ is a boundary. Using Relation (6.17), we have

$$\begin{split} \varphi_0 \left(\sum_{j=0}^{n+1} b_j \beta_{n+1-j} \right) &= \sum_{i=0}^{n+1} \sum_{j=0}^{n+1-i} d_i \varphi_j (\beta_{n+1-j-i}) \\ &= d_0 \sum_{j=0}^{n+1} \varphi_j (\beta_{n+1-j}) + \sum_{i=1}^{n+1} \sum_{j=0}^{n+1-i} d_i \varphi_j (\beta_{n+1-j-i}) \\ &= d_0 \sum_{j=0}^{n+1} \varphi_j (\beta_{n+1-j}) + \sum_{i=1}^{n+1} d_i \delta_{n+1-i} \quad \text{(thanks to (6.14))} \\ &= d_0 \sum_{j=0}^{n+1} \varphi_j (\beta_{n+1-j}) - d_0 \delta_{n+1} \end{split}$$

because $d_{\hbar} \beta_{\hbar} = 0$.

It is clear from the previous proof that we can build explicit homotopy formulas for the map ϕ_{\hbar}^1 since in the proof of Theorem 6.1, we had $\phi_{\hbar}^1 = \phi^1 + O(\hbar)$, with ϕ^1 the Hochschild-Kostant-Rosenberg map.

Remark 6.3: Lemma 6.2 also holds for two cochain complexes (B, b) and (D, d), where $b_{\hbar} = b + \sum_{n>1} \hbar^n b_n$ with $b \neq 0$, but we have no explicit homotopy formulas.

The cochains complexes $(B[[\hbar]], b_{\hbar})$ and $(D[[\hbar]], d_{\hbar})$ are filtered by the powers of \hbar . The *p*-component of the filtration is

$$F^p(B[[\hbar]]) = \hbar^p B[[\hbar]] \subset B[[\hbar]]$$

and similarly for $D[[\hbar]]$. The filtrations are decreasing and the differentials b_{\hbar} and d_{\hbar} respects the filtrations as well as the morphism φ_{\hbar} . Therefore, there are two spectral sequences with first terms given by

$$EB_1^{p,q} = H^{p+q}(F^q B[[\hbar]]/F^{q+1}B[[\hbar]])$$

and

$$ED_1^{p,q} = H^{p+q}(F^q D[[\hbar]]/F^{q+1}D[[\hbar]])$$

converging respectively to $H^{\cdot}(B[[\hbar]], b_{\hbar}))$ and $H^{\cdot}(D[[\hbar]], d_{\hbar})$. The morphism φ_{\hbar} induces a map of spectral sequences $\varphi_1^{\hbar}: EB_1^{,, r} \longrightarrow ED_1^{, r}$. It is easy to check that $EB_1^{p,q} \cong H^{p+q}(B)\hbar^q$, $ED_1^{p,q} \cong H^{p+q}(D)\hbar^q$ and that the

map φ_1^{\hbar} is induced by the quasi-isomorphism φ , hence is an isomorphism for all p, q.

As the spectral sequences are strongly convergent in the sense of [CE], Section 15.2, it follows that φ_{\hbar} induces an isomorphism $H^{\cdot}(B[[\hbar]], b_{\hbar})) \cong H^{\cdot}(D[[\hbar]], d_{\hbar})$.

Now, we are in the situation of Section 1: we have two graded differential Lie algebras $(\mathfrak{g}_1, [-, -]_S, [\pi, -]_S)$ and $(\mathfrak{g}_2, [-, -]_G, b_\star)$ such that $H(\mathfrak{g}_2, b_\star) \cong H(\mathfrak{g}_1, [\pi, -]_S)$. The quasi-isomorphism ϕ_{\hbar}^1 is not a Lie algebra morphism. The aim of the next section is to construct a L_{∞} -morphism between $(\mathfrak{g}_1, [\pi, -]_S)$ and $(\mathfrak{g}_2, b_\star)$.

7. A formality theorem for a Poisson manifold

In this section we define $d_{1\star}$ the map $d_{1\star} = m_1^{1,1} + m_1^2 + \hbar[\pi, -]_S : \Lambda^{\cdot} \underline{\mathfrak{g}_{1\star}^{\otimes}} \to \Lambda^{\cdot} \underline{\mathfrak{g}_{1\star}^{\otimes}},$ where $\mathfrak{g}_{1\star} = \mathfrak{g}_1[[\hbar]]$. As for the case $\pi = 0$, we will construct a G_{∞} -structure on $\mathfrak{g}_{2\star} = \mathfrak{g}_2[[\hbar]]$ given by a differential $d_{2\star} : \Lambda^{\cdot} \underline{\mathfrak{g}_{2\star}^{\otimes}} \to \Lambda^{\cdot} \underline{\mathfrak{g}_{2\star}^{\otimes}},$ where $d_{2\star} = m_{2\star}^1 + m_2^{1,1} + \cdots$ with $m_{2\star}^1$ corresponding to the differential $b_{\star} = [m_{\star}, -]_G$. We will also prove, following the same steps as in the $\pi = 0$ case, that there exists a G_{∞} -morphism between the G_{∞} -algebras $(\mathfrak{g}_{1\star}, d_{1\star})$ and $(\mathfrak{g}_{2\star}, d_{2\star})$.

Theorem 7.1. — One can build a G_{∞} -structure on $\mathfrak{g}_2[[\hbar]]$ determined by a differential $d_{2\star} : \Lambda^{\cdot} \underline{\mathfrak{g}}_{2\star}^{\otimes \cdot} \to \Lambda^{\cdot} \underline{\mathfrak{g}}_{2\star}^{\otimes \cdot}$ with $d_{2\star} = m_{2\star}^1 + m_{2\star}^{1,1} + \cdots + m_{2\star}^{p_1,\dots,p_n} + \cdots$, where

 $m_{2\star}^{p_1,\ldots,p_n} : \mathfrak{g}_2[[\hbar]]^{\otimes p_1} \wedge \cdots \wedge \mathfrak{g}_2[[\hbar]]^{\otimes p_n} \to \mathfrak{g}_2[[\hbar]]^{\otimes p_1} \wedge \cdots \wedge \mathfrak{g}_2[[\hbar]]^{\otimes p_n},$

 $m_{2\star}^1=b_{\star}=[m_{\star},-]_G$ and $m_{2\star}^{1,1}=m_2^{1,1}$ is the Gerstenhaber bracket.

Proof: We can use the same arguments as in Section 2. Thanks to Lemma 2.1, it is enough to define a differential Lie bialgebra structure on the cofree Lie coalgebra $L_{2\star} = \bigoplus \mathfrak{g}_2[[\hbar]]^{\otimes n}$. Etingof-Kazhdan's dequantization and quantization theorems can be used in the same way to prove it is enough to have a differential bialgebra structure on the cofree tensorial coalgebra $T_{2\star} = \bigoplus \mathfrak{g}_2[[\hbar]]^{\otimes n}$ since the correspondence in Proposition 2.2 was given by universal formulas.

So we want now to define a bialgebra structure on $T_{2\star}$ given by maps $a_{2\star}^n$ and $a_{2\star}^{p_1,p_2}$ such that $a_{2\star}^1 = b_{\star}$ and $a_{2\star}^{1,1}$ is the product $\{-|-\}$ defined in Section 1. This can be done using braces as in the end of Section 2. This is because the braces inducing a bialgebra structure on \mathfrak{g}_2 are independent of the algebra structure on \mathfrak{g}_2 . Thus a G_{∞} -structure can be built on \mathfrak{g}_{\star} with $m_{2\star}^{p_1,\dots,p_n} = 0$ for n > 2.

We can now state the analogue of Proposition 3.1.

Theorem 7.2. — There exist a G_{∞} -structure on $\mathfrak{g}_1[[\hbar]]$ corresponding to a differential $d'_{1\star} : \Lambda^{\cdot}\mathfrak{g}_{1\star}^{\otimes} \to \Lambda^{\cdot}\mathfrak{g}_{1\star}^{\otimes}$ and a morphism of differential coalgebras

$$\psi_{\star} : (\Lambda^{\cdot} \underline{\mathfrak{g}_{1\star}^{\otimes \cdot}}, d'_{1\star}) \to (\Lambda^{\cdot} \underline{\mathfrak{g}_{2\star}^{\otimes \cdot}}, d_{2\star})$$

such that the induced map $\mathfrak{g}_1 \to \mathfrak{g}_2$ is the Hochschild-Kostant-Rosenberg map.

Proof: We will follow the proof of Proposition 3.1 and use the same notations. Let us denote

$$V_{i\star}^{(n)} = \sum_{k=0}^{n} \hbar^k V_i^{[n-k]}$$
 and $V_{i\star}^{(\leq n)} = \sum_{k=0}^{n} V_{i\star}^{(k)}$

There is a decomposition $d_{2\star} = \sum_{k\geq 0} \hbar^k d_{2\star}^{\{k\}}$. We denote $d_{2\star}^{\{k\}p_1,\ldots,p_l} : \mathfrak{g}_2^{p_1} \wedge \cdots \wedge \mathfrak{g}_2^{p_l} \to \mathfrak{g}_2$ the components of $d_{2\star} : \Lambda \mathfrak{g}_2^{\otimes} \to \Lambda \mathfrak{g}_2^{\otimes}$. Similarly, we denote $d_{2\star}^{\{k\}[n]}$ the map from $\Lambda \mathfrak{g}_2^{\otimes}$ to itself defined by

$$d_{2\star}^{\{k\}[n]} = \sum_{p_1 + \dots + p_l = n} d_{2\star}^{\{k\}p_1, \dots, p_l}.$$

We have the obvious identity $d_{2\star}^{\{k\}} = \sum_{n \ge 1} d_{2\star}^{\{k\}[n]}$. We can now define

$$d_{2\star}^{(m)} = \sum_{k+n=m} d_{2\star}^{\{k\}[n]}$$

and set

$$d_{2\star} = \sum_{m \ge 1} d_{2\star}^{(m)}, \quad d_{2\star}^{(\le m)} = \sum_{i=1}^m d_{2\star}^{(i)}.$$

In the same way we set

$$d'_{1\star} = \sum_{m \ge 1} d'_{1\star}{}^{(m)}, \quad d'_{1\star}{}^{(m)} = \sum_{k+n=m} d'_{1\star}{}^{\{k\}[n]}, \quad d'_{1\star}{}^{(\le m)} = \sum_{i=1}^m d'_{1\star}{}^{(i)},$$
$$\psi_{\star} = \sum_{m \ge 1} \psi_{\star}{}^{(m)}, \quad \psi_{\star}{}^{(m)} = \sum_{k+n=m} \psi_{\star}{}^{\{k\}[n]} \quad \text{and} \quad \psi_{\star}{}^{(\le m)} = \sum_{i=1}^m \psi_{\star}{}^{(i)}.$$

The proof of Proposition 3.1 can now be reproduced, formally replacing the superscripts [-] with (-). We can build maps $d'_{1\star}$ and ψ_{\star} by induction setting ${d'_{1\star}}^{(1)} = 0$ and $\psi_{\star}^{(1)} = \phi^1$, the Hochschild-Kostant-Rosenberg map. The proof then relies again only on the fact that ϕ^1 is a quasi-isomorphism of complexes from $(\mathfrak{g}_1, 0)$ to $(\mathfrak{g}_2, b = m_2^1 = m_{2\star}^{(1)})$ (for which we have homotopy formulas). Moreover, at order two we have again

$$d_{1\star}^{\prime (2)} = d_{1\star}^{(2)} = \hbar[\pi, -]_S + d_1^{1,1} + d_1^2.$$

Using the grading (-) along the lines of the proof of Theorem 4.1, we can prove in the same way the following.

Theorem 7.3. — If the complex $\left(\operatorname{End}(\Lambda^{\underline{\mathfrak{g}}_{1}^{\otimes \cdot}}), \left[m_{1}^{1,1}+m_{1}^{2}+\hbar[\pi,-]_{S},-\right]\right)$ is acyclic, then there exists a G_{∞} -morphism ψ' : $(\Lambda^{\underline{\mathfrak{g}}_{1\star}^{\otimes \cdot}}, d_{1\star}) \rightarrow (\Lambda^{\underline{\mathfrak{g}}_{1\star}^{\otimes \cdot}}, d'_{1\star})$ such that the induced map $\mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is the identity.

Theorems 7.2 and 7.3 hold for arbitrary Poisson manifolds.

Corollary 7.4. — If $\mathfrak{g}_1 = \Gamma(\mathbb{R}^m, \Lambda T\mathbb{R}^m)$, there exists a G_∞ -morphism

$$\psi': (\Lambda^{\underline{\mathfrak{g}}_{1\star}^{\otimes \cdot}}, d_{1\star}) \to (\Lambda^{\underline{\mathfrak{g}}_{1\star}^{\otimes \cdot}}, d'_{1\star}).$$

Proof: Using Theorem 7.3 it is enough to check that the cochain complex

$$\left(\operatorname{Hom}(\Lambda^{\underline{\circ}}\underline{\mathfrak{g}_{1}^{\otimes \cdot}},\Lambda^{\underline{\circ}}\underline{\mathfrak{g}_{1}^{\otimes \cdot}}),\left[m_{1}^{1,1}+m_{1}^{2}+\hbar[\pi,-]_{S},-\right]\right)$$

is for $M = \mathbb{R}^m$. This follows from Proposition 5.1 and the following Lemma 7.5. \Box

Lemma 7.5. — If a complex (C, d_0) is acyclic, then, for any differential $d_{\star} = d_0 + \sum_{i>1} \hbar^i d_i$, the $\mathbb{R}[[\hbar]]$ -linear complex $(C[[\hbar]], d_0 + \sum_{i>1} \hbar^i d_i)$ is acyclic.

This follows from Remark 6.3. However, as we wish to be able to construct explicit homotopies we give another proof.

Proof: Suppose we have $x = \sum_{i \ge 0} \hbar^i x_i \in C[[\hbar]]$ satisfying

$$d_{\star}x = 0.$$
 (7.18)

We will construct by induction $y = \sum_{i>0} \hbar^i y_i$ satisfying $x = d_{\star} y$.

Relation (7.18) at order 0 gives $d_0x_0 = 0$; so by hypothesis there exists $y_0 \in C$ such that $x_0 = d_0y_0$. Suppose we have built y_i for $i \leq n-1$ such that $x_k = \sum_{i=0}^k d_i y_{k-i}$ for all $k \leq n-1$. We want to build y_n such that $x_n = \sum_{i=0}^n d_i y_{n-i}$. From the acyclicity of the complex (C, d_0) this is equivalent to

$$d_0\left(x_n - \sum_{i=1}^n d_i y_{n-i}\right) = 0.$$
(7.19)

We have

(7.19)
$$\iff \sum_{i=1}^{n} d_i x_{n-i} + \sum_{i=1}^{n} d_0 d_i y_{n-i} = 0.$$

By the induction hypothesis, we obtain

$$(7.19) \iff \sum_{i=1}^{n} d_{i}x_{n-i} - \sum_{i=1}^{n} \sum_{j=1}^{i} d_{j}d_{i-j}y_{n-i} = 0$$

$$\iff \sum_{i=1}^{n} d_{i}x_{n-i} - \sum_{j=1}^{n} d_{j}\sum_{i=j}^{n} d_{i-j}y_{n-i} = 0$$

$$\iff \sum_{i=1}^{n} d_{i}x_{n-i} - \sum_{j=1}^{n} d_{j}\sum_{i=0}^{n-j} d_{i}y_{n-i-j} = 0$$

$$\iff \sum_{i=1}^{n} d_{i}x_{n-i} - \sum_{j=1}^{n} d_{j}x_{n-j} = 0.$$

This proves the result.

As in Section 6, it is easy to see that $\phi_{\star} = \psi'_{\star} \circ \psi_{\star}$ is a G_{∞} -morphism between $\mathfrak{g}_{1\star}$ and $\mathfrak{g}_{2\star}$. Moreover ϕ_{\star} restricts to a L_{∞} -morphism

$$\phi_{\star}: (\mathfrak{g}_1[[\hbar]], \hbar[\pi, -]_S, [-, -]_S) \to (\mathfrak{g}_2[[\hbar]], b_{\star}, [-, -]_G)$$

and also to a A_{∞} -morphism

$$\check{\phi_{\star}}: (\mathfrak{g}_1[[\hbar]], \hbar[\pi, -]_S, \wedge) \to (\mathfrak{g}_2[[\hbar]], b_{\star}, \sum_{i \ge 2} m_{2\star}^i).$$

If we now restrict the map ϕ_{\star} to $\phi_{\star}^{[1]}$: $\mathfrak{g}_1[[\hbar]] \to \mathfrak{g}_2[[\hbar]]$, we have $\phi_{\star}^{[1]}([\hbar\pi, \alpha]_S) = b_{\star}\phi_{\star}^{[1]}(\alpha)$ for any $\alpha \in \mathfrak{g}_1$. So we have constructed another morphism of complexes $(\mathfrak{g}_1[[\hbar]], \hbar[\pi, -]_S) \to (\mathfrak{g}_2[[\hbar]], b_{\star})$. According to Lemma 6.2, the map $\phi_{\star}^{[1]}$ is a quasiisomorphism which is *a priori* different from the map ϕ_{\hbar}^1 . We leave the two following questions unanswered:

Question 1: Are the two maps ϕ_{\hbar}^{1} and $\phi_{\star}^{[1]}$ the same?

Question 2: To prove the existence of the G_{∞} -morphism ϕ_{\star} , we have used the grading (-) which imposes the initial condition $\psi_{\star}^{[1]} = \phi^1$, the Hochschild-Kostant-Rosenberg morphism. Is it possible to build a map ϕ_{\star} such that $\phi_{\star}^{[1]} = \phi_{\hbar}^{1}$?

Remark: B. Keller helped us to give a partial answer to this second question, using the following proposition (see K. Lefèvre [Le] for a proof in the A_{∞} case).

Proposition 7.6. — Let A and B be two L_{∞} (respectively A_{∞} , or G_{∞})-algebras, with structures determined by differentials

$$d_A \ : \ \Lambda^{\cdot}A \to \Lambda^{\cdot}A \ (respectively \ \underline{A^{\otimes \cdot}} \to \underline{A^{\otimes \cdot}} \ or \ \Lambda^{\cdot}\underline{A^{\otimes \cdot}} \to \Lambda^{\cdot}\underline{A^{\otimes \cdot}})$$

and d_B defined in the same way. Denote $d_A = \sum_{n \ge 0} d_A^n(;\ldots,)$, where d_A^n is a homogeneous component of d_A (in the G_∞ case, we write $d_A = \sum_{l \ge 0, n_1 + \cdots + n_p = l} d_A^{n_1, \ldots, n_p}$ with $d_A^{n_1, \ldots, n_p}$: $\underline{A^{\otimes n_1} \Lambda \ldots \Lambda \underline{A^{\otimes n_p}}} \to B$ and we order the maps $d_i^{n_1, \ldots, n_p}$ such that $(n_1, \ldots, n_p) \ge (m_1, \ldots, m_q) \Leftrightarrow (n_1 + \cdots + n_p > m_1 + \cdots + m_q)$ or $(n_1 + \cdots + n_p = m_1 + \cdots + m_q)$ and $(n_1, \ldots, n_p) \ge (m_1, \ldots, m_q)$ for the lexicographic order). Suppose there exists a "twisting" element $a \in A$ such that

$$\sum_{n>0} d_A^n(a,\ldots,a) = 0$$

and a L_{∞} (respectively A_{∞} , or G_{∞})-morphism $\varphi = \sum_{n\geq 0} \varphi^n$ (using the same convention as above) between A and B. Then

(a) := there exists a "twisted" L_{∞} (respectively A_{∞} , or G_{∞})-algebra structure on A with differential $d_{A_a} = \sum_{n>0} d_{A_a}^n$ given by

$$d^n_{A_a}(\cdot,\ldots,\cdot) = \sum_{i\geq 0} d^{n+i}_A(\ldots,a,\ldots,a,\ldots),$$

where the element a is inserted i times;

(b) : the element $b \in B$ defined by

$$b = \sum_{n \ge 0} \varphi^n(a, \dots, a)$$

satisfies

$$\sum_{n\geq 0} d_B^n(b,\ldots,b) = 0.$$

(c): there exists a "twisted" L_{∞} (respectively A_{∞} , or G_{∞})-algebra structure on B with differential $d_{B_b} = \sum_{n>0} d_{B_b}^n$ given by

$$d_{B_b}^n(\cdot,\ldots,\cdot) = \sum_{i\geq 0} d_B^{n+i}(\ldots,b,\ldots,b,\ldots)$$

where the element b is inserted i times;

(d): there exists a L_{∞} (respectively A_{∞} , or G_{∞})-morphism between the two "twisted" L_{∞} (respectively A_{∞} , or G_{∞})-algebra structures on A and B given by $\varphi_{ab} = \sum_{n>0} \varphi_{ab}^n$, where

$$\varphi_{ab}^{n}(\cdot,\ldots,\cdot) = \sum_{i>0} \varphi^{n+i}(\ldots,a,\ldots,a,\ldots)$$

where the element a is inserted i times.

In our case, where $A = \mathfrak{g}_1$ and $B = \mathfrak{g}_2$ and φ is Tamarkin's L_{∞} (respectively A_{∞} , or G_{∞})-morphism, and $a = \pi$ (the Poisson tensor field), we can apply the previous proposition, but only in the L_{∞} case (because otherwise $\sum d_1^k(\pi, \ldots, \pi) \neq 0$), and get a deformed L_{∞} -morphism between the graded Lie algebras $(\mathfrak{g}_1[[\hbar]], \hbar[\pi, -]_S, [-, -]_S)$ and $(\mathfrak{g}_2[[\hbar]], b_{\star}, [-, -]_G)$.

8. Appendix (B. Enriquez and P. Etingof): Etingof-Kazhdan's dequantization theorem for graded differential super-bialgebras

In this appendix, we prove the following theorem:

Theorem 8.1. — We have an equivalence of categories

$$DQ_{\Phi}$$
 : DGQUE \rightarrow DGLBA_h

from the category of differential graded quantized universal enveloping super-algebras to that of differential graded Lie super-bialgebras such that if $U \in Ob(DGQUE)$ and $\mathfrak{a} = DQ(U)$, then $U/hU = U(\mathfrak{a}/h\mathfrak{a})$, where U is the universal algebra functor, taking a differential graded Lie super-algebra to a differential graded super-Hopf algebra.

Recall the Etingof-Kazhdan quantization theorems. We denote by LBA the prop of Lie bialgebras and UE_{cp} the prop of co-Poisson universal enveloping algebras. UE_{cp} is a completion of the prop of co-Poisson cocommutative bialgebras. We let h be a formal variable and we set LBA_h = LBA[[h]] and UE_{cp,h} = UE_{cp}[[h]].

We denote by QUE the prop of quantized universal enveloping algebras. QUE is topologically free over k[[h]], it is a completion of the prop Bialg_h of quasi-cocommutative bialgebras. We have a natural isomorphism QUE $\bigotimes_{k} k = UE_{cp}$.

Theorem 8.2. — ([**EK1**], [**EK2**]): To any associator Φ , one can attach a prop isomorphism Q_{Φ} : QUE \rightarrow UE_{cp,h}, whose reduction mod h is

$$\operatorname{QUE}_{k[[h]]} \otimes k \xrightarrow{\sim} \operatorname{UE}_{\operatorname{cp}} \xrightarrow{\sim} \operatorname{UE}_{\operatorname{cp},h} \otimes_{k[[h]]} k.$$

Theorem 8.3. — (Propic Milnor-Moore theorem) : We have a symmetrization isomorphism

$$UE_{cp,h} \xrightarrow{\sim} \widehat{S}^{\cdot}(LBA_h),$$

where \widehat{S}^{\cdot} is the completed symmetric algebra Schur functor.

This theorem (see [EE]) is based on Euler idempotents (see [Lo3]).

If P is a prop, we can attach to each symmetric tensor category S, the category of S-representations of P, $\operatorname{Rep}_{\mathcal{S}}(P)$. Objects of $\operatorname{Rep}_{\mathcal{S}}(P)$ are pairs (V, ρ) of $V \in \operatorname{Ob}(S)$ a prop morphism $P \to \operatorname{Prop}(V)$, where $\operatorname{Prop}(V)$ is the prop attached to V (e.g., $\operatorname{Prop}(V)(n,m) = \operatorname{Hom}_{\mathcal{S}}(V^{\otimes n}, V^{\otimes m}))$.

Corollary 8.4. — If S is any symmetric tensor category, Q_{Φ} gives rise to an equivalence of categories

$$DQ_{\Phi,S}$$
 : $\operatorname{Rep}_{S}(\operatorname{QUE}) \to \operatorname{Rep}_{S}(\operatorname{LBA}_{h}),$

whose reduction mod h is the "S-primitive part" functor

$$\operatorname{Rep}_{\mathcal{S}}(\operatorname{UE}_{\operatorname{cp}}) \to \operatorname{Rep}_{\mathcal{S}}(\operatorname{LBA}),$$

adjoint to the "S-universal enveloping algebra" functor $\operatorname{Rep}_{\mathcal{S}}(\operatorname{LBA}) \to \operatorname{Rep}_{\mathcal{S}}(\operatorname{UE}_{\operatorname{cp}})$.

We will work with the symmetric category S = Complexes(Vect) of complexes (V^{\cdot}, d^{\cdot}) of topologically free k[[h]]-modules, where actions of the symmetric groups are the same as those for super-vector spaces $(\bigoplus_{i \in \mathbb{Z}} V^i)$ is decomposed as $(\bigoplus_{i \in \mathbb{Z}} V^i) \oplus (\bigoplus_{i \in \mathbb{Z}+1} V^i)$. Let us describe precisely Rep. (OUE) and Rep. (LRA) when S = Complexes(Vect)

Let us describe precisely $\operatorname{Rep}_{\mathcal{S}}(\operatorname{QUE})$ and $\operatorname{Rep}_{\mathcal{S}}(\operatorname{LBA}_h)$ when $\mathcal{S} = \operatorname{Complexes}(\operatorname{Vect})$.

- Rep_S(LBA_h) is the category DGLBA_h of complexes (V^{\cdot}, d^{\cdot}) , together with differential graded maps $\mu : \Lambda^2(V^{\cdot}) \to V^{\cdot}$ and $\delta : V^{\cdot} \to \Lambda^2(V^{\cdot})$, satisfying the Lie bialgebra axioms in the $\mathbb{Z}/2\mathbb{Z}$ -graded sense;
- Rep_S(QUE) is the category DGQUE, obtained as follows. Let DGLA be the category of differential graded Lie super-algebras. The category of their universal enveloping algebras is denoted DGUE; DGUE is a full subsategory of DGBialg_{coco}, which is the category of differential graded super-cocommutative super-bialgebras. (DGUE is the subclass of algebras A characterized by the Milnor-Moore condition $\bigcup_{n\geq 0} \operatorname{Ker}(\operatorname{Id} -\eta \circ \varepsilon)^{\otimes n} \circ \Delta^{(n)} = A$.) DGQUE is the category of formal deformations of DGUE in the category DGBialg of differential graded super-bialgebras.

Corollary 8.4 says that $DQ_{\Phi,S}$ induces an isomorphism of categories between DGQUE and DGLBA_h, which is Theorem 8.1.

ACKNOWLEDGEMENTS

We would like to thank D. Manchon and B. Keller for many useful suggestions and B. Enriquez and P. Etingof who helped us to better understand the Etingof-Kazhdan dequantization theorem and who wrote Theorem 8.1 and the Appendix. We also would like to thank C. Kassel for having carefully read our paper.

References

- [Ba] J. H. Baues, The double bar and cobar constructions, Compos. Math. 43 (1981), 331-341
- [BFFLS1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Quantum mechanics as a deformation of classical mechanics, Lett. Math. Phys. 1 (1975/77), no. 6, 521–530
- [BFFLS2] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization, I and II, Ann. Phys. 111 (1977), 61-151
- [CE] H. Cartan, S. Eilenberg, *Homological algebra*, Princeton University Press, Princeton, N. J. (1956)
- [CFT] A. S. Cattaneo, G. Felder, L. Tomassini, Fedosov connections on jet bundles and deformation quantization, math.QA/0111290 (to appear in IRMA Lecture Notes in Mathematics and Theoretical Physics : Deformation Quantization -Proceedings of the Meeting between Mathematicians and Theoretical Physicists, Institut de Recherche Mathématique Avancée de Strasbourg (May 31 - June 2, 2001)
- [DL] M. De Wilde, P. B. A. Lecomte, A homotopy formula for the Hochschild cohomology, Compositio Math. 96 (1995), no. 1, 99–109
- [EE] B. Enriquez, P. Etingof, On the invertibility of quantization functors of Lie bialgebras, in preparation
- [EK1] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2 (1996), no. 1, 1–41
- [EK2] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras. II, III, Selecta Math. (N.S.) 4 (1998), no. 2, 213–231, 233–269
- [GV] M. Gerstenhaber, A. Voronov, Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices (1995), no. 3, 141–153
- [Gi] G. Ginot, *Homologie et modèle minimal des algèbres de Gerstenhaber*, Preprint Institut de Recherche Mathématique Avancée, Strasbourg (2001), no. 42
- [GK] V. Ginzburg, M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), No 1, 203–272
- [Ha] G. Halbout, Formule d'homotopie entre les complexes de Hochschild et de de Rham, Compositio Math. 126 (2001), No 2, 123–145
- [Hi] V. Hinich, Tamarkin's proof of Kontsevich's formality theorem, math.QA/9803025
- [HKR] G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras, Transactions AMS 102 (1962), 383-408
- [Ka] C. Kassel, Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine Angew. Math. 408 (1990), 159–180

GREGORY GINOT & GILLES HALBOUT

- [Kh] M. Khalkhali, Operations on cyclic homology, the X complex, and a conjecture of Deligne, Comm. Math. Phys. 202 (1999), no.2, 309-323
- [Ko1] M. Kontsevich, Formality conjecture. Deformation theory and symplectic geometry, Math. Phys. Stud. 20, Ascona (1996), 139–156
- [Ko2] M. Kontsevich, Deformation quantization of Poisson manifolds, I, q-alg/9709040
- [KS] M. Kontsevich, Y. Soibelman, Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon) Math. Phys. Stud. 21 (2000), 255–307
- [Kos] J. L. Koszul, Crochet de Schouten-Nijenjuis et cohomologie in "Elie Cartan et les mathémati-ques d'aujourd'hui", Astérisque (1985), 257-271
- [LS] T. Lada, J. D. Stasheff, Introduction to SH Lie algebras for physicists, Internat. J. Theoret. Phys. 32 (1993), No 7, 1087-1103
- [Lo1] J.-L. Loday, *Cyclic homology*, Springer Verlag (1993)
- [Lo2] J.-L. Loday, Opérations sur l'homologie cyclique des algèbres commutatives, Invent. Math. 96 (1989), No. 1, 205–230
- [Lo3] J.-L. Loday, Série de Hausdorff, idempotents eulériens et algèbres de Hopf, Expo. Math. 12 (1994), No. 2, 165–178
- [St] J.D. Stasheff, Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292
- [Ta] D. Tamarkin, Another proof of M. Kontsevich's formality theorem, math.QA/9803025
- [TS] D. Tamarkin, B Tsygan, Noncommutative differential calculus, homotopy BV algebras and formality conjectures, Methods Funct. Anal. Topology, 6 (2000), no. 2, 85–97
- [Vo] A. Voronov, Homotopy Gerstenhaber algebras, Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud., 22, Kluwer Acad. Publ. (2000), 307–331

28

GREGORY GINOT, Institut de Recherche Mathématique Avancée, Université Louis Pasteur – C.N.R.S., 7, rue René Descartes, 67084 Strasbourg Cedex, France *E-mail* : ginot@math.u-strasbg.fr

GILLES HALBOUT, Institut de Recherche Mathématique Avancée, Université Louis Pasteur – C.N.R.S., 7, rue René Descartes, 67084 Strasbourg Cedex, France *E-mail* : halbout@math.u-strasbg.fr