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COHOMOLOGY OF COURANT ALGEBROIDS WITH
SPLIT BASE

GREGORY GINOT AND MELCHIOR GRUTZMANN

In this paper we study the cohomology H$,(E) of a Courant alge-
broid E. We prove that if E is transitive, H$,(E) coincides with
the naive cohomology H? . (E) of E as conjectured by Stiénon and
Xu [SXO08]. For general Courant algebroids E we define a spectral
sequence converging to H$,(E). If E is with split base, we prove that
there exists a natural transgression homomorphism T3 (with image in
H? . (F)) which, together with H® . (E), gives all H% (E). For

generalized exact Courant algebroids, we give an explicit formula for
T35 depending only on the Severa characteristic clas of E.

1. Introduction

The purpose of this paper is to study the cohomology of Courant alge-
broids. The Courant bracket was first introduced by T. Courant in 1990
(see [Cou90]) in order to describe Dirac manifolds, a generalization of
presymplectic and Poisson manifolds. In 1997 Liu, Weinstein and Xu
introduced the notion of a Courant algebroid in order to describe Manin
triples for Lie bialgebroids ([LWX97]). Recently, Courant algebroids have
been used as a background to describe generalized complex geometry, see
[Hit03, Gua04]| and as target spaces for 3-dimensional topological field
theory [IkeO1, Ike03, Par01, HP04, Roy07].
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Roughly speaking, a Courant algebroid is a pseudo-Euclidean vector bun-
dle E — M together with an anchor map p : E — TM and a bracket |[., ]
on I'E which satisfy the basic identities, e.g. skew-symmetry, Jacobi iden-
tity, Leibniz rule and ad-invariance, only up to anomalies (which are ezact
terms). Up to the anomalies, the bracket and the anchor map are similar
to those of a Lie algebroid. Indeed, Courant algebroids appear to be the
right framework for pseudo-metric vector bundles equipped with something
like a quadratic Lie algebra structure. A primary example of a Courant
algebroid is given by the double A @ A* of a Lie bialgebroid A or a Lie
quasi-bialgebroid, that is a Lie bialgebroid twisted by a 3-form [Roy99].

An important step forward by Roytenberg was a description of Cou-
rant algebroids in terms of a derived bracket as introduced by Kosmann-
Schwarzbach in [KS96], see [Roy01], or equivalently in terms of a nilpo-
tent odd operator (also known as @Q-structure). Hence the Courant algebroid
structure with its intricate axioms can all be encoded in a cubic function
H on a graded symplectic manifold and its derived bracket. To do so, one
goes into the context of graded manifolds and considers the graded manifold
E[1]. The pseudo-metric on E makes E[1] into a (graded) Poisson manifold.
By constructions of Weinstein, Severa [Sev] and Roytenberg [Roy01], there
is a minimal symplectic realization (£,{.,.}) of E[1]. Now, there is a cubic
Hamiltonian H satisfying {H, H} = 0 on & encoding the Courant algebroid
structure together with the symplectic structure of £. For instance, the
Courant bracket is given by the formula [¢, 9] = {{H, ¢}, ¢ }.

The derived bracket construction also leads to a natural notion of coho-
mology of a Courant algebroid. Since {H, H} = 0, the operator Q@ = {H, .} :
C>®(E) — C>*(€) is a differential. Hence one can define the cohomology of
E as the cohomology H*(C*(£), Q). So far, there are only few examples of
Courant algebroids for which the cohomology is known. For instance when
E=T*M &TM is an exact Courant algebroid, its cohomology is isomor-
phic to the de Rham cohomology of M. On the other hand, if the base is a
point, F is a Lie algebra (together with an ad-invariant pseudo-metric) and
its cohomology is isomorphic to its cohomology as a Lie algebra. One reason
which makes H*(C*(€), Q) rather difficult to treat is that its construction
relies on the minimal symplectic realization £ and not just on F or E* itself.
In particular it is quite different from the usual cohomology theories for “Lie
theoretic objects” such as Lie algebroids or Leibniz algebras where the coho-
mology is defined using a differential given by a Cartan type formula. For
instance, the (de Rham) cohomology of a Lie algebroid (4, [.,.],p: A — M)
over M is the cohomology of the complex of forms (I'(A®*A*),d ), where the
differential d 4 is given, for « a n-form and 1, ..., 1, € T'(A), by the Cartan
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formula
(1)
n+1
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=1
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1<j

This formula does not make sense for a Courant algebroid E in place of A
since, there is no definition of a Courant algebroid for which the bracket
can be made skew-symmetric and the Jacobi identity and the Leibniz rule
are strictly satisfied. Nevertheless, Stiénon-Xu [SXO08] recently observed
that formula (1) makes sense if one restricts E to the kernel ker p of its
anchor map. Precisely, they proved that Formula (1) defines a differential
dpaive on T'(A® ker p), where the pairing (., .) in the formula is induced by the
identification of £ and E* by the pseudo-metric. They call the cohomology
of (I'(A® ker p), dyqive) the naive cohomology of E and denoted it H2 ., .(E).
Furthermore, they conjectured that for a transitive Courant algebroid F,
i.e. a Courant algebroid with surjective anchor map, the naive cohomology
of E is isomorphic to the (standard) cohomology H*(C*(£),Q) of E. We
prove this conjecture in Section 4.2, see Corollary 4.10. A nice feature of
the naive cohomology is that it can be calculated using the same techniques
as for Lie algebroids since it is defined similarly.

Another goal of this paper is to study the cohomology of general Courant
algebroids. We show that in general, the naive cohomology and the standard
cohomology are related by a spectral sequence. Spectral sequences are a
useful tool in geometry and topology. For instance, given a map X — Y, the
Leray spectral sequence allows one to compute the cohomology of X in terms
of the (sheaf) cohomology of Y and the inverse images under 7. This spectral
sequence can be very complicated if 7 is not nice enough. On the other hand,
it takes a much simpler form, when 7 is a fibration with a trivial action of
m1(Y') on the fiber F, relating the cohomology of X to the cohomology of Y
and F'. Spectral sequence also leads to transgression [BT82, McC85]. Our
spectral sequence can be thought of as an analogue of the Leray spectral
sequence of the morphism of graded manifolds & — (ker p)*[1] induced by
the pseudo-metric and the map £ — E[1]. Indeed, the pseudo-metric allows
to see sections of I'(ker p), which are functions on (ker p)*[1], as functions
on E[1] which can be pulled back to functions on £. Then, the ideal I =
(D(ker p[1])) C C*=(€) is a differential ideal which induces a filtration of
the complex (C*(£),Q). The filtration gives rise to a spectral sequence
converging to H*(C*(£), Q) that we call the naive ideal spectral sequence,
see Section 4.1.
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The next important part of this paper is to compute explicitly the naive
ideal spectral sequence in terms of smooth geometric data. This computa-
tion involves taking quotient of TM by D = im p, thus, one has to assume
this quotient is nice. In Section 4.2, we consider the case of Courant alge-
broids with split base, i.e., Courant algebroids for which the base is iso-
morphic to a product L x N of manifolds and D = imp =2 TL x N. Note
that any transitive Courant algebroid is with split base. In the general case
of split base, the naive cohomology is an approximation of the cohomology
of E in the sense that the term E3* of the spectral sequence is the tensor
product of the naive cohomology with symmetric multivector fields on IV,
see Proposition 4.8.

Furthermore, by transgression, the spectral sequence induces a map T3 :
X(N) — H3 . (E) that we call the transgression homomorphism. This
map is a cohomological characteristic class. Indeed, we show that the naive
cohomology and the transgression homomorphism determines explicitly the
(standard) cohomology of E, see Theorem 4.12.

There is a nice class of Courant algebroids parametrized by closed 3-
forms. According to Severa [Sev99], exact Courant algebroids over M,
i.e., Courant algebroids fitting in an exact sequence 0 — T*M — FE —
TM — 0 are in bijection with cohomology classes of closed 3-forms on
M [SWOl, Roy99]. We define a generalized exact Courant algebroid to be
a regular Courant algebroid fitting into an exact sequence 0 — D* — F —
D — 0 of bundles over M, where D = im p. By Severa’s argument, we get
that generalized exact Courant algebroids are in bijection with cohomology
classes of closed 3-forms on (the Lie algebroid) D. The class associated
to a generalized exact Courant algebroid is called its Severa characteristic
class. If, furthermore, F is with split base D = T'L x N, then a 3-form on
D lies in Q3(L) ® C>°(N). We prove that for a generalized exact Courant
algebroid with split base, the transgression homomorphism is given by the
map X(N) 2 X — (1® X)(C) € H3(L) ® C>®*(N) & H3,.. .(E) where [C]
is the Severa characteristic class, see Proposition 5.6. As a consequence, we
obtain an explicit computation of the cohomology of E in terms of [C], see
Corollary 5.7.

The plan of the paper is as follows. In Section 2, we recall the definition
of Courant algebroids and their cohomology, following [Roy99, RoyO01].
In Section 3, we explain the definition of the naive cohomology follow-
ing [SX08]. We define the naive ideal spectral sequence in Section 4.1.
Then we compute the spectral sequence in the case of Courant algebroids
with split base in Section 4.2. In particular we prove the Conjecture of
Stiénon—Xu, see Corollary 4.10. We also define the transgression homomor-
phism. The second main result in this section is Theorem 4.12 computing the
cohomology of a Courant algebroid with split base. In section 5, we study
generalized exact Courant algebroids, defining their Severa characteristic
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class and giving their classification, Proposition 5.3. We then compute the
transgression homomorphism in terms of the characteristic class, see Propo-
sition 5.6. For the reader’s convenience we included an appendix recalling
the basic facts and definition of graded (and super) geometry that we need.

1.1. Aknowledgement. The authors would like to thank Ping Xu for var-
ious comments on the earlier versions of this paper.

2. Courant algebroids and their cohomology

In this section we recall the notion of Courant algebroids and their cohomol-
ogy. We work in the context of graded manifolds as described in Appendix A.
We refer to [Vor91, Vor02, Sev05, Roy01] for more details.

The Courant bracket was originally defined as a skew-symmetric bracket
satisfying the Jacobi identity and Leibniz rule only up to some anom-
alies [Cou90|. As was shown by Roytenberg in his thesis [Roy99], there
is an alternative equivalent formulation of Courant algebroids, namely one
with a bracket fulfilling a certain form of the Jacobi identity (in fact the
Leibniz rule for the bracket see Axiom (1) in Definition 2.1) but no longer
skew-symmetric originally due to Dorfman [Dor87, Dor93|. We recall the
latter definition since it is more convenient in our context and also the more
closely related to Loday algebroids as in [SXO08].

Definition 2.1 (Courant algebroid). A Courant algebroid is a vector bundle
E — M equipped with a symmetric non-degenerate bilinear product (.,.) :
E®y E — R, an R-linear bracket on the sections of E and a bundle map
p: E—TM, called the anchor map. These three operations have to satisfy
to the following rules :

(2) (@, [th1, 2] = [[@, 1], o] + [11, [, 2]
(1 6,6] = 3°d(0.6)
(5) p(@) (W, ) = 2([p, Y], )

where ¢, 1,1, are sections into & and f is a smooth function on M.

Remark 2.2. Note that the bracket [.,.] is not skew-symmetric. Also, some
authors denote this bracket o, for instance see [SX08, Roy01].

Remark 2.3. Since the bilinear form (.,.) is non-degenerate, a Courant
algebroid is a pseudo-Euclidean vector bundle. In particular, there is a
canonical identification of £ and E* induced by the pseudo-metric.

A Courant algebroid is called transitive if the anchor map p : E — TM
is surjective. It is called regular if p is of constant rank.
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Due to an observation of K. Uchino ([Uch02]), the Jacobi identity (Def-
inition 2.1.2) and Leibniz rule (Definition 2.1.3) imply that the anchor map
preserves the bracket:for all ¢1, 19 € T'(E), one has

plb1, o] = (o1, p2lTm

Therefore, in the regular case the image of the anchor map is a Lie algebroid.

The Courant bracket can also be obtained as a derived bracket [KS96,
Roy01] on a (degree 2) graded symplectic manifold. More precisely, the
pseudo-metric on E induces a structure of (degree 2) graded Poisson man-
ifold on E[1]. There is a minimal symplectic realization £ of (E[1],(.,.))
constructed as follows. When E is a split vector bundle £ = A@A* (with the
obvious pairing), £ is just T7*[2] A[1] with the usual graded symplectic struc-
ture (see Appendix A). In the general case (where (.,.) might not even have
split signature), a construction of £ was found by Weinstein, Severa [Sev]
and Roytenberg [Roy01]. First consider the graded symplectic manifold
T*[2|E[1]. Let ¢ : E[l] — E @& E*[1] be the isometric embedding (given
by the pseudo-metric). The minimal symplectic realization of E[1] is the
pullback & := +*T*2|E[1] = E[1] X ggg+) T*[2]E[1] of T*[2]E[1] along .
We denote 7 : € — E[1] the canonical bundle projection. Note that £ fits
into the following short exact sequence of graded fiber-bundles over M :

(6) 0T 2IM - &5 E[1] - 0.

Roytenberg [Roy01] proved that there is a cubic Hamiltonian H on &
encoding the Courant algebroid structure on E. More precisely, the Hamil-
tonian H satisfies the following properties:

(1): The Courant bracket is given by the derived bracket [¢,¢] =
{{H, ¢}, ¥} where we identify sections ¢, of E with fiber-linear func-
tions on E by the pseudo-metric (.,.).!

(2): The anchor map is given, for any ¢ € E, by the formula p(¢) =

{{v,H}, .}
(3): H is nilpotent, i.e., {H,H} = 0.

Remark 2.4. Note that axioms (3), (4) and (5) of a Courant algebroid (in
Definition 2.1) now follow directly from the derived bracket construction.
The first axiom, i.e., the Jacobi identity is equivalent to {H, H} = 0.

The derived bracket approach allows us to define a natural notion of
cohomology for Courant algebroids. The Hamiltonian H gives a degree 1
derivation Q = {H, —} which is of square zero (since {H, H} = 0). Further-
more, (Q maps graded functions on £ to graded functions on £. We denote
A® := C*°(€) the graded functions on the minimal symplectic realization

'The derived brackets go back to an idea of Kosmann-Schwarzbach [KS96]
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& 5 E of E, where, by definition A" stands for the functions of degree n.
Then (A®, Q) is a complex.

Therefore, the following definition due to Roytenberg [Roy01] makes
sense.

Definition 2.5 (Cohomology of Courant algebroids). Let (E — M, [.,.], p,
(.,.)) be a Courant algebroid. Let H be a function of degree 3 on the sym-
plectic realization £ generating the Courant bracket. The cohomology of the
Courant algebroid E is the cohomology of the complex (A®* = C*(£),Q)
equipped with the differential Q := {H,.}.

We denote by H?,,(E) the above cohomology of the Courant algebroid E.
Note that (A°®, Q) is a differential graded commutative algebra, thus HS,;(F)
is a graded commutative algebra.

Let us further introduce coordinates on & for later use. We denote '
the coordinates on the base M, p; their conjugates of degree 2 and &% the
(pseudo) orthogonal fiber-coordinates of degree 1 on E. Then the cubic
Hamiltonian reads in coordinates as

H = ph@)pi€" + Cane0) "€

where p(&,) = pi(z) 821' encodes the anchor map and Cype := ([€a, &), &) are

the structure functions of the bracket.

3. Naive cohomology

In this section, we recall the definition of the naive cohomology of a Courant
algebroid [SXO08]. It is less involved than Definition 2.5; for instance it does
not use a symplectic realization of F.

Mimicking the definition of the differential giving rise to the cohomology
of Lie algebroids, the idea is to consider an operator d : T'(A*E) — T'(A*T1E)
given by the Cartan formula:

(7)
n+1

(do, 1 Ao oPny) = Z(—l)iﬂp(wz‘)@é, VLA e A ng)

=1
+ Z(—l)i+j<a, [¢Z,¢J] A ¢1 A, ’l,Z)l - Q;Z)j - Q;Z)n+1>
1<J
where 91, ...9,41 are sections of E and a € I'(A"E) is identified with an
n-form on FE, i.e., a section of A" E* by the pseudo-metric. However, the

formula (7) is not well defined because it is not C*°(M)-linear in the 1); (due,
for instance, to axioms 3 and 4 in Definition 2.1. The operator d does not
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square to zero either since it is not skewsymmetric in the ;.2 Nevertheless,
Stiénon—Xu [SXO08] noticed that the formula (7) for d becomes C*(M)-
linear in the 1; when one restricts to o € I'(A"(kerp)).> In fact they
proved the following

Lemma 3.1. Formula (7) yields a well defined operator d : T'(A® ker p) —
T(A**Lker p). Moreover, one has dod = 0.

Note that ker p may be a singular vector bundle.*

Proof. The first claim follows from the fact that the failure of the Leibniz
rule in the left-hand side is an exact term, i.e., is in the image of p* and that
pop*=0. Now the terms for d od add up to zero using the Jacobi identity
as in the Lie algebroid case, since all terms are equivalent to those using the
skew-symmetric bracket. See [SX08] Section 1 for more details. 0

Remark 3.2. For a Lie algebroid A, the space (I'(A*A*),d), where d is
the operator given by formula (7), defines its cohomology. In particular, it
calculates the de Rham cohomology of M when A =TM.

Thanks to the pseudo-metric (.,.) on FE, one can view ['(A"E) as graded
functions on E[1] (of degree n), which can further be pulled back to the min-
imal symplectic realization 7 : £ — E[1]. Thus, we can identify I'(A" (ker p))
with a subalgebra of C*(£). Stiénon-Xu proved [SXO08] the following
Proposition.

Proposition 3.3. The Q-structure Q = {H,.} (see Definition 2.5) maps
T (A*(ker p)) to itself. Moreover, if a € I'(A®(ker p)), then Q(«) = d(a).

In other words, @ restricted to I'(A®(ker p)) coincides with the differential
d given by formula (7) (note that Proposition 3.3 also implies that dod = 0).
Since d squares to 0, Stiénon—Xu defined :

Definition 3.4 (Naive cohomology). Let (E,[.,.],p,(.,.)) be a Courant alge-
broid. The naive cohomology of E is the cohomology of the sections of
A® ker p equipped with the differential d given by the Cartan-formula (7).

We denote H . .(E) = H*(I'(A® ker p),d) the naive cohomology groups
of E. By Proposition 3.3, there is a canonical morphism ¢ : H? ., .(E) —
H?,,(E) from the naive cohomology to the (standard) cohomology of Cou-
rant algebroids, see [SX08]. We will prove that this morphism is an isomor-

phism in the transitive case, see Corollary 4.10.

2Using the skew-symmetric bracket does not help either, because it only fulfills a mod-
ified Jacobi identity.

3In this case using the skewsymmetric or Jacobi-fulfilling bracket does not matter since
the difference is exact, thus vanishes in the inner product with ker p.

“In this case I'(ker p) means smooth sections into E that are pointwise in the kernel of p.
We define similarly sections of A® ker p where p has been extended as an odd C*°(M)-linear
derivation A°FE — A*E Q@ TM.
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4. Geometric spectral sequence for cohomology of Courant
algebroids with split base

In this section we define a spectral sequence converging to the cohomology
of a Courant algebroid. Then, in the case of Courant algebroids with split
base, we compute the spectral sequence in terms of geometrical data. For
details about spectral sequences refer to [CEal, McC85].

4.1. The naive ideal spectral sequence. The algebra A® := C*(&) of
graded functions on £ is endowed with a natural filtration induced by the
ideal generated by the kernel of the anchor map p : E — TM. More
precisely, let I be the ideal

I:=T(AZ kerp) - C™(€),

i.e., the ideal of functions containing at least one coordinate of ker p, where
we identify sections of E to odd functions on E by the pseudo-metric (as
in Section 3). Since ker p gives rise to the naive cohomology, we call I the
naive ideal of £.

Lemma 4.1. I is a differential ideal of the differential graded algebra
(4*%,Q)

Proof. According to Proposition 3.3 and Lemma 3.1, we have Q(I'(A" ker p)) C
(A" ker p). The result follows since @ is a derivation. O

Since I is a differential ideal, we have a decreasing bounded (since E is
finite dimensional) filtration of differential graded algebras A® = FCA® D
F1A® 5 F?2A° ..., where FPA? := [P N A4. Therefore:

Proposition 4.2. There is a spectral sequence of algebras
. 1 +
ED? = FPAPH P AP — HPTI(E)
converging to the cohomology of the Courant algebroid E.

We call this spectral sequence, the naive ideal spectral sequence.

Proof. The spectral sequence is the one induced by the filtration £®A® of
the complex (A®, Q). It is convergent because the filtration is bounded. [

Remark 4.3. In order for the naive ideal spectral sequence to be useful, one
needs to be able to calculate the higher sheets Eg’q of the spectral sequence
in terms of (smooth) geometry of E. Such calculations involve the image of
the anchor map. Thus it seems reasonable to restrict to the class of regular
Courant algebroids.
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4.2. Courant algebroids with split base. In this section we compute
explicitly the naive ideal spectral sequence of Proposition 4.2 for what we
call Courant algebroid with split base and then prove the conjecture of
Stiénon—Xu as a special case.

By the bracket preserving-property of the anchor-map p, D := im p is an
integrable (possibly singular) distribution.

Definition 4.4 (split base). A Courant algebroid (E — M, (.,.),[.,.],p) is
said to have split base iff M = L x N and the image of the anchor map is
D:=imp=TLxNCTM.

In particular, a Courant algebroid with split base is a regular Cou-
rant algebroid. Furthermore, the integral leaves of the distribution D are
smoothly parametrized by the points of N; thus the quotient M/D by the
integral leaves of the foliation is isomorphic to N.

Remark 4.5. The local coordinates £ for F introduced in Section 2 can
be splitted accordingly to the isomorphism D = T'L x N. This splitting
is useful in order to do local computations. More precisely, over a chart-
neighborhood U of M, D := im p can be spanned by coordinate vector fields
%. Let ¢ := p*da’ (€ ker p) be vectors that span the image of p*, and let
&1 be preimages of 97, dual to the &/. Then choose coordinates &4 € ker p
normal (with respect to the pseudo-metric) and orthogonal to both the ¢’s
and the &rs. Therefore we have split the coordinates £%s in the three subsets
consisting of the &s, the &rs and the £é4s. Furthermore this splitting also
induces a splitting of the degree 2 coordinates p;s (the conjugates of the
coordinates on M) into the prs, which are the symplectic duals of the x!,
and the pps (their complements for which the Poisson bracket with the zls
vanish). Since D = TL x N, the coordinates z! and 2" can be chosen to
be coordinates of L and N respectively.

The Hamiltonian in these coordinates reads as H = pr&! —i—%C’abc(:L‘)faf bee,
Note that in order to compute structure functions like Cgp. you need &4
which is the dual frame of €4 or due to the pseudo orthonormality 4 = +£4.

We denote X9(N) the space of (degree q) symmetric multivector fields
I'n(SY?(TN)) with the convention that S9/2(T'N) is {0} for odd ¢’s, i.e.,
X*(N) is concentrated in even degrees. With these notations, the sheet E}"*
of the spectral sequence of Lemma 4.2 is given by :

Lemma 4.6. For a Courant algebroid with split base D =T L x N, one has
EPT 2T AP (ker p) @ X9(N).
Proof. The differential dy : Ef? — Eg’qH is the differential induced on

the associated graded @ FPAPT?/FP+LAPTe of the naive filtration F*®A®.
Hence, it is obtained from @) by neglecting all terms which contain at least
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one term in /. Using the local coordinates of Remark 4.5, we find dg = p 18%1.

Globally, the algebra E8’° is isomorphic to C*°(B) for the graded manifold
B := &/I which, on a local chart U C M is isomorphic to By = T*[2|]U @y
DI1]|U. Globally, B fits into the short exact sequence of graded fiber bundles
over M :

(8) 0—-T2]M - B— D[l] -0,

where the latter map B — D]J1] is the map induced by the anchor map
p: E — D = imp on the quotient of £ by I. The differential dy on
E8’° = C*°(B) is canonically identified with the odd vector field py induced
by @ on the quotient B = £/I.
There is a similar interpretation of Eol". Precisely, Eé" is isomorphic to
I'p(B1) for a (graded) vector bundle B! — B which, locally, is the fiber
1~

product B‘U = ker p[1] xy B. In particular, B! fits into the short exact
sequence of graded fiber bundles over M :

9) 0 — kerp[l] = B' = B —0

The isomorphism Eé" = T'p(B) identifies the differential dg : Eé" —
Ey*™ with the odd vector field 5 : Ig(B') — I'p(B') defined as the
covariant derivative p = Vj, along pg where V is a local connection on
By vanishing on a local frame £ of B'. This is well defined, because the
transition functions between such frames come from functions on M and py
projected to M vanishes (we extend to arbitrary sections of B! via Leibniz
rule).

This identification of Eol ** extends to the other lines EY 22:® of the spectral
sequence easily. Namely, there is an isomorphism Ef® = T'g(SPB1), where
SP stands for the graded symmetric (hence it is skew-symmetric since the
fibers ker p[1] are of odd degree) product over B. We extend 5 to I'5(SPB?)
by the Leibniz rule. Since, by Lemma 4.2, dj is a derivation, we also have
the identification of dg : ESZQ" — Egzz"ﬂ and p.

According to Lemma 4.2, dg is a derivation, thus it is sufficient to com-
pute the cohomology of the complex (E8’°, dp). The sequence (8) yields a
morphism of sheaves 7 : C*°(B) — I'p (S*(T'M)[2]) — 'y (S*(T'M/D)[2]).
On a local chart, the complex (E8’°, dp) is isomorphic to the Koszul com-
plex of B® :=T'p/(S*(T'M)[2] ® A*(E/ ker p)) with respect to the differential
p= pl% induced by the regular family given by the p;s. Since the image
of p spans D - B°®, the morphism of sheaves n: C*°(B) — I'y/(S*(T'M/D)[2])
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is locally a quasi-isomorphism. Thus we have
HY(Ey*®, do) = T (S*(TM/D)[2))
= TN (S*T(N)[2]) ®coe(ny C(L x N)
= XI(N) @coo(ny C (M),

where the second line follows from the fact that £ has split base D 2 T LxN.
The computation of the line El1 ** is similar since j is a horizontal lift of 7.

In particular, 5 does not act on the fibers ker p[1] of B! — B, but only on
the base B. Hence

HY(Ey*, do) = XU(N) @ Tar(ker p).

Since the lines, Eg’o are generated by (products of elements of) Eé’o and do
is a derivation, the result follows. [l

Remark 4.7. Lemma 4.6 is the main reason to restrict to Courant alge-
broids with split base. In general one can consider the quotient M/D of
M by the integral leaves of the integrable distribution D := imp. Let
C>®(M)P be the space of smooth functions on M constant along the leaves
and Xpjq:(M /D) the space of derivations of C*(M)P. To describe the spec-
tral sequence using smooth geometry, we would like a formula of the form:

EPT 2T (AP ker p) ® SQ/2(Xflat(M/D))'

A quick analysis of the proof of Lemma 4.6 shows that this formula will hold
if and only if we have the relation

(10) FM(TM/D) = FM/D(Tflat(M/D)) ®C00(M)D COO(M) .

Courant algebroids with split base are a large class for which relation (10)
holds. However Relation (10) does not hold for every regular Courant alge-
broid. For instance, take the Lie algebroid D underlying the irrational torus.
That is M = T? is foliated by the action of a non-compact one parameter
subgroup of T2 and D is the subbundle of TM associated to the foliation.
The leaves are dense. Let £ = D @ D* be a generalized exact Courant alge-
broid (as in Example 5.5). Note that D is regular of rank 1, thus Iy, (T'M/ D)
is non zero but C*°(M)P = R, thus Xpq(M/D) = 0. Thus formula (10)
does not hold for F.

Recall from Section 3 that the naive cohomology H. ;. .(E) is the coho-
mology of the complex (I'asA®(ker p),d). The second sheet of the spectral

sequence is computed by H? .. (E):
Proposition 4.8. Let E be a Courant algebroid with split base D = T L X N.

Then, one has an isomorphism of graded algebras
Ebt>~pgr . (E)® XYN).

naive
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Proof. 1t is a standard fact of spectral sequences [CEal, McC85]| that the
differential
dy : BP9~ HI(FPA/FPYYA dg) — EPTHT = HI(FPHIA/FPH2 A, dy)

is the connecting homomorphism in the cohomology long exact sequence
induced by the short exact sequence of complexes 0 — FPHA/FPT24 —
FPA/FPT2A — FPA/FPT'A — 0. On a local chart, we obtain that d; is
given by the following formula

0 1
dy 516 I+CIA§§ 8§K Kpgie? 857—'—7 Ciy¢ fJagA
+ 5t 58573—1‘* Cqpeie? 8{0

where we use the local coordinates introduced in Remark 4.5. Now it follows
from the isomorphism E'? = T'); AP (ker p) @ X9(N) given by Lemma 4.6 and
the above formula for d; that

di =d®1:TyAP(ker p) @ XI(N) — Ty AP (ker p) @ X9(N)
where d is the naive differential. The result follows. O

The third sheet of the spectral sequence is trivially deduced from Propo-
sition 4.8.

Corollary 4.9. Let E be a Courant algebroid with split base. There is a
canonical isomorphism of bigraded algebras E3° = E3*°.

Proof. Since X(N) is concentrated in even degrees for ¢, so is E5*? by Propo-
sition 4.8. Therefore, the differential dy : E2? — EET971 ig necessarily 0.
Hence E3* = E3*°. O

We now prove the conjecture of Stiénon—Xu. There is a canonical mor-
phism ¢ : H? .. (E) — H2,,(E), see [SX08] and Section 3.

TZ(ZZ’UE

Corollary 4.10. Let E be a transitive Courant algebroid. Then the canon-
ical map ¢ is an isomorphism ¢ : H? . (E) = H?,,(E), i.e., the Courant
algebroid cohomology coincides with the naive cohomology.

Proof. A transitive Courant algebroid satisfies D := im p = T'M. Therefore,
E is trivially with split base and M/D = pt = N. Hence X?(N) is non
zero only for ¢ = 0, where it is R. Therefore, by Proposition 4.8, F5'? = (
if ¢ # 0. It follows that all the higher differentials d,,>3 are null. Thus the

cohomology of the Courant algebroid is isomorphic to E; ~He . (FE)QR.

naive
Furthermore, by definition of the naive ideal I, the map ¢ preserves
the filtration by I. Thus ¢ passes to the spectral sequence and coin-
cides with the morphism of complexes ¢; : (I(A"ker p),d) = (B d;) —
(Bprq=nE7?,d1) on the first sheet of the spectral sequence. By the first
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paragraph of this proof, ¢; is a quasi-isomorphism. Hence ¢ is indeed an
isomorphism. 0

Remark 4.11. When F is an exact Courant algebroid, Corollary 4.10 was
obtained by Roytenberg [Roy01]. Indeed, it was one of the examples moti-
vating the conjecture of Stiénon—Xu.

For general Courant algebroids E with split base, the spectral sequence
does not collapse on the sheet F3® but is controlled by a map from the
vector fields on N to the naive cohomology of F which we now describe.

It is a general fact from the spectral sequence theory that there exists
a differential ds : EY? — E§+3’q_2. In particular, d3 induces an Eg,o =
C*°(N)-linear map

(11) Ts: X(N)— H3

naive(

E)
given as the composition

Ty: X(N) = X2(N) = E9? & g0~ g3

naive

(E) -

We call the map T3 the transgression homomorphism of the Courant alge-
broid E. Let X*!(N) be the kernel of T3 above (we like to think of elements
of X¥(N) as Killing vector fields preserving the structure function H).
Note that X*!(N) may be singular, i.e., its rank could vary. We denote

X4 the space of “symmetric Killing multivector fields” S’gg (XFL(NY)

with the convention that X*%4 = {0} for odd q.

(N)

Theorem 4.12. The cohomology of a Courant algebroid E with split base
s given by

(12) Ba(E) = D Hle(B)/(T3) X4
p+q=n

where (13) is the ideal in Hp . .

Ty(X(N)) of Ts.

Proof. According to Proposition 4.8 and Corollary 4.9, the third sheet of
the spectral sequence is given by EY? =~ HP . (E) ® X9(N). Note that
X9(N) =T n(SY2(TN)) is generated as an algebra by its degree 2 elements.
Since the differential ds : 57 — EX 3472 ig 4 derivation, it is necessarily the
unique derivation extending its restriction 753 = ds : X(N) — H3 . (E).
Since X*(N) = I'y(S92(TN)) is a free graded commutative algebra, the
cohomology EJ"* = H*(E3*,d3) is given by
EY? = HE(BE)/(im(Ts)) @ S92 (ker Ty)

natve

Yo (B)/(T3) X0

naive

(E) which is generated by the image
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Now, it is sufficient to prove that all higher differentials d,>4 vanish. Since
dy : EPY — EPT973 49 o derivation, it is completely determined by its
restriction to the generators of E* which lie in E}° and EJ*. Thus, for
obvious degree reasons, d4 = 0 and similarly for all d,~4. Therefore, the
spectral sequence collapses at the fourth sheet: ER! = EP. O

Remark 4.13. Theorem 4.12 gives an isomorphism of vector spaces, not of
algebras in general. However, by standard results on spectral sequences of
algebras, the isomorphism (12) is an isomorphism of graded algebras if the
right hand side of (12) is free as a graded commutative algebra.

Remark 4.14. Theorem 4.12 implies that all the cohomological informa-
tion of a Courant algebroid with split base is encoded in the transgression
homomorphism 73 together with the naive cohomology (and image of the
anchor map). We like to think of T3 as a family of closed 3-sections of ker p
obtained by transgression from X' (). This idea is made more explicit in
the case of generalized exact Courant algebroids in Section 5. In that case,
the transgression homomorphism is closely related to a generalization of the
characteristic class of the Courant algebroids as defined by Severa [Sev99],
that is the cohomology class of the structure 3-form (see Proposition 5.2 and
Proposition 5.6) parameterizing such Courant algebroids.

5. Generalized exact Courant algebroids with split base

In this section, we consider a generalization of exact Courant algebroids.
These Courant algebroids are parametrized by the cohomology class of closed
3-forms from which an explicit formula for the transgression homomorphism
T3 can be given.

An exact Courant algebroid £ — M is a Courant algebroid such that the
following sequence

0-T*MZELTM —0
is exact.
Assume that D := imp C TM is a subbundle, i.e., E is regular. Then
the anchor maps surjectively E 2. D and its dual pl' : T*M — E* =2 E

factors through an injective map D* 2 E (again E and E* are identified by
the pseudo-metric).

Definition 5.1. A regular Courant algebroid (E, p, ...) is generalized exact
if the following sequence of bundle morphisms over M

(13) 0D EL D0
18 exact.

By the above discussion, the only condition to check for the sequence (13)
to be exact is exactness in F.
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There is a simple geometric classification of exact Courant algebroids
due to Severa [Sev99] which extends easily to generalized exact Courant
algebroids as follows. Note that D is Lie subalgebroid of TM. Given a
Lie algebroid D, we write (2°(D),dp) the complex of D-forms, H}, (D) its
cohomology and Z*(D) = ker(dp) the closed D-forms [Mac87, SW99].

Let (E — M,p,[.,.],(.,.)) be a generalized exact Courant algebroid and
assume given a splitting of the exact sequence (13) as a pseudo-Euclidean
vector bundle, that is, an isotropic (with respect to the pseudo-metric) sec-
tion 0 : D — E of p. Thus the section ¢ identifies E with D* & D endowed
with its standard pseudo-metric: (a ® X,88Y) = a(Y) + 5(X). Since p
preserves the bracket, for any X,Y € I'(D), one has

[0(X),0(Y)] = o([X,Y]rar) @ Co(X,Y)

where C’U(X, Y) € p*(D*). Let Cy be the dual of C,, that is, for XY, Z ¢
(D), we define Cy(X,Y,Z) = (Cy(X,Y), Z). It follows from axiom (4)
and axiom (5) of a Courant algebroid (see Definition 2.1) that C, is skew-
symmetric. Moreover, by axiom (3) and axiom (5), C, is C*°(M)-linear.
Thus C, is indeed a 3-form on the Lie algebroid D, i.e., C, € Q3(D).
Furthermore, the (specialized) Jacobi identity, i.e., axiom (2) implies that
C, is closed, that is, dp(C,) = 0.

Proposition 5.2 (The Severa characteristic class). Let E be a generalized
exact Courant algebroid.

1) There is a splitting of the exact sequence (13) as a pseudo-Euclidean
bundle; in particular there is an isotropic section o : D — E of p.

2) If o' : D — E is another isotropic section, then Cy — Cys is an exact
3-form, that is, C;, — Cyr € imdp.

Proof. The proof is the same as the one for exact Courant algebroids, for
instance, see Severa Letter [Sev99] or [Roy99, Section 3.8]. O

In particular the cohomology class [C,] € H3, (D) is independent of 0. We
will simply denote it [C] henceforth. We call the class [C] € H3, (D) the
Severa class of (E — M, p,[.,.], {.,.).

Given a closed 3-form C' € Q3(D), one can define a bracket on the pseudo-

Euclidean vector bundle D* @ D given, for X,Y € I'(D), «, 8 € T'(D*), by
the formula

(14) [Q@X,,B@ Y] =LxpB— ZydD(a) +C(X,)Y,.)® [X,Y]TM.

It is straightforward to check that this bracket makes the pseudo-Euclidean
bundle D* @ D a Courant algebroid, where the anchor map is the projection
D* @ D — D [Roy99, Section 3.8]. Clearly its Severa class is C'. Moreover
two cohomologous closed 3-forms C,C’ € Q3(D) yield isomorphic Courant
algebroids [Roy99, Section 3.8]. Therefore
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Proposition 5.3 (Analog of the Severa classification). Let D be a Lie sub-
algebroid of a smooth manifold M. The isomorphism classes of generalized
exact Courant algebroids with fized image im p = D are in one to one cor-
respondence with H%ie(D), the third cohomology group of the Lie algebroid
D.

The correspondence assigns to a Courant algebroid E its Severa charac-
teristic class [C].

Remark 5.4. Generalized exact Courant algebroids are easy to describe
in terms of the derived bracket construction. Indeed, since we can choose
an isomorphism £ = D @ D*, the minimal symplectic realization of F is
isomorphic to T*[2]D[1]. From the explicit formula (14) for the Courant
bracket, we found that the generating cubic Hamiltonian H (encoding the
Courant algebroid structure) is given, in our adapted coordinates, by

1
(15) H=p"+ ECIJKéJfJfK
where Crsx are the components of the Severa 3-form C induced by the
splitting = D & D*.

Now assume that F is a generalized exact Courant algebroid with split
base D 2 TLx N. Then, there is an isomorphism Q°(D) = Q°*(L)QrC*(N)
and the de Rham differential dp of the Lie algebroid D is identified with
dr, ® 1, the de Rham differential of the smooth manifold L, see Remark 3.2.
In particular, Z3(D) = Z3(L) ®g C*°(N). Furthermore, since ker p & D* &
T*L x N, the naive complex (F M (A® ker p), d) is isomorphic to the complex
(Q*(L) ® C*(N),dr ®1) of de Rham forms on L tensored by smooth func-
tions on N. Therefore HY ;, .(E) = H},p(L) ® C*°(N), where H}) ,(L) is the

de Rham cohomology of the manifold L.

Example 5.5. Let L and N be two smooth manifolds and define M :=
L x N, D := TL x N which is a subbundle of TM. Pick w € Z3(L) any
closed 3-form on L and f € C*°(NNV) be any function on N. Then C :=w® f
is a closed 3-form on D. The 3-form C' induces a generalized exact Courant
algebroid with split base structure on E := D @ D* where the Courant
bracket is given by formula (14), the pseudo-metric is the standard pairing
between D and D* and the anchor map the projection £ — D on the first
summand. By Proposition 5.3, any generalized exact Courant algebroid
with split base is isomorphic to such a Courant algebroid.

For any vector field X € X (V) on N, there is the map

(16) Q°...(E) = Q% (L) ®C®(N) 225, 0 (L) @ ¢®(N) = Q°,...(E)

naive naive
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defined, for w € Q*(L) and f € C*(N) by (1@ X)(w® f) = w® X[f].
Applying this map to the Severa 3-form C € Z3(L) ® C*(N) = Z3(D)
yields the map

X(N)> X = [(1® X)(0)] € H,

naive (E)
which is well defined and depends only on the Severa class of E (and not on

the particular choice of a 3-form representing it) by Proposition 5.2.

Proposition 5.6. Let E be a generalized exact Courant algebroid with
Severa class [C] € H}, (D) & H3 (L) ® C*®(N). The transgression homo-
morphism Ty : X(N) — H3_. (E) is the map given, for any vector field
X € X(N), by

T3(X) =[(1® X)(0)] € H,

naive(

E).

Proof. Fix a Severa 3-form C' representing the Severa characteristic class.
The transgression homomorphism is induced by the differential dj : Eg" —
E§+3"72. Corollary 4.9 and Proposition 4.8 together with above remarks
about generalized exact Courant algebroids give: EL? = T'(APimp*) ®
X4(N). Therefore our adapted coordinates 4.5 still apply and give on a
local chart the map ds as
ds ZéCIJK,L'SIE‘JﬁKai
pL
By formula (15), the functions %CUKflfJfK are given by the components
of the Severa 3-form C (identified with a function on E[1] via (.,.) and
pulled back to £). Now the result follows since T3 is the restriction of ds to

Ey? = X(N). O

We denote Ann(C') the kernel of T3, that is the vector fields X on IV such
that [(1®X)(C)] =0 € H?,,.(E). We also denote ((1®X(N))(C)) the ideal
in Hy ...(E) generated by the vector subspace im T3 = {(1 ® X)(C), X €
X(N)}.

Corollary 5.7. The Courant algebroid cohomology of a generalized exact
Courant algebroid E with split base D = TL x N is given by
Sa(E)= D Hpp(L) @ C(N)/((1® X(N))(C)) @cx(n) S/ (Ann(C))
p+2q=n
where [C] is the Severa class of E.

Proof. This is an immediate consequence of Theorem 4.12, Proposition 5.6
and the isomorphism H? .. (E) = H})p(L) ® C*(N). O

Remark 5.8. Let E be a generalized exact Courant algebroid with split
base D &2 TL ® N. Assume that the Severa class of E can be represented
by a 3-form C € Q3(L) ® C*°(N) which is constant as a function of N, i.e.,
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CeBP(L)®R C Q3(L) ® C°(N). Then, by Proposition 5.6 T3 = 0 and
thus, by Corollary 5.7, the cohomology of F is

Ha(E) = P Hpgp(L) @ XUN).
prg=n
An example of such a Courant algebroid is obtained as in Example 5.5 by
taking C' = w ® 1 for the Severa 3-form, where w is any closed 3-form on L.

Example 5.9. Let G be a Lie group with a bi-invariant metric (.,.). Then G
has a canonical closed 3-form which is the Cartan 3-form C = ([§, 61], 0F)
where 6% is the left-invariant Maurer-Cartan 1-form. Note that, by ad-
invariance of (.,.), C' is bi-invariant (hence closed).

Thus, by Example 5.5, there is a generalized exact Courant algebroid
structure on G' x N with Severa class [C' ® f] for any manifold N and
function f € C*° (V). This example (for N = {x}) was suggested by Alekseev
(see also [Roy01, example 5.5]). Explicitly, the Courant algebroid is E =
(g g) x N — G x N. The structure maps are given by :

(XoY, X' oY) =(X,X') - (Y,Y)
p:E—TGBETN : (X®Y,g,n)— (X' —Y")(g)BO

where the superscript ! (resp. ") means that an element of the Lie algebra
g = T.G is extended as a left (right) invariant vector field on G. The bracket
is given, for (g,n) € G x N and X, X" )Y, Y' € g C I'(g x G), by

(X & XY &Ym= (X,XT& f(n)Y,Y])(gn)

Choosing the splitting o(Z, g,n) := (Z ® —Ady Z, g,n), one finds that the
Cartan 3-form C' is indeed the Severa class of F.

Now assume G is a compact simple Lie group, then C spans H*(G). If
we take N = R and f to be constant, then, by Remark 5.8, the cohomology
of Eis H},(F) = H*(G) ® X*(R), thus two copies (in different degrees) of
the cohomology of G. Now take f € C*°(R) to be f(t) =t. Then Ann(C) is
trivial and H$,,(E) = H*(G)/(C). Note that H®*(G) is the exterior algebra
H*(G) = A*(C,xg,...,x,), thus H (E) = A®(x2,...,2,) as an algebra,
see Remark 4.13.

Appendix A. Graded geometry

In this appendix we recall some basics of super and graded geometry. For a
good and detailed introduction to supermanifolds see, for instance, [Vor91].

Definition A.1. A supermanifold £ of dimension p|q is a smooth mani-
fold M of dimension p together with a sheaf, denoted C*°(E), of Za-graded
C>(M)-algebras locally of the form C*(U) @r A®(RY).

C>°(€) is called the sheaf of super functions on &.
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Example A.2. A standard example of a (non-trivial) super manifold is
the odd vector bundle IIF associated to a smooth vector bundle £ — M.
The supermanifold ITF is the manifold M together with the structure sheaf
Ta(A*E*).  Locally, C*(€) is generated by C°°(U) and a local frame
€L ... €% of E*, where k is the rank of E.

Example A.2 is fundamental because of the well known

Theorem A.3 (Batchelor). Every supermanifold can be realized as an odd
vector bundle.

For a proof of this see, e.g. [Vor91]. In particular, the functor IT : Vect —
SMan (given by Example A.2) from the category of vector bundles to the
category of supermanifolds is surjective on the objects. However these two
categories are not equivalent, since the category of supermanifolds has more
morphisms than the category of vector bundles [Vor91].

Vector bundles on supermanifolds are defined analogously to smooth vec-
tor bundles, using Zs-graded vector spaces instead of mere non graded vector
spaces. In particular, the tangent bundle of a supermanifold £ is the space
of graded derivations of the structure sheaf C*(£).

A.1. Graded manifolds. For graded manifolds we refer to [Vor02, section
4], [Sev05, section 2] or [Roy01, section 2].

The difference between a supermanifold and a graded manifold lies in an
additional data for a graded manifold — the Fuler vector field — as well as a
cover of compatible Z-graded charts. Before recalling the formal definition,
let us first consider a fundamental example along the lines of Example A.2.

Example A.4. Let E — M be a smooth vector bundle and consider the
supermanifold £ = I[ITIIE. An Euler vector field € can be defined, in coor-
dinates induced by charts of E — M, by the formula

0 -0 0
— 29[1 (2 _ a
€= 2050 TV TS e
where 2, £% are coordinates on M and the fibers of E and v*,0% are their

correspondents on T'E. Note that € is well defined because for these adapted
charts we have the following transition functions:

£ = My ()¢
~ o
= Oz v’

07 = M0 + My %',
Now we restrict C*°(€) to functions which are polynomial in 6%s. A crucial
observation is that the adapted coordinates are eigenfunctions of this Euler
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vector field €, namely €- 2% = 0,¢e-£% = £%,e-v' = v' and € - 6% = 20%. More-
over the structure sheaf C*°(&) is Z-graded and locally (over such a chart)
generated by these coordinates (as smooth functions) in all coordinates of
degree 0, the free exterior algebra in all odd coordinates, and a polynomial
algebra in all even coordinates not of degree 0. Therefore, the eigenvalues
of € are called degrees, and are compatible with the Zs-grading of C* (),
i.e., eigenfunctions for odd eigenvalues are odd functions in the Zs-grading
and similarly for even eigenvalues. The supermanifold £ together with this
Fuler vector field and the charts induced by £ — M is an example of a
graded manifold, denoted T[1]E[1].

Definition A.5 ((integer) graded manifold). Let £ be a fized supermanifold
with a fixed even vector field €.

1) A chart of € is called Z-graded iff its coordinates are eigenfunctions of
€ with integer ergenvalues.

The structure sheaf C* of Z-graded functions over this chart is the
Z-graded algebra generated by these coordinates, i.e. smooth functions
in the coordinates of degree 0, the free exterior algebra in the odd coor-
dinates, and the free algebra of symmetric polynomials in the even
coordinates not of degree 0, with the Z-grading given by e.

2) A Z-graded atlas of £ is an open cover with Z-graded charts such that
the transition functions between them preserve the Z-grading and are
constituted of Z-graded functions. Especially the number of coordinates
in each degree is the same on all charts.

3) An (integer) graded manifold € is a supermanifold £ together with a
fized vector field €, called the Euler vector field, and a (mazimal) Z-
graded atlas.

The graded manifold is said to be non negatively graded if all coordinates
are of non negative integer degree.

Even though the Zs-grading (even/ odd) is not required to be related to
the integer grading (by the Euler vector field) in the definition, in many
practical examples, the two gradings are compatible, i.e., odd functions
with respect to the integer grading are exactly the odd with respect to the
Za-grading. All graded manifolds in this paper fulfill this restriction. Non
negatively graded manifolds for which the two gradings are compatible are
also called N-manifolds [Roy01].

Example A.6. Given a smooth vector bundle £ — M and an integer n # 0,
we can form the graded manifold E[n] with the canonical Euler vector field
which assigns the degree n to fiber-linear functions as in Example A.4.

There is an obvious notion of vector bundles over graded manifolds similar
to the notion of vector bundles over super manifolds. If £ — M is such a
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vector bundle, one denotes by E£[n], the graded vector bundle obtained by
shifting the fiber degrees by n.

For instance, any graded manifold £ has a tangent bundle T€ defined as
the graded vector bundle of (graded) derivations of C*°(£). Similarly, its
cotangent bundle 7%& is its C*°(€)-linear dual.

A sequence of graded manifolds C — & — F is said to be ezact if the
sequence of sheaves C>(C) « C*(E) « C*>(F) is exact. This provides a
bridge between graded geometry and homological algebra.

A.2. Graded Poisson and symplectic manifolds. There is a de Rham
differential dg : C*(&) — QY(€) := Te(T*[1]€) for graded manifolds [Vor91,
Roy01], generalizing the de Rham differential for smooth (non graded) man-
ifolds, which uniquely extends as a derivation to Q°(&) := Ig(S*(T™[1]€)).

Definition A.7. A graded Poisson manifold of degree d, (€,{.,.}) is a

graded manifold € together with a bracket of degree d on its structure sheaf
C>(E) satisfying, for all homogeneous functions f,g,h € C*(E),

(17) {g, f} = (—1){lFHdlaltd g gy
(18) {f,gh} = {f,gth+ (—1)1THDlslg ¢ )

(19) {f.{g. 13} = {{f, g}, b} + (1) WDl g L5}y

A graded presymplectic manifold (€,w) is a graded manifold with a homo-
geneous dg-closed 2-form w.

A graded symplectic manifold (£,w) is a graded presymplectic manifold
with w of total degree d + 2 such that the map of vector bundles w® : TE —
T*E is non-degenerate. It is in particular a graded Poisson manifold of
degree —d.

Graded Poisson manifolds occur naturally in field-theory, more particu-
larly in the context of the AKSZ or BV-formalism. As in the non-graded
case, the Poisson bracket is encoded by a homogeneous Poisson bivector II,
i.e., living in Tg(S?(T[~1]€)), satisfying [II,I1]s. = 0, where [.,.]s. is the
graded analogue of the Schouten bracket.

Example A.8. 1) Let (E,{(.,.)) be a pseudo-Euclidean vector bundle
over M. Then E[1] has a canonical degree —2 Poisson bracket defined
on two sections «, 3 € 'y (E[1]) by {«a,8} = (a, (). Note that if
frg € C®(M)=C®(E[1])°, then {f,a} and {f, g} are necessarily zero
for degree reasons. Note that (E[1],{.,.}) is not a graded symplectic
manifold.

Similarly, one defines a degree —2n Poisson manifold structure on
2) The (shifted) cotangent bundles T*[k]€ is a graded symplectic man-
ifold with symplectic form w = dp«ef induced by the symplectic
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potential /Liouville-form # similar to the smooth case. Here w has
total degree k + 2.

Let z% be coordinates of £ of degree |a|, p, their duals of degree
k —la] and d := dg«y)¢ the de Rham differential on T*[k]€. The
Liouville form reads locally as 0 := p,dz® of homogeneous degree
k + 1 and the symplectic form reads locally

w = dp,dz®

which is obviously closed (under d) and also non-degenerate. The
Poisson bracket on the coordinates reads as

{pom Zﬁ} = 55 {Za7 ZB} =0= {p0l7p5}
and has degree —k.

Severa has given the following example of a symplectic manifold which
allows the derived bracket construction of Courant algebroids, see Section 2.

Proposition A.9. Let (E — M, (.,.)) be a pseudo-Euclidean vector bundle.
The fiber product E[1] X ggp+y1) T*[2]E[1] is a graded symplectic manifold
where the symplectic form has total degree 2 + 2.

Proof. Let us denote g = {.,.) the pseudo-metric and ¢* : E[1] — E*[1]
the isomorphism it induces. Let i : E[l] — (F @ E*)[1] be the map
P = B % g'). Tt is easy to check that 4 is a morphism of graded Poisson
manifolds. Thus the pullback along i : E[1] — (E & E*)[1] of the symplectic
form on T*[2]E[1] gives a structure of graded presymplectic manifold on
E[1] X (ggr+yn) T*[2]E[1]. Let w be the closed 2-form. Now you need to
check that w is non-degenerate. It follows since, in the adapted coordinates
from section 2, w and the associated bivector II, have the following explicit
expression :

. 1
w=dp; Adz' + 3 Gapd€@de?
0,0 1wd 0

= op N oai 729 oga oe

II
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