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A one-way wave equation, also known as a paraxial or parabolic wave equation, is a 
differential equation that permits wave propagation in certain directions only. Such equations 
are used regularly in underwater acoustics, in geophysics, and as energy-absorbing numerical 
boundary conditions. The design of a one-way wave equation is connected with the 
approximation of ( 1 -- s •) J t2 on [ -- 1,1 ] by a rational function, which has usually been 
carried out by Pad6 approximation. This article presents coefficients for L 2, L •, and other 
alternative classes of approximants that have better wide-angle behavior. For theoretical 
results establishing the well posedness of these wide-angie equations, see the work of Trefethen 
and Halpern ["Well-posedness of one-way wave equations and absorbing boundary 
conditions," Math. Cornput. 47, 421-435 (1986) ]. 

PACS numbers: 43.30.Bp 

INTRODUCTION 

The constant-coefficient wave equation 

u,, = uxx + u• (1) 
admits plane-wave solutions traveling in all directions. 
However, in several applications it is desirable to replace ( 1 ) 
by a one-way wave equation (OWWE), an equation that per- 
mits wave propagation in a 180 ø range of angles only. In 
recent years this idea has become a standard tool in under- 
water acoustics,•'2 in geophysics, 3-• and in the design of nu- 
merical "absorbing boundary conditions. "c'-• 

The purpose of this article is to present coefficients for a 
number of families of wide-angle one-way equations. A 
"wide-angle" one-way equation is one designed to be accu- 
rate over nearly the whole 18{Y range of permitted angles, 
not just a small subrange; this idea has been exploited by 
Greene, 9 for example, who proposed equations similar to the 
"L •" approximations in Seca. II and III below. As one-way 
wave equations become better understood and computers 
grow more powerful, wide-angle accuracy is becoming an 
issue of greater importance. The construction of such formu- 
las has usually been carried out on an ad hoc basis, but we 
will aim to be more systematic here by drawing upon the 
connection with the mathematical field of approximation 
theory. Some related results based on interpolation can be 
found in the recent papers of Higdon. Jo.• 

The theorems in our previous pape rl2 establish that all 
of the one-way wave equations considered here are well 
posed. 

To make our results broadly applicable, we have inten- 
tionally confined our attention to the very simplest equation 
( 1 ), and omitted all details of physics and of numerical im- 
plementation (both are problem dependent). We are well 
aware that the constant coefficient in (1) is unrealistic for 
many problems, including those of underwater acoustics. 
Some one-way wave problems also involve fundamentally 
different mathematics, such as the Navier-Stokes equations, 

the small-disturbance equations of transonic flow, the shal- 
low-water equations, and the equations of elasticity. An- 
other variation of ( 1 ) is that in many applications the equa- 
tion is reduced by assuming a fixed frequency co, so that t 
drops out; fortunately, this can be easily accomplished either 
before or after the analysis presented here. We ask the reader 
to bear with these oversimplifications in the interest of being 
able to consider a wide range of approximations in a short 
space. 

Our purpose is to describe some candidates, not pick a 
favorite. A responsible judgment of the merits of these ap- 
proximations must be based on extensive computations, and 
the conclusions will depend on the field of application. Some 
initial comparative studies of this kind have been carried out 
recently by St. Mary and Lee •3 and by Blaschak and Kriegs- 
mann. 14 

I, ONE-WAY WAVE EQUATIONS AND RATIONAL 

APPROXIMATION OF •/• -s z 

If one substitutes the plane wave 

u(x,y,t) = e •" + •x + '• (2) 

into ( 1 ), where co is the frequency and • and •/are the x andy 
wavenumbers, the result is the dispersion relation 

co2 = •2 + •/2, (3) 
or equivalently 

• = d- cox/1 -- r/2/co 2 . (4) 
This is the equation of a circle in the •/co -- •//co plane corre- 
sponding to plane waves propagating in all directions. The 
wave with wavenumbers •, •/has velocity ( -- 
co) = ( -- cos 0, -- sin 0), where 0 is the angle counterclock- 
wise from the negative x axis. By taking the plus or minus 
sign in (4) only, however, we can restrict attention to leftgo- 
ing ( ] 01 < 90ø) or rightgoing ( [ 0 ] >90 ø) waves, respectively. 
For algebraic simplicity, we will choose the former course 
and write 

1397 J. Acoust. Soc. Am. 84 (4), October 1988 0001-4966/88/101397-08500.80 ¸ 1988 Acoustical Society of America 1397 



DISPERSION RELATION FOR IDEAL OWWE, (:5) 

with 

s=•l/co=sinO•[ -- 1,1], 0•[ --9&,9&]. (6) 

See Fig. 1. 
Because of the square root, (5) is not the dispersion 

relation of any partial differential equation, but of a pseudo- 
differential equation. The idea behind practical one-way 
wave equations is to replace the square root by a rational 
function r(s) of type (re,n) for some m and n; that is, the 
ratio ofa polynomialp,, of degree m and a polynomial q, of 
degree n: 

r(s) =Pro (s)/q, (s). 

Then (5) becomes 

• = or(s), 

DISPERSION RELATION FOR APPROXIMATE OWWE, 
(7) 

for the same range (6) ors and 0. By clearing denominators, 
we can transform (7) into a polynomial of degree 
max{m,n + 1} in to, •, and •/, and this is the dispersion rela- 
tion of a true differential equation. For example, suppose 
r(s) is the type (2,2) Pad6 approximant, 

r(s) = (1 - • s•)l( l - l F), 

which interpolates • six times at the origin, i.e., 
r(s) - • = O(s6). Then (7) becomes 

g(l 4 4 
or 

•.0.)2 __ 41 •-•2 • O.)3 __ 4• 0•2, 
which corresponds to the differential equation 

ux,, - ' = u,, - • u,yy. (8) 

This is sometimes known as the 45' •uation, •au• it has 
high a•uracy approximately in the range [01<45'. 

Thus at an abstract level, desiring one-way wave equa- 
tions can • r•uc• to the problem of finding rational ap- 
proximations r(s) to • for s•[- 1,1], i.e., for 
0 e [ -- 9•,•]. (In the literature, the derivation is often not 
pr•ent• this way, but the approximation of the square r•t 
is implicit.) Figure 2 illustrat• this approximation problem. 
For simplicity, we will restrict attention to functions r(s) 
that are even [i.e., r( -- s) = r(s) ], whidh implies that m 
and n are even (s• Ref. 12 for the general case). The qua- 

•-'''' v x 
FIG. 1. Notation for the one-way wave equation. 

\r(s) 
% 
% 

FIG. 2. The approximation problem: r(s)•,•-•. 

tion is, what approximation strategies will lead to the best 
results? 

As mentioned above, the standard choice in the past has 
been Pad• approximation, which refers to maximal-order 
interpolation at the origin s = 0, 0 = &. (Pad• approxima- 
tion is equivalent to the truncation of an appropriate contin- 
ued fraction expansion.) For a low order such as 
(m,n) = (0,0), not much choice is available, but as one 
moves to approximations of type (2,0), (2,2), or higher, it 
becomes less clear that it is a good idea to concentrate all of 
the points of interpolation in one place. In some applica- 
tions, it may be better to spread them throughout 
s q[ -- 1,1 ], 0 q[ -- 9&,9&]. That is the idea behind the al- 
ternative families of approximations in this article. 

The most accurate approximants are generally obtained 
with m = n or m = n + 2, and in some applications, these 
are also the only ones that lead to well-posed differential 
equations. Therefore, we will restrict our attention to these 
two cases. Given m and n, it is possible to find a rational 
function r(s) that interpolates x/YZ-• in an arbitrary set of 
m + n + 2 points symmetrically located in [ -- 1,1 ], but no 
more than this. We will assume that the number of points of 
interpolation is exactly m + n + 2, which guarantees well 
posedness. (See Ref. 12 regarding all of the above asser- 
tions.) Moreover, as Higdon has pointed out,•ø an approxi- 
mation with fewer than m + n + 2 points of interpolation 
can always be improved at every point s • [ -- 1,1 ] and hence 
is of no practical interest. By the formula given above, the 
order of the corresponding one-way wave equation will be 
K = «(m + n + 2). Let + s, ..... + sg denote the 2K points 
of interpolation in [ -- 1,1 ], counted with multiplicity, and 
+ 0• ..... + 0• the corresponding angles in [ -- 9&,9&]. 

These are the angles at which the one-way approximation 
will be exact. Here is a summary of the notation: 

Rational type of r(s): 

(re,n), re,n=0,2,4 ..... m=n or re=n+2. 

Order of one-way wave equation: 

K = •(rn + n + 2) = 1,2,3 ..... 

Number of points of interpolation in [ -- 1,1 ]: 
2K = 2,4,6 ..... 

Points of interpolation: 

4-Sl = 4- sin 0l ..... + s• = 4- sin 0•. 
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The interpolating polynomial can be constructed by a 
mechanical procedure which goes back at least to Newman 
in 1964. l• Letp be a nonzero polynomial of degree K that is 
zero at x/1 - 4 for each k, and set 

r(s) --- p(t) +p( -- t) (9• 
[ --p(t) +p( -- t)]/t' 

where t = ,fi•--s 7. Since the numerator is even as a function 
oft, it is a polynomial in s of degree m, and since the denomi- 
nator is even as a function oft, it is a polynomial in s of degree 
n. Also, since [p( -- t)[> Lo(t) [ for t> 0 andif(O) 20, r(s) 
can have no poles or zeros in [ -- 1,1 ]. [We assume that at 
most one st is 1, and we exclude the trivial case K = 1, 

sn = 1, r(s) =0.] Thus r(s) = • is equivalent to 

p(t) q-p( -- t) = --p(t) d-p( -- t}, 

that is, p(t) = 0. In other words, (9) interpolates • at 
the points __+ 

II. SEVEN FAMILIES OF APPROXIMATIONS 

This section defines the seven families of approxima- 
tions we have chosen to consider, and indicates how their 
coefficients can be computed. For families 1, 2, 6, 7, the 
approximations are known essentially in closed form, while 
families 3, 4, 5 require iterative computations. The next sec- 
tion gives numerical results. 

A. Pad• 

In Pad6 approximation, all m + n + 2 points of interpo- 
lation coincide Ot s = 0 = 0; when n = 0 the Pad6 approxi- 
mant is a truncated Taylor series. The type (0,0) Pad6 one- 
way wave equation is u x ---- u,, the "5* equation," which is 
inadequate for most purposes. The type (2,0) Pad6 one-way 
wave equation is uxt = u, -- « u•, the "15' equation" or the 
original "parabolic wave equation," and this has been used 
in numerous applications. The type (2,2) Pad6 one-way 
wave equation given in (8), the "40 ø" or "45 ø equation," has 
also been used fairly often, for example by Claerbout and 
Clayton in geophysics, 4'• by Engquist and Majda for absorb- 
ing boundary conditions, 6'7 and by Botseas et aL in under- 
water acoustics. •6 The (4,2) and (4,4) approximants have 
been proposed in Ref. 17 and Refs. 18 and 19, respectively. 

Pad6 approximants to • can be computed by the 
general interpolation procedure of the last section, summar- 
ized in (9), and this is what we have done in our computer 
program. An alternative approach is to use the fact that the 
Pad6 approximants of types (0,0), (2,0), (2,2), (4,2),..., are 
the successive convergents of the continued fraction expan- 
sion 3.7 

(r---7=l (10) 
2--2--2-- 

One readily sees that these approximations satisfy the recur- 
rence relation 

r•l•(s)•l, r•+l•(s)---- I --s•/[l-[-rt•C•(s)], K>I. 
(11) 

They can also be represented explicitly by the formula 

r(•C•(s) = I -- s2U•_ l (s)/U• (s), (12) 

where Us: is the K th Chebyshev polynomial of the second 
kind, and U• is its "reciprocal polynomial" 
U• (s) = s•Us: (s-• ) (see Ref. 20). 

B. Interpolation in Chebyshev points 

The simplest way to distribute interpolation points 
around [ -- 1,1 ] would be to place them at equal intervals, 
but this produces very poor approximations--the "Runge 
phenomenon. "• A standard alternative choice is the set of 
Chebyshevpoints in [ -- 1,1 ], which amounts to equal spac- 
ing with respect to 0: 

=sin0n, On = -tr/2+ [•r(k--•)]/2K, l<k<2K. 
(13) 

The Chebyshev points are distributed more densely near 
s = q- 1 than near s = 0, and indeed this is true of all of our 
approximations except Pad6 (see Fig. 5 below). The higher 
density near the end points is necessary for good wide-angle 
behavior because of the square-root singularities there. 

We computed approximants of this kind by the general 
procedure (9). 

C. Least-squares or L= 

A type (m,n) least-squares approximation to • is 
defined by the condition 

Ilii-z - r(s)II• 

= [xf]--• r -- r(s) ] • ds = minimum, (14) 
I 

where the minimum is taken over all rational functions of 

type (re,n). Computing linear (n = 0) least-squares fits is 
easy, but in nonlinear cases one must resort to an iterative 
process. To do this, we again took advantage of the interpo- 
lation procedure of the last section, and chose s• ..... s• as 
independent variables (rather than the coefficients of r} to 
be adjusted to minimize (14). At this point, one could make 
use of a general software product for multivariate nonlinear 
least-squares calculations, perhaps after first introducing a 
transformation from the constrained variables 0<s• 
<'" <ss: < 1 to unconstrained variables (rn•( - •o,•o ). 
Instead, we simply performed a sequence of univariate least- 
squares minimizations, optimizing Sl •(0,s:), s2•(sl,s•), 
and so on cyclically until convergence was achieved. This 
works very well in practice, and we have little doubt that our 
results represent unique best L e fits to x/-i-•, although we 
do not have a proof of this. (In general, nonlinear L 2 ap- 
proximations are not unique, and have no simple characteri- 
zation?) 

One-way wave equations based on least-squares approx- 
imation have been computed previously by Lindman, a Barn- 
berger et al., 2• and Wagatha. 24 The first two of these use an 
L 2 problem defined slightly differently from ours, so their 
results are not directly comparable. Wagatha's least-squares 
approximations are the same as ours, but he considers only 
the cases (0,0) and (2,0) that can be determined analytically 
(see Table I ). 
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The dashed line of Fig. 2 represents the least-squares 
one-way wave equation of type (2,0). 

D. Chebyshev or L © 

A type (m,n) Chebyshev or L © approximation to 
• is defined by the L © analog of (14), 

ii,fi - r(s)II 
= max [x/•r--r(s)l=minimum. (15) 

s•f - 131 

This condition is guaranteed to determine a unique function 
r(s), which is characterized by an error curve that "equi- 
oscillates" between rn + n + 2 extreme values. 25'•2 The two 
standard methods for computing rational L • approxima- 
tions are the Remes algorithm and the differential correction 
algorithm, 21 but once again, we have chosen instead a 
simpler approach based on the interpolation formula (9). 
As in the L 2 case, we performed a cyclical sequence of uni- 
variate computations, choosing sl •(0,s 2) to minimize the 
L • norm in that interval, then s2 •($1,$3) tO minimize the 
L © norm there, and so on. The process converges quickly, 
and the construction guarantees that the resulting function 
has equiripple behavior and is therefore optimal. 

E. Chebyshev on a subinterval, or L2 

If the type (2,2) Pad6 approximant is regarded as a good 
fit for 0 • [ - ct,ct ] with a = 45 ø, say, why not compute the 
actual best L •o approximant on that subinterval instead? 
The result will be a closer approximation in the L o. sense on 
both [ - ct,a] and [ - 90ø,90ø], and it can be calculated by 
the same cyclical iteration as above. This idea was first pro- 
posed by Greeneft In the experiments of the next section, we 
have chosen the following values: 

K (m,n) a 

1 (0,0) 10 ø 
2 (2,0) 20 ø 
3 (2,2) 45 ø 
4 (4,2) 60 ø 
5 (4,4) 75 ø 

F. Interpolation in Newman points 

Newman proved in 1964 that, whereas type (n,0) Che- 

byshev approximations to x/-•J z converge no faster than 
O(n -•) in the L © norm as n--. oo, type (n,n) approxima- 
tions have L © error O(e -c;•) for some C>0 (Ref. 15). 
The optimal constant was later shown to be C = T/'. 26 New- 
man's proof is based on a clever choice of interpolation 
points for which the error can be shown to be O(e - ("). One 
reason we consider interpolation in these "Newman points" 
here is that it provides an easy and explicit method for ob- 
taining near-best one-way wave equations in the L © sense. 
Another is that Newman's idea gives insight about the clus- 
tering of interpolation points near s = ___ 1 for other high- 
accuracy approximations, even though his distribution of 
points is not precisely optimal. 

The Newman points are defined by 

sj=l, sk=x/1--•'*-:, 2<k<K, (16) 
where 

•o-- 1/K•---- 1 
,Thus they are approximately geometrically distributed with 
respect to 0 near ___ 90 ø. One should bear in mind that New- 
man introduced these points only for their asymptotic be- 
havior as K-• oo, so it might very well make sense to modify 
the definition in some way to get better behavior for small K. 

G. Chebyshev-Pade 

Finally, Chebyshev-Pad6 approximation, introduced in 
the 1970s by Clenshaw and Lord and by Gragg, 27'28 is an 
analog of Padfi approximation designed for the interval 
[ -- 1,1 ] rather than the point s = 0. Let • be expand- 
ed in the Chebyshev series 

4 1 

where Tk is the k th Chebyshev polynomial of the first kind 
(see Ref. 25). The type (re,n) Chebyshev-Pad• approxima- 
tion to • is the unique rational function of that type 
whose Chebyshev expansion matches (17) up to order 
m+n+2: 

r(s) - x/•- = O [ rm + ,+ 2 (s) ]. 
This is the same as the definition of a Pad• approximation, 
but with the Taylor series replaced by the Chebyshev series. 
The motivation behind it is that one can expect good approx- 
imation throughout [ - 1,1 ], but without the need for the 
iterative calculations involved in L 2 and L © approximation. 

We computed coefficients of Chebyshev-Pad• approxi- 
mations by a standard procedure due to Gragg? 8 If z is a 
complex number on the circle Iz• = 1, with 
s = Re z = •(z + z-I), then (17) can be rewritten 

• = (2/•)Re h(z) = (1/•)[h(z) + h(z-•)] 
(18) 

with 

1[ 1\, 

h ( z ) = -•-[z -- -•-)mg[-•-•_ z } 
= 1 --•z 2 -•z 4 --•3Z 6 .... . (19) 

Let R(z) be the type (re,n) Pad• approximation to (19), 
which is equal to the K th convergent of the continued frae- 
tion 

2z 2 3z • 8z 2 15z 2 24z • 
h(z) = 1 .... . (20) 

3-5-7-9-11- 

Then 

r(s) = (2/rr)Re R (z) = (1/rr) [R (z) + R (z- • ) ] 
(21) 

is the Chebyshev-Pad6 approximation of the same type to 

This is the only one of our seven approximations for 

1400 d. Acoust. Sec. Am., Vol. 84, No. 4, October 1988 L. Halpern and L. N. Trefethen: Wide-angle one-way wave equations 1400 



TABLE 1. One-way wave equations of orders 1 and 2. 

K=I K=2 

(o,o) (2,o) 

Pad& u• = u, 
Chebyshev points u• = ( l/q'•)u, 
L 2 u• = (•r/4) u, 
Chebyshev-Pad6 u• = (2/rr)u, 
Newman points u. = 0 
L • u. = • u, 

u•, = u. - • %• 
u•, = (3)' -- 2y•)u. -- 2yu•,•,, y= sin(•r/8) 
u,. = (21rr/64)u.- ( 15•r/64)u• 
u•, = (10/3rr)u. -- 

which the points of interpolation are not given directly by 
the calculation procedure. We determined them by applying 
a polynomial rootfinder to the equation q2(s) (1 
_ s 2) =p2(s). 

H. Other approximations 

Seven families of approximations may already seem like 
four or five too many, and yet there are many further possi- 
bilities that also make sense. Two general procedures for 
rational approximation that we have not discussed are Cara- 
th60dory-Fej6r approximation 29 and rational approxima- 
tion with predetermined pole locations via sinc functionsfi ø 
There are also many interesting variations on the schemes 
we have mentioned, such as L 2 approximation on subinter- 
vals, weighted L 2 approximation, and (a special case) L 2 
approximation with respect to 0. Also, one might choose to 
compute an L 2 approximation, say, constrained to have two 
or more points of interpolation at s = 0. 23 

III. NUMERICAL RESULTS 

There are many different ways to compare approximate 
one-way wave equations. For example, in underwater acous- 
tics one may be interested in the error r(s) -- x/•'C•, while 

in absorbing boundary conditions the reflection coefficient 
Jr(s) -- ,•-Z•z]/[r(s) + •fi-•-•] is more important. In 
what follows, we have been forced to be selective. 

To begin the comparison, Table I lists the exact coeffi- 
cients for six of our one-way wave equations of degrees I and 
2 (all but L •, whose coefficients are messy). These are the 
linear cases of types (m,0), where explicit coefficients are 
easily derived. It is interesting to note that even in approxi- 
mation of degree 1, all six equations are distinct. 

One way to examine how accurate these approximations 
are is to look at L 2 and L •o norms of the errors. Figure 3 plots 
these norms on a logarithmic scale for all seven of our ap- 
proximations, and Tables II and III list the same results 
numerically. Notice that, as one would expect, the Pad6 ap- 
proximants fare worst in both of these norms, because of 
their poor wide-angle behavior. 

However, L 2 and L •o norms reveal fairly little. To im- 
prove on them, Fig. 4 plots the error r(s) - x/TZ• as a 
function of 0 = sin-• s for 1 <K<5. (Each plot is scaled in- 
dependently, and the large values near 0 = 90 ø have been 
clipped.) These plots show a great deal more than Fig. 3 and 
Tables II and III, and, in particular, we make the following 
observations: 

1 
2 3 4 5 1 

1 I K 1 

0.1 

O.Ol 

0.001 

0.1 

Pad• 

L • 0.01 
Newman 

Cheb. pts. 
Cheb.-Pad• 

L 2 

2 3 4 5 

Pad• 

Cheb. pts. 
L 2 
Cheb. -Pad• 

Newman 

L m 

FIG. 3. L • and L ' errors as func- 
tions of K. 
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-z/4 j • 

• fCheb. pts. 

o 1 

FIG. 4. Errors r(s) -- • as functions ore = sin- 1 s for one-way wave 
approximations of orders I-5. The horizontal axis represents • marked in 
units of I• from CI' to 9(Y'. The long tick mark in each plot is the angle a for 
the L • fit. 

( 1 ) Clearly, it is much more difficult for an approxima- 
tion to be accurate near 0 = 9(Y than near 0 = 0 ø. 

(2) The Pad6 approximants are by far the best near 
0 = if, and by far the worst near 0 = 90 ø. 

(3) At the other extreme, the L' approximant has 
equiripple behavior throughout [- 90',90•], but pays a 
great price for this near 0 = if. 

(4) Chebyshev interpolation, L 2 approximation, and 
Chebyshev-Pad6 approximation seem to offer attractive 
compromises between narrow-angle and wide-angle accura- 
cy. 

(5) For practical purposes, the L •' approximations are 
as good as or better than Pad6 for all 0 •[ -- 90•,9ff']. Of 
course, the Pad6 approximants are slightly more exact near 
0 = (Y, but their accuracy there is probably unobservable in 
applications. 

To substantiate this last remark, Table IV lists L ' er- 

rors on both [ -- a,a] and [ -- 90ø,90 ø] for the Pad6 and L 2 
approximations of degrees K = 1,...,5. The L 2 approxima- 
tions are considerably better on the subinterval---errors well 
under 0.1% except in the case K = 1--and yet they are bet- 
ter globally, too. In the light of these numbers, it is hard to 
see any advantage to Pad6 approximations, except simpli- 
city. 

In all of these approximations there is a strong correla- 
tion between low accuracy near 0 = 0 ø, high accuracy near 
0 = 90 ø, and concentration of interpolation points near 
there. Figure 5 illustrates this phenomenon by displaying the 
interpolation points for the various approximants in the case 

It remains to list the coefficients of our various approxi- 
mations. We will do this in two ways. First, Table V presents 
the interpolation points in 0 ½[0•,9(Y '] for each of the seven 
approximations and for 1 •K• 5. These numbers can be used 

TABLE II. L 2 errors for various one-way wave equations. TABLE IIL L' errors for various one-way wave equations. 

K=I K=2 K=3 K=4 K=5 K=! K=2 K=3 K=4 K=5 
(0,0) (2,0) (2,2) (4,2) (4,4) (0,0) (2,0) (2,2) (4,2) (4,4) 

Pad6 0.43788 0.13332 0.06277 0.03617 0.02342 Pad6 !.00000 0.50000 0.33333 0.25000 0.20000 
œ•' 0.43051 0.12494 0.04375 0.01731 0.00520 L•' 0.99240 0.48469 0.27961 0.17423 0.09553 

Chebyshev points 0.33450 0.05866 0.01629 0.00708 0.00389 Chebyshev points 0.70711 0.27060 0.15840 0.10931 0.08234 
L 2 0.31565 0.05701 0.01514 0.00491 0.00181 L 2 0.78540 0.29452 0.14344 0.07875 0.04651 

Chebyshev-Pad6 0.37935 0.07488 0.01812 0.00574 0.00234 Chebyshev-Pad6 0.63662 0.21221 0.10610 0.06366 0.04244 
Newman points 1.15470 0.20930 0.04670 0.01394 0.00543 Newman points 1.00000 0.25000 0.08814 0.04564 0.02782 

L' 0.51238 0.12524 0.04353 0.01776 0.00850 L • 0.50000 0.12500 0.04377 0.01852 0.00850 
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TABLE IV. Comparison of L • errors of Pad6 and L 2 approximations. 

K a Pad6 L• Pad6 L• 

I 10. 0.01519 0.00760 1.00000 0.99240 
2 20' 0.00192 0.00023 0.50000 0.49469 

3 45' 0.00718 0.00027 0.33333 0.27961 
4 60' 0.01250 0.00015 0.25000 0.17423 
5 75 ø 0.03942 0.00024 0.20000 0.09553 0 a 30 a 60 a 

Pad• 

Cheb. pts. 

Cheb.-Pad& 

•2 

90 ø 

FIG. 5. Interpolation points in [0ø,90'] for various approximations of order 
K = 5, type (4,4). 

TABLE V. Interpolation points in [0ø,90 •] (degrees). 

Chehyshev Newman 
K Pad6 L • points L 2 C-P points L • 

I 0.000 7.067 45.000 38.242 50.460 90.000 60.000 

2 0.000 7.620 22.500 22.137 25.781 0.000 31.396 
0.000 18.464 67 500 64.416 73.881 90.000 81.579 

3 0.000 11.692 15.000 18.372 18.429 0.000 26.877 
0.000 31.859 45.000 51.327 53.147 60.458 66.641 
0.000 43.469 75.000 76.607 81.421 90.000 87.015 

4 0.000 12.180 11.250 15.845 14.237 0.000 22.574 
0.000 34.245 33.750 44.977 41.832 55.848 59.742 
0.000 50.426 56.250 67.389 66.274 71.630 79.795 

0.000 58.918 78.750 82.484 84.711 90.000 88.734 

5 0.000 13.274 9.000 15.601 !1.625 0.000 20.385 

0.000 37.508 27.000 40.418 34.386 52.661 54.441 
0.000 56.150 45.000 61.656 55.553 68.415 75.497 

0.000 68.270 63.000 76.303 73.531 77.107 85.310 
0.000 74.250 81.000 85.527 86.424 90.000 89.419 

TABLE VI. Coefficients of one-way wave equations in the representation (22). 

Chebyshev Newman 
K Pad6 L • points L 2 C-P points L • 

I 1.00000 0.99240 0.?0711 0.78540 0.63662 0.00000 0.50000 

2 1.00000 1.00023 1.03597 1.03084 1.06103 1.00000 1.12500 
-- 0.50000 -- 0.51555 - 0.76537 - 0173631 -- 0.84883 -- 1.00000 -- 1.00000 

3 1.00000 0.99973 0.99650 0.99250 0.99030 1.00000 0.95651 
-- 0.75000 -- 0.80864 -- 0.91296 -- 0.92233 -- 0.94314 -- 1.00000 -- 0.94354 
--0.25000 --0.31657 --0.47258 --0.51084 --0155556 --0.66976 --0.70385 

1.00000 1.00015 1.00034 1.00227 i.00161 i.00000 1.01773 
--1.00000 -- 1l!6394 --i.27073 --1.37099 -- 1137170 --1.48698 --1.59644 

0.12500 0.22308 0.29660 0.38178 0.38027 0.48698 0.57976 
--0.50000 --0.65974 --0.76017 --0.83407 --0.84000 --0.91384 -- 0.94301 

1.00000 0.99977 0.99997 0.99904 0.99973 1.00000 0.99151 
--1.25000 --1160852 --1.58426 --1.73635 --!.70184 -- 1.81757 -- 1.87681 

0.31250 0.61776 0.59248 0.73920 0.70421 0.81757 0.88536 
--0175000 -- 1.11408 --1.08588 --1.25338 --I.20988 -- 1.35352 -- 1.46935 

0.06250 0.20832 0.18537 0.29403 0.25926 0.37204 0.47568 
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together with (9) to generate the rational functions and 
hence one-way wave equations in question, and they are also 
interesting in their own right. 

Next, we list the coefficients themselves in Table VI. Let 
r(s) be given in the form 

m12 •n12 

r(s) =p(s) = Z a,s•Y Z b, s•" bo= 1. (22) 
q(s) •-o ! •-o 

The coefficients are listed in the pattern 

a0 

b• 
._ 

b n/ 2 ß 
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