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Chapitre 1

Classical methods
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1.4 Non-Stationary iterative methods. Symmetric de-
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Purpose : Solve Ax = b, where A is a squared matrix and b is a given
righthand side, or a family of given righthand sides.



1.1 Direct methods

1.1.1 Gauss method

Example
1 3 1 9 9
1 1 -1 1 = 1
3 11 6 36 36
X S N—— T/
Take the 3 x 4 matrix A = [A|b]. Define
1 00
My=| =1 1 0
-3 01

and multiply on the left by M; to put zeros under the diagonal in the first
column :

1 3 1 9
MAlb] =] 0 —2 —2]|-8
0 2 3 9

Multiply now on the left by Ms to put zeros under the diagonal in the second
column :

1 00
My=1 010
011

13 119

0 0 1|1

Define M = M,M,. Then the column j of M is the column j of M; :

1 00
M= -1 10
-3 11

MI[A|b]=[MA|Mb].
Ar =b <= MAx = Mb: M is a preconditioner.

The matrix U = M A is upper triangular, and solving Ux = Mb is simpler
than solving Az = b. Define L = M~!. In the column j, the entries below
the diagonal are those of M with a change of signe.

1 0 0
L=M'=[1 1 0
3 —1 1

U=MA < A=LUAr=b < LUx=b < {

Solving Ax = b is then equivalent to performing the LU decomposition, and
solving two triangular systems. Counting of operations :
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1. LU decomposition O(%) elementary operations.
2. Solve Ly = b O(n?) elementary operations.
3. Solve Uz =y O(n?) elementary operations.

For P values of the righthand side, N,, ~ % + P x 2n?.

.. SOaes

1
function x=BackSubstitution(U,b)

% BACKSUBSTITUTION solves by backsubstitution a linear system
% x=BackSubstitution(U,b) solves Ux=b, U upper triangular by

% backsubstitution

n=length(b);

for k=n:—-1:1

s=b(k);

for j=k+1:n

s=s—U(k,j)*x(j);

end

x(k)=s/U(k,k);

end

X=X ()

77

h

function—x=Etimination{A;b)

ELIMINATION solves a linear system by Gaussian elimination
x=Elimination(A,b) solves the linear system Ax=b using Gaussian
Elimination with partial pivoting. Uses the function
BackSubstitution

n=length(b);

norma=norm(A,1);

A=[A,b]; % augmented matrix

for i=1l:n

[maximum, kmax]=max(abs(A(i:n,1))); % look for Pivot A(kmax,1i)
kmax=kmax+i—1;

if maximum < le—14xnorma; % only small pivots

error('matrix is singular')

o® o° o°

o°

end

if i ~= kmax % interchange rows
h=A(kmax, :); A(kmax,:)=A(1i,:); A(i,:)=h;
end

A(i+l:n,i)=A(i+l:n,1i)/A(i,i); % elimination step
A(i+l:n,i+1:n+1)=A(i+1l:n,i+1l:n+1)—A(i+1l:n,i)*A(i,i+1:n+1);
end

x=BackSubstitution(A,A(:,n+1l));

1.1.3 Theoretical results

Theorem 1.1 (Regular case) Let A be an invertible matriz, with all prin-
cipal minors # 0. Then there exists a unique matriz L lower triangular with
l;; =1 for all i, and a unique matriz U upper triangular, such that A = LU.
Furthermore det (A) = T, ;.




Theorem 1.2 (Partial pivoting) Let A be an invertible matriz. There exist
a permutation matrix P, a matriz L lower triangular with l;; = 1 for all i,
and a matriz U upper triangular, such that

PA=LU
1.1.4 Symmetric definite matrices : Cholewski decom-
position
Theorem 1.3 If A is symmetric definite positive, there exists a unique lower

triangular matriz R with positive entries on the diagonal, such that A = RRT .

1.1.5 Elimination with Givens rotations

This is meant to avoid pivoting. It is used often in connection with the
resolution of least-square problems. In the i step of the Gauss algorithm, we
need to eliminate x; in equations i + 1 to n of the reduced system :

(Z) ity +-- + apT, = b
(k): awpz; +-+ + agurn, = bg

(i) apmi +-+ + apurn, = by

If ay; = 0, nothing needs to be done. If ay; # 0, we multiply equation(i) with
sin @ and equation (k) with cosa and add. This leads to replacing equation
(k) by the linear combination

(K)new = — sina - (i) + cosa - (k).
The idea is to choose « such that the first coefficient in the line vanishes, i.e.
—sina - a;; +cosa - ag; = 0.

Since ay; # 0, this defines cotgay;, that is ay; modulo 7. For stability reasons,
line (7) is also modified, end we end up with

()pew = cosa - (1)  +sina - (k)
(K)pew = —sina - (i) +cosa - (k)

From which the sine and cosine of ay; are obtained through well-known tri-
gonometric formulas

sinoy; =1 1 4 cotg?ay;, €Osay; = Sin ag; CotEa;.
Y

COS Olg; -+ Aij + sin (6773 Akj
= —sinay - Aijj +cosau,; - Ay

I new

kj new



function x=BackSubstitutionSAXPY(U,b)

% BACKSUBSTITUTIONSAXPY solves linear system by backsubstitution
% x=BackSubstitutionSAXPY(U,b) solves Ux=b by backsubstitution by
% modifying the right hand side (SAXPY variant)n=length(b);
n=length(b);

for i=n:-1:1

x(1)=b(i)/U(i,1);

b(l:i—1)=b(1l:i—1)}—x(i)*U(1:i—-1,i);

end

x=x(1);

function x=EliminationGivens(A,b);

% ELIMINATIONGIVENS solves a linear system using Givens—rotations
% x=EliminationGivens(A,b) solves Ax=b using Givens—rotations. Uses
% the function BackSubstitutionSAXPY.
n=length(A);

for i= 1:n

for k=i+l:n

if A(k,1)~=0

cot=A(1i,1)/A(k,1i); % rotation angle
si=1/sqrt(1l+cot”2); co=sixcot;
A(i,i)=A(i,1)*co+A(k,i)*si; % rotate rows
h=A(1,i+1:n)*co+A(k,i+1l:n)*si;
A(k,i+1l:n)=A(i,i+1l:n)*si+A(k,i+1:n)x*co;
A(i,i+1l:n)=h;

h=b(i)*co+b(k)*si; % rotate right hand side
b(k)=b(i)*si+b(k)*co; b(i)=h;

end

end;

if A(i,1)==0

error('Matrix is singular');

end;

end

x=BackSubstitutionSAXPY(A,b);

Note G which differs from identity only on the rows i and & where

Jii = gkk = COSQ,  Gik = —Jri = SINQ

Example for n = 5,

1 0 0 0 0
0 cosa 0 sina O
G*=10 0 1 0 0
0 —sina 0 cosa O
0 0 0 0 1




Multipliying a vector b by G** changes only the components i and k,

b; cosa - b; +sina - b

by —sina - b; 4cosa - by

G*e;, = cosae; —sinae,, G*e,=sinae; + cosaey.

G represents the rotation of angle o in the plane generated by e; and
er. (G*())* = G*(—a), (G*(a))*G*(a) = I. Thus it is an orthogonal
matrix. By applying successively Gy, ..., G, whereever ay; is not zero, we
put zeros under the diagonal in the first column. We continue the process

until the triangular matrix R is obtained. Then there are orthogonal matrices
G4, -+, Gy such that Then

Q is an orthogonal matrix,
QQ=Gy...GG]...Gy=1.

then
A=QR,

we have reached the QR decomposition of the matrix A.

1.2 Sparse and banded matrices

Example : a banded matrix, with upper bandwidth p = 3 and lower
bandwidth ¢ = 2, in total p + ¢ + 1 nonzero diagonals.

p=3
(2 10 -1 0 0 0\
i 4 2 3 0 06 0 0
0 —1273 1 2 o 0
0 0 24 -7 0 g
0 0 -4 0 5. 1 4
\ 0 0 0 0 0 -8 -Q /

FIGURE 1.1 — A bandmatrix
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Then L is lowerbanded with ¢ = 2, and Uis upperbanded with p = 3.

( i 0 0 0 0 0)

2 1.0 0 0 0 0

0 -3 1.0 0 0 0

L=l 0 0 -2 1 0 0 0
0 0 =3328 0 0

0 0 0 0 -3 1 0

L0 0 0 0 0 -931)

F1GURE 1.2 — LU decomposition

It is not the case anymore, when pivoting is used :

1 0 0 0 0 0 0
0 1 0 0 0 0 O
0 0 1 0 0 0 0
L= 0 0 0.6 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
—0.5 —0.17 —0.05 —0.21 0.025 0.0027 1
-4 2 3 0 0 0 0
0 —-12 3 1 2 0 0
0 0 —-400 5 1 4
U= 0 0 0 4-10-06 —24
0 0 0 0-60 6 -—23
0 0 0 0 0 =84 0
0 0 0 0 O 0 0.275

Here the permutation matrix is

11



T

I
_ o O O O oo
(e R en B an B en Bl e B an N
[=lelelololl S
SO O = O oo
[ ool all )
OO = OO oo
o= O O O oo

In the Cholewsky decomposition, Note that if A is banded, R is banded
with the same lower bandwidth, but it may be less sparse, in the sense that
it can have more zeros. Consider as an example the 36 x 36 sparse matrix of
2 — D finite differences in a square. With the command spy de matlab, the
nonzero terms appear in blue :

5 10 15 20 25 30 35 5 10 15 20 25 £ 35
nz=156 nz=221

A bandmatrix sparse matrix Corresponding Cholewski

Even though R has the same bandwidth as A, nonzero diagonals appear.

EXERCISE Write the Gauss and Givens algorithms for a tridiagonal matrix
A = diag(c,—1) + diag(d,0) + diag(e, 1).

LU factorization : verify that

ek = U, diyr = U fro + W1, ex = fr

then it is not necessary to compute fj, and only recursively

k= lp U,  Upyr = dipg1 — lp e

n=length(d);

for k=1:n—1 % LU—decomposition with no pivoting
c(k)=c(k)/d(k);
d(k+1)=d(k+1)—c(k)*e(k);

end

for k=2:n % forward substitution
b(k)=b(k)—c(k—1)xb(k—1);

end

b(n)=b(n)/d(n); % backward substitution
for k=n—1:—1:1

12




b(k)=(b(k)—e(k)*b(k+1))/d(Kk);
end

Givens : verify that the process inserts an extra updiagonal.

n=1length(d);
e(n)=0;
for i=1: n—1 % elimination

if c(i)~=0

i)/c(i); si=1/sqrt(l+txt); co=txsi;

d(i)*co+c(i)=*si; h=e(i);
=h*xco+d (i+1)*si; d(i+1l)=—hxsi+d(i+1)*co;
=e(i+l)*si; e(i+l)=e(i+1)x*co;
i); b(i)=h*xco+b(i+1)x*si;

end;
end;
b(n)=b(n)/d(n); % backsubstitution
b(n—1)=(b(n—1)—e(n—=1)*b(n))/d(n—1);
for i=n—2:—1:1,
b(i)=(b(i)—e(i)*b(i+1l)—c(i)=*b(i+2))/d(1);

end;

1.3 Stationary iterative methods

For any splitting A= M — N, write Mz = Nx + b,
Define the sequence Mag™ = Nz™ + .

Max™t = Nagm+b <= Ma™ = (M — A)z™+0b

— g =T - M1 A)z™+ M 1b

= gl =™ - M TAz™ + M~

<= fixed point algorithm to solve v — M 1Az + M~ b=z
<= fixed point algorithm to solve M ~tAx = M~1b.

Again, M is a preconditioner.

e ¢ :=ux —a™ is the error at step m.
o M =h— Ax™ = Ae™ is the residual at step m.
e R=M"'N=1—M"1A is the iteration matriz.

Then the sequence of the errors satisfies
Me™t = Ne™, ™t = M7'Ne™

Stopping criterion Usually, one stops if Il

el
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1.3.1 Classical methods
Use A =D — F — F.

Jacobi M=D R:=J=1-D714

Relaxed Jacobi M = %D R=1—-wD1'A

Gauss-Seidel M=D-F R:=L,=1—-D1A

SOR M=D-E R:=L,=(D—-wE)((1-w)D+wF)
Richardson M = %I R=1-pA

The relaxed methods are obtained as follows : define 2™ as an application
of Jacobi or Gauss-Seidel, then take the centroid of 2™ and 2™ as 2™ =
wz™ 4+ (1 — w)a™.

For symmetric positive definite matrices A, RIchardson is a gradient method
with fixed parameter. There is an optimal value for this parameter, given by
Popt = ﬁ where the \; are the eigenvaues of A.

1.3.2 Fundamentals tools
Define the sequence
e™ = Re™, R=M"'N.
Then e™ = R™eq, and for any norm

le™ HE< NRIe™ 1, Nle™ [ < [IR™[[lle”]]

o p(R) =max{|\|, A eigenvalue of R} is the spectral radius of R.
e pn(R) = ||R™||*/™ is the mean convergence factor of R.
o poo(R) = limy,,o0 || R™||Y/™ is the asymptotic convergence factor of R.

Theorem 1.4
e [or any matriz R, for any norm, for any m, p,(R) > p(R). The
sequence py,(R) has a limit, called the asymptotic convergence factor of
R and denoted by ps(R).
e The sequence x™ is convergent for any =V if and only if p(R) < 1.

To reduce the initial error by a factor £, we need m iterations, defined by

'|'|€6’Z|'|' < (pm(R)™ ~ <.

loge
10g pm(R)
. Then to obtain another decimal digit in the solution, one needs
In(10)
In(p(R))

14

So m ~ . It is easier to use the asymptotic value relation, m ~

log e
10g poo (R)

to choose ¢ = 107!, then m ~ —



The asymptotic convergence rate is F' = —In(p(R)).

Diagonally dominant matrices

Theorem 1.5

e [f A is a matriz, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then the Jacobi algorithm converges.

o If A is a matriz, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then for 0 < w < 1, the SOR algorithm
converges.

M- matrices

A e R™™ is a M-matrix if
1. a; >0 fori=1,...,n,
2. a;; <0 fori#j,1,5=1,...,n,
3. A is invertible,

4. A7t >0.

Theorem 1.6 If A is a M-matrix and A = M — N is a regular splitting
(M is invertible and both M~ and N are nonnegative), then the stationary
method converges.

Symmetric positive definite matrices

Theorem 1.7 (Householder-John) Suppose A is positive. If M+ MT — A
is positive definite, then p(R) < 1.

Corollary 1.1 1. If D+ E+F is positive definite, then Jacobi converges.
2. Ifw € (0,2), then SOR converges.

Tridiagonale matrices

Theorem 1.8 1. p(Ly) = (p(J))?* : Jacobi Gauss-Seidel converge or di-
verge simultaneously. If convergent, Gauss-Seidel is twice as fast.

2. Suppose the eigenvalues of J are real. Then Jacobi and SOR converge
or diverge simultaneously for w €0, 2].

3. Same assumptions, SOR has an optimal parameter w* =

L+ /1= (p(1))*
and then p(L,+) = w* — 1.

15



FIGURE 1.3 — Variations of p(L,,) as a fonction of w

1.4 Non-Stationary iterative methods. Symme-
tric definite positive matrices

Descent methods
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1.4.1 Definition of the iterative methods

Suppose the descent directions p,, are given beforehand. Define

xm+1 = ™M 4 Oémpm, 6m+1 =M — Oémpm, 7am+1 =M _ OzmApm

Define the A norm : | ||y||4 = (Ay,y).

Theorem 1.9 z is the solution of Ar = b <= it minimizes over RY the
functional J(y) = 5(Ay,y) — (b,y).
1 1

This is equivalent to minimizing G(y) = 3(A(y — z),y — x) = 5|ly — z[/%.
At step m, «,, is defined such as to minimize J in the direction of p,,. Define

the quadratic function of «

1
() = J@™ + ap™) = J(@™) = (™ p") + S0} (A" 7).

Minimizing ¢,, leads to

(pm’rm) ( m m+1) _ O

Oy = 3 y T
(Ap™, p™)

(Tm’pm)Q
A/glpm7 pm)(Afle, rm)

G(@™) = G@™) (1 = pim),  pim = (

e Steepest descent (gradient & pas optimal) p™ = r™.

xm+1 — ™ 4 amrm, em+1 — M — amrm’ Terl — ([ — amA)pm
rm 2
e <—A||Tm 'Lmy () = 0
7

G™) = G™) (1 _ [l ))g (H(A) - 1)2 Ga™)

(Arm7 Tm)(Aflrm’ rm

e Conjugate gradient

™ = 2™ b ™, o = %7 (™, p"1) = 0.
Search p™ as p™ = 1™ + B,,p™
G(z™™h) = G(@™)(1 = p)
G 4 S I

Hm = (Apm, pn)(A=Lrm pm) — (Apm, pm)(A-Lym, pm)

17



Maximize ft,,, or minimize

(Ap™,p™) = BZ(Ap™ 1, p™ 1) + 2B (Ap™ ™) + (Ar™, ™)

(Apm ™) m-1 m
6m:_(Apm—1 pm—l) :>(Ap l’p ):0
[l
(Tmarerl) =0, Bn= .
o

Properties of the conjugate gradient Choose p° = 7°. Then Vm > 1,
if rt # 0 for 1 < m.

(r™ p") =0fori <m—1.
vec(r®, ... r™) = vec(r® ArY ... A™r0).
vec(p®, ..., p™) = vec(r®, Ar® ..., A™r0).

. (p™, Ap') =0 for i <m — 1.

(rmr)y=0fori<m—1.

AN I

Krylov space K,,, = vec(r®, Ar®, ... Am=1p9).

Theorem 1.10 (optimality of CG) A symétrique définie positive,

[ —zlla= inf |y —zlla, [le]la=VaTAz.

yexO+Kom

Theorem 1.11 Convergence in at most N steps (size of the matriz). Fur-
thermore

o (VED Y
G(z )§4<m> G(z™ )

The conjugate gradient algorithm
2%chosen, p° =10 =0b— Az°.

while m < Niter or ||r™|| > tol, do

N
Y =
(Ap™,pm)’
xm+1 — xm+ampm7
rmtl = pm—q,, Ap™,
||7,,m+1||2
b = Lo
mr =
Pt = T = Bap™,

end.

18



1.4.2 Comparison of the iterative methods

Basic example :. 1-D Poisson equation —u” = f on (0, 1), with Dirichlet
boundary conditions u(0) = g,, u(1) = g4. Introduce the second order finite
difference stencil.

1 :
(O,I)ZU(I]‘,ZE]‘+1), l’j+1—l'j:h:n+1, ]:0,...,7’L.
w(winr) — 2u(x;) + u(x;_q) )
_ulzi) h2) ( ~ flx;), i=1,...n
Uo = Yg, Un4+1 = Gd
(4)
SUP,crap |0 (2
e e <t S 0)
12
The vector of discrete unknowns is u = (uyq, ..., uy,)
2 -1 fi—
1 12 -1 0 £
0 1 2 -1 £

The matrix A is symmetric definite positive.

The discrete problem to be solved is

Au=>

1.4.3 Condition number and error

Az =b, Ai=1D
Define k(A) = ||A||o||A7Y|2. If A is symmetric > 0, k(A) = B2

min \; °

Theorem 1.12 X
16— D]l

1 — [l
161l

]l

r(A)

and there is a b such that it is equal.

19



Eigenvectors of A, n=2 4=16

0.8

0.6

0.4

0.21

-0.2

-0.4

-0.6

-0.8

FIGURE 1.4 — Eigenvectors of A

Eigenvalues and eigenvectors of A (h x (n+1) =1).

For any iterative method, the eigenfunctions of the iteration matrix are equal

to those of A.

4 kmh ik
M = _gSin2 Sl ;oW = (sin JET ) )
h 2 n+1 1<j<n
(4) = sin? %h B cos? W—Qh 4
" ©osin?T™  gin? % m2h?

Algorithm Eigenvalues of the iteration matrix R
Jacobi Ae(J)=1— %uk = cos(kmh)
Gauss-Seidel Me(L1) = (M(J))? = cos®(kmh)
SOR n = (L) solution of (n+w —1)* = nw(A,(J))2

TABLE 1.1 — Eigenvalues of the iteration matrix

20




Algorithm Convergence factor n= n=30|n=60
Jacobi cosh 0.81 0.99 | 0.9987
Gauss-Seidel cos? h 0.65 | 0.981 | 0.9973
1 —sinzh
SOR T 0.26 | 0.74 | 0.9021
1+sinwh
K(A) -1
steepest descent KEA—;—i-l = cos7h 0.81 0.99 | 0.9987
K(A) -1 h —sinmh
conjugate gradient (4) =1 _cosmh—sinmh | 1 | 086 | 0.9020
VE(A)+1 cosTh+sinmh

TABLE 1.2 — Convergence factor

Algorithm convergence factor p,, | convergence rate F
Jacobi 1— % %
Gauss-Seidel 1—¢£? g2
SOR 1—2¢ 2e
Steepest descent 1—¢g? 12
conjugate gradient 1—2¢ 2¢

TABLE 1.3 — Asymptotic behavior in function of ¢ = 7h

n | Jacobi and steepest descent | Gauss-Seidel | SOR | conjugate gradient
10 56 28 4 1
100 4760 2380 38 37

TABLE 1.4 — Reduction factor for one digit M ~ __ln(;O)
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Gauss elimination n?
optimal overrelaxation | n%/?
FFT nlng(n)
conjugate gradient nd/4
multigrid n

TABLE 1.5 — Asymptotic order of the number of elementary operations nee-
ded to solve the 1 — D problem as a function of the number of grid points

regidual

rezidual

finite differences, n=5

T T T T T
— Jacobi
Gauss Seidel
—S50R

Richardzon
conjugate gradient

I I
&0 100 120 140 160 150 200

iteration

— Convergence history, n =5

finite diff ererices, n=100

T T T T T
— Jacobi
Gauss Seidel
—S50R

Richardzon
conjugate gradient

0.2

0.4

0.6

0.8 1 1.2 14 1.6 1.5 2
iteration w10

FIGURE 1.6 — Convergence history, n = 100

Not only the conjugate gradient is better, but the convergence rate being O(hl/ 2), the
number of iterations necessary to increases the precision of one digit is multiplied by /10
when the mesh size is divided by 10, whereas for the Jacobi or Gauss-Seidel it is divided
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by 100. The miracle of multigrids, is that the convergence rate is independent of the mesh
size.

1.5 Preconditioning

Preconditioning : purpose

Take the system AX = b, with A symmetric definite positive, and the conjugate
gradient algorithm. The speed of convergence of the algorithm deteriorates when x(A)
increases. The purpose is to replace the problem by another system, better conditioned.
Let M be a symmetric regular matrix. Multiply the system on the left by M 1.

AX =b <= M 'AX =M <= (M 'AM YMX =M""'b

Define R ~ ~
A=M1TAM™', X=MX, b=M1'b,

and the new problem to solve AX = b. Since M is symmetric, A s symmetric definite
positive. Write the conjugate gradient algorithm for this “tilde* problem.
The algorithm for A

X0 given, p°=7"= b— AXO.

While m < Niter or ||7™]| > tol, do

e

m - T~ ~, b

N (Ap™,p™)

Xm+1 — Xm-l-()ém?m,

Frtl =, AT,
||7:m+1||2

Byl = T

o i G

pm+ = Fmt _5m+1pm_

Now define 3
pm _ ]\471]3777,7 Xm — ]\/[71)(’”7‘7 M= ]\4,’:;77’7,7

and replace in the algorithme above.
The algorithm for A

0 — Af—240
Mp° = M0 = M0 - M AM T MX® = {p "

0 =p— AXO.

HmeQ — (M_l’I“m,M_lrm) —_ (M_Q’I“m,Tm)
m—+1 ,.m-+1
Define |27 = 4 27| Then | ey = o™ ) |
(2, 7m)

(Ap™,p™) = (M~ TAM ' Mp™, Mp™) = (Ap™,p™)

(z",r™)

= |y = (Apm77pm) .

MX™ = MX™ 4 a Mp™ = | X™ = X" + a,p™ |,

M= tmH = M=y g, MTYAM T Mp™ = ‘rmﬂ =7r" — a,, Ap™ ‘

Mp™*t = M~ — B Mp™ = ’pmH = 2" — B ™ ‘

The algorithm for A
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Define C' = M?2.
X given, 7" =0b—AX", solve Cz° =70, p°=20.

While m < Niter or ||r"™]|| > tol, do

N _ (Zm’ ,,,m)
B (Ap™,pm)’
Xl = XM 4 p™,
rmtt = rm—q,, Ap™
solve Czmtl = pmtl ,
B _ (Zerl, T,m+1)
m+1l = (Zm) rm) ’
pmtt o= 2t g ™

How to choose C
C must be chosen such that

1. A is better conditioned than A,

2. C is easy to invert.
Use an iterative method such that A = C' — N with symmetric C. For instance it can
be a symmetrized version of SOR, named SSOR, defined for w € (0,2) by
C ! (D —wE)D YD — wF)
=—(D-w —wk).
w(2 —w)
Notice that if A is symmetric definite positive, so is D and its coefficients are positive,
then its square root v/D is defined naturally as the diagonal matrix of the square roots of
the coefficients. Then C' can be rewritten as

C =587, with S = ;(D —wE)D™Y/2,
w(2—w)

yielding a natural Cholewski decomposition of C.

Another possibility is to use an incomplete Cholewski decomposition of A. Even if A
is sparse, that is has many zeros, the process of LU or Cholewski decomposition is very
expensive, since it creates non zero values.

Example : Matrix of finite differences in a square

Poisson equation

1 1
—(Anw)ij = =75 (Uit = 2uij +uiz1) = 55 (W1 = 2uig + uij-1) = fij,

I<i<M,1<j<M

9 10 11 12
5 6 7 8
1 2 3 4

FIGURE 1.7 — Numbering by line
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The point (z;,y;) has for number ¢+ (j —1)M. A vector of all unknowns X is created :

Z = (u1,1,u2,1,unr,1), (W12, U2,2, Unr,2), - - - (Wi, a0, U2, 015 Whd, M)

with Zi—i—(j—l)*l% = Uqj,j-
If the equations are numbered the same way (equation #k is the equation at point k), the
matrix is block-tridiagonal :

B -C Oar
) -C B -C
-C B -C
Onr -C B
4 -1 0
-1 4 -1
C=1Iy, B=
-1 4 -1
0 -1 4

The righthand side is b1 (j—1)«a = fi,j, and the system takes the form AZ = b.

Cholewski decomposition of A

The block-Cholewski decomposition of A, A = RR”, is block-bidiagonale, but the
blocks are not tridiagonale as in A, as the spy command of matlab can show, in the case
where M = 15.

100 100

120 120

140 140

160 160

20 40 60 a0 00 120 140 160 20 a0 60 80 100 120 140 160
nz=793 nz=2209

spy(A) spy(R)

However, if we look closely to the values of R between the main diagonales where A
was non zero, we see that where the coefficients of A are zero, the coefficients of R are
small. Therefore the incomplete Cholewski preconditioning computes only the values of R
where the coefficient of A is not zero, and gains a lot of computational time.

1
0
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— h7 A(80,60:100)
35 h®R(80,60:100)

FIGURE 1.8 — Variation of the coeflicients of Cholewski in the line 80 for
M =15

The matlab codes are as follows ([3])

Ch=tril(A);

for k=1l:nn
Ch(k,k)=sqrt(Ch(k,k));
Ch(k+1:nn,k)=Ch(k+1l:nn,k)/Ch(k,

k);

Cholewski for j)=k+1:nn

Ch(j:nn,j)=Ch(j:nn,j)—Ch(j:
nn,k)*Ch(j,k);

end
end
ChI=tril(A);
for k=1:nn
ChI(k,k)=sqrt(ChI(k,k));
for j=k+1l:nn
if ChI(j,k) ~= 0
ChI(j,k)=ChI(j,k)/ChI(k
K);
end
end
Incomplete Cholewskil for j=k+l:nn
for i=j:n
if ChI(i,j) ~=0
ChI(i,j)=ChI(i,j)—
ChI(i,k)=*ChI(j,k
)
end
end
end
end

Then use C = R« RT.

Comparison For the 2-D finite differences matrix and n = 25 internal points in each
direction, we compare the convergence of the conjugate gradient and various preconditio-
ning : Gauss-Seidel, SSOR with optimal parameter, and incomplete Cholewski. The gain
even with w = 1 is striking. Furthermore Gauss-Seidel is comparable with Incomplete
Cholewski.
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finite diff erences 20, n=25

T T
conjugate gradient
— preconditione d conjugate gradient Gauss-Seidel

preconditioned conjugat e gradient SS0R
preconditioned conjugate gradient IC

FIGURE 1.9 — Convergence history, influence of preconditioning

1.6 Krylov methods for non symmetric matrices,
Arnoldi algorithm

1.6.1 Gram-Schmidt orthogonalization and ()R decom-

position
Starting with a free family (vy,- -+, v, -+ ) in a vector space E, the process builds an
orthonormal family (wq,- - , Wy, - ) recursively.
U1
e. Define wy = .
[[v1]
. Note 712 = (v, w1), and define ug = vo — r1 2w;y. By construction us is orthogonal to
u
ws. It only remains to make it of norm 1 by defining ro o = |luz||, we = -2
2,2
e. Suppose we have built (w1, -- ,w;) orthonormal. Define 7; j 11 = (vj41,w;) for 1 <1 <
j, and
j i
Wit =01 — Y T, T = [ugpal, wip = ——.
i=1 Tj+1,5+1
Then (w1, -+ ,w;) is orthonormal. Furthermore, we can rewrite the previous equality as

j
Ujt1l = Tj41,j+1W541 + E T4, j+1Wi,
=1

which gives for each j;

J
7/‘]’ = Z rj_.j’ll,r'j . (12)
1=1

Define the matrix K whose columns are the v;, the matrix ) whose columns are the wy,
and the upper triangular matrix R whose coeflicients are r; ; for i < j, and 0 otherwise.
Then (1.2) takes the matrix form

K=QR (1.3)

The matrix @ is orthogonal, so this is exactly the so-called QR decomposition of the
matrix K. Note that the matrix K DOES NOT NEED TO BE SQUARE, nor the matrix
@, but the matrix R has size m x m.
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1.6.2 Arnoldi algorithm

The purpose is to build recursively a orthonormal basis of the Krylov space IC,, =

vect(r, Ar,- -+, A~ 1r). We will take advantage of the special form of the generating family
to proceed a slight modification of Gram Schmidt.
e. Define ¢; = T

(7]

e. Now we must orthogonalize ¢; and Ar, or equivalently ¢; and Aq; :

u
hig=(Aq,q1), us=Aq —hi1q1, hop=llu|, ¢ = h72
2.1

s

Then g2 € Vec(q1, Agq1) = Vece(r, Ar) = Ko and (g1, ¢2) is an orthonormal basis. All this
can be rewritten as

Agqi = h11q1 + ho1g0.

Then K3 = Vec(qr, gz, A’r) = Vec(qi, o, Agz). Therefore, instead of orthonormalizing
with the new vector A%r, we can do it with the new vector Ags. Define

U
usz = A(J2—h1,2(J1—h2,2Q27 h2,2 = (AQQ,(]2), h1,2 = (AQ2aQ1), h3,2 = ||u3||7 q3 = h73
3,2

)

This generalizes in building an orthonormal basis of Xj1 by

Uj+1
hjt,

i
w1 = Ag; = hijai . hig=(Ag,ai), hipa = llualls g =
1=1

Theorem 1.13 If the algorithm goes through m, then (qi,...,qm) is a basis of ICp,.

Below is the matlab script

for j=1:m do
h(i,j)=(Axv(j,:),v(i,:)) , i=l:i
w(j,:)=A*v(j,:)—sum(h(i,j)v(i,:)
h(j+1,j)=norm(w(j,:),2)
If h(j+1,j) == 0 stop
v(j+1,:)= w(j,:)/h(j+1,])

The definition of the g; above can be rewritten as
Jj+1

Agy = hijai (1.4)
=1

Define the Hessenberg matrix I;Tm as the matrix of the h; ; for ¢ < j 41, and 0 otherwise.
H,, is a matrix of size (m + 1) x m.

hi 1 e hi,m
hai  hoo e ham
ffm _ 0 hspe
0
0 0 0 hm,mfl hm7m
0 0 0 0 hoiim
Define V,,, = [q1, - - , qm]- Hm is the m X m matrix obtained from the (m 4+ 1) x m matrix

f[m by deleting the last row.
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Proposition 1.1

Avm — 7n+lﬁm~, Avm, - m+lﬁm — Vm[[m + herl,m(bn#»lez;r KIAVNL — [Im,-
(1.5)

The first identity is just rewriting (1.4). As for the second one, rewrite the first
one in blocks as

Hp,

Vm-‘rle = [Vma Qm-i-l] |: hm+l meT

:| - VmHm + hm-&-LQO-ﬁ-leZ@-

Use this now in the first equality to obtain
AV, = Vi Hypy + hm+1,m‘]m+1e%;-

Multiply on the left by V.. Since V;,, is orthogonal, and V.2 ¢, 1 = [(q1, @ms1)s -+ (G @ms1)]T =
0, we obtain
VIAV,, = H,,.

1.6.3 Full orthogonalization method or FOM

Search for an approximate solution in z¢ 4 K, (4, 7o) in the form x,, = x¢ + V,,y, and
impose 7., LKC,, (A, 7). This is equivalent to V.17, = 0, which by

Tm =b— A(xg + Viny) =10 — AViy
can be written by (1.5) as
VEAV,.y = V.Erg or Hpy = ||roller.

The small Hessenberg system
Hmy - HTUH(?] (16)

can be solved at each step using a direct method : suppose all the principal minors of H,,
are nonzero. Due to the special structure of H,,, the LU factorization of H,, has the form

1 e 0 u11 e Uim

I 1 o 0 0 wuo T Ugm
L= 0 I , U= 0 0

0 " " : : 0

0 0 0 Ul,—1 1 0 0 0 0 Umm

The following matlab code gives the LU factorization

u(l,:)=h(1,:);
for i=1:m-1
1(i)=h(i+1,i)/u(i,i);
for j=i+l:n
u(i+1,3j)=h(i+1,3j)-1(i)*u(i,j)
end
end

u(l,:)=h(1,:);

for i=1:m—1

1(i)=h(i+1,1)/u(i,i);
for j=i+l:n
u(i+l,j)=h(i+1,j)—1(i)*u(i,j)
end

end
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The computational cost is m? + 2m — 1 operations.

Theorem 1.14 At each step m, 1., is parallel to ¢p41.

Tm =T0 — Ame =To — (VmHm + hm+1,m¢]m+le£)y =710 — VinHpny — hm+1,mmem+1-

But H,,y = ||rolle1, therefore ro — Vi, Hyy = 1o — ||rol||Viner = 7o — ||70]lg1 = 0. Therefore
Tm = —lm41,mYmm+1 is parallel to gmy1.
|

function [X,R,H,Q]=FOM(A,b,x0);
s FOM full orthogonalization method
[X,R,H,Q]=FOM(A,b,x0) computes the decomposition A=QHQ?, Q
orthogonal
and H upper Hessenberg, Q(:,1)=r/norm(r), using Arnoldi in order to
solve the system Ax=b with the full orthogonalization method. X
contains

% the iterates and R the residuals
n=length(A); X=x0;
r=b—A*x0; R=r; rOnorm=norm(r);
Q(:,1)=r/rGnorm;
for k=1:n

v =AxQ(:,k);

for j=1:k

H(j,k)=Q(:,3) "*v; v=v—H(j, k)*Q(:,]);

end

e0=zeros(k,1); e0(1l)=rOnorm; % solve system

y=H\e0; x= x0+Qx*y;

X=[X x];

R=[R b—Axx];

if k<n

H(k+1,k)=norm(v); Q(:,k+1)=v/H(k+1,k);
end

o

o°

o°

o®

end

1.6.4 GMRES algorithm

Here we minimize at each step the residual 7, in KC,,(A,rg), which is equivalent to
the minimization of J(y) = |10 — AVipy||2 for y in R™, Use the Proposition to write

ro — AViy = [rollar — Vins 1 Himy = Vinr1(Iroller — Huy).
Since V41 is orthogonal, then
lro = AVinyll = [lllroller — Hmyl-

So in FOM we solve EXACTLY the square system H,,y = ||ro|le1, while in GMRES we
solve the LEAST SQUARE problem inf ||||7g||e1 — Hmy/||. This small minimization problem
has a special form with a upper Hessenberg form, and is best solved by the Givens reflection

method. Let us consider the case of m =3 (o9 = ||70]|)-
h1,1 h1,2 h1,3 m 00
_ 7 | h21 hop hags 0
z = Hzy — oge1 = 0 hae has y2 | — 0
0 0 hyg & 0
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Multiply successively by the three (m + 1) x (m + 1) Givens matrices

cac s1 00 1 0 0 0 10 0 O
| =51 a 0 0 1 0 e s2 0 101 0 O
@=L 0 0o 10| P2T|0 sm om0 BTl0o0 & s
0 0 01 0 0 0 1 0 0 —s3 c3
to make the system triangular, and even better

ill,l ZL1,2 }:11,3 n C1

0 A h c

Q3Q2Q12 = 22 o2 v |- 2

0 0  hsgs Ya 3

0 0 0 C4

Therefore
121> = [|Q3Q2Q12]1* = | Ry — ¢"||* + (ca)®

where R is the upperblock of the matrix, and ¢! the upperblock of the vector. Now we
have a regular system, and y is THE solution of

Ry =,

which is now an upper triangular system.

function [x,iter,resvec] = GMRES(A,b,restart,tol,maxit)

%GMRES Generalized Minimum Residual Method for Schwarz methods

% [x,iter]=GMRES(A,b,RESTART, TOL,MAXIT) uses gmres to solve a
system

% Ax=b where A is defined as the procedure 'A'.

% This is an adapted copy of Matlabs GMRES.

n = length(b);

n2b = norm(b); % Norm of rhs vector, b

\O

5 X0=rand(n,1);
x0 = ones(n,1);
1

o°

[+

=1; % all frequencies to initialize
x0 = sin((1l:n/2)'/(n/2+1)xpixf); x0=[x0; x0];
for f=2:n/2,

X0 = x0+[sin((1l:n/2)'/(n/2+1)xpixf); sin((1l:n/2)'/(n/2+1)*pixf)];
end;

—

X = X0;

% Set up for the method

flag = 1;

xmin = X; % Iterate which has minimal residual
so far

imin = 0; % Outer iteration at which xmin was
computed

jmin = 0; % Inner iteration at which xmin was
computed

tolb = tol * n2b; % Relative tolerance

if tolb==0,
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tolb=tol;

o°

solution
end;
r=>b— feval(A,x); %
normr = norm(r); %

o°

if normr <= tolb
solution
flag = 0;
relres
iter =
resvec = normr;
0s sprintf(['The initial guess
" which is within\
' so GMRES returne
relres,tol);

= normr / n2b;
0;

disp(os);
return;
end
resvec = zeros(restartsmaxit+1,1);
residuals
resvec(l) = normr;
normrmin = normr;
rho = 1;
stag = 0;

% loop over maxit outer iterations

for i = 1 : maxit
V = zeros(n,restart+l);
h = zeros(restart+l,1);
QT = zeros(restart+l, restart+l);
R = zeros(restart,restart);
*R
f = zeros(restart,1);
W = zeros(n,restart);
j=0;
vh = r;
h(1) = norm(vh);
V(:,1) = vh / h(1);
QT(1,1) = 1;
phibar = h(1);
for j =1 : restart

]
MapU(x,sqrt(n),sqrt(n));

use absolute error to find zero
Zero—th residual
Norm of residual

Initial gquess is a good enough

has relative residual %0.2g'
nthe desired tolerance %0.2g'
d it without iterating.'],

\0

Preallocate vector for norm of

o

o°

resvec(1l) norm(b—Ax*xx0)
Norm of residual from xmin

o°

[
©

stagnation of the method

(unless convergence or failure)

o°

Arnoldi vectors
upper Hessenberg st AxV = VxH

\0

o

orthogonal factor st QT+H = R
upper triangular factor st H = Q

y = R\f => x
W Vxinv (R)
inner iteration counter

X0 + Vxy
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u = feval(A,V(:,7)); % matrix multiply
for k=1 : j
h(k) = V(:,k)' * u;
u=u-— h(k) * V(:,k);
end
h(j+1) = norm(u);
V(:,j+1) u/ h(j+l1);
R(1:3,3) =QT(1:3,1:3) * h(1:3);
rt = R(J'J);

% find cos(theta) and sin(theta) of Givens rotation

if h(j+1) ==
c=1.0; % theta = 0
s =0.0;

elseif abs(h(j+1)) > abs(rt)
temp = rt / h(j+1);
s =1.0 / sqrt(l1.0 + temp™2); % pi/4 < theta < 3pi/4
c =— temp * s;
else
temp = h(j+1) / rt;
c =1.0 / sqrt(1.0 + temp™2); % —pi/4 <= theta < 0 < theta <=
pi/4
s = — temp * C;
end

R(j,j) = c *xrt — s x h(j+l);
% zero =5 * rt + c x h(j+l);

q = 0QT(j,1:3);
QT(j,1:3) = c * q;
QT(j+1,1:j) = s * q;
QT(j,j+1) = —s;
QT(j+1,j+1) = ¢c;
f(j) = ¢ * phibar;
phibar = s * phibar;

if j < restart
if f(j) == % stagnation of the method
stag = 1;
end
W(:,3) = (V(:,3) — W(:,1:5-1) » R(1:3—-1,3))/ R(3,3);
% Check for stagnation of the method
if stag ==
stagtest = zeros(n,1);
ind = (x ~= 0);
if ~(i==1 & j==1)
stagtest(ind) = W(ind,j) ./ x(ind);
stagtest(~ind & W(:,j) ~= 0) = Inf;
if abs(f(j))*norm(stagtest,inf) < eps
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stag = 1;

end
end
end
X =x+ T(j) *« W(:,3); % form the new inner iterate
else % j == restart

vrf = V(:,1:3)%(R(1:3,1:3)\F(1:3));
% Check for stagnation of the method

if stag ==
stagtest = zeros(n,1);
ind = (x0 ~= 0);
stagtest(ind) = vrf(ind) ./ x0(ind);
stagtest(~ind & vrf ~= 0) = Inf;
if norm(stagtest,inf) < eps

stag = 1;
end
end
X = x0 + vrf; % form the new outer iterate

end
normr = norm(b—feval(A,x));
resvec((i—1)xrestart+j+1) = normr;

if normr <= tolb % check for convergence
if j < restart
y = R(1:3,1:3) \ f(1:3);
X =x0 + V(:,1:5) *x vy; % more accurate computation of Xxj
r=>b— feval(A,x);
normr = norm(r);
resvec((i—1)xrestart+j+1) = normr;
end
if normr <= tolb % check using more accurate xj
flag = 0;
iter = [1 j];
break;
end
end

if stag ==
flag = 3;
break;
end

if normr < normrmin % update minimal norm quantities
normrmin = normr;
xmin = Xx;
imin = i;
jmin = j;
end
end % for j = 1 : restart
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if flag ==

X0 = Xx; % save for the next outer
iteration
r=>b— feval(A,x0);
else
break;
end
end % for i =1 : maxit

% returned solution is that with minimum residual

if n2b==0,
n2b=1; % here we solved for the zero solution and thus show
end; % the absolute residual !
if flag == 0
relres = normr / n2b;
else
X = Xmin;

iter = [imin jmin];
relres = normrmin / n2b;
end

% truncate the zeros from resvec
if flag <= 1 | flag ==
resvec = resvec(l:(i—1)xrestart+j+1);

else
if j ==
resvec = resvec(l:(i—1)xrestart+l);
else
resvec = resvec(l:(i—1)xrestart+j);
end
end

o

% only display a message if the output flag is not used
switch(flag)
case 0,

0s

sprintf ([ 'GMRES(%d) converged at iteration %d(%d) to a'

solution with relative residual %0.2g'],
restart,iter(1),iter(2),relres);

case 1,
0s = sprintf(['GMRES(%d) stopped after the maximum %d
iterations'
" without converging to the desired tolerance
%0.29"
‘\n The iterate returned (number %d(%d))'
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' has relative residual %0.2g'],
restart,maxit,tol,iter(1),iter(2),relres);

case 2,
0s = sprintf(['GMRES(%d) stopped at iteration %d(%d)'
" without converging to the desired tolerance

%0.2¢g"
"\n because the system involving the'
' preconditioner was ill conditioned.'
"\n The iterate returned (number %d(%d))

' has relative residual %0.2g'],
restart,i,j,tol,iter(1),iter(2),relres);

case 3,
0s = sprintf(['GMRES(%d) stopped at iteration %d(%d)'
' without converging to the\n desired'’
' tolerance %0.2g because the method stagnated.'
"\n The iterate returned (number %d(%d))
' has relative residual %0.2g'],
restart,i,j,tol,iter(1),iter(2),relres);
end % switch(flag)
if flag ==
disp(os);
else
warning(os);
end

semilogy(0:length(resvec)—1,resvec);

Remark If A is symmetric, H,, is tridiagonale.

Restarted GMRES For reasons of storage cost, the GMRES algorithm is mostly
used by restarting every M steps :

Compute x1,- - , 2.

If rj; is small enough, stop,

else restart with zg = z .
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Chapitre 2

Multigrid methods
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Multigrid methods are a prime source of important advances in algorithmic efficiency
, finding a rapidly increasing number of users. Unlike other known methods, multigrid
offers the possibility of solving problems with N unknowns with O(N) work and storage,
not just for special cases, but for large classes of problems. It relies on the use of several
nested grids. For the modal presentation of the method, we refer to [7],[2], [5]. For the

finite element part, we refer to [1].

2.1 The V- cycle process

One cycle of the multigrid method is given as follows. Suppose we want to solve

ARUR = b, We take an initial guess U”, and define M G(A" b, U") to be
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Step 1 : smoothing N, iterations of the smoother, with initial guess U".
U‘h,] _ Sh(;‘lh, b, [jh. AFl)a €h’1 — Uh _ Uh’l.

The residual is r1 = b — AL = Ahehil,
It is projected on the coarse grid

r2/l, _ P}?h ,,]z,.l

Step 2 : Coarse resolution The system A2'[/?" = 12" is solved approximately by

p iterations of the multigrid solver on the coarse grid
Uhr = MG (A% p2h g2hr=1y 0 g?h0 = 0,1 <r < p.
It is projected on the fine grid
Ut = ghl 4 ph e gh = ghl _ phpy2hr
Step 3 : Smoothing again N; iterations of the smoother

U3 =AM b U2 Ny).

We will describe the process in the simple case where the coarse problem is solved
exactly, i.e.
Uh,2 —_ Uh,l _ PthUQh

Define D f2(p) the p x p matrix of 1 — D finite differences on a grid of mesh 1 :
Dfa(p) = , (Dfe(p)U); = —Uj-—1+2U; — Ujy1.

Then A" = 5D fy(n — 1) and A*" = 5D fo(2n — 1).

2.1.1 The Smoother

If S is the iteration matrix of the smoother, the result of the smoothing is

(th"l _ S“\l(?(), I‘h“'l _ Ah({h,l. (21)

2.1.2 Projection on the coarse grid

The fine grid is (;) for 1 < k < 2n — 1. The coarse grid is (ﬁ) for1 <k<n-1
n n
Define h = 1/2n.

2h . m2n—1 n—1 2htTh o Th h Th
PR — R (BUY)j = £ (Ugjy + 2055 + Uy ).

= =

The matrix of P,fh is

1 1 1
L1 1 93 9
5811100
42411
proo 0o 0 0§ 1t
0 0 3 3 1
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Define now
I’Zh — P}?/I,’,/I, _ P/fhflh(‘h‘l.

2.1.3 Coarse resolution
Suppose the coarse grid problem is solved exactly.

‘42h, Uzh _ ]‘Zh

2.1.4 Projection on the fine grid

We define the projection operator as :

(LU, = U

P;]’ . Rnf'l — R2717'l’ § : B ‘
| (PRUP )11 = H(UZ +UZ)

The matrix is

10 0 0
10 0 0 0
£ 4 0 0 0
01 0 0 0
0+ 3 0 0
h 2 2
P=1o 0 1 0 o
0 0 0o 1

2.1.5 Result of the coarse walk

(311"2 _ ([ o Pé%(/lml’)ilp}?h/lh)(’,h'l
Lemma 2.1
Ker PP Al = {V e R**™1, Vo =0, j=1---,n— 1},
Ker Ph Ah & ImPl, = R?" 1,

YV € RQn_l,Vj, (AhPthV)QjJrl = O7
pEh APl = A2,

N N /N /N
oo W
e

It is easy to compute

(B AM); = (AMU)g51 + 2(AM0)2;5 — (A"U)2541)
—Usj_ L U _ _ _
gz (—Uzj 2 +2Uzj 1 — Uy + 2(=Uszj_1 + 2Uz; — Usjy1) — Usj + 2Uzj41 — Usjyo)
= g2(=Uzj_2 +2Us; — Uzjy2)

U,

W=
=~

&

=

= AQh .
Uzn—2
Denoting by U the vector of the even coordinates of U, we have proved that for any

vector U € R2"1,
P AN = U°.

Therefore the kernel of P,?bhAh is equal to the space of U such that U¢ = 0, which proves
(2.2).
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Now by the rank theorem,
dim Ker Pj; hy dlmImPh =2n—1.
Since A" is an isomorphism in R?"~!, dim KerP,%h = dim KerP,%hAh. Then
dim Ker PP A" + 1gP}" = 2n — 1.
Since P2h = %(Pélh)T, they have the same rank, and therefore
dim Ker P2 A" + 1gPJ, = 2n — 1.
Furthermore, any U in KerP2"A" N ITmPY is equal to Pl w, and vy; = 0. Since

(Pl w)a; = w;, this proves that w = 0. Hence (2.3) is proved.
We now can prove in the same way, first that for V in R™~!,

1
(AP, V)aj41 =0, (AMPJV)gj = —5(—vj_1 + 2v; — vjq1) = 2(A*"v);.

2h?
Then
(P APV = (A%);.
|

Lemma 2.2

L= gt 4 P e?h,
with )

h

d’gj =0, dng = ?(Aheh,1)2j+1’ efh = M1y
By (2.3), we can expand e™! as

1 _ dh + P2hh€2h,

with d" € KerP?" Ah. By (2.2), d2j =0, and
(Ph 2h) ‘ZE?h,
which determines the components of e2”. Compute now the odd components,
h 2h h L on Lowt | o
623+1 d23+1 + (Ppe™")2j+1 = dgjyq + 2( + €g+1) d2]+1 + 2(€2j +e9j42)
Therefore
h Lo na ni_ h h?homi
dyjpr = 5(2ej01 — €a) — €3j40) = o (A" ).
|
Apply the lemma to compute e/2
P2hh<A2h)—1P’%hAheh,l — P2hh(A2h) 1P£hAh(dh_~_ h 2h) P2hh(A2h)_1 P],%hAhP;h Ph 2h
———

A2h

Therefore
eh,2 _ P2hh62h dh,

which implies the elegant formula

2
h,2 _ h o Ah _h, _ h h,1
ey =0, eyih = 9 (A" )2j41 = 9 'z}+1

the even components have disappeared.
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2.1.6 Postsmoothing

o3 — gN2 hi2.

h2
M3 = SNgﬂogAhSNleh

2.1.7 Spectral analysis

The smoothing matrix S has eigenvalues Ay, and eigenvectors ®*). For relaxed Jacobi
or the Gauss-Seidel algorithm, the eigenvalues are

kmh
Mw) = 1—2wsin2(%) for 1 <k<2n-1,
)\gs = cos?knh for1<k<2n-1,

Figure 2.1 shows the eigenvalues as a function of k for n = 16.

Eigenvalue )\k as a fonction of k

0.8

0.6

0.4

02 Gauss—Seidel

-04H — relaxed Jacobi w=1
relaxed Jacobi w=1/3
relaxed Jacobi w=1/2

-08H —relaxed Jacobi w=2/3 4
Gauss—Seidel
1 5 10 15 35

FIGURE 2.1 — Eigenvalues of the relaxed Jacobi iteration matrix as a function
of k for several values of w together with Gauss-Seidel

]{72 2h2
* For small k, \{(w) ~1—w 7; .
xForw=2/3,n<k<2n—1=\(w) < 1/3
-~
smoothing factor

4 h
* For other modes. |\ (w)] € (1/3,1 — 3 siHQ(%))

When using Gauss-Seidel as a smoother, one can observe that the eigenvalues are small
when k ~n: A\, <1/2forn/2 <k <3n/2.
For an initial error e = ®*) the error and residual after N, iterations is

€h’1 — )\2\71(1)(16)7 T.h71 — /Jk:)\;g\hq)(k)

From

h2
h2 _ 2 _ N7 R
€oj = Uy €941 = B T9j+1
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we obtain

h,2 h2 N1 xk
e e = 3Mk/\qu)2j+1'

If the same smoother is applied in postprocessing,

eh,?) _ )\i\heh,Q’
and finally,

2
h3 n3 _h Ni4+No gk
e =0, eyiiy = EIMM;C P31

We can see now that even the low frequencies are damped. Choose relaxed Jacobi with
w=2/3. For n < k < 2n — 1, we have, with N = Ny + No,

2
h,3
|82j+1‘ < (g)N|‘I’]2€j+1‘7

and for 1 <k <n-—1,

1 N N
h,3 Ny &k k
€5 < su (1l —wzx (O} < (OB
| 2j+1| - :L’E(()I,)l)( ( ) )| % 1| o L"(N 1) (N 1) | % 1|

For three iterations of the smoother (N=3), the low frequencies have been
damped by a factor 0.1582, and the high frequencies by a factor 0.2963!! The
figures below show the result of one cycle of the above described algorithm, compared to
three iterations of relaxed Jacobi, or Gauss-Seidel, for several inital guesses. n = 10.

frequency 1
T

T
initial guess
one V_cycle
09l 3 iterations relaxed Jacobi| |
3 iterations Jacobi

o 0.1 02 03 0.4 05 06 07 08 0.9 1

FIGURE 2.2 — Comparison of the iterative methods. Initial guess sin mx
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frequency 9

T

T
initial guess
one V-cycle
3 iterations relaxed Jacobi| |
3 iterations Jacobi

0.6

0.7

FIGURE 2.3 — Comparison of the iterative methods. Initial guess sin(n—1)mrzx

frequency 19

T
initial guess
one V-cycle
3 iterations relaxed Jacobil |
3 iterations Jacobi

FIGURE 2.4 — Comparison of the iterative methods. Initial guess sin(2n —
1)mz.

05|

03|

07|

05|

05|

04|

03|

02|

o1

(] 02 04 06 08

Initial guess sin mx

eeeee

osHH
. HH“\
. H‘H

0

02 HH

| ‘MH
Ml

’“,?HH” "

*‘“wmmm\m

Il ww‘mm\m

|
\M H f \

\ \ —— initial guess

mww\w

Initial guess sin(n — 1)wz  Initial guess sin(2n — 1)7x.

frequency 199
1

o,

.

o

s

s

-s ""Jﬂm

TABLE 2.1 — The effect of one V-cycle on one single mode for n = 100.
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e,

The Ny last smoothing steps helps to reduce the high frequencies by a factor (%

2.1.8 Number of elementary operations

method number of operations
Gauss elimination n?

optimal overrelaxation n3/?
preconditionned conjugate gradient no/4

FFT nlng(n)
multigrid n

TABLE 2.2 — Asymptotic order of the number of elementary operations as
a function of the number of grid points in one dimension for the Laplace
equation (sparse matrix)

2.2 The finite elements multigrid algorithm

Details on finite elements can be found in [4][6] and.[1].
We consider here an elliptic problem in V = H}(Q), where € is a convex polygone. If
aq S (227 S Qo a.ce. in Q, y

a(u,v) = _Zl/g(aij(x)Vu(x)Vv(x) + ao(x)u(z)v(x)) d

is an elliptic bilinear form. It therefore defines a norm, which is equivalent to the H!
norme, that we call the energy norm

o]z = Va(v,v)
The variational problem is, to find u € V such that
Yo € V,a(u,v) = (f,v) (2.6)
We know that there is a unique solution in V' which, furthermore, belongs to H?(Q).and

llull g2y < Cllfllz2)-

2.2.1 Preliminaries

Let 7 be a sequence of triangulations of €. hy is the longest measure of the side of
the triangles in 7. T is obtaind from 7;_; by dividing each triangle into four triangles.

Let (NT,N¥ N) be the number of triangles outside the boundary of €, edges and
vertices respectively. There is a recursion relation :

NE, = ANF, Ny = N + NP, NE., = 2NF + 3N}

which provides the total number of each, starting with the triangulation 7; in Figure 2.5 :
(NT,NE N) = (Ny, Ny, 1).

NI =2%Ny, Ny =287128 — )Ny, NE =281 (2R — )Ny

We have asymptotically
Ni ~ 221Ny (2.7)
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FIGURE 2.5 — Recursive triangulation

For each k, the diameter of the triangulation hy, is the largest length of edge, therefore
hi+1 = hi /2. Then the triangulation is quasi-uniform (cf [1]), in the sense that there exists
p > 0 such that

inf diamBr > ph
Tlng iamBr > phy

where Br is the largest ball contained in T'. Its diameter is given by % with |T|: =

area(T) = %(AB)(AC) sim(ﬁ‘l?)7 and length(T) is the perimeter of T

FIGURE 2.6 — triangle

It is easy to see that, after a refinement, the diameter is divided by 2, and so is h,
therefore it suffices to define p = h% infrey, diamBry.

Vi ={vevncQ),VT € Tr,v|r € P}

This defines a sequence of finite-dimensional spaces, of dimension Ny, with Vi C Vi1
We define the variational problem in Vi, to find uj € Vi such that

Yo € Vi, a(ug,v) = (f,v) (2.8)

Classical finite element results assert that this problem has a unique solution, and the
following error estimate holds :

lu — w510y < Chellull g2
We denote by Py the projection operator on Vi, defined for any w in V by

Vv € Vi, a(Pyw, v) = a(w, v) (2.9)
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For w in V', we introduce the solution z of problem (2.6), and z;, the solution of the discrete
problem (2.8), both with data w — P,w. Elementary algebra shows that

|lw — Pkw||%2(9) = a(w — Pyw, z — zp)
It follows that there exists a constant independent of hj such that

Yw € V,H’w—PkaLz(Q) < C’hk||w—PkaH1(Q) (2.10)

We obtain the estimate on the error in L?(Q2) by using the same argument (duality
argument), replacing w — Pyw by u — uy.

|lw — ukHLz(Q) < Chyllu — Uk||H1(Q) < Chi‘uh{z(g)

Theorem 2.1 (Inverse estimate)
C
Yo € Vi, [[v]lg < th’UHLQ
k

For a proof see [6], [1].
The goal of the multigrid method is to compute an approximate value Uy of uj in
O(Ny,) operations, and such that

Uk — will e ) < Chi*|ulmr2(q)

2.2.2 Discrete norm
Note globally S, -+, Sn, the vertices. Define a scalar product on Vi by

Ny,
(v, w) = hin(Si)w(Si) (2.11)

Theorem 2.2 It is equivalent to the L? scalar product on V.
Use the exact integration formula in dimension 2 : denoting by M, the mid-points
of the edge in the triangle, we have for any v € Py,

3

|T|
HU||2L2(T) ? Z

Now since v is affine, the values at point M, are the half-sum of values at points S,,.

3 1 3
SUUARES WELTARROS
a=1 a=1
But
(+y)?+y+2)>2+z+a) =2+ + 22+ (+y+2)?
therefore

Mw

3
D (w(Ma))? <

a=1

3
(v(Mp) + v(M. Z

Q
Il
—

7] 3
) < ||U||L2(T < ? Z

o=
IIFﬂoJ
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and the result follows by summing over all the triangles. |
We define the operator Ay by

Yo, w € Vi, (Apv,w) = a(v,w) (2.12)

and fr € Vi by (fx,v) = (f,v)x for all v in V. Solve the discrete problem amounts to
solving the Nypdimensional system of equations

Apug, = f

The operator Ay, is obviously symmetric positive definite wih respect to (-, -);. We define
mesh-dependent norms as

Hvllls.x = £/ (ARv; v)k
Theorem 2.2 asserts that ||| - |||o.x is equivalent to the L? norm in Vj. As to the norm for

s = 1, it coincides with the energy norm thanks to (2.12). We now estimate the spectral
radius of Ay :

Lemma 2.3

C

p(Ar) <
h3

Let A be a (positive) eigenvalue, with eigenvector v.
a(v,v) = A|[oll[5

NP
— 2 — K2
ol = 72

by the inverse inequality in Theorem 2.1. |

2.2.3 Definition of the multigrid algorithm

In order to pass from one grid to the finer or coarser grid, we need to define transfer
operators, which are mutually dual

Ik: Vk—l — Vk,
Yo € Vi1, Ipv: =wv;
(2.13)
Rki Vk — Vk;,l,
Yo € Vi, (Ripv,w)g—1 := (Zpw, v) = (W, v)k;

For any k and initial guess zg € Vi, and right-hand side g € Vi, the k—th level iteration
is an approximate solution MG(A*, zy, g) in V}, of

Apz=g (2.14)

defined as follows :

For k=1, there is only one grid to deal with, and MG(A!, z, g) is obtained by a direct
method.

For k > 1, z is obtained in three steps

1 Presmoothing on the fine grid : m, steps of a gradient algorithm
Zip1 =2 — pr(Agzr —g), 0<1<mg —1
2 Error correction on the coarse grid The residual g — Ayz,,, is transferred on the

grld 776—17
G = Rk(g — Akzml). (215)
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Now we compute an approximate solution of the residual equation
Ap—1¢=G (2.16)
by performing p steps of the multigrid algorithm on 7;_1 :
Q@ =0,q0=MGA" " q_1,G), 1<I<p
Then we project on the fine grid again
Zma+1 = Zmy + Ly
3 Smoothing on the fine grid we perform again a few steps of the gradient algorithm
Zip1 =21 — pr(Arzr — g), mi+1 <1 <my +my
MG(k, z0,9) = Zmi+mo

m1 and mo are positive integers, p=1 is a V-cycle, p=2 is a W-cycle. Usually one uses
mq = 3 and mgy = 1.
The full-multigrid algorithm to solve Agf = fi is therefore

U =A7'f,
Uk: = MG(Ak,IkUk_l,fk)
2.2.4 Convergence property of the multigrid algorithm

We suppose here for simplicity that there is no postsmoothing, i.e. my = 0, we note
m :=my, and we consider a W-cycle, i.e. p = 2.

Theorem 2.3 If the relaxation coefficient uy satisfies
1 C
wet<@ (2.17)

the one-sided W-cycle is convergent, and the following estimate holds :
1Ux — urlle < Chilu| g2 o)
The total error is

up — Up = up — MG(Ag, ZtUk—1, fr)

First, for z in V; solution of (2.14), we must estimate z — MG(A*, 29, g). It is equal to
Zm, + Lrq2. We rewrite the error as :

2= (2my +Ikq2) = 2 = (2m, +Zia) + Zi(q — ¢2)-
We start with the estimate of the first part :
Lemma 2.4 Let g € Vi_1 the solution of (2.16), then ¢ = Pir_1(z — zpm).
We should show that for any v € Vj_1,
a(q,v) = a(z — zm,v)
We have successively
Ak-1¢,v)—1 by definition of Ajx_; in (2.12)

G,v)i—1 by definition of ¢ in (2.16)

a(q,v) = (
(
(Ri(g — Akzm), v)k—1by definition of G in (2.15)
(
(

g — AgZm,, V) by definition of Ry, in (2.13)
A(z — zm, ), v)g by definition of z in (2.14)
= a(z — zm,,v) by definition of Ay in (2.12)
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We can now write
2= (2m; +9) =2 —2m; — Pec1(z — 2my) = (I — Pec1)(2 — 2m, )-
Since
z2—2zm = — pdlr)™(z — 20)

2= (zm +Zrq) = (I — Po—1)(I — prAg)™ (2 — 20). (2.18)

We have to estimate the projection first :

Lemma 2.5
Yv € Vg, ||U — Pk—l'UHE < CthAk’UHk

|v — Pp_1v||%4 = a(v — Py_1v,v) by the definition of Pj_,
= (v — Zx Py—1v, Axv)g, by definition of Ay in (2.12)
< o = I Pe—rvl|kl[ Aok,
< Cllv = Py—1v||12(q)[[Axv]|x by the equivalence of norms,
< Cllv = Pe—yvllpzo) [ Arvllx
< Chyllv = Pi—1v|| g o | Agvllx by (2.10)
< Chyl|lv — Py—1v||g||Akv|i by the equivalence of norms.

We now study the relaxation operator

Sk =1 — prpAyg

Lemma 2.6 For any v in Vi,
[Skvlle < [lvlle

Furthermore, there exists C' > 0 such that, for any k, for any v in Vi,

AxSE vk < Chilm_1/2||v||H1(Q)~

we expand v on the orthonormal eigenfunctions (with respect to the sca-
lar product ()j) of the positive definite operator Ay, called (¢1,--- , %N, ) associated to

()\17”'7>\Nk)7v: j'vzklvjwj'

Ny, Ny Ng
a(v,v) = (Agv, 0)k = (O Aoy, D vtk = Y Ajvj
j=1 j=1 j=1

Ny
Spv = (1 — mj)vse;
j=1
Ny,
a(Skv, Spv) = Z 21— ,uk)\j)Qv?
j=1

by the assumptions on py, we have 0 < pupA; <1, and

a(Skv, Spv) < a(v,v)
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[ARSE Ik =Y A (1= ) ™05
j=1
1 J
< — sup (z(1—2)*") ) o
Mk 2e(0,1) ; ’
11, .
< ﬁ%”vuk

< C—|v||? < C—|]v||? < C—||v||? .
> mhi o]l < mh% HU||L2(Q) > mhﬁ ||U||H1(Q)

We return to the error in (2.18)
12 = (zm + Zea) [ 11 (0) < Chul| ArSi™ (2 = 20) |k

<z al
< Jm ollH1(0)

Lemma 2.7 For any v, 0 <y < 1, we can choose m such that
Vk > 1, |2 = MG(A*, 20, 9) |2 < ]l2 = 20llm

The convergence rate in W-cycle is independent of the mesh size hy
The proof goes by recursion.
For k=1, 2 = MG(A*, 29, g).
Suppose for any j < k, ||z — MG(A7,20,9)||e < 7|z — 20|l with A7z = g. we now
have z — MG(A*, z9,9) = 2 — (2m + Zrq) + Zr(q — g2). By the recursion relation

lg — a2lle <V llale <2z — zmle
<A?I8™(z = 20)|l &
<7z — z0lle

and o
|z = MG(k, z0,9)||E < (ﬁ +72)lz = zo0lle

Choosing m > (77072 )2, we get the result. |

We can now conclude the proof of the theorem :

lur — Uklle < vlluk — Ug-1lle
< y(luk — g1l + [luk—1 — Uk-1lp)
< A(C(hi + hie—1)|ulg2(0) + luk—1 — Uk—1ll &)
<Y@BChi|ul g2 ) + [Jur—1 — Ur—1|E)

Since the error at step 1 vanishes, we see by recursion that

k—2

|ue = Uklle < 3Cy|uln2(0) Z’thk—j
j=2

Now we can choose v < 1/2, and we obtain

3C

- U, <h
lur — Ukl < oy

ulm2(0)
which concludes the proof of the theorem. |

Proposition 2.1 For a number of cycles p < 4, the work involved in the full multigrid
method is O(N).
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% We call d the maximum number of neighbours of a vertex (d ~ 15 for a general
construction). Then the matrix A* has at most d non zero elements in each line.
The average number of elementary operations (4, —, X, : ) to make the product of
AF by a vector is 2d x Nj,. The number of operations involved in one step of the
gradient is (2d + 3) x N. All smoothings therefore require

(2d 4 3)(my + mg) x N elementary operations.
% As for the projection of the residual, G is defined by
_ 1
G(Si™) =7 > rm(S5)
neighbours of S; in T
where S¥ are the vertices in 7. Therefore the number of operations in the projection

step is also
d x N} elementary operations.

Let us call ng the number of operations needed to run one cycle of the multigrid
algorithm. We have the recursion relation

ng = (2d+ 3) X Ni + png—1

and ny can be estimated asymptotically

g ~ pFing + (2d + 3) Ny, Zk -2 (Q)j

‘ 4
=1
and if p < 4, we can write
ni 4o
ng ~ (— + —)N,
o~ (4 5N
* For the full multigrid, the number of operations nj can also be estimated recursively

by
N = N + Np_1

which we solve as
k
Ng ~ N1 + E nj,
j=2

which altogether produces the result in the Proposition.

2.3 Multigrid Preconditioner
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Chapitre 3

Fast methods using Fast Fourier
Transform

Contents
3.1 Presentation of the method ... ... ....... 53
3.2 Discrete and Fast Fourier Transform . ... .. .. 57
61

3.3 The algorithm

3.1 Presentation of the method

We’ll work with the finite difference approximation of the Laplace equation in dimen-

sion 2.
J (n+1)h, =a
b
mw
5 /E 7 8 /fib b
i@ 0o s
hy 1 2 3 4 \S/ 0
1

N=i+(—-1)n

FIGURE 3.1 — Pavage de [0,a] x [0,b], n = 4
and m = 3
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Y
1
h a
x
N=i+(—1)n
FIGURE 3.2 — Pavage de [0,a] x [0,b], n =4 and m = 3
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Consider now the general problem Ax = b, where A is a nm X nm symmetric matrix
A, block tridiagonal in the form

B C 0
cC B C
A= A(B,C) = (3.1)
cC B C
0 C B

Each block is a n x n matrix. The vectors b and « can be split by block of size n as well,
27 is the sought solution on the ligne j.

b! x!
b = 5 xr =
bTTL mm
The system can be rewritten as
B C 0 ! b'
cC B C x? b’
¢ B C ||z bt

0 C B ™ b



which is a system of m systems of dimension n :

Bx! + Cz? = b
Cx'~! + Bz’ + Czxit! = b
Cz™ '+ Bz™ = b"

Suppose B and C are symmetric, and diagonalise in the same orthonormal basis
(g',...,q"). This is the case for our previous example. Denote by @ the corresponding

orthogonal matrix Q = [g',...,q"]. There exist two diagonal matrices D' and D? such

that
B=QD'QY, C=QD*Q".
Take for example the first equation
Bz!' 4+ Ca? =b'
and replace B and C' :
QDlQTCBl + QDZQTCEZ — bl

Multiply by Q7 :
DlQTwl +D2QTCB2 — QTbl

Denote by (¢!, y?) the coordinates of (b’, z?) in the new basis :

QTv' =¢', QTa'=vy', 1<i<m.
Then the problem takes the form
Dlyl +D2y2 — cl
D2yi=1 4+ Dlyi + D2yit1 -
D2ym—1 + Dlym = cm

These are all diagonal systems. Take the component number j in each block of the
previous system, for 1 < j <n:

1,1 2,2 1
Djyj JrDjyj = ¢
2, 1—1 1, 2, i+1 ]
Djyj —&-Djy;-i-Djyj = c

2 m—1 1
Djyj —l—Djy;” = CE"

which is written in matrix form as

o6

1 2 1 1
D; Dy 0 Yj ¢
2 1 2 2 2
Dy Dj Dj Yj ¢
D2 Dl D2 m—1 Cm—l
e Y i
o 0 oi) \up o




For each j, 1 < j < n, define the tridiagonal m x m matrix

1 2
D;  Dj 0
2 1 2
D5 D; D;
T, =
2 1 2
Dj Dj Dj
2 1
0 D5 Dj
and 2 vectors in R™
¢ vj
d’ = , 2=1:
h vj'

We have now n tridiagonal systems of size m,
Tzl =d, 1<j<n.

which can be solved in parallel with a LU decomposition for instance. For the 2D Laplace
equation with equidistant grid, the computation of the ¢/ and the reconstruction of x can
be done by Fast Fourier transform.

We have to compute for each j, / = Qy’. The matrice C is —— I,,, the matrix B is

1
b

Aq(hy) + h%ln. The eigenvalues of B are those of A; + h%, which are h% + ,;% sin® %
Y Y Yy x

)

the eigenvectors of B and C' are those of A;, given by (after orthonormalisation)

2 jkm
Y s 1<j<
J ntl tayr S =l=

Define the matrix @ as the matrix of eigenvectors

Q=[@", ... &

By
Qu = Z vk@(k),

k=1

2 < kj
(Qu); = (@Tv)j = /55 D vesin ni—ﬂl'
k=1

Note that the sum can be extended to £ = 0 and £k = n + 1 since the sinus vanishes.

. [[2 &k
(Qu); = (Q'v); = ] ka smn+1. (3.2)
k=1

The next section is occupied with the FFT, we’ll come back to the algorithm later.

we obtain

3.2 Discrete and Fast Fourier Transform

Let n’ = n + 1. The Discrete Fourier Transform of length n’ is defined by

n/
_ggkin
w; = E vpe 2w j=1,---,n.
k=1
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Define r = ¢?'77 the basic root of unity, then we rewrite the formula above as

wp =Y wer M =1, n (3.3)
k=1

Lemma 3.1 (Inverse DFT) If w = (w;)i<j<n’ 1S the discrete Fourier transform of
v = (vj)i<j<ns from (3.3), then the inverse discrete Fourier transform is given by

1 & .
/szgzwkrkja .7:17"'an/' (34)
k=1

Just replace

’
n

/
n
1 Y
E — E wprkp rki
n/
p=1

k=1

I
3\‘ —
3
i [M]=
LN
S
3
ol
I M{
N
5
=
=
d

Since z = P77 is a n’— root of unity,

3\

for z # 1, 2k =0,
k=1
n/
forz=1, > zF=n'
k=1
Therefore ) )
L3 0,3
p=1 k=1
and the lemma is proven. |
We now suppose that n’ = 2p. We need to specify more r, that we call r,,. Note for
further use that 7/, = 1 and r”, = —1. Split the sum above into even (k = 2(,{ =1 : p)

and odd terms (k=2{—1,£=1:p). For j=1,---,2p,

TL/ ki
_ —RJ
wj = ) VkT,
k=1
P . P .
_ —20j —(20-1)j
wj = Y Ve, A Y VT,
=1 =1
p . p .
—2 j 2
= Ywvary A Y vaeary,
/=1 (=1

Defining for j =1,---,2p,

p p
_ —2¢j _ —2¢j
uj = E v, T, tj = E V21T, -
=1 =1

Then
I
w; = uj + 1,15,
We verify that for each j, uj1p, = u; and tj4, =t; :
Ep: ¢(j+p)
—20(j+p —2¢
Uj4p = V24 Ty =T, pU,j = Uj.
=1

This implies that we only need to compute (u;,%;) for 1 < j < p. Furthermore

. Jtpy . 00 P 2 g
Wjtp = Wjgp + 1/ i = Uj + 175,785 = uy — 1yt
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To compute u; and t; note that

P P

.y Py
E vogr,, ) = E vae (ri )™
/=1 =1

_ 2ix _ 2inm
But 7"%' — (6 2p )2 =e »p 7‘%, =Tp- Therefore
P P
iy —Lj
uj = E vaery, Y,y = E :U%—l% 7.
/=1 (=1

The sums above are similar sums as that defining w;, but with p = n'/2. This is the
starting point for a dyadic computation of the w; : the Fast Fourier Transform.

To obtain {w;}1<;<2p from {v;}1<j<2p, do
Compute 77, J=1-.p

P p
—0j .y .
Compute u; = g V2T, Tt = E V21T Tog=1p
=1 =1

_ J _ J -
Compute wj; =u; +7r,tj, Wjtp =uj —1)t; j=1--,p.

”/
5 T — g .
r=eXw Jw; = E ver M, j=1,---,n.
c=1

n' =2, r = —1, initialization w; = —v; + vy, Wy = vy + Va.

function w=myFFT(v)
% MYFFT fast Fourier transform
% w=myFFT(v); computes recursively the Fourier tranform of
% the vector v whose length must be a power of 2.
n=length(v);
if n==2,

w=[—v(1)+v(2);v(1)+v(2)];

else
rp=exp(2ixpi/n*(1:n/2)"');
t=myFFT(v(1l:2:n-1));
u=myFFT(v(2:2:n));
w=[u+rp.*t; u—rp.x*t];
end;
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n/
21 %, —ki . ,
7‘:612"”/711)]': g VT /s,]’ ]:1,"‘,71.
k=1

n' = 2, r = —1, initialization w; = —v; + vy, wo = vy + va.

function w=myFFT(v)
% MYFFT fast Fourier transform
% w=myFFT(v); computes recursively the Fourier tranform of
% the vector v whose length must be a power of 2.
n=length(v);
if n==2,

w=[—v(1)+v(2);v(1)+v(2)];

else
rp=exp(2ixpi/n*(1l:n/2)"');
t=myFFT(v(1:2:n-1));
u=myFFT(v(2:2:n));
w=[u+rp.*xt; u—rp.*xt];
end;

;| P (25\ 24 2i
; 2
’"py 2 — 2i

() \

N

4

FIGURE 3.3 - FFT for n' =4

It is easy to count the number of operations in the algorithm to be O(nlog,(n)), which
is much better than blockLU.
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3.3 The algorithm

We now show how to obtain the computation of Qu in (3.2) with FFT.

veR" n’=n+1EVEN

n .
Qv:,/nil z € R", zj:kasinka,” 1<j<n,
k=1
o = [v;0] € R,
’ n’ kg
DFT(%) = w € R", wj = tpe B 1<j<n/
k=1
n’ iy
Note first that z; = ) 9 sin “ZF as well. Consider first the even indices 22, -+, z,—1 :
k=1

il .. 2km n—1
Zog = kasm = —Imwy, £=1,---, 5
k=1
Consider now the odd indices, z1,--- , 2,
220—1 = —7Zm Z ’[)ke_ik(zl;:’l)ﬂ =—7m Z (ﬁk€7’;«i)€_27krff
k=1 k=1
~ 1]“—’}' _ n+1
= —Im(DFT({vke n }k))g, {= 1, Tty T
Resuming with matlab notations
QFFT
rg = ei%
(QU)QZ = = nLJrl Im(FFT(i’))b l= PR n§1 (3'5)
(Qu)ae1 = - n%rl Im(FFT(v - *ro(l:n')/))b (=1, 21
Summarizing the solution of
5N C 0 z! b'
C B C x? b
C B C ! bt
0 C B ™ b

Step 1 : FFT Compute ¢/ = QTd’ by (3.5) for 1 < j < m.

Step 2 : Sort {c!, - ,c™} The righthand side has been build by rows in the mesh : v
is the vector of the values of the forcing term on the line y = j x hy,.
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FIGURE 3.4 — Numbering
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3 ¢y
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FIGURE 3.5 — Renumbering

The total vector o is numbered from 1 to nm, with N =i+ (j — 1) *n. The matrix
C is built as follows

o(l:n) —=C(,1) for j=1:m

on+1:2n) — C(:2) C(:,3)=sig((j—1)xn+l:j*n )
end

o((m—1n+1:mn) — C(:;,m)
and then instead of reading the columns, we read the rows.

Step 3 : Solving the n tridiagonal systems of size m,
szj:dj7 1<j5<n.
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with d’ = C(j,:), and

1 2
Dj Dj 0
2 1 2
D] Dj DJ
T; = ,
2 1 2
D] Dj DJ
0 p? D!
1 2 jmh
D27 - Dlii 2
T TR T TR )

Step 4 : Reordering the 2/ into y’
Step 5 : Recovering ' = Qy’ by (3.5).

For this method, we talk about FFT preconditioning, since the system Au = b is
premultiplied by the block-diagonal matrix

QT
QT 0
Q =
0 QT
That is we write
QAQT Qu = Qb.
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Chapitre 4

Substructuring methods

Contents

4.1 The Schur Complement method . .. ... .. .. 65

4.2 Direct method for the resolution of the interface

problem . ... ..., .. .. . 0 0o e 68

4.3 The conjugate gradient algorithm . . ... ... .. 69

4.4 The Dirichlet Neumann algorithm ... ... ... 70

4.4.1 Presentation of the algorithm . . . . ... ... .. 71

4.4.2 Convergence analysis in one dimension . . . . . . 71

4.5 Appendix : matlab scriptsin1-D ... ... .... 73
Principle

— Split the domain into sub-domains,
— solve iteratively a "condensed interface problem" : at each iteration , solve indepen-
dantly local problems in the subdomains (using a direct or an iterative method).
Advantages :
These methods are :
e More robust than classical iterative ones and cheaper than direct methods.
e Better adapted to distributed parallel computing with message passing programming :
— one sub-domain per processor
— interface data update by message passing .
e Use of sequential legacy codes for local problems, modular approach to parallelism.

4.1 The Schur Complement method

Consider the problem

—Auy = f dansQ, n>0
0 sur 092

u
We write a variational formulation in V = Hg(Q) :

Yo eV, alu,v)=(fv)
with a(u,v) = [, VuVuvdz
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We introduce a triangulation 7, = UK with vertices S;, 1 <i < N,
Vi = {U e V,VK € E,Uh‘[( S ]Pl}.

where PP, is the space of polynomials of degree lower than n in two variables. ; is the basis
function associated to S;, as described in Figure 4.1. We write the linear system KU = F'.
The entries of the matrix K are the a(y;, ¢;). The components of U are the degrees of
freedom, U; = up(S;), and F; = (f, ¢;)..

FIGURE 4.1 — D;, support of the basis function ¢;

The domain € is split into two nonoverlapping subdomains €27 and €5, and T is the
common boundary.

O

FIGURE 4.2 — Domain Decomposition

un =Y un(S))e;+ > un(Si)ei+ Y un(S))e;

S; € S;€Q2 S;er
a(un, 1) = Y un(Sy)ales, o) + Y un(S)alps00) + Y un(S;)alps, ¢1)
SjEQl SjEQg SjEF

For S; € O, the second sum vanishes, since the supports of S§; € Qy and S; € ©; do not
intersect. For S; € Q, the first sum vanishes. For S; € T', all sums contribute, but for the
last one, the support of .S; is split according to Figure 4.1.
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Substructuring effect on S; € T’

FIGURE 4.3 — Decomposition of the support of ¢; € I’

If S; € I" and S; € I' are neighbours,

/ V; -V, dr = / Vo, -V, dz +/ Vo, -V, dr
DlﬂDj D,ﬂ’Djr‘]Ql Dlijsz

and the same for the computation of (f, ;). The unknown U is split into three blocks :
U, is the block of the unknowns in the open domain 2, Us is the block of the unknowns
in the open domain 29, Us is the block of the unknowns on the boundary I'. The matrix
K is split according to the previous formula. We shall write

K1 0 Ki3 U, £
0 Ki Ko3 Uy | = | F (4.1)
K31 Kso Kss Us Fy

with K33 = K33 + K35 and F3 = F3 + F3. We rewrite as a system of three systems.

K11U1 +K13U3 = Fl
KooUs +KoUs = I (4.2)
K31Up +KgzUs +Ks3Us = Fj

Note that Ki; is the matrix of the Laplace problem in §2; with homogeneous Dirichlet
boundary conditions on 921, and is therefore invertible. Solving the first equation in (4.2)
amounts to solving the Laplace equation in )y with homogeneous Dirichlet boundary
conditions on 02; — I, and Dirichlet data Us on I'. The first two problems can be solved
in U, Uy knowing Us as

Uy = (K1) NPy — K13U3), U = (Kog) ™ (Fy — Ko3Us)
Carrying these values into the first equation gives

SUs = (K33 — K51 K11' K13 — K32 K33 ' Ko3)Us = G
with Gs = I3 — K31K1_11F1 - K32K2_21F2
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The matriz S = K33 — KglKilKlg — K32K521K23 is the Schur Comple-
ment matrix.

Theorem 4.1 The matriz S est symmetric, positive, definite.

It will be computed in parallel as
§=25"+5?
with
St = Ki;— K3 K;;'Kis

Then the interface problem will be solved with direct or parallel methods. It is important
to keep in mind that multiplying S by Us amounts to solving Dirichlet problems in
and s.

The first two equations in (4.2) is the resolution of Laplace equations. But what is the
third one ? Suppose w is a “regular” solution of —Aw = f in Q;. By the Green formula we
have for any v in H'/2(T),

< aaTw,v >a0= (Vw, Vv) + (Aw,v) = (Vw, Vv) — (f,v)
1

We apply this to w = (u1)n, and v = @;, with S; € ', and obtain

A

L i >1)i = K31Uy + K33Us — F3 = S'Us — Fj

We can now understand S* as the operator which, in the finite elements formulation,
maps the value of (u1)y on T to its normal derivative. The last equation can now be written

as
v eT, < 2t Oz o g
anl 8n2

The full substructuring method can now be understood as the finite element discretization
of : find g defined on the interface I' such that, defining u; and wuy as the solutions of

—A’U,j = f in Qj,
uj =0on 0Q; — T,

u; =gonl
then
Our , Ouy
(’)nl 8’112
The resolution of the interface problem can be solved either by a direct method, or by a
Krylov method.

=0onl.

4.2 Direct method for the resolution of the in-
terface problem

We work on system (4.1), and write a block-LU decomposition of K as follows

Ki1| 0 | Kis Ly | O 0 Un| 0 | Uss
0 | Kog | Koz | = 0 | Lyp| O 0 | Uz | U (4.3)
K3y | K32 | K33 L3y | Lo | L33 0 0 | Uss

We identify
K1 = L11Uyy; K3 = L11Uss,
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Koy = LogUso; Ko3 = LoUss,
K31 = L31U11; K32 = L3aUszg; K33 = L31U13 + L3aUsz + L33Uss

Notice that LgiUig = KgiKi_ilKig, therefore K33 - L31U13 - L32U23 = S, and S = L33U33.
The computations are made in parallel on two processors :

PROCESSOR (i)

Decomposition L;;U;; de K,
Computation of U3z, Ls;,
Computation of S* = Ki; — L3;U;3
Computation of F' and Fj
ASSEMBLING
Computation of § = S + 5% and F3 = F] + F3,
Decomposition L33Uss of S.

We then solve the triangular problems

L1 | O 0 Z Fy
0 |Lywn| O Zy | =| F2
L3y | L3z | L33 Zs Fy
Ui| 0 | U X A
0 | Uz | Ugs Xo | = | 2
0 0 | Uss X3 Z3

PROCESSEUR (i)
Computation of F}, F%,
Liizi = F;, G = F§ — L3 Z;
ASSEMBLING
Uss X3 = Z3
PROCESSOR (i)

Ui Xi = Z; — Uiz X3

4.3 The conjugate gradient algorithm

S is a symmetric positive definite matrix. The conjugate gradient algorithm reduces
to a descent method,defined by the initial guess UJ the initial descent direction d° = 7% =
SUY — G3. Let r* be the residual a step k. The next step will be

o= s
k _ T
P = Wk dF)

k+1 _ prk k ik
U = Uk — pkd
R

k412
dFL — kL I gk
BRI

All the products have to be made in parallel. Let us go into details.
For the initialization choose Ug =0, thus ' = —G5 = 7F3+K31K1_11F1 +K32K2_21F2.

We define a special box for the product SX :
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Product SX

PROCESSOR (1)
solve K11U1 = K13X,
S1X = K}, — K5 Uy

PROCESSOR (2)
solve KQQUQ = K23X,
S2X = K% — KssUs

\/

ASSEMBLING
SX =8'X 4+ 52X

Initialization

PROCESSOR (1)

solve K11U1 = K137’0,
S0 = Kl — K510y

solve KllUl = Fl, Gé = F31 - K31U1

PROCESSOR (2)

solve Kals = Fy, G2 = F2 — K3Us

solve KopUs = K31,
S%0 = K2, — K3,Us

\/

ASSEMBLING
r0=-Gl-G%,d" =10
00 = S1d + S2q°

ITERATION
vk = SdF
. 7% ]2

(vk, d*)
Ug’f‘l’l _ U§ _ pkdk
PRl = gk pkok

dhtl =kt [Eana s

gk
%12

Note that the scalar products can also be done partly in parallel.

4.4 The Dirichlet Neumann algorithm

The purpose of the algorithm is to solve the coupling problem

by splitting Q into two subdomains with interface I', and solving iteratively with an initial

guess go,

Lu = f on €,
u =0 on 9

70




4.4.1 Presentation of the algorithm

Lut = fin Qy,
u! =00on IQUQ,, u} =g" onl.

Lul = fin Qo,

—  Ouy  Ou}
uf =0on 0QUQ,, —2 = —tonl.
ov ov

0
where W in 5 is the normal derivative, with v the exterior normal to 5.
v

g™t = 0uy + (1 - 0)g".

The choice of the parameter is crucial and unfortunately depends on the position of
the interface. If the subdomains and the problems are symmetric, the choice § = % is
optimal.

4.4.2 Convergence analysis in one dimension

d
Let £L=n—d2, Q= (a,b). Take c in (a,b). Then we have 82 =-gzon the interface
v x

at point c.
Define the error in the subdomain, €7 = u} —u, and h" = g" — u(c). The algorithm
for the error is

Lef =0in Q,
e =00ndQUQy, e} =h"onl.
Ley =0 in Qy,
e =0 on QU Qy, 633 = (3){:’ on T.

R = 0el (c) + (1 — O)h™.
This can be solved as
sh(y/ii(@ — a))
sh(y/n(c—a))’

The coefficient 5" is determined by the transmission condition d,e%(c) = d.e}(c), that
gives

el =h"

ey = ["sh(y/n(b — z)).

—B"ch(yn(b —¢) = h" -

hn+1 — (_QSh(\/ﬁ(b - c))Ch(\/ﬁ(C - a’)
sh(y/n(c—a))ch(\/n(b— c)

Convergence factor p

If the geometry is symmetric, that is if b — ¢ = ¢ — a, then the convergence factor
reduces to
p=1-20,
that is small than 1 for 6 € (0, 1), and vanishes for # = 1/2. Suppose now that (¢ — a) =
(b—a)/5. Then defining x = ,/1/5, then

tanh(4x)

tanh(x) +1).

p=1-0(
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It is a linear function of 6, with a slope o = _(t:ar;hh((%) +1) € (—5,-2).

Slope of the convergence factor

[T N

2 2

— (,
tanh(4x) 5
tanh(x) +1

0y =

Then the algorithm is convergent if and only if 8 < 6.
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4.5 Appendix : matlab scripts in 1-D

function u=SolveDD(f,eta,a,b,ga,gb)
SOLVEDD solves eta—Delta in 1d using finite differences

o°® o° o°

o°

conditions u=ga at x=a and u=gb at x=b using a finite
difference approximation with length(f) interior grid points

o°

J=length(f);

h=(b—a)/(J+1);

% construct 1d finite difference operator

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)*e —e/h"2],[—-1 0 1]1,3,3);

f(1)=f(1)+ga/h"2; % add boundary conditions into rhs
f(end)=f(end)+gb/h"2;

u=A\T;

u=[ga;u;gbl; % add boundary values to solution

function u=SolveND(f,eta,a,b,ga,gb)

SOLVEND solves eta—Delta in 1d using finite differences
u=SolveND(f,eta,a,b,ga,gb) solves the one dimensional equation
(eta—Delta)u=f on the domain Omega=(a,b) with Neumann boundary
condition u'=ga at x=a and Dirichlet boundary
condition u=gb at x=b using a finite
difference approximation.
note the second order appproximation of the derivative

d® o° % o° o° o°

o°

J=length(f);

h=(b—a)/J;

% construct 1d finite difference operator

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)*e —e/h"2],[—-1 0 1]1,3,3);
A(1,2)=2%A(1,2); %% Neumann boundary condition

% construct 1d finite difference operator

f(1l)=Ff(1)—2*xga/h; % add boundary conditions into rhs
f(end)=f(end)+gb/h"2;

u=A\f;

u=[u;gbl; % add boundary value to solution on the right
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function [g,ul,u2]=algoDN(f,eta,a,b,step,ga,gb,gl,Nc,Imax,t)
% algoDN solves the Laplace equation by the Dirichlet—Neumann algorithm
%[g,ul,u2]=algoDN(f,eta,a,b,step,ga,gb,g,Nc,Imax,t)
%solves the Laplace equation eta u —Delta u = f in (a,b)
by the Dirichlet—Neumann algorithm on (a+Nc*step) and (Ncxstep,c)
% note the second order reconstruction of u_l'(c)
g=zeros(1,Imax);
g(1)=gl;
c=a+Ncx*step;
Xx=(a:step:b);x1l=(a:step:c); x2=(c:step:b);
y= SolveDD(f',eta,a,b,ga,gb);
for j=1l:Imax—1
% Dirichlet on (a,c)
fl=f(1:Nc—1);
ul=SolveDD((f1l)',eta,a,c,ga,qg(j));
%sextraction de u_1'(c) : second order
upl= (—ul(end—1)+(l+etaxstep”2/2)*ul(end))/step—step*f(Nc)/2;
% Neumann on (c,b) with u_2'(c)=u_1"'(c)
f2=f(Nc:end);
u2=SolveND( (f2)',eta,c,b,upl,gb);
g(j+1)=(1-1)*g(j)+t*xu2(1);
h=figure
plot(x1l,ul,'b',x2,u2,'m',x,y," 'r',c,linspace(ul(end),u2(1),100), 'k');
legend('u_1",'u 2", 'solution discrete')
title({['Algorithme de Dirichlet—Neumann',' c=',num2str(c), '\theta=",
num2str(t)l;...
['Iteration number ',int2str(j)1})
filename = ['figDNpos' int2str(Nc) 'relax' num2str(t) 'iter' int2str
(j) '.eps'l]
print(h, '—depsc',filename)

o°

pause% (1)
end
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function u=algoSchur(f,eta,a,b,h,ga,gb,Nc)

% algoSchur solves the Laplace equation by the Schur method
%[g,ul,u2]=algoSchur(f,eta,a,b,step,ga,gb,Nc)

%solves the Laplace equation eta u —Delta u = f in (a,b)
% by the Schur method m on (a+Ncxh) and (Ncxh,c)
J=length(f);

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)*e —e/h™2],[-1 0 1],3,3);
% decomposition of A

A11=A(1:Nc—1,1:Nc—1);

A22=A(Nc+1:end,Nc+1:end);

Alg=A(1:Nc—1,Nc);

Agl=A(Nc,1:Nc—1);

A2g=A(Nc+1:end,Nc);

Ag2=A(Nc,Nc+1l:end);

Agg=A(Nc,Nc);

%sdecomposition of f

fl=f(1:Nc—1);

f2=f(Nc+1l:end);

fg=Tf(Nc);

% Construction of the Schur problem

funS=@(x) Agg*x—Agl=*(A11\(Alg=*x))—Ag2*(A22\ (A2g*X));
fS=fg—Aglx(A11\f1)—Ag2x(A22\f2);

ug=pcg(funsS, fS)

%sreconstruct ul and u2

ul=A11\(f1l-Algx*ug)

u2=A22\ (f2—A2g*ug)

sreconstruct u

u=[ga; ul ; ug ; u2 ; gbl;
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clear all;close all;
% Validation of the Dirichlet and Neumann codes
a=0;
b=1;
Step=(b—a)*0.1./10.7(0:2);
for j=1l:length(Step)
step=Step(j);
x=(a:step:b);
y=sin(pixx);
eta=1;
f=(eta+pi™2)*y(2:end—-1);
ga=0;gb=0;
sol=SolveDD(f',eta,a,b,ga,gb);
X=a:step/100:b;
Y=sin(pi*X);
figure(1)
plot(x,sol,'b',X,Y,'r");
hold on

eld(j)=max(abs(sol—y'));
f=(eta+pi™2)*y(l:end—1);

ga=pi;
soll=SolveND(f',eta,a,b,ga,gb);
plot(x,soll,'b',X,Y,'r');

eln(j)=max(abs(soll—y'));
figure(2)
plot(x,soll—y');
% pause

end

figure(3)

loglog(Step,eld, 'm«")

hold on

loglog(Step,eln, 'bo—")

hold on

loglog(Step,Step.”2,'r")
legend('Dirichlet', 'Neumann', 'slope 2')

% Algorithme de Dirichlet Neumann sur (a,c), (c,b)
clear all; close all;

a=0;

b=1;

J=9;

h=(b—a)/(J+1);

x=(a:h:b);

% eta=1;

% y=X."3;

% f=—6xx(2:end—1)+etaxy(2:end—1);
% ga=0;gb=1;

eta=1;

y=sin(pix*x);
f=(eta+pi”2)xy(2:end—1);
ga=0;gb=0;
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sol=SolveDD(f',eta,a,b,ga,gb);

% position de 1 interface
Nc=floor(length(x)/2);

Nc=2;

c=a+Ncxh;

% nombre d'iterations

Imax=10;

%parametre de relaxation

t=0.3;

% initialisation avec la valeur exacte
gl=y(Nc+l);

% ou initialisation avec 0

gl=0;
[g,ul,u2]=algoDN(f,eta,a,b,h,ga,gb,gl,Nc, Imax,t)
% algorithme

figure(99)

plot(g)

title('Interface value')
xlabel('Iteration number')

% Methode de Schur
u=algoSchur(f',eta,a,b,h,ga,gb,Nc);
splot(x,y,'r',x,yd,'g',x,u,'b")
figure(55)

plot(x,sol,'qg',x,u,'b")

=

of
[T

10;

chi=linspace(0,N,Nx100)
Y=tanh(4xchi)./tanh(chi)+1;
plot(chi,Y,'b")

xlabel('\chi")

ylabel('\alpha')

title('Slope of the convergence factor')

7
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