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1 Introduction

In the context of simulating flow and transport in porous media (e.g. for the assess-
ment of nuclear waste repository safety), two main challenges must be taken into
account : the heterogeneity of the medium with physical properties ranging over
several orders of magnitude, and widely differing space-time scales. Solving these
features accurately requires very fine meshes or well-adapted and highly noncon-
forming meshes. On the one hand, one possible approach is to use non-overlapping
domain decomposition which leads to efficient parallel algorithms with local adapta-
tion in both space and time. The Optimized Schwarz Waveform Relaxation method
(OSWR) [3, 2] with the Discontinuous Galerkin (DG) scheme in time [4] is a solu-
tion procedure which allows local time stepping. On the other hand, the finite vol-
ume schemes of DDFV type (Discrete Duality Finite Volumes) for diffusion prob-
lems [5] allow highly nonconforming meshes. Finally, [6] presents a strategy which
is well adapted to domain decomposition for coupling upwinddiscretization of the
convection with diffusion in the context of a finite volume method. In this paper, we
extend the OSWR method to the DDFV scheme for advection-diffusion problems,
using the strategy of [6]. The method is proven to be well posed and we prove the
convergence of the iterative algorithm.

We consider the following transport equation in a porous medium :

L c= ω∂tc−∇ · (KKK∇c−bbbc) = f , in Ω × (0,T), (1)

c(.,0) = c0, in Ω ,

whereΩ is an open bounded polygonal subset ofR
2, c is the concentration (e.g.

of radionuclides) andf the source term. Equation (1) is supplemented with ho-
mogeneous Dirichlet boundary conditions. We assume thatΩ is decomposed into
non-overlapping subdomains. For the sake of simplicity, wepresent the method in
the case of two polygonal subdomainsΩL andΩR with interfaceΓ := ∂ΩL ∩∂ΩR

(the method can be extended to the many subdomain case). We assume that the
possible discontinuities of the porosity coefficientω, the tangential component of
the advection velocitybbb and the anisotropic diffusion matrixKKK are alongΓ . In the
sequel, the subscripts and superscriptsL (resp.R) refer toΩL (resp.ΩR).
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The initial problem (1) is equivalent to a system of subproblems defined onΩL

and ΩR with the following physical transmission conditions onΓ : [c]Γ = 0 and
[(KKK∇c−bbbc) ·nnn]Γ = 0, where[v]Γ denotes the jump ofv throughΓ andnnn a normal
vector toΓ . These interface conditions can also be written, through Robin interface
operatorsBL andBR, under the equivalent form

[BLc]Γ = [BRc]Γ = 0, (2)

with BL = (KKK∇c−bbbc) ·nnnL +λL , BR = (KKK∇c−bbbc) ·nnnR+λR, (3)

wherennnL (resp.nnnR) is the outward normal toΩL (resp.ΩR) and λL (resp.λR) a
strictly positive function inL∞(Γ ).

Then, an OSWR algorithm [3, 2] for solving problem (1) is:










L c(ℓ+1)
L = f in ΩL × (0,T)

c(ℓ+1)
L (.,0) = c0 in ΩL

BLc(ℓ+1)
L = BLc(ℓ)R on Γ × (0,T)











L c(ℓ+1)
R = f in ΩR× (0,T)

c(ℓ+1)
R (.,0) = c0 in ΩR

BRc(ℓ+1)
R = BRc(ℓ)L on Γ × (0,T)

(4)

whereλL andλR optimize the convergence factor of (4), see [2, 8, 9].
In Section 2, we present the DDFV scheme for the advection–diffusion problem

in the global domainΩ . Then, in Section 3, we describe the multidomain DDFV
scheme. Section 4 is devoted to the OSWR algorithm for the DDFVscheme. Finally
in Section 5, we present numerical results.

2 The DDFV scheme for advection-diffusion problems

In this part, we present the DDFV scheme for Problem (1). Thisscheme uses un-
knowns at the centers of the cells of a primal mesh and at theirvertices. These
vertices are considered as the centers of dual cells, obtained by joining the cen-
ters of the surrounding primal cells through the edge midpoints. This construction
is sufficiently general to be able to treat non-conforming meshes, see Fig. 1 (left)
where the primal (resp. dual) nodes are in black (resp. red),andTi1 (resp.Pk1) is
an example of primal (resp. dual) cell. Using these supplementary vertex unknowns
is the price to pay to be able to use arbitrary meshes [5]. We split (0,T) into time
intervalsIn := (tn−1, tn) and define∆ tn := tn− tn−1. We denote bycn

i1
(resp.cn

k1
) an

approximation ofc at timetn in the cellTi1 (resp.Pk1). Restricting the presentation
to the lowest order DG scheme in time, equation (1) can be discretized on each time
interval and on each primal cellTi1 by

ωi1

cn
i1
−cn−1

i1

∆ tn
−

1
|Ti1|

∑
A j⊂∂Ti1

|A j |F
n
i1 j = f n

i1 :=
1

∆ tn|Ti1|

∫

In

∫

Ti1

f (xxx, t)dxxxdt, (5)

and on each inner dual cellPk1 by
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Fig. 1 DDFV primal (solid lines), dual (dashed lines) and half-diamond cells (filled triangles):
interior (left) and interface (right) cells.

ωk1

cn
k1
−cn−1

k1

∆ tn
−

1
|Pk1|

∑
A′

j,α⊂∂Pk1

|A′
j,α |F

n
k1 j,α = f n

k1
:=

1
∆ tn|Pk1|

∫

In

∫

Pk1

f (xxx, t)dxxxdt. (6)

In (6), the subscriptα ∈ {1,2} refers to the local numberingi1, i2, andωk1 is defined
by

|Pk1|ωk1 = |Pk1 ∩ΩL|ωL
k1
+ |Pk1 ∩ΩR|ωR

k1
. (7)

In order to lighten the notations, we leave out the exponentsn in this section.
For any primal edgeA j = [k1k2] and its associated dual edgesA′

j,α , the fluxesFi1 j

andFk1 j,α are sums of a diffusive and a convective contribution. The diffusive part
is evaluated as in [5] using a gradient defined by two directions, on each triangle
k1iαk2 =: D j,α (also called “half-diamond cell”), see Fig. 1 (left):

{

(∇hc)iα j ·
−−→iα σ = cσ −ciα

(∇hc)iα j ·
−−→
k1k2 = ck2 −ck1

, (8)

whereσ is the midpoint ofA j . Formulas (8) are equivalent to

(∇hc)iα j =
1

|D j,α |

(

(ck2 −ck1)|A
′

j,α |nnn
′

k1 j,α +(cσ −ciα )|A j |nnni1 j

)

, (9)

wherennni1 j is the outward normal toTi1 onA j andnnn
′

k1 j,α the outward normal toPk1 on

A
′

j,α . The unknowncσ is introduced both to deal with possibly discontinuous tensors
KKK and to be able to write a local discretization adapted to domain decomposition,
as will be shown in Section 3. The gradient(∇hc)iα j is used in the diffusive part of
Fiα j and in the diffusive part ofFk1 j,α andFk2 j,α . Let us denote by[a]+ and[a]− the
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positive and negative part ofa such thata= [a]−+[a]+. The convective part of the
flux on the primal mesh is discretized with an upwind scheme which is local to the
half-diamond cellD j,α :

(bbbc·nnn)iα j := [(bbb·nnn)iα j ]
+ciα +[(bbb·nnn)iα j ]

−cσ . (10)

This upwinding usingcσ ensures that the discretization of the convection flux is
local to a subdomain. This is the idea borrowed from [6]. On the dual mesh, we use
a standard upwind scheme:

(bbbc·nnn
′
)k1 j,α := [bbb j,α ·nnn

′

k1 j,α ]
+ck1 +[bbb j,α ·nnn

′

k1 j,α ]
−ck2. (11)

In (10),(bbb·nnn)iα j is defined by (recall thatbbb·nnn is continuous through primal edges)

(bbb·nnn)iα j :=
1

|A j |

∫

A j

bbb·nnniα j(ξ )dξ . (12)

In (11),bbb j,α is the mean-value ofbbb overA
′

j,α . The fluxes are then defined as follows:

Fiα j := [KKK iα j(∇hc)iα j ] ·nnniα j − (bbbc·nnn)iα j , (13)

Fk1 j,α := [KKK j,α(∇hc)iα j ] ·nnn
′

k1 j,α − (bbbc·nnn
′
)k1 j,α . (14)

In (13) and (14),KKK iα j andKKK j,α are the mean-values ofKKK|Tiα
over A j and A

′

j,α ,
respectively (we recall thatKKK may be discontinuous through primal edgesA j ). In
order to complete the definition of the scheme, we still need an equation for eachcσ ,
and one equation for each boundary dual cell. Ifσ is not on∂Ω , cσ is eliminated
by requiring the flux conservation through the common interface∂Ti1 ∩∂Ti2:

Fi1 j +Fi2 j = 0. (15)

Formula (15) defines a uniquecσ that we replace in (9) and (10). For nodesσ andk
located on the Dirichlet boundary, we set

cσ = ck = 0 , ∀σ ∈ ∂Ω , ∀k∈ ∂Ω . (16)

Theorem 1. We suppose that∇ ·bbb ≥ 0 and that KKK is a bounded, uniformly defi-
nite positive matrix. Then, the discrete convection-diffusion problem in the global
domainΩ , defined by formulas (5) to (16) is well-posed.

3 The multidomain DDFV scheme

In this part we describe the local DDFV scheme in a subdomain together with the
discretization of the Robin conditions (2)–(3).
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The subdomain scheme is not modified for primal cells : we still use (5) and (13)
with the superscriptL (resp.R) for ΩL (resp.ΩR), cL,R

σ = 0 on the Dirichlet boundary
and (15) whenσ is not on∂Ω nor onΓ . Moreover, whenσ , midpoint of a primal
edgeA j , is onΓ , we discretize the Robin conditions (2)–(3) onA j by

FL,n
i1 j +λL, j cL,n

σ = −FR,n
i2 j +λL, j cR,n

σ , (17)

FR,n
i2 j +λR, j cR,n

σ = −FL,n
i1 j +λR, j cL,n

σ , (18)

whereλL, j andλR, j are discrete counterparts ofλL andλR defined on each primal
edgeA j . In (17) and (18), we use the convention thati1 is in ΩL andi2 in ΩR. We
remark that (17)–(18) are equivalent tocR,n

σ = cL,n
σ andFL,n

i1 j +FR,n
i2 j = 0.

On interior dual cells, the scheme is not modified: we still use (6) with the super-
scriptL (resp.R) for ΩL (resp.ΩR). Moreover,cL,R

k = 0 if k is a node located on the
Dirichlet boundary. Finally, ifk1 belongs toΓ \ ∂Ω , then we denote byPL

k1
(resp.

PR
k1

) the boundary dual cell inΩL (resp.ΩR) to whichk1 is associated (see Fig. 1,

right). The cellPL
k1

(resp.PR
k1

) has two types of edges: the edgesA
′

j,α that belong to

∂PL
k1
\Γ (resp.∂PR

k1
\Γ ) and the edges on∂PL

k1
∩Γ (resp.∂PR

k1
∩Γ ). Integrating (1)

onPL
k1

and overIn yields the approximation

ωL
k1
|PL

k1
|

(

cLn
k1

−cLn−1
k1

∆ tn

)

− ∑
A′

j,α⊂∂PL
k1

|A′
j,α |F

n
k1 j,α −|∂PL

k1
∩Γ |FLn

k1,Γ = |PL
k1
| f Ln

k1
, (19)

whereFLn
k1,Γ is an approximation of 1

∆ tn |∂PL
k1
∩Γ |

∫

In

∫

∂PL
k1
∩Γ (KKK∇c−bbbc) ·nnnL and f Ln

k1
is

defined similarly tof n
k1

in (6) in whichPk1 is replaced byPL
k1

. In the same way, we

defineFRn
k1,Γ and f Rn

k1
, and we obtain the following approximation of (1) onPR

k1

ωR
k1
|PR

k1
|

(

cRn
k1

−cRn−1
k1

∆ tn

)

− ∑
A′

j,α⊂∂PR
k1

|A′
j,α |F

n
k1 j,α −|∂PR

k1
∩Γ |FRn

k1,Γ = |PR
k1
| f Rn

k1
. (20)

Equations (19) and (20) introduce new flux unknownsFLn
k1,Γ and FRn

k1,Γ which are

related to the boundary unknownscLn
k1

andcRn
k1

by the following dual approximations
of the Robin boundary conditions (2)–(3)

FLn
k1,Γ +λL,k1cLn

k1
= −FRn

k1,Γ +λL,k1cRn
k1
, (21)

FRn
k1,Γ +λR,k1cRn

k1
= −FLn

k1,Γ +λR,k1cLn
k1
, (22)

whereλL,k1 andλR,k1 are discrete counterparts ofλL andλR defined on each dual
intersection∂PL

k1
∩ Γ = ∂PR

k1
∩ Γ . We remark that (21) and (22) are equivalent

to cLn
k1

= cRn
k1

andFLn
k1,Γ +FRn

k1,Γ = 0. With these equalities for all time steps, adding

(19) and (20) and using (7) yields (6) onPk1 = PL
k1
∪PR

k1
, the inner dual cell of the

global domainΩ .
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In order to study the well-posedness of the subdomain problems, we restrict our-
selves to one subdomain, e.g.ΩL. Recalling that(bbb ·nnn)iα j is defined by (12) and
defining(bbb·nnn)L

k1
by

(bbb·nnn)L
k1,Γ :=

1
|∂PL

k1
∩Γ |

∫

∂PL
k1
∩Γ

bbb·nnnL(ξ )dξ ,

we can prove the following theorem

Theorem 2. Under the hypothesis of Theorem 1, ifλL, j >
1
2(bbb ·nnn)i1 j for all j such

that Aj ⊂ Γ and if λL,k1 > 1
2(bbb ·nnn)

L
k1,Γ for all k such that∂PL

k ∩Γ 6= /0, then the
discrete problem inΩL, defined by formulas (5)-(6) and (13) to (16) with the super-
script L, formula (19) for boundary dual cells, and the Robin conditions

FL,n
i1 j +λL, j cL,n

σ = gL,n
j (on primal edges Aj ⊂ Γ )

FLn
k1,Γ +λL,k1cLn

k1
= gL,n

k1
(on dual edges∂PL

k1
∩Γ ),

with gL,n
j and gL,n

k1
given real numbers, is well-posed.

4 The Schwarz algorithm

Let S denote the superscriptL or R. The discrete Schwarz algorithm is defined as

follows: let (cSn(ℓ)
i ,cSn(ℓ)

k ,cSn(ℓ)
σ ) and(FSn(ℓ)

i j , FSn(ℓ)
k j,α , FSn(ℓ)

k,Γ ) be given approxima-

tions, at stepℓ, of c at nodesi, k, σ and(KKK∇c−bbbc) ·nnn at edgesA j , A
′

j,α , ∂PS
k ∩Γ .

Then we compute(cSn(ℓ+1)
i ,cSn(ℓ+1)

k ,cSn(ℓ+1)
σ ) and (FSn(ℓ+1)

i j , FSn(ℓ+1)
k j,α , FSn(ℓ+1)

k,Γ )

as the solution of (5)-(6) and (13) to (16) with the superscript L (resp.R), formula
(19) (resp. (20)) and the following Robin conditions for interface primal and dual
cells:

FLn(ℓ+1)
i1 j +λL, j cLn(ℓ+1)

σ = −FRn(ℓ)
i2 j +λL, j cRn(ℓ)

σ ,

FLn(ℓ+1)
k1,Γ +λL,k1cLn(ℓ+1)

k1
= −FRn(ℓ)

k1,Γ +λL,k1cRn(ℓ)
k1

,

FRn(ℓ+1)
i2 j +λR, j cRn(ℓ+1)

σ = −FLn(ℓ)
i1 j +λR, j cLn(ℓ)

σ ,

FRn(ℓ+1)
k1,Γ +λR,k1cRn(ℓ+1)

k1
= −FLn(ℓ)

k1,Γ +λR,k1cLn(ℓ)
k1

.

Theorem 3. Under the hypothesis of Theorem 2, ifλR,k1 − λL,k1 − (bbb ·nnn)L
k1,Γ = 0

for all k such that∂PL
k ∩Γ 6= /0 and if λR, j −λL, j − (bbb ·nnn)i1 j = 0 for all j such that

A j ⊂Γ , then the discrete Schwarz algorithm converges to the solution of the discrete
convection-diffusion problem in the domainΩ , defined by formulas (5) to (16).

Remark 1.Following [8, 9], the Robin parameters are chosen in the form
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λL, j = (−(bbb·nnn)i1 j + pL, j)/2 , λR, j = ((bbb·nnn)i1 j + pR, j)/2, (23)

λL,k1 = (−(bbb·nnn)L
k1,Γ + pL,k1)/2 , λR,k1 = ((bbb·nnn)L

k1,Γ + pR,k1)/2, (24)

wherepL, j , pR, j andpL,k1, pR,k1 are the primal and dual parameters which optimize
the convergence factor of the continuous algorithm (4). This optimization is per-
formed by a numerical minimization process. With the form given by (23)-(24), the
hypothesis in Theorem 3 reduces topL, j = pR, j andpL,k1 = pR,k1.

Remark 2.The scheme we proposed here is different from the one developed in [1].
On the other hand, it is shown independently in [7], using an analysis of the con-
vergence factor at the discrete level, that our method leadsto a faster convergence
than the approach in [1]. In our simulations, we observed that using the optimized
parameters at the discrete level does not improve significantly the convergence.

5 Numerical Results

Here, the Robin parameter forΩL/R is taken as the mean value of allλL/R, j and
λL/R,k1

and is denotedλ ∗
L/R. Moreover,bbb·nnn= 0 onΓ in our tests, thusλ ∗

L/R= p∗, the
same value for all primal and dual (L andR) interface cells. Its discrete counterpart
p∗h is obtainded in the same way but with an optimization of the discrete convergence
factor, denotedρh. We assume thatKKK = νIII whereIII is the identity matrix.

In the first test case, we takeΩL =(0,2.5)×(0,5) andΩR=(2.5,5)×(0,5), with
T = 1, ωL = ωR= 1,bbb=000, ν|ΩL

= 0.06, andν|ΩR
= 1. The mesh size and time step

areh= 5
100 and∆ t = 1

70 respectively. On Fig. 2 we show a section along the diagonal
(wm,km)− (wM,kM) of ρh (top left), where(wm,wM)× (km,kM) is the frequencies
interval over whichρh is optimized, withwm = π

T , wM = π
∆ t , km = π

5 , kM = π
h , and

the error versus the number of iterations for the Schwarz algorithm (top right) with
p∗ andp∗h. We simulate directly the error equations,f = 0 and use a random initial
guess so that all the frequency components are present. We observe that usingp∗h or
p∗ give similar results. We also observe the equioscillation property [2] with p∗h.

In the second test case, we takeΩL = (0,0.5)× (0,1) andΩR = (0.5,1)× (0,1),
with T = 1, ωL = 0.2, ωR = 1, ν|ΩL

= 0.005,ν|ΩR
= 0.01, and a rotating velocity

field bbb= (−sin(π(y− 1
2))cos(π(x− 1

2)),cos(π(y− 1
2))sin(π(x− 1

2))). We takeh=
1

100 and∆ t = 1
50. On Fig. 2 we show the computed solution at timet = 0.4 (bottom

left) and the error versus the number of iterations (bottom right) for different values
of the Robin parameterp, taken constant along the interface. We takef = 0 and a
random initial guess. We observe thatp∗ is close to the optimal numerical value.



8 Paul-Marie Berthe, Caroline Japhet, and Pascal Omnes

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

frequencies

ρ h

 

 

ρ
h
(p

h
* )

ρ
h
(p*)

0 2 4 6 8 10 12 14 16 18
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of iterations

E
rr

or

 

p* (continuous)
p*

h
 (discrete)

0 5 10 15 20 25 30 35 40
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of iterations

E
rr

or

 

p = 0.5
p = 0.6
p = 0.65
p = 0.7
p = 0.75
p* = 0.8
p = 1
p = 1.2

Fig. 2 Top: Discrete convergence factor (left) and error versus iterations (right), withp∗ and p∗h.
Bottom: solution at timet = 0.4 (left) and error versus iterations (right) for different values ofp.
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