
The Optimized Order 2 Method with a CoarseGrid Preonditioner. Appliation toConvetion-Di�usion Problems.Caroline Japhet, Fr�ed�eri Nataf, Fran�ois-Xavier Roux1 AbstratThe Optimized Order 2 (OO2) method is a nonoverlapping domain deomposi-tion method with di�erential interfae onditions of order 2 along the interfaeswhih approximate the exat arti�ial boundary onditions [13℄, [9℄. The onver-gene of Shwarz type methods with these interfae onditions is proved in [12℄.There already exists appliations of the OO2 method to onvetion-di�usionequation [9℄ and Helmholtz problem [3℄. We �rst reall the OO2 method andpresent numerial results for the onvetion-di�usion equation disretized by a�nite volume sheme. The aim of this paper is then to provide an extension of apreonditioning tehnique introdued in [7℄, [5℄ based upon a global oarse prob-lem to non symmetri problems like onvetion-di�usion problems. The goal isto get the independene of the onvergene upon the number of subdomains.Numerial results on onvetion-di�usion equation will illustrate the eÆienyof the OO2 algorithm with this oarse grid preonditioner.Key words: domain deomposition; OO2 method; arti�ial boundary onditions;onvetion-di�usion problems; oarse grid preonditioner2 The Optimized Order 2 MethodWe reall the OO2 Method in the ase of the onvetion-di�usion problem:L(u) = u+ a(x; y)�u�x + b(x; y)�u�y � ��u = f in 
 (1)C(u) = g on �
where 
 is a bounded open set of R2, ~a = (a; b) is the veloity �eld, � is thevisosity, C is a linear operator,  is a onstant whih ould be  = 1�t with�t a time step of a bakward-Euler sheme for solving the time dependentonvetion-di�usion problem. The method ould be applied to other PDE's.The OO2 method is based on an extension of the additive Shwarz algorithmwith nonoverlapping subdomains : �
= [Ni=1 �
i; 
i \
j = ;; i 6= j. We denoteby �i;j the ommon interfae to 
i and 
j ; i 6= j. The outward normal from
i is ni and � i is a tangential unit vetor.1



The additive Shwarz algorithm with nonoverlapping subdomains ([11℄) is :L(un+1i ) = f; in 
iBi(un+1i ) = Bi(unj ); on �i;j ; i 6= j (2)C(un+1i ) = g on �
i \ �
where Bi is an interfae operator. We reall �rst the OO2 interfae operator Biand then the substruturing formulation of the method.OO2 interfae onditionsIn the ase of Shwarz type methods, it has been proved in [14℄ that the optimalinterfae onditions are the exat arti�ial boundary onditions [8℄. Unfortu-nately, these onditions are pseudo-di�erential operators. Then, it has beenproposed in [13℄ to use low wave number di�erential approximations to theseoptimal interfae onditions. Numerial tests on a �nite di�erene sheme withoverlapping subdomains has shown that the onvergene was very fast for a ve-loity �eld non tangential to the interfae, but very slow, even impossible, for aveloity �eld tangential to the interfae. So, instead of taking low-wave numberapproximations, it has been proposed in [9℄ to use di�erential interfae ondi-tions of order 2 along the interfae wih optimize the onvergene rate of theShwarz algorithm. These \Optimized Order 2" interfae operators are de�nedas follows:Bi = ��ni � a:ni �p(a:ni)2 + 4�2� + 2 ��� i � 3 �2�� 2iwhere 2 = 2(a:ni; a:� i) and 3 = 3(a:ni; a:� i) minimize the onvergene rateof the Shwarz algorithm. The analyti analysis in the ase of 2 subdomains andonstant oeÆients in (1) redue the minimization problem to a one parameterminimization problem. This tehnique is extended in the ase of variable oeÆ-ients and an arbitrary deomposition, that is only one parameter is omputed,with a dihotomy algorithm. With this parameter we get 2 and 3 (see [10℄).So the OO2 onditions are easy to use and not ostly. The onvergene of theShwarz algorithm with the OO2 interfae onditions is proved for a deompo-sition in N subdomains (strips) using the tehniques in [12℄.Substruturing formulationIn [14℄, the nonoverlapping algorithm (2) is interpreted as a Jaobi algorithmapplied to the interfae problem D� = b (3)where �, restrited to 
i, represents the disretization of the term Bi(ui) onthe interfae �i;j ; i 6= j. The produt D�, restrited to 
i, represents the dis-retization of the jump Bi(ui)�Bi(uj) on the interfae �i;j ; i 6= j. To aelerateonvergene, the Jaobi algorithm is replaed by a Krylov type algorithm [16℄.2



Numerial resultsThe method is applied to a �nite volume sheme [1℄ (ollaboration with MatraBAe Dynamis Frane) with a deomposition in N nonoverlapping subdomain.We ompare the results obtained with the OO2 interfae onditions and theTaylor order 0 ([4℄,[2℄, [13℄) or order 2 interfae onditions ([13℄). The interfaeproblem (3) is solved by a Bigstab algorithm. This involves solving N inde-pendant subproblems whih an be done in parallel. Eah subproblem is solvedby a diret method. We denote by h the mesh size.1. We onsider the problem: L(u) = 0; 0 � x � 1; 0 � y � 1with u(0; y) = �u�x (1; y) = 0; 0 � y � 1; �u�y (x; 1) = 0; u(x; 0) = 1; 0 � x � 1.In order to observe the inuene on the onvergene of the onvetion veloityangle to the interfaes, we �rst take a deomposition in strips. The table 1 showsthat the OO2 interfae onditions give a signi�antly better onvergene whihis independant of the onvetion veloity angle to the interfaes. One of theadvantages is that for a given number of subdomains, the deomposition of thedomain doesn't a�et the onvergene. We also observe that the onvergenefor the studied numerial ases is independant of the mesh size (see table 2 andtable 3). onvetion veloity OO2 Taylor order 2 Taylor order 0normal veloity to the interfae 15 123 141a = y; b = 0tangential veloity to the interfae 20 not 75a = 0; b = y onvergentTable 1: Number of iterations versus the onvetion veloity's angle16� 1 subdomains � = 1:d� 2; CFL = 1:d9; h = 1241 ; log10(Error) < 1:d� 6grid 65� 65 129� 129 241� 241OO2 15 15 15Taylor order 2 49 69 123Taylor order 0 49 82 141Table 2: Number of iterations versus the mesh size16�1 subdomains; a = y; b = 0; � = 0:01; CFL = 1:d9; log10(Error) < 1:d�6grid 65� 65 129� 129 241� 241OO2 49 48 48Taylor order 0 152 265 568Table 3: Number of iterations versus the mesh size16� 1 subdomains, rotating veloity,a = � sin (�(y � 12 )) os (�(x� 12 )); b = os (�(y � 12 )) sin (�(x � 12 ))� = 1:d� 2; CFL = 1:d9; log10(Error) < 1:d� 63



2. The OO2 method was also tested for a onvetion veloity �eld issuedfrom the veloity �eld of a Navier-Stokes inompressible ow, with Reynoldsnumber Re = 10000, around a ylinder. This veloity �eld is issued from aomputation at the aerodynami department at Matra. The omputationaldomain is de�ned by 
 = f(x; y) = (r os (�); r sin (�)); 1 � r � R; 0 � � � 2�gwith R > 0 given.We onsider the problem L(u) = 0 in 
 with u = 1 on f(x; y) = (os (�); sin (�));0 � � � 2�g and u = 0 on f(x; y) = (R os (�); R sin (�)) 0 � � � 2�g. The gridis f(x; y) = (ri os (�j); ri sin (�j))g, and is re�ned around the ylinder and inthe diretion of the ow. The OO2 interfae onditions give also signi�antlybetter onvergene in that ase. Numerially the onvergene is pratiallyindependant of the visosity � (see table 4). We note Nmax = (number ofpoints on the boundary of a subdomain) � (number of subdomains).
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Figure 1: Isovalues of the solution u, � = 1:d� 4; CFL = 1:d9OO2 Taylor order 2 Taylor order 0� = 1:d� 5 56 41 119� = 1:d� 4 43 121 374� = 1:d� 3 32 Nmax = 768 Nmax = 768log10(Error) = �5:52 log10(Error) = �2:44Table 4: Number of iterations versus the visosity4� 2 subdomains, CFL = 1:d9, log10(Error) < 1:d� 64



3 Extension of a oarse grid preonditioner tonon symmetri problemsNumerially, the onvergene ratio of the method is nearly linear upon the num-ber of subdomains in one diretion of spae. To takle this problem, the aimof this paper is to extend a oarse grid preonditioner introdued in [7℄, [5℄ tonon symmetri problems like onvetion-di�usion problems. This preondition-ing tehnique has been introdued for the FETI method, in linear elastiity,when loal Neumann problems are used and are ill posed (see [7℄). It has beenextended for plate or shell problems, to takle the singularities at interfae ross-points ([6℄, [5℄, [15℄). In that ase, this preonditioner is a projetion for (D:; :)2on the spae orthogonal to a oarse grid spae wih ontain the orner modes.This onsists in onstraining the Lagrange multiplier to generate loal displae-ment �elds whih are ontinuous at interfae rosspoints. The independaneupon the number of subdomains has been proved.In this paper we extend this preonditioner by onsidering a (D:;D:)2 proje-tion on the spae orthogonal to a oarse grid spae. The goal is to �lter thelow frequeny phenomena, in order to get the independene of the onvergeneupon the number of subdomains. So the oarse grid spae, denoted W , is a setof funtions alled \oarse modes" whih are de�ned on the interfaes by :� Preonditioner M1 : the \oarse modes" are the �elds with unit value onone interfae and 0 on the others.� Preonditioner M2 : the \oarse modes" in a subdomain 
i are on oneinterfae the restrition of Kiui where ui = 1 2 
i and Ki is the sti�nessmatrix, and 0 on the others.Then, at eah iteteration, �p satis�es the ontinuity requirement of assoiated�eld up at interfae : (DW )ti(D�p � b) = 0 8iThat is, if we introdue the projetor P on W? for (D:;D:)2, the projetedgradient of the ondensed interfae problem is:Pgp = gp +Xi (DW )iÆi (4)and verify (DW )tiPgp = 0 8i (5)With (4), the ondition (5) an be written as the oarse problem :(DW )t(DW )Æ = �(DW )tgpSo the method has two level : at eah iteration of the Krylov method at the�ne level, an additional problem has to be solved at the oarse grid level.5



Numerial resultsThe preonditioned OO2 method is applied to problem (1) disretized by the�nite volume sheme with nonoverlapping subdomains. The interfae problem(3) is solved by a projeted GCR algorithm, that is the iterations of GCR arein the (D:;D:)2 orthogonal to the oarse grid spae. Eah subproblem is solvedby a diret method. We ompare the results obtained with the preonditionersM1 and M2.1. We onsider the problem: L(u) = 0; 0 � x � 1; 0 � y � 1 with�u�x (1; y) = 0; u(0; y) = 1; 0 � y � 1 and �u�y (x; 1) = 0; u(x; 0) = 1; 0 � x � 1.The onvetion veloity is a = y; b = 0. In that ase, the solution is onstant inall the domain : u = 1 in [0; 1℄2. Table 5 justify the hoie of the preonditionerM2. In fat, in that ase the �eld � assoiated to the solution on the interfaesis in the oarse grid spae of preonditioner M2.2. We onsider the problem: L(u) = 0; 0 � x � 1; 0 � y � 1 with�u�x (1; y) = u(0; y) = 0; 0 � y � 1 and �u�y (x; 1) = 0; u(x; 0) = 1; 0 � x � 1,with a rotating onvetion veloity: a = � sin (�(y � 12 )) os (�(x � 12 )) andb = os (�(y � 12 )) sin (�(x � 12 )). Figure 3 shows that the onvergene of theOO2 method with the preonditioner M2 is nearly independant of the num-ber of subdomains. The onvergene is better with preonditioner M2 thanpreonditioner M1 (�gure 2).without preonditioner preonditioner M1 preonditioner M2OO2 15 17 1Table 5: Number of iterations, 8� 1 subdomainsa = y; b = 0; � = 1:d� 2; CFL = 1:d9; h = 1129 ; log10(Error) < 1:d� 6
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Figure 2: Preonditioner M1rotating veloity, � = 1:d� 2; CFL = 1:d9; h = 12416
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Figure 3: Preonditioner M2rotating veloity, � = 1:d� 2; CFL = 1:d9; h = 12414 ConlusionThe OO2 method appears to be a very eÆient method, applied to onvetion-di�usion problems. With the oarse grid preonditioner, the onvergene ratiois numerially nearly independant of the number of subdomains.Referenes[1℄ C. Borel and M. Bredif. High Performane Parallelized Impliit Euler SolverFor The Analysis Of Unsteady Aerodynami Flows. First European CFDConferene, Brussels, september 1992.[2℄ C. Carlenzoli and A. Quarteroni. Adaptive Domain Deomposition Meth-ods for Advetion-Di�usion Problems. In I. Babuska and Al., editors, Mod-eling, Mesh Generation, and Adaptive Numerial Methods for Partial Dif-ferential Equations, number 75 in The IMA Volumes in Mathematis andits appliations, pages 165{187. Springer-Verlag, 1995.[3℄ P. Chevalier and F. Nataf. Une m�ethode de d�eomposition de domaineave des onditions d'interfae optimis�ees d'ordre 2 (OO2) pour l'�equationd'Helmholtz. note CRAS, 1997. (To appear).[4℄ B. Despres. D�eomposition de domaine et probl�eme de Helmholtz.C.R. Aad. Si., Paris , 311:313{316, 1990.7



[5℄ C. Farhat, P.S. Chen, J. Mandel, and F.X. Roux. The Two-Level FETIMethod - Part II: Extension to Shell Problems, Parallel Implementationand Performane Results. Computer Methods in Applied Mehanis andEngineering. (in press).[6℄ C. Farhat and J. Mandel. The Two-Level FETI Method for Stati and Dy-nami Plate Problems - Part I: an Optimal Iterative Solver for BihermoniSystems. Computer Methods in Applied Mehanis and Engineering. (inpress).[7℄ C. Farhat, J. Mandel, and F.X. Roux. Optimal onvergene properties ofthe FETI domain deomposition method. Computer Methods in AppliedMehanis and Engineering, 115:367{388, 1994.[8℄ L. Halpern. Arti�ial Boundary Conditions for the Advetion-Di�usionEquations. Math. Comp., 174:425{438, 1986.[9℄ C. Japhet. Optimized Krylov-Ventell method. Appliation to Convetion-Di�usion Problems. In M. Espedal P. Bjorstad and D. Keyes, editors, NineInternational Conferene on Domain Deomposition Methods for PartialDi�erential Equations. John Wiley & Sons Ltd. (in press).[10℄ C. Japhet. Conditions aux limites arti�ielles et d�eomposition de do-maine : M�ethode OO2 (Optimis�e Ordre 2). Appliation �a la r�esolution deprobl�emes en m�eanique des uides. Rapport interne 373, CMAP, EolePolytehnique, Otober 1997.[11℄ P. L. Lions. On the Shwarz Alternating Method III: A variant for Nonover-lapping Subdomains. In Third International Symposium on Domain De-omposition Methods for Partial Di�erential Equations, SIAM, pages 202{223, 1989.[12℄ F. Nataf and F. Nier. Convergene Rate of Some Domain DeompositionMethods for Overlapping and Nonoverlapping Subdomains. NumerisheMathematik, 75:357{377, 1997.[13℄ F. Nataf and F. Rogier. Fatorisation of the Convetion-Di�usion Operatorand the Shwarz Algorithm. M3AS, 5(1):67{93, 1995.[14℄ F. Nataf, F. Rogier, and E. de Sturler. Domain deomposition methods foruid dynamis. In A. Sequeira, editor, Navier-Stokes equations on relatednon linear analysis, pages 307{377. Plenum Press Corporation, 1995.[15℄ F.X. Roux and C Farhat. Parallel Implementation of the Two-Level FETIMethod. In M. Espedal P. Bjorstad and D. Keyes, editors, Nine Interna-tional Conferene on Domain Deomposition Methods for Partial Di�eren-tial Equations. John Wiley & Sons Ltd. (in press).[16℄ Y. Saad. Iterative Methods for Sparse Linear Systems. PWS PublishingCompagny, 1996. 8


