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1 Introduction

In many fields of applications such as reactive transport or ocean-atmosphere
coupling, models with very different spatial and time scales have to be cou-
pled. Optimized Schwarz Waveform Relaxation methods (OSWR), applied to
linear advection-reaction-diffusion problems in Bennequin et al. [2009], Martin
[2005], provide efficient solvers for this purpose. They have two main advan-
tages: first, they are global in time and thus permit non conforming space-time
discretization in different subdomains, and second, few iterations are needed
to compute an accurate solution, due to optimized transmission conditions.
It has been proposed in Halpern and Japhet [2008] to use a discontinuous
Galerkin method in time as a subdomain solver. Rigorous analysis can be
made for any degree of accuracy and local time-stepping, and finally time
steps can be adaptively controlled by a posteriori error analysis, see Thomee
[1997], Johnson et al. [1985], Makridakis and Nochetto [2006].

We present here the 2D analysis of the method. The time interval is split
into time windows, and in each time window, a few iterations of an OSWR
algorithm are computed, using second order optimized transmission condi-
tions. The subdomain solver is the discontinuous Galerkin method in time,
and classical finite elements in space. Coupling between subdomains is done
by a simple and optimal projection algorithm without any additional grid (see
Gander et al. [2003], Gander et al. [2005]). The mathematical analysis is car-
ried out on the problem semi-discrete in time. The nonconforming DG-OSWR
domain decomposition method is proved to be well-posed and convergent for
a decomposition into strips, and the error analysis is performed in the case
of Robin transmission conditions. We present numerical results in two dimen-
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sions which extends the domain of validity of the approach to the fully discrete
problem.

We consider the advection-reaction-diffusion equation in R
2, written for

variational purpose in the form

∂tu+
1

2
∇ · (bu) +

1

2
b · ∇u−∇ · (ν∇u) + cu = f. (1)

The initial condition is u0. The advection and diffusion coefficients b = (b1, b2)
and ν, as well as the reaction coefficient c, are piecewise constant, i.e.

constant in the subdomains Ωi, i ∈ {1, ..., I}. The subdomains are strips
Ωi = (αi, αi+1) × R, with α1 = −∞ and αI+1 = +∞. More general geome-
tries as well as piecewise smooth coefficients will be studied in Halpern et al.
[2009]. We suppose that ν > 0 and c > 0.

2 Local problem and time discontinuous Galerkin

The optimized Schwarz waveform relaxation algorithm, as described in Ben-
nequin et al. [2009], introduces a sequence of initial boundary value problems
in Ω = (α, β) × R of the following type:

∂tu+ 1
2∇ · (bu) + 1

2b · ∇u−∇ · (ν∇u) + cu = f in Ω × (0, T ),

(ν ∂n −
b · n

2
)u+ Su = g on Γ × (0, T ),

(2)

where n is the unit outward normal to Γ , and S is the boundary operator
defined on Γ = {α, β} ×R by Su = p u+ q (∂tu+ r∂yu− s∂yyu). Here p, q, r
and s are real parameters, constrained to p > 0, q ≥ 0, s > 0. If q = 0, the
boundary condition reduces to a Robin boundary condition. We define the
bilinear forms m and a by m(u, v) = (u, v)L2(Ω) + q(u, v)L2(Γ ), and

a(u, v) :=

∫

Ω

(1

2
((b · ∇u)v − (b · ∇v)u) + ν∇u · ∇v + cuv

)
dx

+

∫

Γ

(
qs∂y u∂yv + q r∂yuv + puv

)
dy. (3)

By the Green’s formula, we obtain a variational formulation of (2):

d

dt
m(u, v) + a(u, v) = (f, v)L2(Ω) + (g, v)L2(Γ ), ∀v ∈ V, (4)

with V = H1(Ω) if q = 0 and V = H1
1 (Ω) defined below, if q > 0. The

problem is well-posed: if q = 0, if f is in L2(0, T, L2(Ω)), u0 is in H1(Ω),
and g is in L2(0, T,H1/2(Γ )), then the subdomain problem (2) has a unique
solution u in L2(0, T,H2(Ω)) ∩ H1(0, T ;L2(Ω)). If q > 0, we introduce the
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spaces Hs
s (Ω) = {v ∈ Hs(Ω), v |Γ ∈ Hs(Γ )} which are defined for s > 1/2.

If f is in L2(0, T, L2(Ω)), u0 is in H1
1 (Ω), and g is in L2((0, T ) × Γ ), then

the subdomain problem (2) has a unique solution u in L2(0, T,H2
2 (Ω)) with

∂tu ∈ L2(0, T ;L2(Ω) ∩ L2(Γ )), see Szeftel [2004], Bennequin et al. [2009].
We now introduce the time-discontinuous Galerkin method, as described

and analysed in Johnson et al. [1985]. We are given a decomposition T of
the time interval (0, T ), In = (tn, tn+1], for 0 ≤ n ≤ N , the mesh size is
kn = tn+1 − tn. For B a Banach space and I an interval of R, define for any
integer d ≥ 0

Pd(B, T ) = {ϕ : (0, T ) → B, ϕ|In
=

d∑

i=0

ϕit
i, ϕi ∈ B, 0 ≤ n ≤ N}.

Let B = H1
1 (Ω) if q > 0, B = H1(Ω) if q = 0. We approximate u by a function

U ∈ Pd(B, T ) such that U(0, ·) = u0 and for all V in Pd(B, T ),
∫

In

(m(U̇ , V ) + a(U, V )) dt+m(U(t+n ) − U(t−n ), V (t+n )) =

∫

In

L(V ) dt, (5)

with L(V ) = (f, V )L2(Ω) + (g, V )L2(Γ ). Due to the discontinuous nature of
the test and trial spaces, the method is an implicit time stepping scheme, and
U ∈ Pd(B, T ) is obtained recursively on each subinterval, which makes the
method very flexible.

Theorem 1. If p > 0, q ≥ 0, s > 0, equation (5) defines a unique solution.

The result relies on the fact that the bilinear form a is positive definite. This
is most easily seen by using a basis of Legendre polynomials.

We will make use of the following remark due to Makridakis and No-
chetto [2006]. Introduce the Gauss-Radau points, (0 < τ1 < . . . < τd+1 =

1), defined such that the quadrature formula
∫ 1

0
f(t)dt ≈

∑d+1
q=1 wqf(τq)

is exact in P2d, and the interpolation operator In on [tn, tn+1] at points
(tn, tn + τ1kn, . . . , tn + τd+1kn). For any χ ∈ Pd, Inχ ∈ Pd+1, is such that
Inχ(tn) = χ(t−n ), Inχ(tn+1) = χ(t−n+1), and therefore for any ψ in Pd, we
have ∫

In

d

dt
(Inχ)ψ dt−

∫

In

dχ

dt
ψ dt = (χ(t+n ) − χ(t−n ))ψ(t+n ). (6)

As a consequence, we have a very useful inequality:
∫

In

d

dt
(Inψ)ψdt ≥

1

2
[ψ(t−n+1)

2 − ψ(t−n )2]. (7)

Equation (5) can be written in a strong form as

∂t(I U) + 1
2∇ · (bU) + 1

2b · ∇U −∇ · (ν∇U) + cU = Pf in Ω × (0, T ),(
ν ∂n − b·n

2

)
U + pU + q(∂t(IU) + r∂yU − s∂yyU) = Pg on Γ × (0, T ),

(8)

where P is the L2 projection in time on Pd(B, T ) (B is defined by the under-
lying space), and I is the operator whose restriction to each subinterval is In.
We discuss now the iterative algorithm.
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3 The optimized Schwarz waveform relaxation algorithm

discretized in time with different subdomain grids

For each subdomain Ωi, the indices of the neighbouring subdomains are j ∈
Ni. Since b is constant in Ωi, equal to bi,

1
2∇ · (biuk

i ) + 1
2bi · ∇u

k
i = ∇ · (biuk

i ).
At the continuous level, the algorithm is

∂tu
k
i + ∇ · (biu

k
i − νi∇u

k
i ) + ciu

k
i = f in Ωi × (0, T ), (9)

(νi∂ni
−
bi · ni

2
)uk

i + Siju
k
i = (νj∂ni

−
bj · ni

2
)uk−1

j + Sij u
k−1
j on Γij , j ∈ Ni,

with ν = νi in Ωi, Siju = pij u+ qij (∂tu+ rij∂yu− sij∂yyu).

Theorem 2. For any value of pij > 0, qij = q ≥ 0, rij = r and sij = s > 0,
the algorithm (9) converges in each subdomain to the solution u of problem

(1).

The proof of this theorem will be given in Halpern et al. [2009], for general
geometries and variable coefficients. It relies on elaborate energy estimates,
the use of Trace Theorems and the Gronwall Lemma.

Our purpose here is to describe the discrete formulation in detail. The time
partition in subdomain Ωi is Ti, with Ni +1 intervals Ii

n, and mesh size ki
n. In

view of formulation (8), we define interpolation operators Ii and projection
operators Pi in each subdomain, and we solve

∂t(I
iUk

i ) + ∇ · (biU
k
i − νi∇U

k
i ) + ci U

k
i = Pif in Ωi × (0, T ), (10)

(
νi∂ni

−
bi · ni

2

)
Uk

i + SijU
k
i = Pi

(
(νj∂ni

−
bj · ni

2
)Uk−1

j + S̃ijU
k−1
j

)
on Γij ,

with SijU = pij U + qij (∂t(IiU) + rij∂yU − sij∂yyU) and S̃ijU = pij U +
qij (∂t(I

jU) + rij∂yU − sij∂yyU). If the algorithm converges, it converges to
the solution of

∂t(I
iUi) + ∇ · (biUi − νi∇Ui) + ci Ui = Pif in Ωi × (0, T ),

(
νi∂ni

−
bi · ni

2

)
Ui + Sij Ui = Pi

(
(νj∂ni

−
bj · ni

2
)Uj + S̃ij Uj

)
on Γij . (11)

Theorem 3. Assume pij = p > 0. If qij = 0, or if qij = q > 0 with rij = 0,
sij = s > 0 and bi = 0, Problem (11) has a unique solution (Ui)i∈J , and Ui

is the limit of the iterates of algorithm (10).

The proof is based on energy estimates (see Halpern et al. [2009]).
We now state the error estimate.

Theorem 4. Let k = supn kn. If pij = p > 0 and qij = 0, the error between

u and the solution Ui of (11) is estimated by:

I∑

i=1

‖u− Ui‖
2
L∞(0,T,L2(Ωi))

≤ Ck2(d+1)‖∂d+1
t u‖2

L2(0,T ;H2(Ω)). (12)
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Proof. We introduce the projection operator P−
i as

∀n ∈ {1, ..., Ni}, P
−
i ϕ ∈ Pd(I

i
n),

P−
i ϕ(tin+1) = ϕ(tin+1), ∀ψ ∈ Pd−1(I

i
n),

∫

Ii
n

(P−
i ϕ− ϕ)(t)ψ(t) dt = 0.

We define Wi = P−
i (u|Ωi

), Θi = Ui − Wi and ρi = Wi − u|Ωi
. Classical

projection estimates in Thomee [1997] yield the estimate on ρi:

I∑

i=1

‖ρi‖
2
L∞(0,T,L2(Ωi))

≤ Ck2(d+1)‖∂d+1
t u‖2

L2(0,T ;L2(Ω)).

Since Ui −u|Ωi
= Θi +ρi, it suffices to prove estimate (12) for Θi. Now, using

the equations of u and Ui, and the identity d
dtI

iP−
i = Pi d

dt , Θi satisfies:

∂t(I
iΘi) + ∇ · (biΘi) − ν∆Θi + ciΘi = Pi(−∇ · (biρi) + ν∆ρi − ciρi)

+ (1 − Pi)∂tu in Ωi × (0, T ),

(
νi ∂ni

−
bi · ni

2

)
Θi + pΘi = Pi

(
(νj ∂ni

−
bj · ni

2
)Θj + pΘj

)

− (1 − Pi)
(
(νj ∂ni

−
bj · ni

2
)Wj + pWj

)
on Γij × (0, T ).

(13)

We set ‖ϕ‖i = ‖ϕ‖L2(Ωi) and 9ϕ92
i = νi‖∇ϕ‖

2
L2(Ωi)

+ c‖ϕ‖2
L2(Ωi)

. Multiply

the first equation of (13) by Θi, integrate on (tin, t
i
n+1) × Ωi, using (7) and

integrate by parts in space. Terminate with Cauchy Schwarz inequality:

1

2
‖Θi((t

i
n+1)

−)‖2
i +

∫

Ii
n

9Θi(t, ·)92
i dt−

∫

Ii
n

∫

Γi

(νi∂ni
Θi −

bi · ni

2
Θi)Θidy dt

≤
1

2
‖Θi((t

i
n)−)‖2

i + C

∫

Ii
n

‖ρi(t, ·)‖
2
H2(Ωi)

dt.

Rewriting the boundary integral, we obtain:

1

2
‖Θi((t

i
n+1)

−)‖2
i +

∫

Ii
n

9Θi(t, ·) 92
i dt

+
1

4p

∑

j∈Ni

∫

Ii
n

∫

Γij

(νi∂ni
Θi −

bi · ni

2
Θi − pΘi)

2 dy dt

≤
1

4p

∑

j∈Ni

∫

Ii
n

∫

Γij

(νi∂ni
Θi −

bi · ni

2
Θi + pΘi)

2 dy

+
1

2
‖Θi((t

i
n)−)‖2

i + C

∫

Ii
n

‖ρi(t, ·)‖
2
H2(Ωi)

dt.

Using the transmission condition in (13) and the fact that Pi and 1 −Pi are
orthogonal to each other and have norm 1, we get by a trace theorem:
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1

2
‖Θi((t

i
n+1)

−)‖2
i +

∫

Ii
n

9Θi(t, ·) 92
i dt

+
1

4p

∑

j∈Ni

∫

Ii
n

∫

Γij

(νi∂ni
Θi −

bi · ni

2
Θi − pΘi)

2 dy dt

≤
1

4p

∑

j∈Ni

∫

Ii
n

∫

Γij

(νj∂nj
Θj −

bj · nj

2
Θj − pΘj)

2 dy +
1

2
‖Θi((t

i
n)−)‖2

i

+ C

∫

Ii
n

‖ρi(t, ·)‖
2
H2(Ωi)

dt+ C

∫

Ii
n

‖(1 − Pi)(u|Ωi
)(t, ·)‖2

H2(Ωi)
dt. (14)

Classical error estimates in Thomee [1997] imply:

∫ T

0

‖ρi(t, ·)‖
2
H2(Ωi)

dt+

∫ T

0

‖(1 − Pi)(u|Ωi
)(t, ·)‖2

H2(Ωi)

≤ Ck2(d+1)‖∂d+1
t u‖2

L2(0,T ;H2(Ωi))
. (15)

Summing (14) in j and n, and using the previous equation yields (12).

4 Numerical results

The above analysis deals with continuous problems and problems semi-
discretized in time. We have implemented the algorithm with d = 1 and
P1 finite elements in space in each subdomain using mortar methods like in
Gander et al. [2005], in order to permit non-matching grids in time and space
on the boundary. Time windows are used in order to reduce the number of
iterations of the algorithm. In the first example, the coefficients are optimized
numerically using the convergence factor. In the second one, formulas from
Bennequin et al. [2009] are used.

We first give an example of a multidomain solution with time windows. The
physical domain is Ω = (0, 1)×(0, 2), the final time is T = 4. The initial value

and the right hand side are u0 = f = e−100((x−0.55)2+(y−1.7)2). The domain Ω
is split into two subdomains Ω1 = (0, 0.5) × (0, 2) and Ω2 = (0.5, 1) × (0, 2).
The reaction c is zero, the advection and diffusion coefficients are b1 = (0,−1),
ν1 = 0.05, and b2 = (−0.1, 0), ν2 = 0.1. The mesh size and time step in
Ω1 are h1 = 3.93.10−2 and k1 = 2.5.10−2, while in Ω2, h2 = 8.84.10−2

and k2 = 6.25.10−2. On Figure 1, we observe, at final time T = 4, that
the approximate solution computed using 4 uniform time windows, with 3
iterations in the first time window, and then 2 iterations in the next ones
(right figure), is close to the reference solution computed in one time window
on a conforming finer space-time grid (left figure).

We analyze now the precision for continuous coefficients. The advec-
tion field is b = (− sin(π(y − 1

2 )) cos(π(x − 1
2 )), cos(π(y − 1

2 )) sin(π(x −
1
2 ))), and the diffusion is ν = 1. The exact solution is given by u(x, t) =
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Fig. 1. Computation using discontinuous Galerkin with time windows

cos(πx)sin(πy)cos(πt), in the unit square. The domain is decomposed into 2
subdomains with the interface at x = 0.3. The space grid is fixed and non
conforming with mesh sizes h1 = 0.0074 and h2 = 0.011. We start with four
time grids : time grids 1 and 2 are the conforming finner and coarser ones
with respectively 7 and 5 grid points in each domain. Time grid 3 is noncon-
forming with 5 grid points in Ω1 and 7 grid points in Ω2, and time grid 4 is
nonconforming with 7 grid points in Ω1 and 5 grid points in Ω2. Thereafter
the time steps are divided by 2 several times. Figure 2 shows the norms of the
error in L∞(I;L2(Ωi)) versus the number of time refinements, for subdomain
1 on the left, and subdomain 2 on the right. First we observe the order 2 in
time for conforming and nonconforming cases. They fit the theoretical esti-
mates, even though we have theoretical results only for Robin transmission
conditions and the space continuous problem. Moreover, the error obtained
in the nonconforming case, in the subdomain where the grid is finer, is nearly
the same as the error obtained in the conforming finer case.
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Fig. 2. Error curves versus the refinement in time, for Ω1 (left) and Ω2 (right)
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5 Conclusions

We have extended the numerical method proposed in Halpern and Japhet
[2008] to higher dimensions and analyzed it for heterogeneous advection-
reaction-diffusion problems. It relies on the splitting of the time interval into
time windows, in which a few iterations of an OSWR algorithm are performed
by a discontinuous Galerkin method in time, with projection between space-
time grids on the interfaces. We have shown both theoretically and numerically
that the method preserves the order of the discontinuous Galerkin method.
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