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Abstract

We present an iterative, non-overlapping domain decomposition method for solving
the convection-diffusion equation. A reformulation of the problem leads to an equiv-
alent problem where the unknowns are on the boundary of the subdomains [14].
The solving of this interface problem by a Krylov type algorithm [15] is done by the
solving of independant problems in each subdomain, so it permits to use efficiently
parallel computation. In order to have very fast convergence, we use differential
interface conditions of order 1 in the normal direction and of order 2 in the tan-
gential direction to the interface, which are optimized approximations of Absorbing
Boundary Conditions [13,8]. Numerical tests illustrate the efficiency of the method.

Key words: Domain decomposition. Optimized Order 2 method. Absorbing
boundary conditions. Convection-diffusion problems.

1 The Optimized Order 2 Method

In fluid dynamics, the convection-diffusion equation models for example the
concentration of a pollutant in the air. The convection-diffusion problem we
consider is to find the solution u = u(x, y) of

L(u)= cu+ a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
− ν∆u = f in Ω (1)

C(u)= g on ∂Ω (2)

where Ω is a bounded open set of R2, a = (a, b) is the velocity field, ν is the
viscosity, C is a linear operator, c is a constant which could be c = 1

∆t
with
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∆t a time step of a backward-Euler scheme for solving the time dependent
convection-diffusion problem, and f, g are given functions.

The OO2 method is based on an extension of the additive Schwarz algorithm
with non-overlapping subdomains :

Let
−
Ω= ∪N

i=1

−
Ωi, with Ωi ∩ Ωj = ∅, i 6= j. We denote by Γi,j the common

interface to Ωi and Ωj, i 6= j. The outward normal from Ωi is ni and τ i is a
tangential unit vector. Let u be the solution of problem (1)-(2), and u

p
i the

approximation of u at iteration p in each subdomain Ωi, 1 ≤ i ≤ N . The
additive Schwarz algorithm with non-overlapping subdomains is :

L(up+1
i )= f in Ωi (3)

Bi(u
p+1
i )=Bi(u

p
j) on Γi,j, i 6= j (4)

C(up+1
i )= g on ∂Ωi ∩ ∂Ω (5)

where Bi is an interface operator. The original additive Schwarz algorithm
[10], with Dirichlet interface conditions (Bi = Id), converges only with over-
lapping subdomains. In [11], the interface conditions are Robin type conditions
(Bi =

∂
∂ni

+ ci, where ci is a constant), which leads to a convergent algorithm
for non-overlapping subdomains. The choice of the interface conditions is fun-
damental. Many methods has been proposed (see for example [4,3,2,16].

The OO2 interface conditions are based on the concept of Absorbing Bound-
ary Conditions [5,6]. This concept enables to understand the mathematical
mecanisms on the interfaces, and therefore leads to stable and efficient algo-
rithms.
We introduce first the technique of absorbing interface conditions, then the
OO2 interface conditions based on this concept, and in a third part the sub-
structuring formulation of the method.

1.1 Absorbing interface conditions

It has been proved in [14] that the optimal interface conditions for algorithm
(3)-(5) are the exact Absorbing Boundary Conditions. Unfortunately, as these
conditions are not partial differential operators, they are numerically costly
and difficult to use. Then, it has been proposed in [13] to use Taylor approx-
imations of order 0 or 2, for low wave numbers, of these optimal interface
conditions.
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For example, the "Taylor order 0" interface operator is :

Bi =
∂

∂ni

−
a.ni −

√

(a.ni)2 + 4cν

2ν

(in [4,2], the interface conditions can be interpreted as Taylor approximations
of order 0). These conditions are obtained from the artificial boundary con-
ditions [5,6]. If Ωi = R

− × R, Ωj = R
+ × R, and Γi,j is the axis x = 0, the

artificial boundary conditions are ∂x − Λ−, ∂x − Λ+, with Λ− the Dirichlet to
Neumann operator of the right half plane defined as

Λ− : u0 −→
∂w

∂x
(0, y) with w such as L(w) = 0, x > 0

w(0, y) = u0(y) at x = 0

w bounded at infinity

The Dirichlet to Neumann operator of the left half plane Λ+ is defined in the
same way. When the cœfficients of L are constants, by using Fourier transform
in the y direction, we can compute the symbol λ− of Λ− and the symbol λ+

of Λ+:

λ−(k, a, b) =
a−

√
a2 + 4cν + 4iνbk + 4k2ν2

2ν
(6)

λ+(k, a, b) =
a+

√
a2 + 4cν + 4iνbk + 4k2ν2

2ν
(7)

where k is the Fourier variable. If we denote by Λ+
ap and Λ−

ap the Taylor approx-
imations of order 0 or 2, for low wave numbers, of Λ+ and Λ−, they satisfy:

Λ+
ap + Λ−

ap = Λ+ + Λ− =
a

ν
(8)

Then, the interface operator for domain Ωi is Bi = ∂x − Λ−
ap, and the one for

domain Ωj is Bj = −(∂x − Λ+
ap). Bj can be obtained from Bi, using (8).

Numerical tests on a finite difference scheme with overlapping subdomains
have shown that the Taylor order 2 interface conditions lead to very fast con-
vergence, compared to the Taylor order 0 or Dirichlet interface conditions,
except in the case of a velocity field tangential to the interface, where the
convergence is very slow. So, instead of taking low wave numbers approxima-
tions, it has been proposed in [7,8] to use differential interface conditions of
order 2 along the interfaces which are “good” approximations of the absorbing
boundary conditions, not only for low wave numbers, but for a given range of
wave numbers. This means that the interface operator is chosen in order to
optimize the convergence ratio of algorithm (3)-(5). This “Optimized Order 2”
interface operator is defined as follows :
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1.2 OO2 interface conditions

1.2.1 Analytic analysis : 2 subdomains case and constant cœfficients

In this part, we suppose that the cœfficients of L are constants. The domain
Ω = R

2 is decomposed in 2 subdomains Ω1 = R
− × R, and Ω2 = R

+ ×
R, and Γ1,2 is the axis x = 0. The interface operators are of order 2 in the
tangential direction to the interface :

B1 =
∂

∂n1

− c1 + c2
∂

∂τ 1

− c3
∂2

∂τ 2
1

, B2 =
∂

∂n2

− c4 + c5
∂

∂τ 2

− c6
∂2

∂τ 2
2

with c3 ≥ 0, and are chosen as follows :

• First we link B1 and B2 as in (8). This means that c4, c5, c6 are obtained
from c1, c2, c3:
c1 = c1(a · n1, a · τ 1), c2 = c2(a · n1, a · τ 1), c3 = c3(a · n1, a · τ 1), and
c4 = c1 − a·n1

ν
, c5 = c2(a ·n2, a · τ 2), c6 = c3(a ·n2, a · τ 2). So we only have

to determine c1, c2, c3.

• Then, we choose c1 =
a·n1−

√
(a·n1)2+4cν

2ν
so that the interface condition is

exact for the lowest wave number.
• Finally, we compute c2 and c3 by minimizing the convergence ratio of the

Schwarz algorithm in the case of 2 subdomains and constant cœfficients.

The minimization problem on c2 and c3 is sought in term of wave numbers k:
B1 and B2 can be written as : B1 = ∂x − Λ−

ap, and B2 = −(∂x − Λ+
ap) where

the symbol of Λ−
ap is

λ−
ap(k) = λ−(0)− c2ik − c3k

2 (9)

B2 is obtained from B1 using (8). Then the convergence ratio of the Schwarz
algorithm (3)-(5) can be computed explicitly : we denote by e

p
i the error up

i −u

at the interface Γ12 of Ωi at step p, i = 1, 2. Let ê denote the partial Fourier
transform in the y direction of a function e. Then, we define the convergence
ratio of algorithm (3)-(5) by ê

p+2
1 = ρê

p
1, p ≥ 1. The relation (8) simplify ρ

in the form :

ρ(k, c2, c3) =

(

λ−(k)− λ−
ap(k)

λ+(k)− λ−
ap(k)

)2

Then, we minimize the maximum of the convergence ratio k → ρ(k, c2, c3)
on the interval |k| ≤ kmax where kmax is a given constant, kmax > 0 (in the
discrete case, kmax = π

h
where h is the mesh size in y) (see [7]). When the

convection velocity is normal to the interface, we have :
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Theorem 1 Let a ∈ R, a 6= 0, b = 0 and c ≥ 0 in (1). Then, for kmax > 0,

there exists a unique
−
c3≥ 0 solution of

min
c3≥0

max
0≤k≤kmax

|ρ(k, 0, c3)| (10)

Moreover,
−
c3 is the unique solution in [λ

−(0)−λ−(kmax)
k2max

, ν√
a2+4cν

] of the equation

ρ(k1(c3), 0, c3) = ρ(kmax, 0, c3)

where k1 = k1(c3) is the root of the derivative of k −→ ρ(k, 0, c3) such that
ρ(k1, 0, c3) 6= 0.

Proof We consider in a first step that c = 0. We introduce the notations
x = (2νk

a
)2, xmax = (2νkmax

a
)2, and γ = c3|a|

2ν
. Then the convergence ratio is :

ρ(x, γ) =

(

−1 +
√
1 + x− γx

1 +
√
1 + x+ γx

)2

(11)

the minimization problem (10) is equivalent to the following one :

min
γ≥0

max
0≤x≤xmax

|ρ(x, γ)| (12)

The function (x, γ) ∈ R
+ × R

+ −→ ρ(x, γ) is C∞, positive, and for γ ≥ 0
given, lim

x−→∞ ρ(x, γ) = 1. The research of the maximum of x −→ ρ(x, γ) on

[0, xmax], for γ ≥ 0 leads to consider the cases : 0 < γ < 1
2
, γ = 0, and γ ≥ 1

2
.

0 < γ < 1
2

Let x1(γ) =
1−2γ
γ

and xint(γ) =
1−2γ
γ2 . The function x −→ ρ(x, γ) is increasing

on [0, x1(γ)]∪ [xint(γ), xmax], decreasing on [x1(γ), xint(γ)]. We then have three
possibilities for the maximum of x −→ ρ(x, γ) on [0, xmax] :

• if γ is such that xmax ≤ x1(γ) ⇐⇒ γ ≤ f(xmax), with f(x) = 1
x+2

. Then,
the maximum is at xmax,

• if γ is such that x1(γ) ≤ xmax ≤ 1−2γ
γ2 ⇐⇒ f(xmax) ≤ γ ≤ g(xmax), with

g(x) = −1+
√
1+x

x
. Then, the maximum is at x1(γ),

• if γ is such that xmax ≥ 1−2γ
γ2 ⇐⇒ γ ≥ g(xmax). Then, the maximum is at

x1(γ) or at xmax.

So (12) reduces to

min( min
0<γ≤f(xmax)

F (γ), min
f(xmax)≤γ≤g(xmax)

G(γ), min
g(xmax)≤γ< 1

2

(F (γ), G(γ)))

with F (γ) = ρ(xmax, γ), and G(γ) = ρ(x1(γ), γ), 0 < γ < 1
2
.

Let F0(x, γ) =
∂ρ
∂γ
(x, γ), x ≥ 0, 0 < γ < 1

2
. Then, we have F

′

(γ) = F0(xmax, γ),
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and G
′

(γ) = F0(x1(γ), γ). As F0(x, γ) ≤ 0 if and only if γ ≤ g(x) and
as f(xmax) ≤ g(xmax), then for 0 < γ ≤ f(xmax) we have F

′

(γ) ≤ 0. So
the minimum of the continuous function F on ]0, f(xmax] is at γ = f(xmax)
(i.e. xmax = x1(γ)). Moreover, G

′

(γ) ≤ 0 if and only if γ ≤ g(x1(γ)). Since
γ ≤ g(x1(γ)), ∀γ ∈]0, 1

2
[, then G

′

(γ) ≤ 0, 0 < γ < 1
2
. The minimum of the

continuous function G on [f(xmax), g(xmax)] is then at γ = g(xmax). So we are
lead to the problem

min
g(xmax)≤γ< 1

2

(ρ(x1(γ), γ), ρ(xmax, γ))

Since F and G are continuous on ]0, 1
2
[, F

′

(γ) ≥ 0 and G
′

(γ) ≤ 0 for g(xmax) ≤
γ < 1

2
, F (1

2
) ≤ 0, and G(1

2
) = 0, there exists a unique

−
γ, g(xmax) ≤

−
γ< 1

2
, such

that F (
−
γ) = G(

−
γ) = min0<γ< 1

2

max0≤x≤xmax
|ρ(x, γ)|.

γ = 0
The function x −→ ρ(x, 0) is increasing on [0, xmax], it’s maximum is at xmax.

A simple computation show that ρ(xmax, 0) > ρ(xmax,
−
γ) (using

−
γ< 1

2
).

γ ≥ 1
2

The function x −→ ρ(x, γ) is increasing on [0, xmax], it’s maximum is at xmax.

Since F
′

(γ) ≥ 0 for γ ≥ 1
2
, the minimum is at γ = 1

2
. Then, using

−
γ< 1

2
we

have ρ(xmax,
1
2
) > ρ(xmax,

−
γ).

This ends the proof in the case c = 0. When c ≥ 0, we introduce c
′

= 4νc
a2

.
The convergence ratio can be written in the form (11) with x = ( 1

1+c
′

2νk
a
)2,

γ = c3|a|
2ν

√
1 + c

′ , The minimization problem (10) is then equivalent to the
problem (12) with xmax = ( 1

1+c
′

2νkmax

a
)2, and the proof is the same as in the

c = 0 case.

−
c3 can be obtained by minimizing ρ on wave numbers kint, 0 < kint ≤ kmax

such that ρ(kint, 0, c3) = 0 :

Theorem 2 The problem (10) is equivalent to the problem

min
0<kint≤kmax

ρ(kint,0,c3)=0

max
0≤k≤kmax

|ρ(k, 0, c3(kint))| (13)

Then, for kmax > 0 given, there exists a unique
−
kint∈]0, kmax], depending on

kmax, solution of (13). Moreover,
−
kint is the unique solution in ]0, kmax] of the

equation ρ(k1(kint), 0, c3(kint)) = ρ(kmax, 0, c3(kint)), where k1 is the root in
]0, kint[ of the derivative of k −→ ρ(k, 0, c3(kint)).
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Figure 1 illustrate the behaviour of the convergence ratio with the different
interface conditions.
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1.2.2 General case

In this part we give the technique to obtain the OO2 interface conditions in
the case of variable cœfficients and an arbitrary decomposition.

We first find the expression of the symbol λ−(k, a, b) and λ+(k, a, b) of the
Dirichlet to Neumann operator that is (6) and (7). Then the OO2 interface
operator is defined by :

Bi =
∂

∂ni

−
a · ni −

√

(a · ni)2 + 4cν

2ν
+ c2

∂

∂τ i

− c3
∂2

∂τ 2
i

where c2 = c2(a · ni, a · τ i) and c3 = c3(a · ni, a · τ i) are chosen in order to
minimize the convergence ratio of algorithm (3)-(5). The analytic analysis in
the case of 2 subdomains and constant cœfficients reduces the minimization
problem to a one parameter minimization problem. This technique is extended
here that is only one parameter is computed, and with this parameter we get
c2 and c3 :

We denote by λ−(k) = λ−(k, a · ni, a · τ i) and λ+(k) = λ+(k, a · ni, a · τ i). We
introduce for 0 ≤ k ≤ kmax and 0 < kint ≤ kmax :

ρ(k, kint) =

(

λ−(k)− λ−
ap(k, kint)

λ+(k)− λ−
ap(k, kint)

)2
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with λ−
ap(k, kint) = λ−(0)− c2(kint)ik − c3(kint)k

2, where c2 = c2(kint) and
c3 = c3(kint) are given by ρ(kint, c2, c3) = 0, that is :

c2(kint) = −Im(λ−(kint))

kint
, c3(kint) =

λ−(0)−Re(λ−(kint))

k2
int

Let k1 = k1(kint) be the root in ]0, kint[ of the derivative of k −→ |ρ(k, kint)|.
Then, we compute the solution

−
kint in ]0, kmax] of the equation :

|ρ(k1, kint)| = |ρ(kmax, kint)|

with a dichotomy algorithm. With kint we can compute c2 and c3:

c2 = c2(a · ni, a · τ i)=−Im(λ−(
−
kint))

−
kint

c3 = c3(a · ni, a · τ i)=
λ−(0)−Re(λ−(

−
kint))

(
−
kint)2

So the OO2 conditions are easy to use and not costly.

1.2.3 Convergence analysis

In the case of 2 subdomains, the convergence of algorithm (3)-(5) with the
OO2 interface conditions is proved by computing explicitely the convergence
ratio ρ in term of wave numbers k :

Theorem 3 Let Ω = R
2 be decomposed in 2 subdomains Ω1 = R

− × R and
Ω2 = R

+ × R. Then, ∀ν > 0, c > 0, a ∈ R, b ∈ R,

∀ k ∈ R, |ρ(k, c2, c3)| < 1

Proof Let Ω = R
2 be decomposed in 2 subdomains Ω1 = R

− × R and Ω2 =
R

+ × R. We use the following result from [12] :

Lemma 4 For all ν > 0, c > 0, a ∈ R, b ∈ R, c2 ∈ R, c3 ≥ 0, and for all
k ∈ R,

|ρ(k, c2, c3)| < 1 ⇐⇒
(

λ−
ap − a

2ν

λ− − a
2ν

)

⊂ {z ∈ C : Re z > 0} ∪ {∞}

This leads to the

8



Corollary 5 For all ν > 0, c > 0, a ∈ R, b ∈ R, c2 ∈ R, c3 ≥ 0,

∀k ∈ R, sgn(c2) = sgn(b) =⇒ |ρ(k, c2, c3)| < 1

Proof For z1, z2 ∈ C we have the following relation :
sgn(Re z1) = sgn(Re z2) and sgn(Im z1) = sgn(Im z2) =⇒ Re( z1

z2
) > 0.

From (6), (9) and c3 ≥ 0, we have : Re(λ− − a
2ν
) < 0, Re(λ−

ap − a
2ν
) < 0,

sgn(Im(λ−(k))) = −sgn(bk), for k ∈ R and sgn(Im(λ−
ap(k))) = −sgn(c2k),

for k ∈ R. Using lemma 4 ends the proof of corollary 5.

We now prove theorem 3 : as
−
kint> 0 and sgn(Im(λ−(

−
kint))) = −sgn(b

−
kint)

(from (6)), c2 is of the same sign that b, so we can apply corallary 5.

Remark 6 In the OO2 interface conditions, the minimization problem on c2
and c3 is on a set of conditions which verify (8), i.e. on a set of conditions
which ensures (adding a condition on the sign of c2) the convergence of the
Schwarz algorithm. So an approximate minimization problem on the same set
of conditions will also ensure the convergence. In the case of 2 subdomains,
the convergence is proved by computing explicitely the convergence ratio. When
the domain is decomposed in N subdomains (strips) the convergence ratio is
estimated in function of the convergence ratio of the 2 subdomains case and
the decomposition geometry. The convergence is proved in [12].

Moreover, when the mesh size tends to 0, the condition number is asymptoti-
cally much better for OO2 than for Taylor order 0 or 2 interface conditions :

Theorem 7 Let Ω = R
2 be decomposed in 2 subdomains Ω1 = R

− × R and
Ω2 = R

+×R. Let a ∈ R, a 6= 0, b = 0 and c ≥ 0 in (1)-(2). Let h be the mesh
size, and let (ρmax)IC be the maximum of ρ on 0 ≤ k ≤ π

h
with the interface

condition IC. Let α = 1 + 4νc
a2

. Then, when h → 0 :

(ρmax)Taylor order 0 ≈ 1− 2
π
α

1

2 ( |a|h
ν
)

(ρmax)Taylor order 2 ≈ 1− 4
π
α

1

2 ( |a|h
ν
)

(ρmax)OO2 ≈ 1− 8α
1

6 ( 1
4π

|a|h
ν
)
1

3

Proof Let a ∈ R, a 6= 0, b = 0 and c ≥ 0 in (1). Then the convergence ratio

can be written in the form (11) with x = ( 1
1+c

′

2νk
a
)2, γ = c3|a|

2ν

√
1 + c

′ , and

c
′

= 4νc
a2

. For the OO2 interface conditions, we use the theorem 1. Problem
(10) is equivalent to the problem (12) with xmax = ( 1

1+c
′

2νkmax

a
)2 and is the
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unique solution in [−1+
√
1+xmax

xmax
, 1
2
[ of ρ(xmax, γ) = ρ(x1(γ), γ), with x1(γ) the

root of the derivative of x −→ ρ(x, γ) such that ρ(x, γ) 6= 0.
The previous equation is equivalent to the following one :

4γ(1− γ)(1 + γxmax)
2 − 1− xmax = 0 (14)

In order to prove the estimate, we first prove the two following lemmas :

Lemma 8 The solution γ of (14) satisfies : lim
xmax−→+∞

(xmaxγ) = +∞.

Proof Let γ ≥ 0 be the solution of (14). We suppose that there exists a
constant M > 0 such that |xmaxγ| ≤ M, ∀xmax > 0. Then,

4γ(1− γ)(1 + γxmax)
2 ≤ 4M

xmax

(1 +
M

xmax

)(1 +M)2 (15)

As lim
xmax−→+∞

4M
xmax

(1+ M
xmax

)(1+M)2 = 0, so lim
xmax−→+∞

4γ(1−γ)(1+γxmax)
2 = 0

(from (15)), which is in contradiction with (14). So, lim
xmax−→+∞

(xmaxγ) = +∞.

Lemma 9 For xmax ≫ 1 given, the solution γ∞ of (14) satisfies :

γ∞ ≈ ǫ
1

3 with ǫ =
1

4xmax

Proof Let xmax ≫ 1 given, and γ∞ the corresponding solution of (14). From
lemma 8: 4γ∞(1− γ∞)(γ∞xmax)

2 ≈ xmax, that is (γ∞)3 − (γ∞)4 ≈ 1
4xmax

.

Let ǫ = 1
4xmax

. As 0 ≤ γ∞ < 1
2
, (1.2.3) leads to γ∞ ≈ ǫ

1

3 .

We can now prove theorem 7. From theorem 1, (ρmax)OO2 = ρ(xmax, γ∞) that
is (using lemma 9):

(ρmax)OO2≈




−1 +
√

1 + 1
4ǫ
− ǫ

1

3
1
4ǫ

1 +
√

1 + 1
4ǫ
+ ǫ

1

3
1
4ǫ





2

≈




4ǫ
2

3 − 2ǫ
1

6

√
4ǫ+ 1 + 1

4ǫ
2

3 + 2ǫ
1

6

√
4ǫ+ 1 + 1





2

(16)

Then using a Taylor expansion at ǫ = 0 of (16), we get : (ρmax)OO2 ≈ 1− 8ǫ
1

6 .
So, when the mesh size h tends to 0 :

(ρmax)OO2 ≈ 1− 8

(4π)
1

3

(1 + c
′

)
1

6 (
|a|h
ν

)
1

3
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(we recall that ǫ = 1
4xmax

, with xmax = 1
1+c

′ (2νkmax

a
)2, and kmax = π

h
). For the

Taylor order 0 or 2 interface conditions, the proof is done in a same way, and
is much easier because the cœfficient c3 is independant of xmax.

1.3 Substructuring formulation

In [14], the non-overlapping algorithm (3)-(5) is interpreted as a Jacobi algo-
rithm applied to a problem where the unknowns are on the boundary of the
subdomains. That is, the actual unknowns of the problem are the terms Bi(ui)
on the interface Γi,j, i 6= j. In the discrete case, this interface problem can be
written in the form :

Dλ = b (17)

where λ, restricted to ∂Ωi, represents the discretization of the term Bi(ui) on
the interface Γi,j , i 6= j, and D is an interface matrix, non symmetric and full.
Numerically D is never computed because it will be costly.
To accelerate convergence again, the Jacobi algorithm is replaced by a Krylov
algorithm (GMRES, BICG-STAB, ...) [15]. As we use an iterative method, we
need only to compute at each step the product Dλ, which is the restriction to
∂Ωi of the discretization of the jump Bi(ui)−Bi(uj) on the interface Γi,j, i 6= j,
where the ui, 1 ≤ i ≤ N , are solution of the local problem :

L(ui)= 0 in Ωi

Bi(ui)=λi,j on Γi,j, i 6= j

C(ui)= 0 on ∂Ωi ∩ ∂Ω

with λi,j the restriction of λ on the interface Γi,j. So the solving of the interface
problem (17) by a Krylov method is done by the solving of independant prob-
lems in each subdomain, that is we use efficiently parallel computation : each
subdomain is assign to a processor which solve his problem independently.
The interactions between subdomains are processed by the communications
between processors. Once we have computed an approximate solution λ of
problem (17), we get the approximate solution ui of the solution u of problem
(1)-(2) in each subdomain Ωi, 1 ≤ i ≤ N , by solving the local problem :

L(ui)= f in Ωi

Bi(ui)=λi,j on Γi,j, i 6= j

C(ui)= g on ∂Ωi ∩ ∂Ω

11



2 Numerical results

The convection-diffusion equation is discretized by a finite volume scheme [1]
(collaboration with Matra BAe Dynamics France). The global domain Ω is
decomposed in N non-overlapping subdomains. The interface problem (17) is
solved by a BICG-STAB algorithm. This involves solving, at each iteration,
N independant subproblems (one per subdomain) which can be performed in
parallel. Each subproblem is solved by a direct method. We denote by h the
mesh size. We compare the results obtained with the OO2 interface conditions
and the Taylor order 0 or 2 interface conditions.

Remark : The optimized cœfficients in the OO2 method are computed in an
initialisation step, that is in the computation of the local matrix. They are not
computed again in the iterations of BICG-STAB. Moreover, each iteration of
BICG-STAB has the same cost for all the interface conditions (Taylor order 0,
Taylor order 2, OO2), because the use of order 2 conditions does not increase
the bandwidth of the local matrix. So, in the BICG-STAB algorithm, the CPU
time is proportional to the number of iterations.

2.1 Flow in a square

We solve the following problem :

L(u)= 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

u(0, y) = 0,
∂u

∂x
(1, y)= 0, 0 ≤ y ≤ 1 (18)

u(x, 0) = 1,
∂u

∂y
(x, 1)= 0, 0 ≤ x ≤ 1

We consider a cartesian mesh with constant mesh size h. The unit square is
decomposed in Nx × Ny subdomains, where Nx (resp. Ny) is the number of
subdomains in the x (resp. y) direction. We consider two types of convec-
tion velocity field : a shear velocity (a = y, b = 0) and a rotating velocity
(a = − sin (π(y − 1

2
)) cos (π(x− 1

2
)), b = cos (π(y − 1

2
)) sin (π(x− 1

2
))). The

isovalues of the solution of problem (18) with the shear velocity are repre-
sented in figure 2, and with the rotating velocity in figure 3.
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Fig. 2. Isovalues of the solution u, shear velocity
a = y, b = 0, ν = 1.d− 2, CFL = 1.d9, h = 1
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In table 1, we take a decomposition in strips in order to observe the influence on
the convergence of the convection velocity angle to the interfaces. We observe
that the OO2 interface conditions give a significantly better convergence which
is independant of the convection velocity angle to the interfaces. One of the
advantages is that for a given number of subdomains, the decomposition of the
domain doesn’t affect the convergence. Particularly here, for 16 subdomains,
the decomposition in strips (table 1) or in squares (figure 4) doesn’t affect the
convergence.

Decomposition of the domain OO2 Taylor order 2 Taylor order 0

normal velocity to the interface 15 123 141

16× 1 subdomains

tangential velocity to the interface 21 not 86

1× 16 subdomains convergent

Table 1: Number of iterations versus the convection velocity’s angle
a = y, b = 0, ν = 1.d− 2, CFL = 1.d9, h = 1

241
, log10(Error) < 1.d− 6
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Fig. 4. Error versus the number of iterations
4× 4 subdomains, shear velocity

a = y, b = 0, ν = 1.d− 2, CFL = 1.d9, h = 1
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Figure 5 shows that the convergence with the OO2 interface conditions is sig-
nificantly better for a more general convection velocity (the rotating velocity)
and decomposition (in 4× 8 subdomains).
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Fig. 5. Error versus the number of iterations
4× 8 subdomains, rotating velocity

a = − sin (π(y − 1
2
)) cos (π(x− 1

2
)), b = cos (π(y − 1

2
)) sin (π(x− 1

2
))

ν = 1.d− 2, CFL = 1.d9, h = 1
241

The convergence with the OO2 interface conditions, for the studied numerical
cases, is also nearly independant of the mesh size (see table 2). We practically
fit to the theoretical estimates of theorem 7.

grid 65× 65 129× 129 241× 241

OO2 25 26 30

Taylor order 0 76 130 224

Table 2: Number of iterations versus the mesh size
4× 4 subdomains, rotating velocity

a = − sin (π(y − 1
2
)) cos (π(x− 1

2
)), b = cos (π(y − 1

2
)) sin (π(x− 1

2
))

ν = 1.d− 2, CFL = 1.d9, log10(Error) < 1.d− 6

The convergence with the OO2 interface conditions is also very little sensible
to the variations of the CFL, as it shown on table 3.
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CFL = 1.d0 CFL = 1.d3 CFL = 1.d5 CFL = 1.d9

OO2 3 12 15 15

Taylor ordre 2 2 21 58 123

Taylor ordre 0 3 18 48 141

Table 3: Number of iterations versus the CFL, 16× 1 subdomains
a = y, b = 0, ν = 1.d− 2, CFL = 1.d9, h = 1

241
, log10(Error) < 1.d− 6

Figure 6 shows the speed-up = CPU time (1 domain)
CPU time (N subdomains)

of the method. Let imax

(resp. jmax) be the number of grid points in the x (resp. y) direction, for
the global domain. We note Nit the number of BICG-STAB iterations. For
a decomposition of the domain in Nx × Ny subdomains, the total cost can
be estimated by : α1(

imax

Nx
)3 jmax

Ny
+ α2Nit(

imax

Nx
)2 jmax

Ny
, where α1 and α2 are con-

stants. Figure 6 shows that for a small number of subdomains, the first term
(arising from the LU factorization of the local matrix) is predominant. Then,
the second term (arising from the BICG-STAB algorithm) become predom-
inant. After 32 subdomains, the estimate is no more valid, because of the
communication costs which can not be neglected.
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Fig. 6. Speed-up versus the number of subdomains, for decompositions in
2× 1, 2× 2, 4× 2, 4× 4, 8× 4 and 8× 8 subdomains

shear velocity
a = y, b = 0, ν = 1.d− 2, CFL = 1.d9, h = 1
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, Residual < 1.d− 9
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2.2 Flow around a cylinder, issued from a Navier-Stokes computation

The convection velocity field is a Navier-Stokes incompressible flow, with
Reynolds number Re = 10000, around a cylinder. This velocity field is from
a computation performed with the AEROLOG software of the aerodynamic
department at Matra BAe Dynamics France. The domain is defined by Ω =
{(x, y) = (r cos (θ), r sin (θ)), 1 ≤ r ≤ R, 0 ≤ θ ≤ 2π} with R > 1 given. We
solve the following problem :

L(u)= 0 in Ω

u=1 on {(x, y) = (cos (θ), sin (θ)), 0 ≤ θ ≤ 2π} (19)

u=0 on {(x, y) = (R cos (θ), R sin (θ)), 0 ≤ θ ≤ 2π}

The grid is {(xi, yj) = (ri cos (θj), ri sin (θj)), 1 ≤ i, j ≤ 65}, and is refined
around the cylinder and in the direction of the flow (see figure 9). The isovalues
of the solution of problem (19) are represented in figure 8 (without the grid)
and in figure 9 (with the grid). We note Nmax the number of points on the
boundary of a subdomain multiply by the number of subdomains.
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Fig. 7. Error versus the number of iterations
4× 2 subdomains, Navier-Stokes flow velocity, ν = 1.d− 4, CFL = 1.d9

17



’isovalues’
 -0.0952

   -0.19
  -0.286
  -0.381
  -0.476
  -0.571
  -0.667
  -0.762
  -0.857
  -0.952
   -1.05
   -1.14
   -1.24
   -1.33
   -1.43
   -1.52
   -1.62
   -1.71
   -1.81
    -1.9

0 5 10 15

0

5

10

15

X

Y

Fig. 8. Isovalues of the solution u
Navier-Stokes flow velocity, ν = 1.d− 4, CFL = 1.d9
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Fig. 9. Grid and isovalues of the solution u
Navier-Stokes flow velocity, ν = 1.d− 4, CFL = 1.d9
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The OO2 interface conditions give also significantly better convergence in
that case (figure 7). We observe in table 4 that the convergence is practically
independant of the viscosity ν.

OO2 Taylor order 2 Taylor order 0

ν = 1.d− 5 56 41 119

ν = 1.d− 4 43 121 374

ν = 1.d− 3 32 Nmax = 768 Nmax = 768

log10(Error) = −5.52 log10(Error) = −2.44

Table 4: Number of iterations versus the viscosity
4× 2 subdomains, Navier-Stokes flow velocity

ν = 1.d− 4, CFL = 1.d9, log10(Error) < 1.d− 6

Remark 10 Numerically, the convergence ratio of the method is nearly linear
upon the number of subdomains. So it is necessarly to send global information
between subdomains, in order to have a convergence ratio independant of the
number of subdomains. To tackle this problem, in [9], a “low wave number”
preconditioner is applied to the OO2 method.

3 Conclusion

The OO2 method applied to convection-diffusion problems appears to be a
very efficient method. Its main advantage is that it is a general domain de-
composition technique, with no a priori knowledge of the boundary layers or
the recirculation zones location. The convergence ratio is numerically nearly
independant both of the physical parameters and the discretization parame-
ters.
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