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Space-time domain decomposition methods and a posteriori error
estimates for the heat equation∗

Sarah Ali Hassan†, Caroline Japhet‡, Michel Kern†, Martin Vohralík†

Abstract

This paper develops a posteriori estimates for global-in-time, nonoverlapping domain decomposition
(DD) methods for heterogeneous diffusion problems. The method uses optimized Schwarz waveform
relaxation (OSWR) with Robin transmission conditions on the space-time interface between subdomains,
and a lowest-order Raviart–Thomas–Nédélec discretization in the subdomains. Our estimates yield a
guaranteed and fully computable upper bound on the error measured in the space-time energy norm
of [19, 20], at each iteration of the space-time DD algorithm, where the spatial discretization, the time
discretization, and the domain decomposition error components are estimated separately. Thus, an
adaptive space-time DD algorithm is proposed, wherein the iterations are stopped when the domain
decomposition error does not affect significantly the global error, allowing important savings in terms
of the number of domain decomposition iterations while guaranteeing a user-given precision. Numerical
results for a two-dimensional heat equation are presented to illustrate the efficiency of our a posteriori
estimates and the performance of the adaptive stopping criteria for the space-time DD algorithm.

Key words: Heterogeneous diffusion, mixed finite element method, space-time domain decomposition, dis-
continuous Galerkin in time, optimized Robin transmission conditions, a posteriori error estimate, stopping
criteria

1 Introduction
Let Ω ⊂ Rd, d = 2, 3, be a polygonal (polyhedral if d = 3) domain (open, bounded and connected set)
with Lipschitz-continuous boundary ∂Ω decomposed into two connected sets ΓD and ΓN with ΓD of nonzero
(d− 1)-dimensional measure.

We consider space-time domain decomposition strategies for solving the following diffusion problem with
final time T > 0: find the potential p and the flux u such that:

u = −∇p in Ω× (0, T ), (1.1a)
∂p

∂t
+∇·u = f in Ω× (0, T ), (1.1b)

p = gD on ΓD × (0, T ), (1.1c)

−u · n = gN on ΓN × (0, T ), (1.1d)
p(·, 0) = p0 in Ω, (1.1e)

where gD ∈ H
1
2 (ΓD × (0, T )) ∩ C0(Γ

D × (0, T )), gN ∈ L2(ΓN × (0, T )), and where f ∈ L2(Ω × (0, T )), and
p0 ∈ H1(Ω) with p0|ΓD = gD(·, 0)|ΓD . Here n is the outward unit normal vector to ∂Ω.
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In this article we are concerned with global-in-time optimized Schwarz method which uses optimized
Schwarz waveform relaxation (OSWR) introduced in [26, 37]. The OSWR algorithm is an iterative method
that computes in the subdomains over the whole time interval, exchanging space-time boundary data through
more general (Robin or Ventcell) transmission operators in which coefficients can be optimized to improve
convergence rates [31, 37, 10, 11]. This method allows to different time discretizations in subdomains, and
needs a very small number of iterations to converge, see [25, 27] and the references therein, and [28, 29, 30] in
the context of mixed finite elements. The OSWR algorithm can actually be reformulated as a block-Jacobi
method applied to a space-time interface problem, see [17] and the references therein, see also [28, 3, 4],
and on can replace the block-Jacobi algorithm by other by various iterative methods, such as Krylov-type
methods like GMRES.

The present paper intends to give a posteriori estimates with a guaranteed and fully computable upper
bound on the error at each iteration of the space-time DD algorithm. In the context of algebraic iterative
solvers, several methods with residual-based estimates have been proposed, see [9, 6, 7], and [39, 38, 43]
for goal-oriented a posteriori error estimates. Then, in [21], a general framework for any numerical method
and algebraic solver has been introduced, following [32]. Extensions of this framework to coupled unsteady
nonlinear and degenerate problems are given in [12, 15], and to parabolic problems in [20, 19]. It uses
H1-conforming reconstruction of the potential, continuous and piecewise affine in time, and an equilibrated
H(div)-conforming reconstruction of the flux, piecewise constant in time. A guaranteed and fully computable
upper bound on the error measured in the energy norm augmented by a dual norm of the time derivative is
derived (see [47, 20]), without unknown constants. In [20, 19] an equivalent norm is used, leading to local
space-time efficiency.

In the context of non-overlapping domain decomposition algorithms, a posteriori error estimates for
FETI [23] or BDD [36, 13] methods, have been proposed in [44, 45]. It is based on H1(Ω)-conforming
potential andH(div,Ω)-conforming flux reconstructions, following [41, 34, 42, 22], that can be obtained when
subdomain problems involve both Dirichlet and Neumann interface conditions on each domain decomposition
(DD) iteration, as this is the case for FETI or BDD. For domain decomposition methods with Robin or
Ventcell interface conditions, and where neither the conformity of the flux nor that of the potential is
preserved (as long as the convergence is not reached), new a posteriori error estimates and stopping criteria
has been introduced in [3, 1].

The purpose of this paper is to extend the techniques of [3] to the OSWR method for solving the heat
equation. We give a general a posteriori error estimate with fully computable upper bound, distinguishing
the spatial discretization, the temporal discretization, and the domain decomposition error components.
This new adaptive space-time domain decomposition algorithm uses two H1-conforming potential recon-
structions (one globally on Ω, and one on each subdomain Ωi), and an H(div,Ω)-conforming flux recon-
struction. Details of the proof and of the potential and flux reconstructions are given in [4]. In the present
contribution, we give numerical experiments for the heat equation to validate our adaptive method: we
consider a test case where the exact solution is known and show the actual and estimated errors against
the number of OSWR iterations and the corresponding effectivity indices. As mentioned above, the OSWR
algorithm can be reformulated as a block-Jacobi method applied to a space-time interface problem, and one
can replace block-Jacobi by GMRES. We give a comparison between the adaptive block-Jacobi (OSWR)
algorithm and the adaptive GMRES algorithm. In the companion paper [4], our general a posteriori error
estimate is extended to a diffusion problem with heterogeneous diffusion tensor and to a domain decompo-
sition with different time grids, so as to adapt to different time scales in the subdomains; numerical results
are shown in [4] for a two-dimensional problem with strong heterogeneities (where the exact solution is not
known) and with local time stepping.
More precisely, this new adaptive space-time domain decomposition algorithm uses mixed finite elements
(leading to mass conservation and flux continuity), and extends the a posteriori estimates of [33, 48, 2, 49,
40, 20, 19, 3]. It uses two H1-conforming potential reconstructions, one is global over Ω and relies on the
adjustement of the averaging operator Iav for parabolic problems following [20], and the other introduces
weights on the interfaces following [3] to separate the space-time DD and the discretization components.
The method also uses a flux reconstruction that is globally H(div,Ω)-conforming, locally conservative in
each mesh element, and piecewise constant in time. It relies on solving a simple coarse balancing problem,
and then solving local Neumann problems in bands around the interfaces in each subdomain, following [3].

The remainder of this paper is organized as follows: in the next section we introduce some useful notation.
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We present in Section 3 the multi-domain formulation using the OSWR algorithm, in the continuous case
and in the fully discrete case using the mixed finite element method in space and the discontinuous Galerkin
method of order zero in time. In Section 4, we derive a fully computable upper bound for the error
between the exact and the approximate numerical solution on a given DD iteration, in the energy norm. In
Section 5, results of 2D numerical experiments showing tight overall error control and important reduction
of the number of space-time DD iterations are discussed.

2 Preliminaries
In this part we give the partition of the domain Ω as well as some function spaces following the notations
introduced in [3, 4].

2.1 Partitions of the domain Ω

We suppose that the domain Ω is decomposed into N non-overlapping polygonal subdomains Ωi, i ∈ J1,N K,

such that Ω =
N
∪
i=1

Ωi. For all i ∈ J1,N K, let ΓN
i := ΓN ∩ ∂Ωi, ΓD

i := ΓD ∩ ∂Ωi, and ni be the unit outward-

pointing normal of ∂Ωi. Let Bi be the set of neighbors of the subdomain Ωi that share at least one edge if
d = 2 with Ωi (face if d = 3) and let |Bi| be the cardinality of this set. Using this notation, we introduce
the interface Γi,j := ∂Ωi ∩ ∂Ωj , j ∈ Bi, between two adjacent subdomains Ωi and Ωj . Consequently,
∂Ωi = ΓN

i ∪ΓD
i ∪Γi with Γi := ∪

j∈Bi
Γi,j . We define Γ := ∪

i∈J1,N K
Γi.

We then define Th :=
N
∪
i=1
Th,i, where Th,i is a regular triangulation of the subdomain Ωi, such that

Ωi = ∪
K∈Th,i

K, where |Th,i| is the number of triangles (tetrahedra if d=3) in the i-th subdomain. We

suppose that Th,i is a conforming mesh, i.e., such that if K, K ′ ∈ Th,i, K 6= K ′, then K ∩K ′ is either an
empty set or a common vertex or edge or face. For simplicity, we assume that Th is conforming, although
this assumption could be easily avoided by introducing the concept of a simplicial submesh (see e.g. [40, 18]
and the references therein). We denote the set of all edges (faces if d = 3) of Th,i by Eh,i, and the set of all
edges (faces) of K ∈ Th by EK . E int

h,i is the set of interior edges (faces) of the subdomain Ωi, Eext
h,i = EΓD

h,i ∪EΓN

h,i

is the set of boundary edges (faces) on ∂Ω ∩ ∂Ωi, and E
Γi,j

h is the set of edges (faces) on the interface Γi,j .
Then Eh,i = ( ∪

j∈Bi
EΓi,j

h )∪E int
h,i ∪Eext

h,i . Let hK denote the diameter of K and let hi be the largest diameter

of all triangles (tetrahedra if d = 3) in Th,i, i.e., hi = max
K∈Th,i

hK .

2.2 Partitions of the time interval (0, T )

Let {tn}0≤n≤N be a sequence of discrete times of the domain Ω as well as of the subdomain Ωi, i ∈ J1,N K,
with t0 = 0 < t1 < · · · < tN−1 < tN = T.We consider a partition of the time interval (0, T ) into subintervals
In := (tn−1, tn] and set τn := tn − tn−1 for all 1 ≤ n ≤ N . An extension to subdomains with different time
meshes is given in [4].

2.3 Some functions spaces
We define here some basic function spaces. For a given non-empty domain D ⊂ Ω and a real number l,
1 ≤ l ≤ ∞, we use the standard functional notations Ll(D) and Ll(D) := [Ll(D)]d of Lebesgue spaces. We
denote by (·, ·)D the scalar product for L2(D) and L2(D), associated with the norm ‖·‖D, and by |D| the
Lebesgue measure of D. Shall D = Ω, the index will be dropped. Let 〈·, ·〉γ be the scalar product for the
d− 1 dimensional L2(γ) on γ = ∂D or a subset of it. Let also H1(D) := {v ∈ L2(D); ∇v ∈ L2(D)} be the
Sobolev space of scalar-valued functions with weak derivatives square-integrable and let H(div, D) := {v ∈
L2(D); ∇·v ∈ L2(D)} be the space of vector-valued functions whose weak divergences are square-integrable.
Finally, for any scalar-, vector-, or tensor-valued function ϕ defined on Ω, we let ϕi denote the restriction
of ϕ to Ωi, i = 1, ..,N .
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3 Global-in-time optimized Schwarz method using OSWR
In this part we present a nonoverlapping space-time domain decomposition method, the optimized Schwarz
waveform relaxation (OSWR) method introduced in [26, 37, 10, 11], and studied in [28, 29, 30] in the context
of a mixed formulation.

Using the notations of Section 2, the original problem (1.1) can be reformulated as the following equiv-
alent multi-domain problem, for i ∈ J1,N K:

ui = −∇pi in Ωi × (0, T ), (3.1a)
∂pi
∂t

+∇·ui = f in Ωi × (0, T ), (3.1b)

pi = gD on ΓD
i × (0, T ), (3.1c)

−ui·n = gN on ΓN
i × (0, T ), (3.1d)

p(·, 0) = p0(·) in Ωi, (3.1e)

together with the continuity of the potential p and of the normal trace of the flux u on the space-time
interface Γi,j × (0, T ):

pi = pj and ui·ni + uj ·nj = 0 on Γi,j × (0, T ), ∀j ∈ Bi. (3.2)

Alternatively, one may replace the conditions (3.2) by equivalent Robin transmission conditions [35] as
follows

−βi,jui·ni + pi = −βi,juj ·ni + pj on Γi,j × (0, T ), ∀j ∈ Bi, (3.3)

where βi,j > 0, j ∈ Bi, i ∈ J1,N K are free coefficients that may be optimized to improve the convergence
factor of the iterative domain decomposition algorithm described below (see [10, 24, 26, 31, 37]).

3.1 The continuous space-time DD algorithm
The optimized Schwarz waveform relaxation (OSWR) algorithm for solving problem (1.1) is defined as
follows:
Find the solutions pki and uki in subdomain Ωi (in an appropriate mixed formulation), at iteration k, for
k ≥ 1, such that:

uki = −∇pki in Ωi × (0, T ), (3.4a)

∂pki
∂t

+∇·uki = f in Ωi × (0, T ), (3.4b)

pki = gD on ΓD
i × (0, T ), (3.4c)

−uki · n = gN on ΓN
i × (0, T ), (3.4d)

−βi,juki · ni + pki = gk−1
R,j on Γi,j × (0, T ), ∀j ∈ Bi, (3.4e)

p(·, 0) = p0 in Ωi, (3.4f)

where gk−1
R,j := −βi,juk−1

j ·ni+pk−1
j for k ≥ 2 is the information coming from the neighboring subdomain Ωj ,

j ∈ Bi, at step k of the algorithm. This algorithm starts from initial guesses g0
R,j which are given functions

in L2(0, T ;L2(Γi,j)), j ∈ Bi, 1 ≤ i ≤ N , (see [28] for the convergence analysis and well-posedness).
The OSWR algorithm can be interpreted as a block-Jacobi method applied to a space-time interface

problem, see [14, 28, 3, 4] in the context of a mixed formulation. On can replace the block-Jacobi iterations
by Krylov-type methods like GMRES (see e.g. [17, 28, 4], and [3] for details). In Sec. 5 below, we will
present numerical results both for the block-Jacobi iterations and GMRES.

Note that in the context of mixed finite elements, the potential pki is in L2(Ωi), so that pki |Γi,j
is not

well defined. Thus a Robin condition −βi,juki · ni + pki = gk−1
R,j , with a given Robin boundary data gk−1

R,j on
Γi,j × (0, T ) actually defines the boundary value pki on Γi,j × (0, T ) through the well-defined expression

pki |Γi,j
:= gk−1

R,j + βi,ju
k
i ·ni. (3.5)
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3.2 The fully discrete space-time DD algorithm
In this part, after introducing some notations for the time and space discretizations, we present the fully
discrete counterpart of the OSWR algorithm (3.4), using the lowest-order mixed finite element method
(MFE) in space and the discontinuous Galerkin method of order zero in time (DG0) [46] (corresponding to
the backward Euler scheme for piecewise-constant-in-time source term f).

3.2.1 Notations for time discretization

Let E be a space of functions defined on a subset D of Ω (e.g. a subdomain or an interface) and let v(·, t) be
a function taking its values in E. We denote P 0

τ (E) the vector space such that v(x, ·), x ∈ D, is piecewise
constant in time:

P 0
τ (E) := {v(·, t) : (0, T )→ E; v(·, t) is constant on In, 1 ≤ n ≤ N}. (3.6)

A function in P 0
τ (E) is thus defined by the N functions {vn := v(·, t)|In}1≤n≤N in E. This allows us to

define, for the physical data, f̃i ∈ P 0
τ (L2(Ωi)), g̃D,i ∈ P 0

τ (L2(ΓD
i )), and g̃N,i ∈ P 0

τ (L2(ΓN
i )) such that, for

n = 1, .., N :
f̃i|In := f̃n, g̃D,i|In := g̃nD, and g̃N,i|In := g̃nN, 1 ≤ n ≤ N, (3.7)

where
f̃n :=

1

τn

∫
In

f(·, t)dt, g̃nD :=
1

τn

∫
In

gD(·, t)dt, g̃nN :=
1

τn

∫
In

gN(·, t)dt.

In addition, for the a posteriori estimates below, we introduce the following space:

P 1
τ (E) := {v(·, t) : (0, T )→ E; v(·, t) ∈ C0(0, T ;E),

v(·, t) is affine on In, 1 ≤ n ≤ N}.
(3.8)

Note that a function in P 1
τ (E) is defined by N + 1 functions {vn := v(·, tn)}0≤n≤N , and that if v ∈ P 1

τ (E),
then ∂tv ∈ P 0

τ (E) is such that

∂tv|In =
1

τn
(vn − vn−1), 1 ≤ n ≤ N. (3.9)

3.2.2 Notations for space discretization

Let Mh,i ×Wh,i ⊂ L2(Ωi) × H(div,Ωi) be the Raviart–Thomas–Nédélec mixed finite element spaces of
order 0 for Ωi:

Mh,i := {qh,i ∈ L2(Ωi); qh,i|K ∈ P0(K), ∀K ∈ Th,i},

where P0(K) is the space of polynomials of degree 0, and

Wh,i := {vh,i ∈ H(div,Ωi); vh,i|K ∈ RTN0(K), ∀K ∈ Th,i},

where RTN0(K) := [P0(K)]d + xP0(K), x ∈ Rd, is the Raviart–Thomas–Nédélec space of degree zero
associated with the element K ∈ Th,i. We define

W0
h,i :=

{
wh,i ∈Wh,i; wh,i·n|e = 0

}
, e ⊂ ΓN

i ,

WgN,n
h,i :=

{
wh,i ∈Wh,i; wh,i·n|e =

1

|e|

∫
e

g̃n,iN dγ
}
, e ⊂ ΓN

i , n = 1, ..., N,

WgN
h,i := {whτ,i ∈ P 0

τ (Wh,i); whτ,i|In ∈WgN,n
h,i },

where |e| is the measure of an edge (face if d = 3) e ⊂ ΓN
i . In the following, for a subdomain Ωi, phτ,i is a

function in P 0
τ (Mh,i) such that, on each element K ∈ Th,i, phτ,i(·, 0) =

1

|K|

∫
K

p0dx, and uhτ,i is a function

in WgN
h,i.
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3.2.3 Discrete space-time DD algorithm

The discrete OSWR algorithm at iteration k ≥ 1 in the subdomain Ωi, ∀i ∈ J1,N K, is:

Find uk,nh,i ∈WgN,n
h,i and pk,nh,i ∈Mh,i on In, for n = 1, .., N , such that:

ai(u
k,n
h,i ,vh,i)− bi(vh,i, p

k,n
h,i ) = `̀̀k−1,n

i (vh,i), ∀vh,i ∈W0
h,i, (3.10a)

1

τn
(pk,nh,i − p

k,n−1
h,i , qh,i)Ωi

+ bi(u
k,n
h,i , qh,i) = (f̃n, qh,i)Ωi

, ∀qh,i ∈Mh,i, (3.10b)

(pk,0h,i , qh,i)Ωi
= (p0, qh,i)Ωi

, ∀qh,i ∈Mh,i, (3.10c)

where the bilinear forms ai and bi, and the linear form `̀̀k,ni , k ≥ 0, are defined by:

ai :Wh,i×Wh,i → R, ai(uh,i,vh,i) := (uh,i,vh,i)Ωi +
∑
j∈Bi

〈βi,juh,i·ni,vh,i·ni〉Γi,j ,

bi : Wh,i×Mh,i → R, bi(vh,i, qh,i) := (qh,i,∇·vh,i)Ωi
,

`̀̀k,ni : Wh,i → R, `̀̀k,ni (vh,i) := −〈g̃n,iD ,vh,i·ni〉ΓD
i
−
∑
j∈Bi

〈g̃k,nR,j ,vh,i·ni〉Γi,j
,

where
g̃k,nR,j :=

1

τn

∫
In

gkR,j(·, t) dt. (3.11)

Here, g̃0,n
R,j is a given initial guess on Γi,j and, using (3.5), 〈g̃k,nR,j ,ψe′ ·ni〉Γi,j

, for k ≥ 1 and the basis function
ψe′ on e′ ∈ Γi,j , is given by:

〈g̃k,nR,j ,ψe′ · ni〉Γi,j =

∫
Γi,j

βi,j(u
k,n
h,j · nj)ψe′ · ni dγ +

∫
Γi,j

(βj,iu
k,n
h,j · nj + g̃k−1,n

R,i )dγ, (3.12)

and is equal to zero when e′ /∈ Γi,j .

Remark 3.1 Note that using the rectangle quadrature rule, f̃n, g̃nD, and g̃
n
h,N can be approximated by:

f̃n ≈ f(·, tn), g̃nD ≈ gD(·, tn), g̃nh,N ≈ gh,N(·, tn), g̃k,nR,j ≈ g
k
R,j(·, tn),

so that the DG0 method in time is equivalent to the backward Euler scheme.

4 A posteriori error estimate: fully computable upper bound
The objective of this section is to bound the error between the exact solution and the approximate solution at
each iteration k of the space-time DD method, by indicators that are completely calculable and constructed
from the approximate solution (pkhτ ,u

k
hτ ).

For simplicity, let ΓN = ∅ and gD = 0 (exstension of the results to the general case can be done
following e.g., [18, 19, 16] and the references therein). We use for the error the space-time energy norm
given in [47, 19, 20]. A postprocessing p̃khτ is first constructed, from which we build a subdomain potential
reconstruction skhτ,i for each subdomain Ωi, ∀i ∈ J1,N K, on each iteration of the space-time DD algorithm,
following [3], so as to distinguish the error from H1

0 (Ω)-nonconformity and from domain decomposition.
From p̃khτ and following [20], we also build a potential reconstruction skhτ on each space-time DD iteration.
Then, to evaluate the error in the H(div,Ω)-nonconformity, we build a flux reconstruction σkhτ on each
iteration of the space-time DD algorithm, using the same idea of extracting bands and solving local Neumann
problems as proposed in [3]. Details of concrete candidates for these reconstructions are given in [4].
This allows to distinguish the space discretization error, the time discretization error, and the domain
decomposition error.
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Let us first introduce the broken Sobolev space

H1(Th) := {v ∈ L2(Ω); v|K ∈ H1(K), ∀K ∈ Th}

and the energy semi-norm on H1(Th), defined for all ϕ ∈ H1(Th) by

|||ϕ|||2 :=
∑
K∈Th

|||ϕ|||2K :=
∑
K∈Th

‖∇ϕ‖2K ,

as well as the energy norm on L2(Ω), defined for all v ∈ L2(Ω) by

|||v|||2? :=
∑
K∈Th

|||v|||2?,K :=
∑
K∈Th

‖v‖2K .

For a given function v, its jump and average are then defined respectively as:
[[v]] := v|K − v|K′ and {{v}} :=

1

2
(v|K + v|K′) if e ∈

(
∪

j∈Bi
EΓi,j

h

)
∪E int

h,i ,

[[v]] := v|e − gD and {{v}} :=
1

2
(v|e + gD) if e ∈ EΓD

h,i .

We recall, for the forthcoming theorems, the Poincaré inequality: for K ∈ Th, since K is convex,

‖ϕ− π0ϕ‖K ≤
hK
π
‖∇ϕ‖K ∀ϕ ∈ H1(K), (4.1)

where π0ϕ is the mean value of ϕ on K.

4.1 Postprocessing of the approximate solution
Following the work in [8, 5, 48], we first construct a postprocessing p̃k,nh,i ∈ P2(Th,i) of pk,nh,i , for each subdomain
i ∈ J1,N K, at each iteration k ≥ 1 of the space-time DD algorithm, on each time step n, 1 ≤ n ≤ N , as
follows:

−∇p̃k,nh,i |K = uk,nh,i |K , ∀K ∈ Th,i, (4.2a)

π0(p̃k,nh,i |K) = pk,nh,i |K , ∀K ∈ Th,i, (4.2b)

and we define p̃k,nh |Ωi = p̃k,nh,i . Then, the postprocessing of the approximate solution for which the a posteriori
error analysis will be done in Sec. 4.3 is defined as follows:

p̃khτ ∈ P 1
τ (P2(Th)), p̃khτ (·, tn) := p̃k,nh .

4.2 Concept of of potential and flux reconstructions
The main tools of our estimation in Theorem 4.4 are the three supplementary objects skhτ , s

k
hτ , and σ

k
hτ

defined below, on each iteration k ≥ 1 of the space-time DD algorithm.

Definition 4.1 (Subdomain potential reconstruction) We will call a subdomain potential reconstruc-
tion, for Ωi, i ∈ J1,N K, any function skhτ,i built from p̃khτ,i such that

• it is subdomain H1(Ωi)-conforming in space, continuous and piecewise affine in time, i.e.,

skhτ,i ∈ P 1
τ (H1(Ωi) ∩ C0(Ωi)), (4.3a)

skhτ,i|ΓD
i

= gD|ΓD
i

; (4.3b)

• on each time step n, 0 ≤ n ≤ N , the mean values of p̃k,nh,i are preserved,

(sk,nh,i , 1)K = (p̃k,nh,i , 1)K , ∀K ∈ Th,i, (4.4)

where sk,nh,i := skhτ,i(·, tn);
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• it is built locally subdomain by subdomain to capture the nonconformity from the numerical scheme by
comparing it with p̃khτ in the sense that the estimators (4.14d), and (4.14g), as well as (4.14b) below,
(recall (4.2a) which explains the comparison of −∇sk,nh and uk,nh ) are as small as possible.

Definition 4.2 (Potential reconstruction) We will call a potential reconstruction any function skhτ con-
structed from p̃khτ such that

• it is globally H1(Ω)-conforming in space, continuous and piecewise affine in time, i.e.,

skhτ ∈ P 1
τ (H1(Ω) ∩ C0(Ω)), (4.5a)

skhτ |ΓD = gD, (4.5b)

• on each time step n, 0 ≤ n ≤ N , the mean values of p̃k,nh are preserved,

(sk,nh , 1)K = (p̃k,nh , 1)K , ∀K ∈ Th, (4.6)

where sk,nh := skhτ (·, tn);

• its comparison with skhτ estimates the domain decomposition error in the sense that
{∫ T

0

|||skhτ −

skhτ |||2dt
} 1

2→0 and
{∫ T

0

||∂t(skhτ − skhτ )||2dt
} 1

2→0 when k →∞.

Definition 4.3 (Equilibrated flux reconstruction) We will call an equilibrated flux reconstruction any
function σkhτ constructed from p̃khτ , u

k
hτ , such that

• it is H(div)-conforming and locally conservative in space, piecewise constant in time, i.e.,

σkhτ ∈ P 0
τ (H(div,Ω)); (4.7)

• it has a local conservation property on each time step n, 0 ≤ n ≤ N :

(f̃n − ∂tp̃khτ |In −∇·σ
k,n
h , 1)K = 0, ∀K ∈ Th, (4.8)

together with the Neumann condition:

−(σk,nh ·nΩ, 1)e = (g̃N, 1)e, ∀e ∈
N
∪
i=1
EΓN

h,i , (4.9)

where σk,nh := σkhτ |In ;

• its comparison with ukhτ is used to estimate the space-time DD error in the sense that
{∫ T

0

|||ukhτ −

σkhτ |||2?dt
} 1

2 → 0 when k →∞.

4.3 General a posteriori error estimate: fully computable upper bound
LetX := L2(0, T ;H1

0 (Ω)) andX ′ = L2(0, T ;H−1(Ω)); The nonconforming approximation p̃khτ of Section 4.1,
leads to introduce the following broken X-norm where ∇ is the broken gradient operator:

|||q|||2X :=

N∑
n=1

∫
In

||∇q(·, t)||2dt =

N∑
n=1

∫
In

∑
K∈Th

||∇q(·, t)||2K dt.

Let Y := {q ∈ X; ∂tq ∈ X ′}, endowed we with the space-time norm of [19]:

|||q|||2Y := |||q|||2X + ||∂tq||2X′ + ||q(·, T )||2, (4.10)
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where

||∂tq||X′ :=

{∫ T

0

||∂tq||2H−1(Ω) dt

} 1
2

:=

{∫ T

0

(
sup

v∈H1
0 (Ω); ‖∇v‖=1

〈∂tq, v〉
)2

dt

} 1
2

.

The Y - and X ′-norms are again extended to piecewise regular-in-space functions, since p̃hτ /∈ X. By the
weak solution of problem (1.1) under the above assumptions, we then understand p ∈ Y such that p(·, 0) = p0

and ∫ T

0

{〈∂tp, v〉+ (∇p,∇v)} dt =

∫ T

0

(f, v) dt ∀v ∈ X. (4.11)

Our main result is then:

Theorem 4.4 (A posteriori error estimates for the potential, distinguishing space, time, and domain decomposition error components)
Let p be the weak solution of problem (1.1) given by (4.11). Let p̃khτ ∈ P 1

τ (H1(Th)) be an arbitrary approx-
imation to p; in particular p̃k,nh = p̃khτ (·, tn) can be the postprocessing (4.2) of the solution (pk,nh ,uk,nh ) at
iteration k of the global-in-time optimized Schwarz algorithm (3.10)–(3.12). Let uk,nh |K := −∇p̃k,nh |K in each
element K ∈ Th. Let skhτ,i be the subdomain potential reconstruction of Definition 4.1, let skhτ be the potential
reconstruction of Definition 4.2, and let σkhτ be the equilibrated flux reconstruction of Definition 4.3. Then
there holds

|||p− p̃khτ |||Y ≤ η̃k := ηksp + ηktm + ηkDD + ηkIC + ||f − f̃ ||X′ , (4.12)

where the “spatial discretization estimator” is

ηksp :=

{
N∑
n=1

τn
∑
K∈Th

(ηk,nosc,K + ηk,nDF,1,a,K)2

} 1
2

+

{
N∑
n=1

∫
In

∑
K∈Th

(ηkNCP,1,a,K(t))2dt

} 1
2

+

{
N∑
n=1

τn
∑
K∈Th

(ηk,nNCP,2,a,K)2

} 1
2

+ ||sk,Nh − p̃k,Nh ||,

the “time discretization estimator” is

ηktm :=

{
N∑
n=1

∑
K∈Th

1

3
τn|||sk,nh − sk,n−1

h |||2K

} 1
2

,

the “domain decomposition estimator” is

ηkDD :=

{
N∑
n=1

τn
∑
K∈Th

(ηk,nDF,1,b,K + ηk,nNCP,1,b,K)2

} 1
2

+

{
N∑
n=1

∫
In

∑
K∈Th

(ηkNCP,1,b,K(t))2dt

} 1
2

+

{
N∑
n=1

τn
∑
K∈Th

(ηk,nNCP,2,b,K)2

} 1
2

,

(4.13)

and the “initial condition estimator” is
ηkIC := ||sk,0h − p0||.
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For all 1 ≤ n ≤ N and K ∈ Th, the following terms are the elementwise estimators:

ηk,nosc,K :=
hK
π
‖f̃n − ∂tskhτ |In −∇·σ

k,n
h ‖K “data oscillation”, (4.14a)

ηk,nDF,1,a,K :=|||∇sk,nh + uk,nh |||?,K , “constitutive relation”, (4.14b)

ηk,nDF,1,b,K :=|||uk,nh − σk,nh |||?,K , “DD flux nonconformity”, (4.14c)

ηkNCP,1,a,K(t) :=|||(p̃khτ − skhτ )(t)|||K , t ∈ In “potential nonconformity”, (4.14d)

ηkNCP,1,b,K(t) :=|||(skhτ − skhτ )(t)|||K , t ∈ In “DD potential nonconformity”, (4.14e)

ηk,nNCP,1,b,K :=|||sk,nh − sk,nh |||K , “DD potential nonconformity”, (4.14f)

ηk,nNCP,2,a,K :=
hK
π
||∂t(p̃khτ − skhτ )|In ||K , “potential nonconformity”, (4.14g)

ηk,nNCP,2,b,K :=
hK
π
||∂t(skhτ − skhτ )|In ||K , “DD potential nonconformity”. (4.14h)

Remark 4.5 The estimator ηkDD is the error due to the global-in-time domain decomposition method and
vanishes at the convergence of the DD algorithm.

5 Numerical results
In this section, we present some numerical illustrations of the a posteriori error estimators of Theorem 4.4.

Let Ω =]0, 1[×]0, 1[. In order to illustrate our estimates, we consider the problem (1.1) with solution
p(x, t) = sin(2πx) sin(2πy) cos(2πt). The corresponding source term is f(x, t) = 8π2 sin(2πx) sin(2πy) cos(2πt)−
2π sin(2πx) sin(2πy) sin(2πt), and we set homogeneous Dirichlet conditions on the top and the bottom of
Ω, and Neumann conditions on the other sides of ∂Ω with gN (y, t) = 2π sin(2πy) cos(2πt).

As noticed in Sec. 3.2, the OSWR algorithm (3.10)–(3.12) can be interpreted as a block-Jacobi method
applied to a space-time interface problem, and it can be replaced by GMRES. Numerical results will be
shown below, both for block-Jacobi and GMRES.

5.1 Heat equation with the block-Jacobi (OSWR) solver

Number of triangles in Ω 76888
Number of subdomains 9

Subdomain solver Direct
DD solver block-Jacobi
Final time T = 1
Time step τ 1/100

Original DD stopping criterion 1e-6
A posteriori stopping criterion ηDD ≤ 0.1 max(ηtm, ηsp)
Total number of iterations 63

Number of iterations with an a posteriori stopping criterion 18
Unnecessary iterations 45

Spared iteration from the total number of iteration ≈ 71 %

Table 1: Example with the block-Jacobi (OSWR) solver

Table 1 summarizes the discretization data as well as the stopping criterion for the DD solver.
Figure 1 presents the evolution of ηDD in green, ηsp in black, and ηtm in magenta, and their sum in blue

as a function of the number of iterations of the DD block-Jacobi (OSWR) solver. We remark that ηDD

dominates until iteration 10 and then gets smaller compared to ηsp and ηtm. Concerning ηsp and ηtm, they
are constant after iteration 15 and until iteration 63. We have chosen the a posteriori stopping criterion
ηDD ≤ 0.1 max(ηtm, ηsp), leading to 18 iterations, in contrast to the usual stopping criterion, when the
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jump of the Robin condition on the interface is less than some fixed tolerance, in our case 10−6, satisfied
at iteration 63 only. Figure 1 also shows the evolution of the DD error |||p̃khτ − p̃∞hτ |||Y in cyan, where p̃∞hτ
is the postprocessing of the converged DD solution (computed with a tolerance of 10−13). We observe that
ηDD is also an upper bound of the DD error.
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Figure 1: Error component estimates (left), with a zoom until iteration 18 (right), with the block-Jacobi
(OSWR) solver

Figure 2 (left) shows the total estimator in red, and a rough approximation of the error |||p− p̃khτ |||Y in
blue, which is represented here by {|||p− p̃khτ |||2X + ||(p− p̃khτ )(·, T )||2} 1

2 without the term ||∂t(p− p̃khτ )||X′
whose computation would be difficult to compute, versus the number of iterations k. Consequently, we

obtain the effectivity index Ikeff :=
η̃k

|||p− p̃kh|||Y
from (4.12) defined as the ratio of the estimated and the

actual error at the iteration k of the space-time DD algorithm, as shown in Figure 2 on the right. We
observe that the effectivity index approaches the value of approximately 6.87. It is not close to the optimal
value of 1, one of the reasons may be that the negative norms in Theorem 4.4 have not been computed here.
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Figure 2: Energy error and total estimator (left), and effectivity index (right), with the block-Jacobi (OSWR)
solver
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5.1.1 DD estimators at iteration 18

Figure 3 shows the elementwise contributions of the estimators (built using the subdomain potential recon-
struction on the interface) {∫

I100

(η18
NCP,1,b,K)2(t) dt

} 1
2

, (Figure 3 on the left),

and {
τ100(η18,100

NCP,2,b,K)2
} 1

2

, ( Figure 3 on the right).

at the final time T = 1, at iteration 18 of the space-time DD algorithm. We remark that the contributions
of the elements of η18

NCP,1,b,K on I100 are (in the infinity norm) about 1.2 10−4 and distributed around the
interfaces of the 9 subdomains, whereas η18,100

NCP,2,b,K are about 5 10−10 around the interfaces. Figure 4 (left),

Figure 3: Distribution of
{∫

I100

(η18
NCP,1,b,K)2(t) dt

} 1
2

on Ω (left) and of
{
τ100(η18,100

NCP,2,b,K)2
} 1

2

(right) at the

final time T = 1 and at iteration 18 of the block-Jacobi (OSWR) solver

shows the elementwise contributions of the estimators (built using the subdomain flux reconstruction coming
from the local Neumann problems) {

τ100(η18,100
DF,1,b,K)2

} 1
2

.

We observe that the errors (in the infinity norm) are distributed around the interfaces and are about
2.5 10−5. Finally, Figure 4 (right) shows the elementwise contributions of η18,100

DD , defined as the sum of the

three above estimators. It follows the same distribution as
{∫

I100

(η18
NCP,1,b,K)2(t) dt

} 1
2

that has the largest

contribution to η18,100
DD .

5.1.2 Total discretization estimator, time and global estimators at iteration 18

Figure 5 presents the elementwise contributions of the time discretization estimator η18,100
tm (left), which is

about 5e-6, and the subdomain discretization estimator η18,100
sp (right), which is about 2e-4. We remark that

η18,100
sp dominates and is close to the total estimator represented in Figure 6 (left), that bound the norm
|||p − p̃18,100

h |||Y in (4.12) at time step 100. Finally, Figure 6 (on the right) shows the error between the
exact solution and the approximate solution {|||p− p̃18

hτ |||2X + ||(p− p̃18
hτ )(·, T )||2} 1

2 at time step 100. We first
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Figure 4: Distribution of the estimator
{
τ100(η18,100

DF,1,b,K)2
} 1

2

on Ω (on the left) and of η18,100
DD (on the right)

at the final time step 100 and at the 18th iteration of the block-Jacobi (OSWR) solver

Figure 5: Distribution of the estimator η18,100
tm on Ω (on the left) and of η18,100

sp (on the right) at the final
time step 100 and at the 18th iteration of the block-Jacobi (OSWR) solver

observe that it is about 9.5e-5, and thus smaller than the total estimator in Figure 6 (left), which is about
3.5e-4. The element contributions do not perfectly match with the total estimator, which may be due to
the fact that the error ||∂t(p− p̃k+1

hτ )||X′ in |||p− p̃k+1
hτ |||Y has not been computed here.

5.2 Model example with the GMRES solver
We consider here the same example as in Section 5.1 but using the GMRES solver, see Table 2. Note that
the GMRES solver converges faster than the block-Jacobi solver, as shown in Figure 7. We remark that
ηDD dominates up to roughly 7 iterations and then gets smaller compared to the discretization and time
estimators. Here, we can stop the space-time DD algorithm at iteration 13 when ηDD ≤ 0.1 max(ηtm, ηsp),
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Figure 6: Distribution of the total estimator on Ω (on the left) and of the error between the exact solution
and the approximate solution (on the right) at the final time step 100 and at the 18th iteration of the
block-Jacobi (OSWR) solver

Number of triangles in Ω 76888
Number of subdomains 9

Subdomain solver Direct
DD solver GMRES
Final time T = 1
Time step τ 1/100

Original DD stopping criterion 1e-6
A posteriori stopping criterion ηDD ≤ 0.1 max(ηtm, ηsp)
Total number of iterations 41

Number of iterations with an a posteriori stopping criterion 13
Unnecessary iterations 28

Spared iteration from the total number of iteration ≈ 68 %

Table 2: Example with the GMRES solver

and thereby avoid 28 unnecessary iterations, and save another 5 iterations compared to the block-Jacobi
solver (which stopped at iteration 18). Figure 8 (left) shows the energy error in blue, and the total estimator
in red, versus the number of iterations. The effectivity index is represented in Figure 8 (right) and reaches
approximately the value 6.8 at the iteration 41 wheras its value is about 7.1 at iteration 13.
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