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Abstract. We design and analyze a new non-conforming domain decomposition method, named
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1. Introduction. Our goal in writing this paper is to propose and analyze a
non-conforming domain decomposition generalization to P.L. Lions initial idea, [32],
in view of an extension of the approach to optimized interface conditions algorithms.
This type of algorithm has proven indeed to be an efficient approach to domain de-
composition methods in the case of conforming approximations, [12, 25]. This paper
presents the basic material related to so called optimized zeroth order method in
case of finite element discretizations, see citeGJMN for a short presentation. In the
companion paper [1], the case of the finite volume discretization was introduced and
analyzed. In the finite element case, our method is based on a new interface cement
using Robin conditions, and correspond to an equilibrated mortar approach (i.e. there
is no master and slave sides). Thus we name this new method “New Interface Cement
Equilibrated Mortar” (NICEM) method.

In Section 2, we present the method at the continuous level and then at the
discrete level. Then in Section 3, we give in details the numerical analysis, with
the proofs of well-posedness and error estimates both in 2D and 3D for P1 elements.
Given the length of the paper, the numerical analysis for 2D piecewise polynomials
of higher order as well as convergence proofs for the Schwarz algorithm used to solve
the discrete problem is the subject of another paper. We finally present in Section 4
simulations for two and four subdomains, that fit the theoretical estimates.

We first consider the problem at the continuous level: Find u such that

L(u) = f in Ω (1.1)

C(u) = g on ∂Ω (1.2)

where L and C are partial differential equations. The original Schwarz algorithm
is based on a decomposition of the domain Ω into overlapping subdomains and the
resolution of Dirichlet boundary value problems in the subdomains. It has been
proposed in [32] to use more general boundary conditions for the problems on the
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subdomains in order to use a non-overlapping decomposition of the domain. The
convergence factor is also dramatically reduced.

More precisely, let Ω be a C1,1 (or convex polygon in 2D or polyhedron in 3D) do-
main of IRd, d = 2 or 3. This assumption is necessary to obtain minimal H2 regularity
that provides the full first order convergence of the P1 finite element approximation.
We could deal with lower regularity on the solution at the price of more technical
proofs in non integer Sobolev spaces.

We assume that Ω is decomposed into K non-overlapping subdomains:

Ω = ∪K
k=1Ω

k
. (1.3)

We suppose that the subdomains Ωk, 1 ≤ k ≤ K are either C1,1 or polygons in 2D or
polyhedrons in 3D. We assume also that this decomposition is geometrically conform-
ing in the sense that the intersection of the closure of two different subdomains, if not
empty, is either a common vertex, a common edge, or a common face in 3D 1. Let
nk be the outward normal from Ωk. Let (Bk,ℓ)1≤k,ℓ≤K,k 6=ℓ be the chosen transmission
conditions on the interface between subdomains Ωk and Ωℓ (e.g. Bk,ℓ = ∂

∂nk
+ αk).

What we shall call here a Schwarz type method for the problem (1.1)-(1.2) is its
reformulation: Find (uk)1≤k≤K such that

L(uk) = f in Ωk

C(uk) = g on ∂Ωk ∩ ∂Ω
Bk,ℓ(uk) = Bk,ℓ(uℓ) on ∂Ω

k ∩ ∂Ωℓ,

leading to the iterative procedure

L(un+1
k ) = f in Ωk

C(un+1
k ) = g on ∂Ωk ∩ ∂Ω

Bk,ℓ(u
n+1
k ) = Bk,ℓ(u

n
ℓ ) on ∂Ω

k ∩ ∂Ωℓ.

Let us focus first on the interface conditions Bk,ℓ. The convergence factor of asso-
ciated Schwarz-type domain decomposition methods is very sensitive to the choice
of these transmission conditions. The use of exact artificial (also called absorbing)
boundary conditions as interface conditions leads to an optimal number of iterations,
[22, 34, 21, 20]. Indeed, for a domain decomposed into K strips, the number of iter-
ations is K, see [34]. Let us remark that this result is rather surprising since exact
absorbing conditions refer usually to truncation of infinite domains rather than in-
terface conditions in domain decomposition. Nevertheless, this approach has some
drawbacks: first, the explicit form of these boundary conditions is known only for
constant coefficient operators and simple geometries. Secondly, these boundary con-
ditions are pseudo-differential. The cost per iteration is high since the corresponding
discretization matrix is not sparse for the unknowns on the boundaries of the subdo-
mains. For this reason, it is usually preferred to use partial differential approximations
to the exact absorbing boundary conditions. This approximation problem is classical
in the field of computation on unbounded domains since the seminal paper of Engquist
and Majda, [15]. The approximations correspond to “low frequency” approximations
of the exact absorbing boundary conditions. In domain decomposition methods, many

1This assumption is actually not much restrictive since in the case of a geometrically noncon-
forming partition, the faces can be decomposed into subfaces to obtain a geometric conformity
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authors have used them for wave propagation problems, [13, 14, 31, 5, 38, 29, 8] and
in fluid dynamics, [33, 19]. Instead of using ”low frequency” in space approxima-
tions to the exact absorbing boundary conditions, it has been proposed to design
approximations which minimize the convergence factor of the algorithm. Such op-
timization of the transmission conditions for the performance of the algorithm was
done in [25, 26, 27] for a convection-diffusion equation, where coefficients in second
order transmission conditions where optimized. These approximations, named OO2
(Optimized Order 2), are quite different from the ”low frequency” approximations
and reduce dramatically the convergence factor of the method.

When the grids are conforming, the implementation of such interface conditions on
the discretized problem is not too difficult. On the other hand, using non-conforming
grids is very appealing since their use allows for parallel generation of meshes, for local
adaptive meshes and fast and independent solvers. The mortar element method, first
introduced in [7], enables the use of non-conforming grids. It is also well suited to
the use of the so-called ”Dirichlet-Neumann”, [19], or ”Neumann-Neumann” precondi-
tioned conjugate gradient method applied to the Schur complement matrix, [30, 2, 37].
In the context of finite volume discretizations, it was proposed in [36] to use a mortar
type method with arbitrary interface conditions. To our knowledge, such an approach
has not been extended to a finite element discretization. Moreover, the approach we
present here is different and simpler.

The purpose of this paper is to set the basics, and present the associated analysis
in full details of such Robin type boundary conditions. Here we consider only interface
conditions of order 0 : Bk,ℓ = ∂

∂nk
+ αk. The approach we propose and study was

introduced in [17] and independently implemented in [28] for the Maxwell equations
but without numerical analysis. These results are the prerequisite for the goal in
designing this non overlapping method: use interface conditions such as OO2 interface
conditions (see [25, 27]). The implementation of such optimized order 2 transmission
conditions is already available for advection-diffusion problems, [23, 24].

2. Definition of the method. We consider the following problem : Find u
such that

(Id−∆)u = f in Ω (2.1)

u = 0 on ∂Ω, (2.2)

where Ω is a C1,1 (or convex polygon in 2D or polyhedron in 3D) domain of IRd, d = 2
or 3, and f is given in L2(Ω).
The variational statement of the problem (2.1)-(2.2) consists in writing the problem
as follows : Find u ∈ H1

0 (Ω) such that
∫

Ω

(∇u∇v + uv) dx =

∫

Ω

fvdx, ∀v ∈ H1
0 (Ω). (2.3)

Making use of the domain decomposition (1.3), the problem (2.3) can be written as
follows : Find u ∈ H1

0 (Ω) such that

K
∑

k=1

∫

Ωk

(

∇(u|Ωk) ∇(v|Ωk) + u|Ωkv|Ωk

)

dx =
K
∑

k=1

∫

Ωk

f|Ωkv|Ωkdx, ∀v ∈ H1
0 (Ω).

Let us introduce the space H1
∗ (Ω

k) defined by

H1
∗ (Ω

k) = {ϕ ∈ H1(Ωk), ϕ = 0 over ∂Ω ∩ ∂Ωk}.
3



It is standard to note that the space H1
0 (Ω) can then be identified with the subspace

of the K-tuple v = (v1, ..., vK) that are continuous on the interfaces:

V = {v = (v1, ..., vK) ∈
K
∏

k=1

H1
∗ (Ω

k), ∀k, ℓ, k 6= ℓ, 1 ≤ k, ℓ ≤ K, vk = vℓ over ∂Ωk ∩ ∂Ωℓ}.

This leads to introduce also the notation of the interfaces of two adjacent subdomains

Γk,ℓ = ∂Ωk ∩ ∂Ωℓ.

In what follows, for the sake of simplicity, the only fact to refer to a pair (k, ℓ)
preassumes that Γk,ℓ is not empty. The problem (2.3) is then equivalent to the
following one : Find u ∈ V such that

K
∑

k=1

∫

Ωk

(∇uk∇vk + ukvk) dx =
K
∑

k=1

∫

Ωk

fkvkdx, ∀v ∈ V.

The mortar element method cannot be used easily and efficiently with Robin interface
conditions in the framework of Schwarz type methods. In order to glue non-conforming
grids with Robin transmission conditions, it turns out to be useful to impose the
constraint vk = vℓ over ∂Ωk ∩ ∂Ωℓ through a Lagrange multiplier in H−1/2(∂Ωk).

Lemma 1. For v ∈∏K
k=1H

1
∗ (Ω

k), the constraint vk = vℓ across the interface Γk,ℓ

is equivalent to

∀p ≡ (pk) ∈
K
∏

k=1

H−1/2(∂Ωk) with pk = −pℓ over Γk,ℓ, ∀k, ℓ,
K
∑

k=1

H−1/2(∂Ωk) < pk, vk >H1/2(∂Ωk) = 0. (2.4)

Proof: The proof is similar to the one of proposition III.1.1 in [11] but can’t be

directly derived from this proposition. Let p ≡ (pk) ∈
∏K

k=1H
−1/2(∂Ωk) with pk =

−pℓ over Γk,ℓ, in (H
1/2
00 (Γk,ℓ))′ sense. Then, there exists over each Ωk a lifting of

the normal trace pk in H(div,Ωk). The global function P, which restriction to each
Ωk is defined as being equal to the lifting, belongs to H(div,Ω) and is such that
(P.n)|∂Ωk = pk. Let now v ∈ V . From the previously quoted identification, we know
that there exists v ∈ H1

0 (Ω) such that v|Ωk = vk. In addition,

∫

Ω

v∇ ·P−
∫

Ω

P∇v = 0.

On the other hand,

∫

Ω

v∇ ·P−
∫

Ω

P∇v =
K
∑

k=1

(

∫

Ωk

v∇ ·P−
∫

Ωk

P∇v) =
K
∑

k=1

∫

∂Ωk

(P.n)v =
K
∑

k=1

∫

∂Ωk

pkvk,

so that (2.4) is satisfied.

Conversely, let v = (v1, ..., vK) ∈ ∏K
k=1H

1
∗ (Ω

k) such that (2.4) is satisfied. Let
x ∈ Γk,ℓ, and let γx ⊂ γ̄x ⊂ Γx ⊂ Γ̄x ⊂ Γk,ℓ be open sets. There exists a function ϕ in
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D(Γx) such that ϕ(y) = 1 for all y in γx. With any q ∈ (H
1/2
00 (Γx))

′, let us associate
p ≡ (pk) defined by

H−1/2(∂Ωk)< pk, wk >H1/2(∂Ωk) = (H
1/2
00

(Γx))′
< q, ϕwk >H

1/2
00

(Γx)
, ∀wk ∈ H1/2(∂Ωk),

H−1/2(∂Ωℓ)< pℓ, wℓ >H1/2(∂Ωℓ) = −
(H

1/2
00

(Γx))′
< q, ϕwℓ >H

1/2
00

(Γx)
, ∀wℓ ∈ H1/2(∂Ωℓ),

and pj = 0, ∀j 6= k, ℓ.

By construction, p ∈∏K
k=1H

−1/2(∂Ωk) and pk = −pℓ over Γk,ℓ. Hence from (2.4),

K
∑

k=1

H−1/2(∂Ωk)< pk, vk >H1/2(∂Ωk)= 0.

We derive

H−1/2(∂Ωk)< pk, vk >H1/2(∂Ωk)= −H−1/2(∂Ωℓ)< pℓ, vℓ >H1/2(∂Ωℓ),

thus,

(H
1/2
00

(Γx))′
< q, ϕvk >H

1/2
00

(Γx)
=

(H
1/2
00

(Γx))′
< q, ϕvℓ >H

1/2
00

(Γx)
,

and this is true for any q ∈ (H
1/2
00 (Γx))

′, hence ϕvk = ϕvℓ over Γx, and thus

vk = vℓ over γx, ∀x ∈ Γk,ℓ.

We derive vk = vℓ a.e. over Γk,ℓ, which ends the proof of Lemma 1.

The constrained space is then defined as follows

V = {(v, q) ∈
(

K
∏

k=1

H1
∗ (Ω

k)

)

×
(

K
∏

k=1

H−1/2(∂Ωk)

)

,

vk = vℓ and qk = −qℓ over Γk,ℓ, ∀k, ℓ}, (2.5)

and problem (2.3) is equivalent to the following one : Find (u, p) ∈ V such that

K
∑

k=1

∫

Ωk

(∇uk∇vk + ukvk) dx−
K
∑

k=1

H−1/2(∂Ωk) < pk, vk >H1/2(∂Ωk)

=

K
∑

k=1

∫

Ωk

fkvkdx, ∀v ∈
K
∏

k=1

H1
∗ (Ω

k).

(2.6)

Being equivalent to the original problem, with pk = ∂u
∂nk

over ∂Ωk (recall that f is

assumed to be in L2(Ω) so that ∂u
∂nk

actually belongs to H−1/2(∂Ωk)), this problem
is naturally well posed.

Let us describe the method in the non-conforming discrete case. Standard mortar
methods are based on Galerkin approximation where both the trial spaces and test
spaces are defined by imposing a gluing condition on the Dirichlet values on the
interface by integral matching through mortar Lagrange multipliers. Here, we wish to
match Robin conditions (i.e. the combination of Dirichlet and Neumann condition) we
thus need to introduce a new independent entity representing the normal derivative
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of the trial function on the interface by increasing the set of trial function. This leads
in turn to an increase in the set of test functions that appear to be defined with no
glue. The method is no longer of Galerkin type but rather of Petrov Galerkin.

In all what follows we restrict the analysis to P1 finite elements. The more general
case is the subject of another paper for sake of brevity.

2.1. Discrete case. We introduce now the discrete spaces. Each Ωk is provided
with its own mesh (classical and locally conforming) T k

h , 1 ≤ k ≤ K, such that

Ω
k
= ∪T∈T k

h
T.

For T ∈ T k
h , let hT be the diameter of T (hT = supx,y∈T d(x, y)) and h the discretiza-

tion parameter

h = max
1≤k≤K

hk, with hk = max
T∈T k

h

hT .

At the price of (even) more technicalities in the analysis, possible large variations in
the norms of the solution u|Ωk can be compensated by tuning the parameter hk. This
requires in particular that the uniform h is not used but all the analysis is performed
with hk. For the sake of readability we prefer to use h instead of hk. Let ρT be the
diameter of the circle (in 2D) or sphere (in 3D) inscribed in T , then σT = hT

ρT
is a

measure of the nondegeneracy of T . We suppose that T k
h is uniformly regular: there

exists σ and τ independent of h such that

∀T ∈ T k
h , σT ≤ σ and τh ≤ hT .

We consider that the sets belonging to the meshes are of simplicial type (triangles or
tetrahedron), but the analysis made hereafter can be applied as well for quadrangular
or hexahedral meshes. Let P1(T ) denote the space of all polynomials defined over T
of total degree less than or equal to 1. The finite elements are of Lagrangian type, of
class C0. We define over each subdomain two conforming spaces Y k

h and Xk
h by :

Y k
h = {vh,k ∈ C0(Ω

k
), vh,k|T ∈ P1(T ), ∀T ∈ T k

h },
Xk

h = {vh,k ∈ Y k
h , vh,k|∂Ωk∩∂Ω = 0}.

The space of traces over each Γk,ℓ of elements of Y k
h is a finite element space denoted

by Yk,ℓ
h . As we assumed that the domain decomposition is geometrically conforming,

then the space Yk
h is the product space of the Yk,ℓ

h over each ℓ such that Γk,ℓ 6= ∅. With

each such interface we associate a subspace W̃ k,ℓ
h of Yk,ℓ

h in the same spirit as in the
mortar element method, see [7] in 2D or [4] and [10] in 3D. To be more specific, let us
recall the situation in 2D. If the space Xk

h consist of continuous piecewise polynomials
of degree ≤ 1, then it is readily noticed that the restriction of Xk

h to Γk,ℓ consists
in finite element functions adapted to the (possibly curved) side Γk,ℓ of piecewise

polynomials of degree ≤ 1. This side has two end points that we denote as xk,ℓ0 and
xk,ℓn that belong to the set of vertices of the corresponding triangulation of Γk,ℓ :

xk,ℓ0 , xk,ℓ1 , ..., xk,ℓn−1, x
k,ℓ
n . The space W̃ k,ℓ

h is then the subspace of those elements of Yk,ℓ
h

that are polynomials of degree 0 over both [xk,ℓ0 , xk,ℓ1 ] and [xk,ℓn−1, x
k,ℓ
n ]. As before, the

space W̃ k
h is the product space of the W̃ k,ℓ

h over each ℓ such that Γk,ℓ 6= ∅. In 3D, we
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used specific notations from [10], given in Section 3.4.
The discrete constrained space is then defined as

Vh = {(uh, ph) ∈
(

K
∏

k=1

Xk
h

)

×
(

K
∏

k=1

W̃ k
h

)

,

∫

Γk,ℓ

((ph,k + αuh,k)− (−ph,ℓ + αuh,ℓ))ψh,k,ℓ = 0, ∀ψh,k,ℓ ∈ W̃ k,ℓ
h , ∀k, ℓ}. (2.7)

Note that, for regular enough function
∫

Γk,ℓ

((pk + αuk)− (−pℓ + αuℓ))ψk,ℓ = 0, ∀ψk,ℓ ∈ L2(Γk,ℓ), ∀k, ℓ,

then pk = −pℓ and uk = uℓ, which allows us to make the link between the Robin
condition (2.7) and the Dirichlet-Neumann condition in (2.5).

Let πk,ℓ denote the orthogonal projection operator from L2(Γk,ℓ) onto W̃ k,ℓ
h .

Then, for v ∈ L2(Γk,ℓ), πk,ℓ(v) is the unique element of W̃ k,ℓ
h such that

∫

Γk,ℓ

(πk,ℓ(v)− v)ψ = 0, ∀ψ ∈ W̃ k,ℓ
h . (2.8)

We remark that the constraint in (2.7) also reads

pk + απk,ℓ(uk) = πk,ℓ(−pℓ + αuℓ) over Γk,ℓ, ∀k, ℓ. (2.9)

The discrete problem is the following one : Find (uh, ph) ∈ Vh such that

∀vh = (vh,1, ...vh,K) ∈∏K
k=1X

k
h ,

K
∑

k=1

∫

Ωk

(∇uh,k∇vh,k + uh,kvh,k) dx−
K
∑

k=1

∫

∂Ωk

ph,kvh,kds =

K
∑

k=1

∫

Ωk

fkvh,kdx. (2.10)

For the numerical analysis, we have to precise the norms that can be used on the
Lagrange multipliers p

h
. For any p ∈∏K

k=1 L
2(∂Ωk), in addition to the natural norm,

we can define two better suited norms as follows

‖p‖− 1

2
,∗ =









K
∑

k=1

K
∑

ℓ=1
ℓ 6=k

‖pk‖2
(H

1

2

00
(Γk,ℓ))′









1

2

, and ‖p‖− 1

2

=

(

K
∑

k=1

‖pk‖2
H− 1

2 (∂Ωk)

)

1

2

,

where ‖.‖
(H

1

2

00
(Γk,ℓ))′

stands for the dual norm of H
1

2

00(Γ
k,ℓ).

We also need a stability result for the Lagrange multipliers, and refer to [3] for
2D and to the appendix in 3D (the proof is postponed to the appendix because it
needs ingredients that are developed later, in the analysis of the best approximation),
in which it is proven that,

Lemma 2. There exists a constant c∗ such that, for any ph,k,ℓ in W̃ k,ℓ
h , there

exists an element wh,k,ℓ in Xk
h that vanishes over ∂Ωk \ Γk,ℓ and satisfies

∫

Γk,ℓ

ph,k,ℓw
h,k,ℓ ≥ ‖ph,k,ℓ‖2

(H
1

2

00
(Γk,ℓ))′

(2.11)
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with a bounded norm

‖wh,k,ℓ‖H1(Ωk) ≤ c∗‖ph,k,ℓ‖
(H

1

2

00
(Γk,ℓ))′

. (2.12)

We now provide an analysis of the approximation properties of this scheme.

3. Numerical Analysis.

3.1. Well posedness. The first step in this error analysis is to prove the sta-
bility of the discrete problem and thus its well posedness. Let us introduce over
(
∏K

k=1H
1
∗ (Ω

k)×∏K
k=1 L

2(∂Ωk))×∏K
k=1H

1
∗ (Ω

k) the bilinear form

ã((u, p), v)) =

K
∑

k=1

∫

Ωk

(∇uk∇vk + ukvk) dx−
K
∑

k=1

∫

∂Ωk

pkvkds. (3.1)

The space
∏K

k=1H
1
∗ (Ω

k) is endowed with the norm

‖v‖∗ =

(

K
∑

k=1

‖vk‖2H1(Ωk)

)

1

2

.

Lemma 3. There exists c′ > 0 and a constant β > 0 such that

for αh ≤ c′, ∀(uh, ph) ∈ Vh, ∃vh ∈
K
∏

k=1

Xk
h ,

ã((uh, ph), vh)) ≥ β(‖uh‖∗ + ‖p
h
‖− 1

2
,∗)‖vh‖∗. (3.2)

Moreover, we have the continuity argument : there exists a constant c > 0 such that

∀(uh, ph) ∈ Vh, ∀vh ∈
K
∏

k=1

Xk
h , ã((uh, ph), vh)) ≤ c(‖uh‖∗ + ‖p

h
‖− 1

2

)(‖vh‖∗). (3.3)

Proof of Lemma 3: In (2.11) and (2.12), we have introduced local H1
0 (Γk,ℓ) func-

tions that can be put together in order to provide an element wh of
∏K

k=1X
k
h that

satisfies

K
∑

k=1

∫

∂Ωk

pkwkds ≥ ‖p
h
‖2− 1

2
,∗. (3.4)

Let us now choose a real number γ, 0 < γ < 2
c2∗

(where c∗ is introduced in (2.12)) and

choose vh = uh − γwh in (3.1) that yields

ã((uh, ph), vh)) =
K
∑

k=1

∫

Ωk

(∇uk∇(uk − γwk) + uk(uk − γwk)) dx

−
K
∑

k=1

∫

∂Ωk

pk(uk − γwk)ds (3.5)
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By (2.9), we can write

∫

Γk,ℓ

pkukds =
1

4α

∫

Γk,ℓ

((pk + απk,ℓ(uk))
2 − (pk − απk,ℓ(uk))

2)ds

=
1

4α

∫

Γk,ℓ

((πk,ℓ(−pℓ + αuℓ))
2 − (pk − απk,ℓ(uk))

2)ds

≤ 1

4α

∫

Γk,ℓ

((pℓ − αuℓ)
2 − (pk − απk,ℓ(uk))

2)ds

≤ 1

4α

∫

Γk,ℓ

((pℓ − απℓ,k(uℓ))
2 − (pk − απk,ℓ(uk))

2)ds

+
1

4α

∫

Γk,ℓ

α2(πℓ,k(uℓ)− uℓ)
2ds

so that

K
∑

k=1

∫

∂Ωk

pkukds ≤
α

4

K
∑

k=1

∑

k<ℓ

∫

Γk,ℓ

(uk − πk,ℓ(uk))
2ds ≤ cαh‖uh‖2∗.

We refer to [7] in 2D and [4] or [10] equation (5.1) in 3D, where the approximation
properties of πk,ℓ are proven.

Going back to (3.5), using (3.4) and Lemma 2 yields

ã((uh, ph), vh) ≥ (1− cαh)‖uh‖2∗ − γ‖uh‖∗‖wh‖∗ + γ‖p
h
‖2− 1

2
,∗

≥ (
1

2
− cαh)‖uh‖2∗ + γ‖p

h
‖2− 1

2
,∗ −

γ2

2
‖wh‖2∗

≥ (
1

2
− cαh)‖uh‖2∗ + (γ − γ2c2∗

2
)‖p

h
‖2− 1

2
,∗.

Due to the choice of γ, we know that, for αh small enough, (3.2) holds. The continuity
(3.3) follows from standard arguments (note that the norm on the right-hand side of
(3.3) is not the ‖.‖− 1

2
,∗–norm), which ends the proof of Lemma 3.

From this lemma, we have the following result :

Theorem 1. Let us assume that αh ≤ c, for some constant c small enough.
Then, the discrete problem (2.10) has a unique solution (uh, ph) ∈ Vh, and there
exists a constant c > 0 such that

‖uh‖∗ + ‖p
h
‖− 1

2
,∗ ≤ c‖f‖L2(Ω).

From Lemma 3, we are also in position to state that the discrete solution (uh, ph)
satisfies the following optimal error bound

‖u− uh‖∗ + ‖p− p
h
‖− 1

2
,∗ ≤ c inf

(ũh,p̃h
)∈Vh

(‖u− ũh‖∗ + ‖p− p̃
h
‖− 1

2

) (3.6)

and we are naturally led to the analysis of the best approximation of (u, p = ∂u
∂n )

solution to (2.6) (or equivalently u solution to (2.1)-(2.2)) by elements in Vh.
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3.2. Analysis of the best approximation in 2D. In this part we analyze the
best approximation of (u, p) by elements in Vh. As the proof is very technical for the
analysis of the best approximation, we restrict ourselves in this section to the complete
analysis of the 2D. The extension to 3D first order approximation is postponed to a
next subsection.

The first step in the analysis is to prove the following lemma
Lemma 4. There exist two constants c1 > 0 and c2 > 0 independent of h such

that for all ηℓ,k in Yℓ,k
h ∩H1

0 (Γ
k,ℓ), there exists an element ψℓ,k in W̃ ℓ,k

h , such that

∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k ≥ c1‖ηℓ,k‖2L2(Γk,ℓ), (3.7)

‖ψℓ,k‖L2(Γk,ℓ) ≤ c2‖ηℓ,k‖L2(Γk,ℓ). (3.8)

Note that ηℓ,k and πk,ℓ(ηℓ,k) are associated with different grids. Then, we can prove
the following interpolation estimates :

Theorem 2. For any u ∈ H2(Ω) ∩ H1
0 (Ω), let uk = u|Ωk , 1 ≤ k ≤ K,

u = (uk)1≤k≤K and let pk,ℓ = ∂uk

∂nk
over each Γk,ℓ. Then there exists an element

ũh in
∏K

k=1X
k
h and p̃

h
= (p̃kℓh), p̃kℓh ∈ W̃ k,ℓ

h such that (ũh, p̃h) satisfy the coupling
condition (2.7), and

‖ũh − u‖∗ ≤ ch
K
∑

k=1

‖uk‖H2(Ωk) +
c

α

∑

k<ℓ

‖pk,ℓ‖
H

1

2 (Γk,ℓ)

‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch‖pk,ℓ‖

H
1

2 (Γk,ℓ)

where c is a constant independent of h and α.
If we assume more regularity on the normal derivatives on the interfaces, we have
Theorem 3. Let u ∈ H2(Ω) ∩ H1

0 (Ω), uk = u|Ωk , 1 ≤ k ≤ K, u = (uk)1≤k≤K

and pk,ℓ = ∂uk

∂nk
is in H

3

2 (Γk,ℓ). Then there exists an element ũh in
∏K

k=1X
k
h and

p̃
h
= (p̃kℓh), p̃kℓh ∈ W̃ k,ℓ

h such that (ũh, p̃h) satisfy the coupling condition (2.7), and

‖ũh − u‖∗ ≤ ch

K
∑

k=1

‖uk‖H2(Ωk) +
ch

α
| log h|

∑

k<ℓ

‖pk,ℓ‖
H

3

2 (Γk,ℓ)

‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch2| log h|‖pk,ℓ‖

H
3

2 (Γk,ℓ)

where c is a constant independent of h and α.
Proof of Lemma 4: We consider Γℓ,k to be on the line y = 0. Remind that we have
denoted as xℓ,k0 , xℓ,k1 , ..., xℓ,kn−1, x

ℓ,k
n the vertices of the triangulation of Γℓ,k that belong

to Γℓ,k. To any ηℓ,k in Yℓ,k
h ∩H1

0 (Γ
k,ℓ) we then associate the element ψℓ,k in W̃ ℓ,k

h as
follows

ψℓ,k =















ηℓ,k(x
ℓ,k
1

−xℓ,k
0

)

(x−xℓ,k
0

)
over ]xℓ,k0 , xℓ,k1 [

ηℓ,k over ]xℓ,k1 , xℓ,kn−1[
ηℓ,k(x

ℓ,k
n −xℓ,k

n−1
)

(xℓ,k
n −x)

over ]xℓ,kn−1, x
ℓ,k
n [

=











η1ℓ,k over ]xℓ,k0 , xℓ,k1 [

ηℓ,k over ]xℓ,k1 , xℓ,kn−1[

ηn−1
ℓ,k over ]xℓ,kn−1, x

ℓ,k
n [
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where ηiℓ,k = ηℓ,k(x
k,ℓ
i ). By using a mapping onto the reference element [0, 1] and by

recalling that all norms are equivalent over the space of polynomials of degree 1 we
deduce in a classical way that there exists a constant c such that

‖ψℓ,k‖L2(Γk,ℓ) ≤ c‖ηℓ,k‖L2(Γk,ℓ).

Moreover, it is straightforward to derive
∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k =

∫

Γk,ℓ

ηℓ,kψℓ,k +

∫

Γk,ℓ

(πk,ℓ(ηℓ,k))
2 +

∫

Γk,ℓ

πk,ℓ(ηℓ,k)(ψℓ,k − ηℓ,k).

Then, by using the relation

πk,ℓ(ηℓ,k)(ψℓ,k − ηℓ,k) ≥ −1

2
(πk,ℓ(ηℓ,k))

2 − 1

2
(ψℓ,k − ηℓ,k)

2,

we obtain
∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k ≥
∫

Γk,ℓ

ηℓ,kψℓ,k +
1

2

∫

Γk,ℓ

(πk,ℓ(ηℓ,k))
2 − 1

2

∫

Γk,ℓ

(ψℓ,k − ηℓ,k)
2.

We realize now that, over the first interval,

∫

]xℓ,k
0

,xℓ,k
1

[

(ηℓ,kψℓ,k − 1

2
(ψℓ,k − ηℓ,k)

2) =

∫

]xℓ,k
0

,xℓ,k
1

[

(
(x− xℓ,k0 )

(xℓ,k1 − xℓ,k0 )
− 1

2

(x− xℓ,k1 )2

(xℓ,k1 − xℓ,k0 )2
)ψ2

ℓ,k.

We observe, by computing separately each integral, that

∫

]xℓ,k
0

,xℓ,k
1

[

(
(x− xℓ,k0 )

(xℓ,k1 − xℓ,k0 )
− 1

2

(x− xℓ,k1 )2

(xℓ,k1 − xℓ,k0 )2
) =

∫

]xℓ,k
0

,xℓ,k
1

[

(x− xℓ,k0 )2

(xℓ,k1 − xℓ,k0 )2
.

By recalling that ψℓ,k is constant on ]xℓ,k0 , xℓ,k1 [, we get that

∫

]xℓ,k
0

,xℓ,k
1

[

(
(x− xℓ,k0 )

(xℓ,k1 − xℓ,k0 )
− 1

2

(x− xℓ,k1 )2

(xℓ,k1 − xℓ,k0 )2
)ψ2

ℓ,k =

∫

]xℓ,k
0

,xℓ,k
1

[

(x− xℓ,k0 )2

(xℓ,k1 − xℓ,k0 )2
ψ2
ℓ,k,

and thus

∫

]xℓ,k
0

,xℓ,k
1

[

(
(x− xℓ,k0 )

(xℓ,k1 − xℓ,k0 )
− 1

2

(x− xℓ,k1 )2

(xℓ,k1 − xℓ,k0 )2
)ψ2

ℓ,k =

∫

]xℓ,k
0

,xℓ,k
1

[

η2ℓ,k.

The same holds true over the interval ]xℓ,kn−1, x
ℓ,k
n [. By summing up, we derive that

∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k ≥
∫

Γk,ℓ

η2ℓ,k,

which ends the proof of Lemma 4.

Proof of Theorem 2: In order to prove this theorem, let us build an element
that will belong to the discrete space and will be as close as the expected error to the
solution. Let u1kh be the unique element of Xk

h defined as follows :

• (u1kh)|∂Ωk is the best approximation of uk over ∂Ωk in Yk,ℓ
h ,

• u1kh at the inner nodes of the triangulation (in Ωk) coincide with the interpo-
late of uk.
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Then, it satisfies

‖u1kh − uk‖L2(∂Ωk) ≤ ch
3

2 ‖uk‖H2(Ωk), (3.9)

from which we deduce that

‖u1kh − uk‖L2(Ωk) + h‖u1kh − uk‖H1(Ωk) ≤ ch2‖uk‖H2(Ωk), (3.10)

and, from Aubin-Nitsche estimate

‖u1kh − uk‖
H− 1

2 (Γk,ℓ)
≤ ch2‖uk‖H2(Ωk). (3.11)

We define then separately the best approximation p1kℓh of pk,ℓ = ∂uk

∂nk
over each Γk,ℓ

in W̃ k,ℓ
h in the L2 norm. These elements satisfy for the error estimate

‖p1kℓh − pk,ℓ‖L2(Γk,ℓ) ≤ ch
1

2 ‖pk,ℓ‖
H

1

2 (Γk,ℓ)
(3.12)

‖p1kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ ch‖pk,ℓ‖

H
1

2 (Γk,ℓ)
. (3.13)

But there is very few chance that (u1h, p
1
h
) satisfy the coupling condition (2.7). This

element of
(

∏K
k=1X

k
h

)

×
(

∏K
k=1 W̃

k
h

)

misses (2.7) of elements ǫk,ℓ and ηℓ,k such that

∫

Γk,ℓ

(p1kℓh + ǫk,ℓ + αu1kh)ψk,ℓ =

∫

Γk,ℓ

(−p1ℓkh + αηℓ,k + αu1ℓh)ψk,ℓ, ∀ψk,ℓ ∈ W̃ k,ℓ
h (3.14)

∫

Γk,ℓ

(p1ℓkh + αηℓ,k + αu1ℓh)ψℓ,k =

∫

Γk,ℓ

(−p1kℓh − ǫk,ℓ + αu1kh)ψℓ,k, ∀ψℓ,k ∈ W̃ ℓ,k
h . (3.15)

In order to correct that, without polluting (3.9)-(3.13), for each couple (k, ℓ) we
choose one side, say the smaller indexed one, hereafter we shall also assume that each
couple (k, ℓ) is ordered by k < ℓ. Associated to that choice, we define ǫk,ℓ ∈ W̃ k,ℓ

h ,

ηℓ,k ∈ Yℓ,k
h ∩H1

0 (Γ
k,ℓ), such that (ũh, p̃h) satisfy (2.7) where we define

ũℓh = u1ℓh +
∑

k<ℓ

Rℓ,k(ηℓ,k), p̃kℓh = p1kℓh + ǫk,ℓ (for k < ℓ), (3.16)

where Rℓ,k is a discrete lifting operator (see [38, 6]) that to any element of Yℓ,k
h ∩

H1
0 (Γ

k,ℓ) associates a finite element function over Ωℓ that vanishes over ∂Ωℓ \Γk,ℓ and
satisfies

∀w ∈ Yℓ,k
h ∩H1

0 (Γ
k,ℓ), (Rℓ,k(w))|Γk,ℓ

= w

‖Rℓ,k(w)‖H1(Ωℓ) ≤ c‖w‖
H

1

2

00
(Γk,ℓ)

(3.17)

where c is h-independent.
The set of equations (3.14)-(3.15) for ǫk,ℓ and ηℓ,k results in a square system of linear
algebraic equations that can be written as follows

∫

Γk,ℓ

(ǫk,ℓ − αηℓ,k)ψk,ℓ =

∫

Γk,ℓ

e1ψk,ℓ, ∀ψk,ℓ ∈ W̃ k,ℓ
h (3.18)

∫

Γk,ℓ

(ǫk,ℓ + αηℓ,k)ψℓ,k =

∫

Γk,ℓ

e2ψℓ,k, ∀ψℓ,k ∈ W̃ ℓ,k
h (3.19)
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with

e1 = −p1kℓh − p1ℓkh + α(u1ℓh − u1kh), (3.20)

e2 = −p1kℓh − p1ℓkh + α(u1kh − u1ℓh). (3.21)

Proposition 1. The linear system (3.18)-(3.19) is well posed.
Proof: With the notations above, (3.18) yields

ǫk,ℓ = πk,ℓ(αηℓ,k + e1) (3.22)

and (3.19) yields

αηℓ,k = πℓ,k(−ǫk,ℓ + e2). (3.23)

As (3.18)-(3.19) is a square linear system, it suffices to prove uniqueness for e1 and
e2 null. From (3.22)-(3.23), we get

0 = ηℓ,k + πℓ,kπk,ℓ(ηℓ,k)

so that for all ψℓ,k in W̃ k,ℓ
h ,

0 =

∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k.

By Lemma 4, this proves that ηℓ,k is zero, thus by (3.22), ǫk,ℓ is zero.

Let us resume the proof of Theorem 2: By (3.22) and (3.23) we have

∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k =
1

α

∫

Γk,ℓ

(e2 − πk,ℓ(e1))ψℓ,k, ∀ψℓ,k ∈ W̃ ℓ,k
h . (3.24)

To estimate ‖p̃kℓh−pk,ℓ‖
H− 1

2 (Γk,ℓ)
and ‖ũℓh−uℓ‖H1(Ωℓ), we first estimate ‖ηℓ,k‖L2(Γk,ℓ):

from (3.7) and (3.24) we get

c1‖ηℓ,k‖2L2(Γk,ℓ) ≤
1

α
‖e2 − πk,ℓ(e1)‖L2(Γk,ℓ)‖ψℓ,k‖L2(Γk,ℓ) (3.25)

and using (3.8) in (3.25)

‖ηℓ,k‖L2(Γk,ℓ) ≤
c2
αc1

‖e2 − πk,ℓ(e1)‖L2(Γk,ℓ)

hence

‖ηℓ,k‖L2(Γk,ℓ) ≤
c2
αc1

(‖e2‖L2(Γk,ℓ) + ‖e1‖L2(Γk,ℓ)). (3.26)

Now, from (3.20) and (3.21), for i = 1, 2

‖ei‖L2(Γk,ℓ) ≤ ‖p1kℓh + p1ℓkh‖L2(Γk,ℓ) + α‖u1ℓh − u1kh‖L2(Γk,ℓ)

and recalling that pk,ℓ =
∂uk

∂nk
= − ∂uℓ

∂nℓ
= −pℓ,k over each Γk,ℓ

‖p1kℓh + p1ℓkh‖L2(Γk,ℓ) ≤ ‖p1kℓh − pk,ℓ‖L2(Γk,ℓ) + ‖p1ℓkh − pℓ,k‖L2(Γk,ℓ)

‖u1ℓh − u1kh‖L2(Γk,ℓ) ≤ ‖u1kh − uk‖L2(Γk,ℓ) + ‖u1ℓh − uℓ‖L2(Γk,ℓ)
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so that, using (3.9) and (3.12), we derive for i = 1, 2

‖ei‖L2(Γk,ℓ) ≤ cαh
3

2 (‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch
1

2 ‖pk,ℓ‖
H

1

2 (Γk,ℓ)
(3.27)

and (3.26) yields

‖ηℓ,k‖L2(Γk,ℓ) ≤ ch
3

2 (‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) +
ch

1

2

α
‖pk,ℓ‖

H
1

2 (Γk,ℓ)
. (3.28)

We can now evaluate ‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
, using (3.16) :

‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ ‖ǫk,ℓ‖

H− 1

2 (Γk,ℓ)
+ ‖p1kℓh − pk,ℓ‖

H− 1

2 (Γk,ℓ)
. (3.29)

The term ‖p1kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
is estimated in (3.13), so let us focus on the term

‖ǫk,ℓ‖
H− 1

2 (Γk,ℓ)
. From (3.22) we have,

‖ǫk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ α‖ηℓ,k‖

H− 1

2 (Γk,ℓ)
+ ‖e1‖

H− 1

2 (Γk,ℓ)
+ ‖(Id− πk,ℓ)(αηℓ,k + e1)‖

H− 1

2 (Γk,ℓ)
. (3.30)

To evaluate ‖e1‖
H− 1

2 (Γk,ℓ)
we proceed as for ‖e1‖L2(Γk,ℓ) and from (3.11) and (3.13)

we have, for i = 1, 2:

‖ei‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch‖pk,ℓ‖

H
1

2 (Γk,ℓ)
. (3.31)

The third term in the right-hand side of (3.30) satisfies

‖(Id− πk,ℓ)(αηℓ,k + e1)‖
H− 1

2 (Γk,ℓ)
≤ c

√
h‖αηℓ,k + e1‖L2(Γk,ℓ).

Then, using (3.28) and (3.27) yields

‖(Id− πk,ℓ)(αηℓ,k + e1)‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch‖pk,ℓ‖

H
1

2 (Γk,ℓ)
. (3.32)

In order to estimate the term ‖ηℓ,k‖
H− 1

2 (Γk,ℓ)
in (3.30), we use (3.24):

2

∫

Γk,ℓ

ηℓ,kψℓ,k =

∫

Γk,ℓ

(ηℓ,k − πk,ℓ(ηℓ,k))ψℓ,k +
1

α

∫

Γk,ℓ

(e2 − πk,ℓ(e1))ψℓ,k.

Using the symmetry of the operator πk,ℓ we deduce

2

∫

Γk,ℓ

ηℓ,kψℓ,k =

∫

Γk,ℓ

(ψℓ,k − πk,ℓ(ψℓ,k))ηℓ,k +
1

α

∫

Γk,ℓ

(e2 − πk,ℓ(e1))ψℓ,k.

Then, we have

|
∫

Γk,ℓ

ηℓ,kψℓ,k| ≤ c
√
h‖ηℓ,k‖L2(Γk,ℓ)‖ψℓ,k‖

H
1

2 (Γk,ℓ)
+

1

α
‖e2 − πk,ℓ(e1)‖

H− 1

2 (Γk,ℓ)
‖ψℓ,k‖

H
1

2 (Γk,ℓ)

and thus, we obtain

‖ηℓ,k‖
H− 1

2 (Γk,ℓ)
≤ c

√
h‖ηℓ,k‖L2(Γk,ℓ) +

c

α
‖e2 − πk,ℓ(e1)‖

H− 1

2 (Γk,ℓ)
. (3.33)
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Then, using (3.28) and the fact that

‖e2 − πk,ℓ(e1)‖
H− 1

2 (Γk,ℓ)
≤ ‖e2‖

H− 1

2 (Γk,ℓ)
+ ‖e1‖

H− 1

2 (Γk,ℓ)
+ ‖e1 − πk,ℓ(e1)‖

H− 1

2 (Γk,ℓ)

≤ ‖e2‖
H− 1

2 (Γk,ℓ)
+ ‖e1‖

H− 1

2 (Γk,ℓ)
+ c

√
h‖e1‖L2(Γk,ℓ) (3.34)

with (3.27) and (3.31) yields

‖ηℓ,k‖
H− 1

2 (Γk,ℓ)
≤ ch2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) +

ch

α
‖pk,ℓ‖

H
1

2 (Γk,ℓ)
.

Using the previous inequality in (3.30), (3.29) yields

‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch‖pk,ℓ‖

H
1

2 (Γk,ℓ)
. (3.35)

Let us now estimate ‖ũℓh − uℓ‖H1(Ωℓ) :

‖ũℓh − uℓ‖H1(Ωℓ) ≤ ‖u1ℓh − uℓ‖H1(Ωℓ) +
∑

k<ℓ

‖Rℓ,k(ηℓ,k)‖H1(Ωℓ) (3.36)

and from (3.17)

‖Rℓ,k(ηℓ,k)‖H1(Ωℓ) ≤ c‖ηℓ,k‖
H

1

2

00
(Γk,ℓ)

then, with an inverse inequality

‖Rℓ,k(ηℓ,k)‖H1(Ωℓ) ≤ ch−
1

2 ‖ηℓ,k‖L2(Γk,ℓ).

Hence, from (3.28) we have

‖Rℓ,k(ηℓ,k)‖H1(Ωℓ) ≤ ch(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) +
c

α
‖pk,ℓ‖

H
1

2 (Γk,ℓ)
(3.37)

and (3.36) yields

‖ũℓh − uℓ‖H1(Ωℓ) ≤ ch‖uℓ‖H2(Ωℓ) + ch
∑

k<ℓ

‖uk‖H2(Ωk) +
c

α

∑

k<ℓ

‖pk,ℓ‖
H

1

2 (Γk,ℓ)
, (3.38)

which ends the proof of Theorem 2.

Proof of Theorem 3: The proof is the same that for Theorem 2, except that
the relation (3.12) is changed using the following lemma

Lemma 5. The best L2 approximation p1kℓh of pk,ℓ satisfy the error estimate

‖p1kℓh − pk,ℓ‖L2(Γk,ℓ) ≤ ch
3

2 | log h|‖pk,ℓ‖
H

3

2 (Γk,ℓ)
. (3.39)

Therefore, (3.13) is changed in

‖p1kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ ch2 | log h|‖pk,ℓ‖

H
3

2 (Γk,ℓ)

and (3.35) is changed in

‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch2 | log h|‖pk,ℓ‖

H
3

2 (Γk,ℓ)

and (3.38) is changed in

‖ũℓh − uℓ‖H1(Ωℓ) ≤ ch‖uℓ‖H2(Ωℓ) + ch
∑

k<ℓ

‖uk‖H2(Ωk) +
ch

α
| log h|

∑

k<ℓ

‖pk,ℓ‖
H

3

2 (Γk,ℓ)
.

Proof of Lemma 5: Let p̄kℓh be the unique element of W̃ k,ℓ
h defined as follows :
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• (p̄kℓh)|[xℓ,k
1

,xℓ,k
n−1

] coincide with the interpolate of degree 1 of pk,ℓ.

• (p̄kℓh)|[xℓ,k
0

,xℓ,k
1

] and (p̄kℓh)|[xℓ,k
n−1

,xℓ,k
n ] coincide with the interpolate of degree 0

of pk,ℓ.
Then, we have

‖p1kℓh − pk,ℓ‖2L2(Γk,ℓ) ≤ ‖p̄kℓh − pk,ℓ‖2L2(Γk,ℓ).

Using Deny-Lions theorem we have

‖p1kℓh − pk,ℓ‖2L2((Γk,ℓ) ≤ ‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
0

,xℓ,k
1

[)
+ ch3‖pk,ℓ‖2

H
3

2 ([xℓ,k
1

,xℓ,k
n−1

])
+ ‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k

n−1
,xℓ,k

n [)
.

In order to analyse the two extreme contributions, we use Deny-Lions theorem

‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
0

,xℓ,k
1

[)
≤ ch3−

2

p ‖dpk,ℓ
dx

‖2
Lp(]xℓ,k

0
,xℓ,k

1
[)
,

and thus

‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
0

,xℓ,k
1

[)
≤ ch3−

2

p ‖dpk,ℓ
dx

‖2Lp(Γk,ℓ),

Then, we use the estimate

‖dpk,ℓ
dx

‖Lp(Γk,ℓ) ≤ cp‖dpk,ℓ
dx

‖
H

1

2 (Γk,ℓ)
,

where c is a constant. Thus we have

‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
0

,xℓ,k
1

[)
≤ cp2h3−

2

p ‖dpk,ℓ
dx

‖2
H

1

2 (Γk,ℓ)
.

Now we take p = − log h and thus we obtain

‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
0

,xℓ,k
1

[)
≤ c(h

3

2 log(h))2‖dpk,ℓ
dx

‖2
H

1

2 (Γk,ℓ)
.

In a same way we have

‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
n−1

,xℓ,k
n [)

≤ c(h
3

2 log(h))2‖dpk,ℓ
dx

‖2
H

1

2 (Γk,ℓ)
,

and thus we obtain

‖p1kℓh − pk,ℓ‖L2(Γk,ℓ) ≤ ch
3

2 | log h|‖pk,ℓ‖
H

3

2 (Γk,ℓ)
,

which ends the proof of Lemma 5.

3.3. Error Estimates. Thanks to (3.6), we have the following error estimates:
Theorem 4. Assume that the solution u of (2.1)-(2.2) is in H2(Ω)∩H1

0 (Ω), and
uk = u|Ωk ∈ H2(Ωk), and let pk,ℓ =

∂uk

∂nk
over each Γk,ℓ. Then, there exists a constant

c independent of h and α such that

‖uh − u‖∗ + ‖p
h
− p‖− 1

2
,∗ ≤ c(αh2 + h)

K
∑

k=1

‖u‖H2(Ωk) + c(
1

α
+ h)

K
∑

k=1

∑

ℓ

‖pk,ℓ‖
H

1

2 (Γk,ℓ)
.
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Theorem 5. Assume that the solution u of (2.1)-(2.2) is in H2(Ω) ∩ H1
0 (Ω),

uk = u|Ωk ∈ H2(Ωk), and pk,ℓ =
∂uk

∂nk
is in H

3

2 (Γk,ℓ). Then there exists a constant c
independent of h and α such that

‖uh − u‖∗ + ‖p
h
− p‖− 1

2
,∗ ≤ c(αh2 + h)

K
∑

k=1

‖u‖H2(Ωk) + c(
h

α
+ h2)| log h|

K
∑

k=1

∑

ℓ

‖pk,ℓ‖
H

3

2 (Γk,ℓ)

Remark 1. Note that in most practical situations the normal traces pℓ are more
regular than what can be expected from the basic trace result that states

‖pℓ‖
H

1

2 (∂Ωℓ)
≤ c‖uℓ‖H2(Ωℓ), (3.40)

this can be due for instance to the fact that we have local regularity for u in the
neighborhood of the interfaces. In such generic cases, Theorem 5 should be used.
Indeed provided that the solution u of (2.1)-(2.2) is in

∏K
k=1H

2
∗ (Ω

k) and pk,ℓ =
∂uk

∂nk

is in H
3

2 (Γk,ℓ) if we choose α as a constant independent of h then

‖uh − u‖∗ = O(h| log(h)|),
that is quasi optimal. In all these genereric cases, any choice of α in the large range
( C1

log(h) ,
C2

h ) with any positive constants C1 and C2, yields an optimal error bound

‖uh − u‖∗ = O(h).

The above result on the convergence of the discrete method is interesting as it lets a
lot of flexibility to choose α properly for other purpose. Indeed the matching (2.7) is
in practice obtained through an iterative algorithm (see (4.1)-(4.2) in the Section 4),
the convergence of which depends on α (not the convergence with h). In this respect
let us remind that in [16] the optimal choice α = C√

h
is proposed for the convergence

of the iterative algorithm. This is the subject of a future paper.
Note that the value of α = c

h in the expression pk,ℓ+αuk is actually consistent at
the discrete level with the natural norm of the traces of u and the traces of the normal
derivative of u on ∂Ωk.

We want to emphasize however that in some rare and pathological cases where
(3.40) is the best that can be stated on the regularity of p, Theorem 4 is the only one
that can be used in order to get an error estimate:

‖uh − u‖∗ ≤ c(
1

α
+ h)

K
∑

i=1

‖u‖H2(Ωk).

Under such an hypothesis: the solution u of (2.1)-(2.2) is in
∏K

k=1H
2
∗ (Ω

k) and pk,ℓ =
∂uk

∂nk
is only in H

1

2 (Γk,ℓ) then a choice where α is a constant independent of h yields,

‖uh − u‖∗ ≤ c
K
∑

i=1

‖u‖H2(Ωk)

which does not provide any convergence. In order to get an optimal convergence rate,
we have to choose a parameter α that satisfies : α = c

h and then

‖uh − u‖∗ ≤ ch

K
∑

i=1

‖u‖H2(Ωk).
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3.4. Analysis of the best approximation in 3D. In this section, we prove
Theorem 2 and Theorem 3 for a P1-discretization in 3D. The main parts of the proofs
of these theorems in section 3.2 are dimension-independent. Only Lemma 4 and
Lemma 5 are dimension-dependent, so we prove these lemma for a P1-discretization
in 3D. We shall use the construction proposed in [10]. In order to make the reading
easy, we shall recall the notations of the above mentioned paper. The analysis is done
on one subdomain Ωk that will be fixed in what follows. A typical interface between
this subdomain and a generic subdomain Ωℓ will be denoted by Γ. We denote by T the
restriction to Γ of the triangulation T k

h . Let S(T ) denote the space of piecewise linear
functions with respect to T which are continuous on Γ and vanish on its boundary.
The space of the Lagrange multipliers on Γ, defined below, will be denoted by M(T ).
In 2D, the requirement dim M(T ) =dim S(T ) can be satisfied by lowering the degree
of the finite elements on the intervals next to the end points of the interface. In 3D,
it is slightly more complex (see [4]). Thus, we shall use the construction proposed
in [10] with the following hypothesis

H.1 All the vertices of the boundary of Γ are connected to zero, one, or two
vertices in the interior of Γ.

Making hypothesis H.1, there are four kinds of triangles (see Figure 3.1):

1. Inner triangles i.e they don’t touch the boundary of Γ.
2. Triangles labeled 1 which have only one vertex on the boundary
3. Triangles labeled 2 which have two vertices on the boundary
4. Triangles labeled 3 which have three vertices on the boundary

Boundary of Γ

T2,a T2,b
T1,c

T3,c′

T1,c′′
a

b

c c
′

c
′′

Fig. 3.1. Two different situations of 2D triangulation of the interface Γ, next to it’s boundary
(near cross points): in light grey (triangle labeled 1) a vertex c is connected to two vertices in the
interior of Γ, in dark grey (triangle labeled 3) a vertex c′ is connected to two vertices on the boundary
of Γ

Let V, V0, ∂V denote respectively the set of all the vertices of T , the vertices in the
interior of Γ, and the vertices on the boundary of Γ. The finite element basis functions
will be denoted by Φa, a ∈ V. Thus,

S(T ) = span {Φa : a ∈ V0}.

For a ∈ V, let σa denote the support of Φa,

σa :=
⋃

{T ∈ T : a ∈ T},
18



and let Na be the set of neighboring vertices in V0 of a:

Na := {b ∈ V0 : b ∈ σa}.

Thus,

N :=
⋃

a∈∂V
Na

is the set of those interior vertices which have a neighbor on the boundary of Γ. If
some triangle T ∈ T has all its vertices on the boundary of Γ, then there exists one
(corner) vertex which has no neighbor in V0. Let Tc be the set of triangles T ∈ T
which have all their vertices on the boundary of Γ. For T ∈ Tc, we denote by cT the
only vertex of T that has no interior neighbor (such a vertex is unique as soon as the
triangulation is fine enough). Let Nc denote the vertices aT of N which belong to a
triangle adjacent to a triangle T ∈ Tc. Now, we define the space M(T ) 1 by

M(T ) := span {Φ̂a, a ∈ V0},

where the basis functions Φ̂a are defined as follows :

Φ̂a :=























Φa, a ∈ V0 \ N
Φa +

∑

b∈∂V∩σa

Ab,aΦb a ∈ N \ Nc

ΦaT
+

∑

b∈∂V∩σaT

Ab,aT
Φb +ΦcT a = aT ∈ Nc

the weights Ab,a being defined as in (3.41) :
(i) for all boundary nodes c ∈ ∂V connected to two interior nodes a and b, if T2,a

(resp. T2,b) denote the adjacent triangle to abc having a (resp. b) as a vertex and
its two others vertices on ∂V, then the weights are defined such that (see [10])

Ac,a +Ac,b = 1 and |T2,b|Ac,a = |T2,a|Ac,b, (3.41)

(ii) for all boundary nodes c ∈ ∂V connected to only one interior node a, then the
weight is defined by

Ac,a = 1. (3.42)

(note that this case — not covered in [10] — actually corresponds to the previous
case where the boundary nodes c ∈ ∂V is connected to two coincident interior
nodes a and b = a.

To any u ∈ S(T ), u =
∑

a∈V0
u(a)Φa, we associate v ∈M(T ) where v =

∑

a∈V0
u(a)Φ̂a.

More explicitly, that means that to any u ∈ S(T ), we associate an element v ∈M(T )
as follows (see Figure 3.1):
(i) v is a piecewise linear finite element on T
(ii) for all interior nodes a, v(a) := u(a)
(iii) for all boundary nodes c, by assumption we have two situations:

1M(T ) is the notation introduced in [10], that we use here for the sake of clarity. Corresponding

to our previous notation, M(T ) ≡ W̃
k,ℓ

h
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• c is connected to two interior nodes denoted by a and b.
Then, v(c) := Au(a) +Bu(b) where

A+B = 1 and |T2,b|A = |T2,a|B (3.43)

• c is not connected to any interior point. We consider the triangle adjacent
to the triangle to which c belongs to. This triangle has one interior node
denoted by b. Then, we define v(c) := u(b).

We shall need the following technical assumption:

H.2 For any triangle T3,c′ having all three vertices on the boundary of T (see
Figure 3.1), we consider the two triangles T1,c and T1,c′′ surrounding T3,c′ . We assume
that there exists 1

2 ≤ C ≤ 2
3 such that

7

96
min(|T1,c|, |T1,c′′ |) >

C

2
|T3,c′ |.

We now prove Lemma 4 in 3D :
Lemma 6. We assume hypothesis H.2 and that T is uniformly regular. There

exist two constants c1 > 0 and c2 > 0 independent of h such that for all u in S(T ),
there exists an element v in M(T ), such that

∫

Γ

(u+ π(u))v ≥ c1‖u‖2L2(Γ), (3.44)
‖v‖L2(Γ) ≤ c2‖u‖L2(Γ), (3.45)

where π denote the orthogonal projection operator from L2(Γ) onto M(T ).
Let u ∈ S(T ), and the associate v ∈M(T ) where v =

∑

a∈V0
u(a)Φ̂a. In order to

prove (3.44), we prove the following lemma:
Lemma 7. We assume hypothesis H.2 and that T is uniformly regular. Then,

there exists 1
2 ≤ C ≤ 2

3 and c > 0 such that, for u ∈ S(T ) and v ∈M(T ) constructed
from u as explained above ((i)-(iii)), we have

∫

Γ

(uv − C

2
(u− v)2) ≥ c

∫

Γ

u2. (3.46)

Proof of Lemma 7: Let us introduce the notation

QΓ :=

∫

Γ

(uv − C

2
(u− v)2).

We have

QΓ =
1

4

∫

Γ

(u+ v)2 − (1 + 2C)(u− v)2.

In order to estimate QΓ, we remark that

QΓ =
∑

T∈T
QT

where

QT =
1

4

∫

T

(u+ v)2 − (1 + 2C)(u− v)2.

We consider the four kinds of triangles introduced above (after hypothesis H.1).
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Inner triangles. On an inner triangle T , u = v so that for all C > 0, we have

QT ≥ c

∫

T

u2

for c ≤ 1.

Triangles having only one vertex on the boundary. Let T1,c be such a triangle (see
Figure 3.1). First notice that we have (remember u(c) = 0)

∫

T1,c

u2 =
|T1,c|
12

(

u(a)2+u(b)2+(u(a)+u(b))2
)

=
|T1,c|
12

(

2u(a)2+2u(b)2+2u(a)u(b)

)

see for example [9] (II.8.4). As for QT1,c
, we have

QT1,c
=

|T1,c|
48

(

(2u(a))2 + (2u(b))2 + (Au(a) +Bu(b))2

+(2u(a) + 2u(b) +Au(a) +Bu(b))2 − 2(1 + 2C)(Au(a) +Bu(b))2
)

. (3.47)

Thus,

QT1,c
=

|T1,c|
48

(

8u(a)2 + 8u(b)2 + 8u(a)u(b) + 4(u(a) + u(b))(Au(a) +Bu(b))

−4C(Au(a) +Bu(b))2
)

.(3.48)

If we take C = 1 in (3.48) and use A+B = 1, we get:

QT1,c
=

|T1,c|
48

(

4u(a)2 + 4u(b)2 + 4u(a)u(b) + 4AB(u(a)− u(b))2 + 4(u(a) + u(b))2
)

≥ 1

2

∫

T1,c

u2.

Hence, for all 0 < C ≤ 1, we have:

QT1,c
≥ 1

2

∫

T1,c

u2.

Therefore,

QT1,c
≥ c

∫

T1,c

u2

for 0 < C ≤ 1 and 0 < c ≤ 1
2 . We shall also use in the sequel the estimate:

QT1,c
≥ |T1,c|

48

(

8u(a)2 + 8u(b)2 + 12u(a)u(b)

)

≥ |T1,c|
7

96
u(b)2. (3.49)
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Triangles having two vertices on the boundary. Let T2,a be such a triangle (see
Figure 3.1). As we will sum over all the triangles of type T2,a, we introduce the
following notations: T2,i−1 = T2,a, T2,i = T2,b, ui = u(a) = v(a), ui+1 = u(b) = v(b)
and vi = v(c), see Figure 3.2.

We consider now a triangle T2,i having two vertices on the boundary of the face
Γ. Let N2 = {i, T2,i has two vertices on the boundary of Γ}. First notice that we
have

∫

T2,i

u2 =
|T2,i|
12

(

2u2i+1

)

.

Boundary of Γ

T2,i−1

T2,i

vi

vi+1

vi−1

ui

ui+1

Fig. 3.2. Notations for the triangles having two vertices on the boundary of Γ (triangle of type 2)

And we have

QT2,i
=

|T2,i|
48

(

4u2i+1 + v2i + v2i+1 + (2ui+1 + vi + vi+1)
2

−(1 + 2C)(v2i + v2i+1 + (vi + vi+1)
2)

)

=
|T2,i|
48

(

8u2i+1 − 4Cv2i − 4Cv2i+1 − 4Cvivi+1 + 4ui+1(vi + vi+1)

)

.

Then,

QT2,i
≥ |T2,i|

48

(

8u2i+1 − 6Cv2i − 6Cv2i+1 + 4ui+1(vi + vi+1)

)

.

Defining Ei := ui+1vi and Fi := ui+1vi+1 (cf. [10] page 11), we have:

QT2,i
≥
∫

T2,i

u2 +
|T2,i|
48

(

−6Cv2i + 4Ei − 6Cv2i+1 + 4Fi

)

.

Now we sum these terms over all the triangles having two vertices on the boundary
of Γ.

∑

i∈N2

QT2,i
≥
∫

∪i∈N2
T2,i

u2 +
∑

i∈N2

|T2,i|
48

(

−6Cv2i + 4Ei − 6Cv2i+1 + 4Fi

)

≥
∫

∪i∈N2
T2,i

u2 +
1

48

∑

i∈N2

(|T2,i|(−6Cv2i + 4Ei) + |T2,i−1|(−6Cv2i + 4Fi−1)).

(3.50)
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The condition (3.43) leads to the inequality

|T2,i|Ei + |T2,i−1|Fi−1 = (|T2,i|+ |T2,i−1|)v2i
(see equation after (3.19) in [10]), so that we get:

|T2,i|(−6Cv2i + 4Ei) + |T2,i−1|(−6Cv2i + 4Fi−1) = (|T2,i|+ |T2,i−1|)(4− 6C)v2i .

This term is positive for C ≤ 2/3. Hence for 0 < C ≤ 2/3, inequality (3.50) becomes:

∑

i∈N2

QT2,i
≥
∫

∪i∈N2
T2,i

u2.

Therefore, for 0 < C ≤ 2/3 and 0 < c ≤ 1,

∑

i∈N2

QT2,i
≥ c

∫

∪i∈N2
T2,i

u2.

Triangles having all three vertices on the boundary. Let T3,c′ be such a triangle
(see Figure 3.1). We have to control:

QT
3,c′

= −C
2
|T3,c′ ||u(b)|2

by the integrals over the two triangles T1,c and T1,c′′ surrounding T3,c′ . This can be
achieved using the assumption H.2 and using that from (3.49), we have

QT1,c∪T
1,c′′

≥ min(|T1,c|, |T1,c′′ |)u(b)2
7

48
.

In conclusion, we have that (3.46) holds with c = 1/4 for a constant C, 1
2 ≤ C ≤ 2

3 .

Proof of Lemma 6: Using the uniform regularity of T , it is easy to check (3.45).
Using the definition of π, as in (2.8), it is straightforward to derive

∫

Γ

(u+ π(u))v =

∫

Γ

uv +

∫

Γ

(π(u))2 +

∫

Γ

π(u)(v − u).

Then, using the relation

π(u)(v − u) ≥ −(π(u))2 − 1

4
(v − u)2

leads to
∫

Γ

(u+ π(u))v ≥
∫

Γ

uv − 1

4

∫

Γ

(v − u)2.

Thus, for C ≥ 1
2 , we have

∫

Γ

(u+ π(u))v ≥
∫

Γ

uv − C

2

∫

Γ

(v − u)2.

Then, using (3.46), we obtain (3.44) which ends the proof of Lemma 6.

Proof of Lemma 5 in 3D: Let p̄kℓh be the unique element of M(T ) defined as
follows :
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1. p̄kℓh is a piecewise linear finite element on T
2. for all interior nodes a, p̄kℓh(a) := pk,ℓ(a)
3. for all boundary nodes c, by assumption we have two situations:

• c is connected to two interior nodes denoted by a and b.
Then, p̄kℓh(c) := Apk,ℓ(a) +Bpk,ℓ(b) where

A+B = 1 and |T2,b|A = |T2,a|B

where T2,a (resp. T2,b) denote the adjacent triangle to abc having a
(resp. b) as a vertex and its two others vertices on ∂V.

• c is not connected to any interior point. We consider the triangle adja-
cent to the triangle to which c belongs to. This triangle has one interior
node denoted by b. Then, we define p̄kℓh(b) := pk,ℓ(b).

Like for the proof in 2D, we introduce the best approximation p1kℓh of pk,ℓ =
∂uk

∂nk
over

Γ in M(T ). Then, we have

‖p1kℓh − pk,ℓ‖2L2(Γ) ≤ ‖p̄kℓh − pk,ℓ‖2L2(Γ).

The right-hand side in the previous inequality can be written in the form

‖p̄kℓh − pk,ℓ‖2L2(Γ) =
∑

T∈T
RT (3.51)

where

RT =

∫

T

(p̄kℓh − pk,ℓ)
2dx.

We consider again the four kinds of triangles introduced above (after hypothesis H.1).
Inner triangles. On an inner triangle T , p̄kℓh =

∑

a∈V∩T pk,ℓ(a)Φa is the P1 finite
element interpolation of pk,ℓ and we use Deny-Lions theorem :

RT ≤ ch3‖pk,ℓ‖2
H

3

2 (T )
. (3.52)

Triangles having only one vertex on the boundary. Let T1,c be a triangle with
only one vertex on the boundary (see Figure 3.1). Let c be the vertex of T1,c on ∂V,
and a and b the two vertices of T1,c which are interior nodes. Then, for pk,ℓ ∈ P0(T1,c)
we have p̄kℓh = pk,ℓ. For a triangle (or a finite union of triangles) σ ⊂ T , we need to
introduce the space L2,p(σ) of functions that are L2 in the tangential direction to ∂Γ
and Lp in the normal direction to ∂Γ, where ∂Γ is the boundary of Γ. Then, using
Deny-Lions theorem, we have

RT1,c
≤ ch3−

2

p ‖∇pk,ℓ‖L2,p(T1,c). (3.53)

Triangles having two vertices on the boundary. Let T2,b be a triangle with two
vertices on the boundary of the face Γ (see Figure 3.1), T1,c and T1,c′′ the two triangles
surrounding T2,b. We consider p̄kℓh on the polygon σ2 := T2,b ∪ T1,c ∪ T1,c′′ . Then,
for pk,ℓ ∈ P0(σ2) we have p̄kℓh = pk,ℓ. Using a piecewise affine transformation and
Deny-Lions theorem, we have

RT2,b
≤
∫

σa2

(p̄kℓh − pk,ℓ)
2dx ≤ ch3−

2

p ‖∇pk,ℓ‖L2,p(σa2
). (3.54)
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Triangles having all three vertices on the boundary. Let T3,c′ be such a triangle,
and let T2,b be the triangle adjacent to T3,c′ as on Figure 3.1. Let T1,c and T1,c′′ be
the two triangles surrounding T2,b. We consider p̄kℓh on the polygon σ3 := T3,c′ ∪
T2,b ∪ T1,c ∪ T1,c′′ . Then, for pk,ℓ ∈ P0(σ3), we have p̄kℓh = pk,ℓ. Using a piecewise
affine transformation and Deny-Lions theorem, we obtain

RT
3,c′

≤
∫

σ3

(p̄kℓh − pk,ℓ)
2dxch3−

2

p ‖∇pk,ℓ‖L2,p(σa3
). (3.55)

We proceed like for the proof of Lemma 5 in 2D and sum up the contribution (3.52)
with those derived from (3.53), (3.54) and (3.55). We obtain

‖p̄kℓh − pk,ℓ‖2L2(Γ) ≤ ch3‖pk,ℓ‖2
H

3

2 (Γ)
+ ch3−

2

p p2‖∇pk,ℓ‖2
H

1

2 (Γ)
.

Then, taking p = −log(h), we get

‖p̄kℓh − pk,ℓ‖2L2(Γ) ≤ c(h3 + h3(log(h))2)‖pk,ℓ‖2
H

3

2 (Γ)
,

which ends the proof of Lemma 5 in 3D.

4. Numerical results. We introduce the discrete algorithm : let (unh,k, p
n
h,k) ∈

Xk
h × W̃ k

h be a discrete approximation of (u, p) in Ωk at step n. Then, (un+1
h,k , p

n+1
h,k )

is the solution in Xk
h × W̃ k

h of

∫

Ωk

(

∇un+1
h,k ∇vh,k + un+1

h,k vh,k

)

dx−
∫

∂Ωk

pn+1
h,k vh,kds =

∫

Ωk

fkvh,kdx, ∀vh,k ∈ Xk
h , (4.1)

∫

Γk,ℓ

(pn+1
h,k + αun+1

h,k )ψh,k,ℓ =

∫

Γk,ℓ

(−pnh,ℓ + αunh,ℓ)ψh,k,ℓ, ∀ψh,k,ℓ ∈ W̃ k,ℓ
h . (4.2)

The convergence analysis of this iterative scheme is the subject of another paper.
We consider the problem

(Id−∆)u(x, y) = x3(y2 − 2)− 6xy2 + (1 + x2 + y2)sin(xy), (x, y) ∈ Ω,

u(x, y) = x3y2 + sin(xy), (x, y) ∈ ∂Ω,

with exact solution u(x, y) = x3y2 + sin(xy). In section 4.3 we consider the domain
Ω = (−1, 1)× (0, 2π), otherwise the domain is the unit square Ω = (0, 1)× (0, 1).

We decompose Ω into non-overlapping subdomains with meshes generated in an
independent manner. The computed solution is the solution at convergence of the
discrete algorithm (4.1)-(4.2), with a stopping criterion on the jumps of interface con-
ditions that must be smaller than 10−8.

Remark 2. In the implementation of the method, the main difficulty lies in
computing projections between non matching grids. In [17] we present an efficient
algorithm in two dimensions to perform the required projections between arbitrary
grids, in the same spirit as in [18] for finite volume discretization with projections on
piecewise constant functions.

4.1. Choice of the Robin parameter α. In our simulations the Robin pa-
rameter is either an arbitrary constant or is obtained by minimizing the convergence
factor (depending on the mesh size in that case). In the conforming two subdomains
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case, with constant mesh size h and an interface of length L, the optimal theoretical
value of α which minimizes the convergence factor at the continuous level is (see cite-
Gander06):

αopt = [((
π

L
)2 + 1)((

π

h
)2 + 1)]

1

4 .

In the non-conforming case, the mesh size is different for each side of the interface.
We consider the following values : αmin = [(( πL )

2 + 1)(( π
hmin

)2 + 1)]
1

4 , αmean =

[(( πL )
2 + 1)(( π

hmean
)2 + 1)]

1

4 , αmax = [(( πL )
2 + 1)(( π

hmax
)2 + 1)]

1

4 , where hmin, hmean

and hmax stands respectively for the smallest, meanest or highest step size on the
interface.

4.2. H1 error between the continuous and discrete solutions. In this
part, we compare the relative H1 error in the non-conforming case to the error ob-
tained on a uniform conforming grid.

Definition of the relative H1 error : Let K be the number of subdomains. Let
ui = u|Ωi , 1 ≤ i ≤ K (where u is the continuous solution), and let (uh)i = (uh)|Ωi

where uh is the solution of the discrete problem (2.10). Now, let Eex = ‖u‖∗ and let

Ei = ‖(uh)i − ui‖H1(Ωi), 1 ≤ i ≤ K. Let E = (
∑K

i=1E
2
i )

1/2. The relative H1 error is
then E/Eex.
We consider four initial meshes : the two uniform conforming meshes (mesh 1 and
4) of Figure 4.1, and the two non-conforming meshes (mesh 2 and 3) of Figure 4.2.
In the non-conforming case, the unit square is decomposed into four non-overlapping
subdomains numbered as in Figure 4.2 on the left.
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Fig. 4.1. Uniform conforming meshes : mesh 1 (on the left), and mesh 4 (on the right)
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Fig. 4.2. Domain decomposition (on the left), and non-conforming meshes: mesh 2 (on the
middle), and mesh 3 (on the right)
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Figure 4.3 shows the relative H1 error versus the number of refinement for these
four meshes, and the mesh size h versus the number of refinement, in logarithmic
scale. At each refinement, the mesh size is divided by two. The results of Figure 4.3
show that the relative H1 error tends to zero at the same rate than the mesh size,
and this fits with the theoretical error estimates of Theorem 5. On the other hand,
we observe that the two curves corresponding to the non-conforming meshes (mesh 2
and mesh 3) are between the curves of the conforming meshes (mesh 1 and mesh 4).
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Fig. 4.3. Relative H1 error versus the number of refinements for the initial meshes : mesh 1,
(diamond line), mesh 2 (solid line), mesh 3 (dashed line), and mesh 4 (star line). The triangle line
is the mesh size h versus the number of refinements, in logarithmic scale

The relative H1 error for mesh 2 is smaller than the one corresponding to mesh
3, and this is because mesh 2 is more refined than mesh 3 in subdomain Ω4, where
the solution steeply varies. More precisely, let us compare for mesh 2, the relative
H1 error in the domain Ω1 ∪ Ω2 ∪ Ω3 to the relative H1 error in the subdomain Ω4

(which is the subdomain where the solution steeply varies). This comparison is done
in Table 4.1.

Refinement (E2
1 + E2

2 + E2
3)

1/2/Eex E4/Eex E/Eex

0 1.45e-01 1.46e-01 2.06e-01
1 7.17e-02 7.02e-02 1.004e-01
2 3.59e-02 3.49e-02 5.01e-02
3 1.79e-02 1.73e-02 2.49e-02
4 8.73e-03 8.46e-03 1.21e-02

Table 4.1

Comparison, in the case of mesh 2, for different refinements (column one), of the relative H1

error in the domain composed by subdomains Ω1, Ω2 and Ω3 (column 2) to the relative H1 error
in the subdomain Ω4 (column 3). The fourth column is the relative H1 error in the whole domain.

We observe that, as expected, the relative H1 error in the domain composed by
subdomains Ω1, Ω2 and Ω3 (second column of Table 4.1) is balanced with the relative
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H1 error in the subdomain Ω4 (third column of Table 4.1). Indeed, the mesh 2 is
more refined in the subdomain Ω4 where the solution steeply varies.

Refinement (E2
1 + E2

2 + E2
3)

1/2/Eex E4/Eex E/Eex

0 1.26e-01 2.04e-01 2.40e-01
1 5.57e-02 1.04e-01 1.18e-01
2 2.74e-02 5.22e-02 5.90e-02
3 1.36e-02 2.59e-02 2.93e-02
4 6.64e-03 1.26e-02 1.43e-02

Table 4.2

Comparison, in the case of mesh 3, for different refinements (column one), of the H1 relative
error in the domain composed by subdomains Ω1, Ω2 and Ω3 (column 2) to the H1 relative error
in the subdomain Ω4 (column 3). The fourth column is the H1 relative error in the whole domain.

Let us now do the same comparison in the case of mesh 3. This mesh is coarser in
the subdomain Ω4 where the solution steeply varies. In Table 4.2, we observe that as
expected, the H1 relative error in the domain composed by subdomains Ω1, Ω2 and
Ω3 (second column of Table 4.2) is smaller (almost half) than the H1 relative error in
the subdomain Ω4 (third column of Table 4.2). That one is close to the H1 relative
error in the whole domain (fourth column of Table 4.2).

4.3. Error estimates for a solution with minimal regularity. In this sec-
tion we propose an example where the assumptions of Theorem 4 hold, but not the
one of Theorem 5, to illustrate the optimality of Theorem 4 in the minimal regular
case. The first difficulty is to construct such a solution. We propose, for J ≥ 1 a
given integer, the solution uJ defined on Ω = (−1, 1)× (0, 2π) by

uJ(x, y) =

{

φJ(2x, y)− φJ(x, y), x ≥ 0
−(φJ(−2x, y)− φJ(−x, y)), x ≤ 0

,

with

φJ(x, y) =

J
∑

j=1

sin(jy)
sinh(j(x− 1))

j2 cosh(j)
.

The interface Γ is located at x = 0. For J sufficiently high, tidious computations
show that there exists c > 0 such that

‖∂uJ
∂x

‖2
H

1

2 (Γ)
≤ c log(J), ‖∂uJ

∂x
‖2
H

3

2 (Γ)
≤ c J2, ‖uJ‖2H2(Ω) ≤ c log(J).

Therefore, for J sufficiently high, from Theorem 4 and Theorem 5, we have

‖uJ,h − uJ‖∗ ≤ ch
√

log(J) + cmin(
1

α

√

log(J),
h

α
| log(h)|J). (4.3)

Thus, considering the case

J =
c1

h
3

2

, α =
c2
hθ
, (4.4)

with θ > 0 given, the assumptions of Theorem 4 hold uniformly in J . This is not
the case for the assumptions of Theorem 5, and from (4.3), there exists a constant c
independent of J and h such that

‖uJ,h − uJ‖∗ ≤ ch
√

−log(h) + cmin(hθ
√

−log(h), hθ− 1

2 |log(h)|). (4.5)
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Remark 3. For numerical simulations, c1 and c2 must be tuned carefully. First,
the frequencies are restricted to J ≤ π

hI
where hI is the mesh size over the interface.

From the definition of J in (4.4), the condition hI ≥ ( c1π )2 ensures that J ≤ π
hI
.

Then, on one hand c2 must be choosen not too small so that, in the right-hand side
of (4.3), the second term does not become too small than the first term. On the other
hand c2 must be small enough to observe the error estimates.

In order to illustrate the error estimate (4.5), we consider the non-conforming
meshes represented on Figure 4.4. Then the meshes are refined four times, by cutting
each triangle into four smaller ones (e.g. the mesh size is divided by 2 at each refine-
ment). To compute the H1 error, we consider a finest grid obtained from the initial
one with the mesh size divided five times by a factor 2 (with 744401 vertices in domain
1 and 1090065 vertices in domain 2). The non-conforming solutions are interpolated
on the finest grid to compute the error. We take c1 = 0.08 and c2 = 1

1.2 105 . We start
with J = 1 on the initial mesh. Then the values of J at each refinement are 2, 7, 22
and 63. The computations of the H1 norms are done on a grid obtained from the
finest one with the mesh size divided by a factor 2. The non-conforming converged
solution, at each refinement, is such that the residual is smaller than 10−7.
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Fig. 4.4. Initial non-conforming meshes: global meshes (left) with a zoom at corners (right)

Figure 4.5 (left) shows the relative H1 error versus the mesh size. We observe that
the error tends to zero at the same rate than hθ, for θ = 1

2 (star curve). This result
fits with (4.5) and thus illustrates the optimality of the theoretical error estimates
of Theorem 4. Figure 4.5 (right) illustrates the dependance of the error versus the
Robin parameter α defined by (4.4). We represent on the interface the difference of
the exact solution and the computed solution in absolute value, after three refinements
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(i.e. h = 0.0233), for θ = 1
4 and for θ = 1

2 . We observe that decreasing θ increases
the error as expected.
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4.4. Convergence : Choice of the Robin parameter. Let us now study
the convergence speed to reach the discrete solution, for different values of the Robin
parameter α, which is taken constant on the interfaces. The unit square is decomposed
into four non-overlapping subdomains with non-conforming meshes (with 189, 81, 45
and 153 nodes respectively) generated as shown in Figure 4.6. The Schwarz algorithm
can be interpreted as a Jacobi algorithm applied to an interface problem [34]. In order
to accelerate the convergence, we can replace the Jacobi algorithm by a Gmres [35]
algorithm.
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Fig. 4.6. Domain decomposition in 4 subdomains with non-conforming grids

On Figure 4.7 we represent the relativeH1 error between the discrete Schwarz (left
part) and Gmres (right part) converged solution and the iterate solution, for different
values of the Robin parameter α. We observe that the optimal numerical value of
the Robin parameter is close to αmean and near αmin and αmax defined in Section
4.1. Moreover the convergence is accelerated by a factor 2 for Gmres, compared to
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Schwarz algorithm, and the Gmres algorithm is less sensitive to the choice of the
Robin parameter.

0 100 200 300 400 500 600 700
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iterations

er
ro

r

 

 

1
10.671 (α

max
)

15.347 (α
mean

)

28.786 (α
min

)

40

0 5 10 15 20 25 30 35 40
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iterations

er
ro

r

 

 

1
10.671 (α

max
)

15.347 (α
mean

)

28.786 (α
min

)

40

Fig. 4.7. Relative H1 error between the discrete Schwarz (left part) and Gmres (right part)
converged solution and the iterate solution, for different values of the Robin parameter α

4.5. Conclusions of the numerical results. The numerical results on the
relative H1 error between the continuous and discrete solutions correspond to the
theoretical error estimates of Theorems 4 and 5. As seems natural, we also observe
that, for a fixed number of mesh points, the relative H1 error between the continuous
and discrete solutions is smaller for a mesh refined in the region of the domain where
the solution steeply varies, than for a mesh which is coarser in that region. Note
finally that, in term of convergence speed to reach the discrete solution, the Robin
parameter α must depend of the mesh size, and our simulations show that α = αmean

is close to the optimal numerical value.

Appendix A. Inf-sup condition. The purpose of this appendix is to show that
for Lemma 2, the proof of [3] can be extended to the 3D situation. Indeed the main
ingredients required for the extensions have been proven in [10]. Let us first recall
a standard stability result in higher norms of the L2 projection operator π̄k,ℓ from

L2(Γk,ℓ) onto Yk,ℓ
h ∩H1

0 (Γ
k,ℓ) orthogonal to W̃ k,ℓ

h .
Lemma 8. Making the hypothesis that the triangulation T k

h is uniformly regular,
there exists a constant c > 0 such that

∀v ∈ H
1

2

00(Γ
k,ℓ), ‖π̄k,ℓv‖

H
1

2

00
(Γk,ℓ)

≤ c‖v‖
H

1

2

00
(Γk,ℓ)

.

Proof of Lemma 8: From (3.46) we deduce a uniform inf-sup condition between

Yk,ℓ
h ∩H1

0 (Γ
k,ℓ) and W̃ k,ℓ

h in L2(Γk,ℓ). It results that the projection operator π̄k,ℓ is
stable in L2(Γk,ℓ) and thus there exists a constant c1 > 0 such that

∀v ∈ H
1

2

00(Γ
k,ℓ), ‖v − π̄k,ℓv‖L2(Γk,ℓ) ≤ c1h

1

2 ‖v‖
H

1

2

00
(Γk,ℓ)

.

Let π̃k,ℓ denote the orthogonal projection operator fromH
1

2

00(Γ
k,ℓ) onto Yk,ℓ

h ∩H1
0 (Γ

k,ℓ)

for H
1

2

00(Γ
k,ℓ) inner product. Then, for all v in H

1

2

00(Γ
k,ℓ),

‖π̄k,ℓv‖
H

1

2

00
(Γk,ℓ)

≤ ‖π̃k,ℓv‖
H

1

2

00
(Γk,ℓ)

+ ‖π̄k,ℓv − π̃k,ℓv‖
H

1

2

00
(Γk,ℓ)

.
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Then, with an inverse inequality, there exists a constant c2 > 0 such that

‖π̄k,ℓv‖
H

1

2

00
(Γk,ℓ)

≤ ‖v‖
H

1

2

00
(Γk,ℓ)

+ c2h
− 1

2 ‖π̄k,ℓv − π̃k,ℓv‖L2(Γk,ℓ).

Thus,

‖π̄k,ℓv‖
H

1

2

00
(Γk,ℓ)

≤ ‖v‖
H

1

2

00
(Γk,ℓ)

+ c2h
− 1

2 c′h
1

2 ‖v‖
H

1

2

00
(Γk,ℓ)

,

and then, with c = 1 + c′c2 ,we have

‖π̄k,ℓv‖
H

1

2

00
(Γk,ℓ)

≤ c‖v‖
H

1

2

00
(Γk,ℓ)

, ∀v ∈ H
1

2

00(Γ
k,ℓ),

which ends the proof of Lemma 8.

Proof of Lemma 2: From the definition of the (H
1/2
00 (Γk,ℓ))′ norm, for any ph,k,ℓ

in W̃ k,ℓ
h , there exists an element wk,ℓ in H

1

2

00(Γ
k,ℓ) such that

∫

Γk,ℓ

ph,k,ℓw
k,ℓ =

(H
1/2
00

(Γk,ℓ))′
< ph,k,ℓ, w

k,ℓ >
H

1/2
00

(Γk,ℓ)
= ‖ph,k,ℓ‖

(H
1

2

00
(Γk,ℓ))′

‖wk,ℓ‖
H

1

2

00
(Γk,ℓ)

,

and wk,ℓ can be chosen such that

‖wk,ℓ‖
H

1

2

00
(Γk,ℓ)

= ‖ph,k,ℓ‖
(H

1

2

00
(Γk,ℓ))′

.

We apply now the projection operator on wk,ℓ from Lemma 8. We derive that
π̄k,ℓ(w

k,ℓ) = wk,ℓ
h ∈ Yk,ℓ

h ∩H1
0 (Γ

k,ℓ) and

‖wk,ℓ
h ‖

H
1

2

00
(Γk,ℓ)

≤ c‖ph,k,ℓ‖
(H

1

2

00
(Γk,ℓ))′

,

and
∫

Γk,ℓ

ph,k,ℓw
k,ℓ
h =

∫

Γk,ℓ

ph,k,ℓw
k,ℓ = ‖ph,k,ℓ‖2

(H
1

2

00
(Γk,ℓ))′

.

It remains to lift wk,ℓ
h over Ωk, this is done by prolongating wk,ℓ

h by zero over ∂Ωk\Γk,ℓ

and lifting this element of H
1

2 (∂Ωk) over Ωk as proposed in [6], which ends the proof
of Lemma 2.

Appendix B. The authors would like to thank Martin J. Gander for his help
in the implementation of the method, especially for his development of an optimal
algorithm to compute projections between arbitrary grids in two dimensions, that we
used for our numerical results.
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[26] C. Japhet, Méthode de décomposition de domaine et conditions aux limites artificielles en
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