GTIA

Algèbre des matrices génériques de taille 2

8 Avril 2013

Matrices génériques

Dans l'exposé, on désigne par

- *k* un corps commutatif
- $n \in \mathbb{N}^*$ la taille des matrices (carrées)
- $r \in \mathbb{N}^*$ le nombre de matrices

Matrices génériques

Dans l'exposé, on désigne par

- k un corps commutatif
- $n \in \mathbb{N}^*$ la taille des matrices (carrées)
- $r \in \mathbb{N}^*$ le nombre de matrices

Pour $1 \leqslant i,j \leqslant n$ et $1 \leqslant \ell \leqslant r$, on désigne par $x = (x_{ij}^{(\ell)})_{i,j,\ell}$ une famille d'indéterminées sur k et

$$X_{1} = \begin{bmatrix} x_{11}^{(1)} & \cdots & x_{1n}^{(1)} \\ \vdots & & \vdots \\ x_{n1}^{(1)} & \cdots & x_{nn}^{(1)} \end{bmatrix} \qquad \dots \qquad X_{r} = \begin{bmatrix} x_{11}^{(r)} & \cdots & x_{1n}^{(r)} \\ \vdots & & \vdots \\ x_{n1}^{(r)} & \cdots & x_{nn}^{(r)} \end{bmatrix}$$

Matrices génériques

Dans l'exposé, on désigne par

- k un corps commutatif
- $n \in \mathbb{N}^*$ la taille des matrices (carrées)
- $r \in \mathbb{N}^*$ le nombre de matrices

Pour $1 \leqslant i,j \leqslant n$ et $1 \leqslant \ell \leqslant r$, on désigne par $x = (x_{ij}^{(\ell)})_{i,j,\ell}$ une famille d'indéterminées sur k et

$$X_1 = \begin{bmatrix} x_{11}^{(1)} & \cdots & x_{1n}^{(1)} \\ \vdots & & \vdots \\ x_{n1}^{(1)} & \cdots & x_{nn}^{(1)} \end{bmatrix} \qquad \dots \qquad X_r = \begin{bmatrix} x_{11}^{(r)} & \cdots & x_{1n}^{(r)} \\ \vdots & & \vdots \\ x_{n1}^{(r)} & \cdots & x_{nn}^{(r)} \end{bmatrix}$$

On note $R(n,r) = \langle X_1, \dots, X_r \rangle_{k-\text{alg.}} \subset M_n(k[x])$.

On désigne par

- $C(n,r) = \langle \text{coeff du pol. carac. des } u \in R(n,r) \rangle_{k-\text{alg.}} \subset k[x].$
- $\overline{R}(n,r) = \langle C(n,r), R(n,r) \rangle_{k-\text{alg.}}$

On désigne par

- $C(n,r) = \langle \text{coeff du pol. carac. des } u \in R(n,r) \rangle_{k-\text{alg.}} \subset k[x].$
- $\overline{R}(n,r) = \langle C(n,r), R(n,r) \rangle_{k-\text{alg.}}$ clôture caractéristique de R

On désigne par

- $C(n,r) = \langle \text{coeff du pol. carac. des } u \in R(n,r) \rangle_{k-\text{alg.}} \subset k[x].$
- $\overline{R}(n,r) = \langle C(n,r), R(n,r) \rangle_{k-\text{alg.}}$ clôture caractéristique de R

Le cas
$$n = r = 2$$
, on pose $C = C(2,2)$, $R = R(2,2)$ et $\overline{R} = \overline{R}(2,2)$.

On désigne par

- $C(n,r) = \langle \text{coeff du pol. carac. des } u \in R(n,r) \rangle_{k-\text{alg.}} \subset k[x].$
- $\overline{R}(n,r) = \langle C(n,r), R(n,r) \rangle_{k-\mathsf{alg.}}$ clôture caractéristique de R

Le cas n = r = 2, on pose C = C(2,2), R = R(2,2) et $\overline{R} = \overline{R}(2,2)$.

Proposition - Formanek-Halpin-Li—Formanek-Schofield.

- C est un anneau de polynômes en 5 indéterminées
- \overline{R} est libre de rang 4 sur C
- R est la somme amalgamée de deux anneaux de polynômes en 4 indéterminées en-dessous d'un anneau de polynômes en 4 indéterminées d'indice 2 dans chacun des facteurs.
- Si $G \subset \operatorname{SL}_2(k)$ est fini et $\operatorname{car} k \nmid |G|$ et G agit sur R alors R^G est une k-algèbre de type fini.

Notation

On note S = k[a, b, c, d, e, f, g, h] une algèbre de polynômes en 8 indéterminées et

$$X_1 = X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 et $X_2 = Y = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$.

Le cas n=2 et r=1

Proposition On a

- R(2,1) = k[X] est une algèbre de polynômes en une indéterminée.
- ② C(2,1) = k[tr(X), det(X)] est une algèbre de polynômes en deux indéterminées.
- **③** $\overline{R}(2,1) = k[tr(X), X]$ est une algèbre de polynômes en deux indéterminées.
- $\overline{R}(2,1)$ est C(2,1)-module libre de rang 2 et de base (1,X).

1 On fait b = c = d = 0.

- **1** On fait b = c = d = 0.
- ② On fait d = 0 et on obtient $k[tr(X), det(X)] \mapsto k[a, -bc]$.

- **1** On fait b = c = d = 0.
- ② On fait d=0 et on obtient $k[\operatorname{tr}(X), \det(X)] \mapsto k[a, -bc]$. Soit $P \in k[T]$. On doit montrer que $\det(P(X))$ et $\operatorname{tr}(P(X))$ sont des polynômes en $\det(X)$ et $\operatorname{tr}(X)$.

- **1** On fait b = c = d = 0.
- ② On fait d=0 et on obtient $k[\operatorname{tr}(X), \operatorname{det}(X)] \mapsto k[a, -bc]$. Soit $P \in k[T]$. On doit montrer que $\operatorname{det}(P(X))$ et $\operatorname{tr}(P(X))$ sont des polynômes en $\operatorname{det}(X)$ et $\operatorname{tr}(X)$. Soient λ_1 et λ_2 les valeurs propres de X.

- **1** On fait b = c = d = 0.
- ② On fait d=0 et on obtient $k[\operatorname{tr}(X), \operatorname{det}(X)] \mapsto k[a, -bc]$. Soit $P \in k[T]$. On doit montrer que $\operatorname{det}(P(X))$ et $\operatorname{tr}(P(X))$ sont des polynômes en $\operatorname{det}(X)$ et $\operatorname{tr}(X)$. Soient λ_1 et λ_2 les valeurs propres de X. On a $\operatorname{det}(P(X)) = P(\lambda_1)P(\lambda_2)$.

- **1** On fait b = c = d = 0.
- ② On fait d=0 et on obtient $k[\operatorname{tr}(X), \det(X)] \mapsto k[a, -bc]$. Soit $P \in k[T]$. On doit montrer que $\det(P(X))$ et $\operatorname{tr}(P(X))$ sont des polynômes en $\det(X)$ et $\operatorname{tr}(X)$. Soient λ_1 et λ_2 les valeurs propres de X. On a $\det(P(X)) = P(\lambda_1)P(\lambda_2)$. En posant $P = \sum a_i T^i$, on obtient

$$\det(P(X)) = \sum_{i < j} a_i a_j (\lambda_1^i \lambda_2^j + \lambda_2^i \lambda_1^j) + \sum_i a_i^2 \lambda_1^i \lambda_2^i$$

- **1** On fait b = c = d = 0.
- ② On fait d=0 et on obtient $k[\operatorname{tr}(X), \det(X)] \mapsto k[a, -bc]$. Soit $P \in k[T]$. On doit montrer que $\det(P(X))$ et $\operatorname{tr}(P(X))$ sont des polynômes en $\det(X)$ et $\operatorname{tr}(X)$. Soient λ_1 et λ_2 les valeurs propres de X. On a $\det(P(X)) = P(\lambda_1)P(\lambda_2)$. En posant $P = \sum a_i T^i$, on obtient

$$\det(P(X)) = \sum_{i < j} a_i a_j (\lambda_1^i \lambda_2^j + \lambda_2^i \lambda_1^j) + \sum_i a_i^2 \lambda_1^i \lambda_2^i$$

soit
$$\det(P(X)) = \sum_{i < j} a_i a_j \det(X)^i \operatorname{tr}(X^{j-i}) + \sum_i a_i^2 \det(X)^i$$

- **1** On fait b = c = d = 0.
- ② On fait d=0 et on obtient $k[\operatorname{tr}(X), \det(X)] \mapsto k[a, -bc]$. Soit $P \in k[T]$. On doit montrer que $\det(P(X))$ et $\operatorname{tr}(P(X))$ sont des polynômes en $\det(X)$ et $\operatorname{tr}(X)$. Soient λ_1 et λ_2 les valeurs propres de X. On a $\det(P(X)) = P(\lambda_1)P(\lambda_2)$. En posant $P = \sum a_i T^i$, on obtient

$$\det(P(X)) = \sum_{i < j} a_i a_j (\lambda_1^i \lambda_2^j + \lambda_2^i \lambda_1^j) + \sum_i a_i^2 \lambda_1^i \lambda_2^i$$

soit
$$\det(P(X)) = \sum_{i < j} a_i a_j \det(X)^i \operatorname{tr}(X^{j-i}) + \sum_i a_i^2 \det(X)^i$$

Il reste donc à montrer que $\operatorname{tr}(X^j) \in k[\operatorname{tr}(X), \operatorname{det}(X)]$ pour tout j

- **1** On fait b = c = d = 0.
- ② On fait d=0 et on obtient $k[\operatorname{tr}(X), \det(X)] \mapsto k[a, -bc]$. Soit $P \in k[T]$. On doit montrer que $\det(P(X))$ et $\operatorname{tr}(P(X))$ sont des polynômes en $\det(X)$ et $\operatorname{tr}(X)$. Soient λ_1 et λ_2 les valeurs propres de X. On a $\det(P(X)) = P(\lambda_1)P(\lambda_2)$. En posant $P = \sum a_i T^i$, on obtient

$$\det(P(X)) = \sum_{i < j} a_i a_j (\lambda_1^i \lambda_2^j + \lambda_2^i \lambda_1^j) + \sum_i a_i^2 \lambda_1^i \lambda_2^i$$

soit
$$\det(P(X)) = \sum_{i < j} a_i a_j \det(X)^i \operatorname{tr}(X^{j-i}) + \sum_i a_i^2 \det(X)^i$$

Il reste donc à montrer que $\operatorname{tr}(X^j) \in k[\operatorname{tr}(X), \operatorname{det}(X)]$ pour tout j ce qui s'obtient par récurrence en prenant la trace de la relation de Cayley-Hamilton multipliée par X^{i-1} .

$$\operatorname{tr}(X^{i+1}) = \operatorname{tr}(X^{i})\operatorname{tr}(X) - \operatorname{det}(X)\operatorname{tr}(X^{i-1}).$$

3 Par le théorème de Cayley-Hamilton, on a $det(X) = -X^2 + tr(X)X \in k[X, tr(X)].$

③ Par le théorème de Cayley-Hamilton, on a $\det(X) = -X^2 + \operatorname{tr}(X)X \in k[X,\operatorname{tr}(X)]. \text{ Ainsi } \overline{R}(2,1) = k[X,\operatorname{tr}(X)].$

③ Par le théorème de Cayley-Hamilton, on a $\det(X) = -X^2 + \operatorname{tr}(X)X \in k[X,\operatorname{tr}(X)]$. Ainsi $\overline{R}(2,1) = k[X,\operatorname{tr}(X)]$. De plus, en faisant b=c=0, l'image de $P(X,\operatorname{tr}(X))$ est

$$\begin{bmatrix} P(a, a+d) & \\ & P(d, a+d) \end{bmatrix}$$

③ Par le théorème de Cayley-Hamilton, on a $\det(X) = -X^2 + \operatorname{tr}(X)X \in k[X,\operatorname{tr}(X)]$. Ainsi $\overline{R}(2,1) = k[X,\operatorname{tr}(X)]$. De plus, en faisant b=c=0, l'image de $P(X,\operatorname{tr}(X))$ est

$$\begin{bmatrix} P(a, a+d) & \\ & P(d, a+d) \end{bmatrix}$$

qui est non nulle si P l'est.

③ Par le théorème de Cayley-Hamilton, on a $\det(X) = -X^2 + \operatorname{tr}(X)X \in k[X,\operatorname{tr}(X)]. \text{ Ainsi } \overline{R}(2,1) = k[X,\operatorname{tr}(X)]. \text{ De plus, en faisant } b = c = 0, \text{ l'image de } P(X,\operatorname{tr}(X)) \text{ est}$

$$\begin{bmatrix} P(a, a+d) & \\ & P(d, a+d) \end{bmatrix}$$

qui est non nulle si P l'est.

lacktriangle Le théorème de Cayley-Hamilton X est entier sur C(2,1)

③ Par le théorème de Cayley-Hamilton, on a $\det(X) = -X^2 + \operatorname{tr}(X)X \in k[X,\operatorname{tr}(X)]$. Ainsi $\overline{R}(2,1) = k[X,\operatorname{tr}(X)]$. De plus, en faisant b=c=0, l'image de $P(X,\operatorname{tr}(X))$ est

$$\begin{bmatrix} P(a, a+d) & \\ & P(d, a+d) \end{bmatrix}$$

qui est non nulle si P l'est.

4 Le théorème de Cayley-Hamilton X est entier sur C(2,1) et donc (1,X) engendre $\overline{R}(2,1)$ en tant que C(2,1)-module.

③ Par le théorème de Cayley-Hamilton, on a $\det(X) = -X^2 + \operatorname{tr}(X)X \in k[X,\operatorname{tr}(X)]$. Ainsi $\overline{R}(2,1) = k[X,\operatorname{tr}(X)]$. De plus, en faisant b=c=0, l'image de $P(X,\operatorname{tr}(X))$ est

$$\begin{bmatrix} P(a, a+d) & \\ & P(d, a+d) \end{bmatrix}$$

qui est non nulle si P l'est.

4 Le théorème de Cayley-Hamilton X est entier sur C(2,1) et donc (1,X) engendre $\overline{R}(2,1)$ en tant que C(2,1)-module. Par ailleurs, si a+bX=0 avec $a,b\in C(2,1)$ alors $X\in \operatorname{Frac}(C(2,1))$. NON.

Retour sur le cas r = 2

On va montrer que

$$C = k[\det(X), \operatorname{tr}(X), \det(Y), \operatorname{tr}(Y), \operatorname{tr}(XY)]$$

$$\overline{R} = C \oplus CX \oplus CY \oplus CXY$$

Étapes

Soit
$$C' = k[\det(X), \operatorname{tr}(X), \det(Y), \operatorname{tr}(Y), \operatorname{tr}(XY)] \subset C$$
.

- On a $R \subset C'1 + C'X + C'Y + C'XY =: R'$;
- 1, *X*, *Y*, *XY* sont libres sur *S*;
- C' = C et $\overline{R} = C \oplus CX \oplus CY \oplus CXY$;

$$X^2 = \operatorname{tr}(X)X - \det(X) \in R'$$

$$X^2 = \operatorname{tr}(X)X - \det(X) \in R'$$

•
$$Y^2 = \operatorname{tr}(Y)Y - \operatorname{det}(Y) \in R'$$

- $X^2 = \operatorname{tr}(X)X \det(X) \in R'$
- $Y^2 = \operatorname{tr}(Y)Y \operatorname{det}(Y) \in R'$
- XY ∈ R'

•
$$X^2 = \operatorname{tr}(X)X - \operatorname{det}(X) \in R'$$

•
$$Y^2 = \operatorname{tr}(Y)Y - \operatorname{det}(Y) \in R'$$

- XY ∈ R'
- $X^2Y = \operatorname{tr}(X)XY \operatorname{det}(X)Y \in R'$

•
$$X^2 = \operatorname{tr}(X)X - \operatorname{det}(X) \in R'$$

•
$$Y^2 = \operatorname{tr}(Y)Y - \operatorname{det}(Y) \in R'$$

- XY ∈ R'
- $X^2Y = \operatorname{tr}(X)XY \operatorname{det}(X)Y \in R'$
- $XY^2 = \operatorname{tr}(Y)XY \operatorname{det}(Y)X \in R'$

•
$$X^2 = \operatorname{tr}(X)X - \operatorname{det}(X) \in R'$$

•
$$Y^2 = \operatorname{tr}(Y)Y - \operatorname{det}(Y) \in R'$$

- XY ∈ R'
- $X^2Y = \operatorname{tr}(X)XY \operatorname{det}(X)Y \in R'$
- $XY^2 = \operatorname{tr}(Y)XY \operatorname{det}(Y)X \in R'$
- Et YX?

•
$$X^2 = \operatorname{tr}(X)X - \operatorname{det}(X) \in R'$$

•
$$Y^2 = \operatorname{tr}(Y)Y - \operatorname{det}(Y) \in R'$$

- XY ∈ R'
- $X^2Y = \operatorname{tr}(X)XY \operatorname{det}(X)Y \in R'$
- $XY^2 = \operatorname{tr}(Y)XY \operatorname{det}(Y)X \in R'$
- Et YX? → Théorème de Cayley-Hamilton bilinéaire

•
$$X^2 = \operatorname{tr}(X)X - \operatorname{det}(X) \in R'$$

•
$$Y^2 = \operatorname{tr}(Y)Y - \operatorname{det}(Y) \in R'$$

- XY ∈ R'
- $X^2Y = \operatorname{tr}(X)XY \operatorname{det}(X)Y \in R'$
- $XY^2 = \operatorname{tr}(Y)XY \operatorname{det}(Y)X \in R'$
- Et YX? → Théorème de Cayley-Hamilton bilinéaire

On a
$$XY + YX - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X + \operatorname{tr}(X)\operatorname{tr}(Y) - \operatorname{tr}(XY) = 0$$

Première étape

•
$$X^2 = \operatorname{tr}(X)X - \operatorname{det}(X) \in R'$$

•
$$Y^2 = \operatorname{tr}(Y)Y - \operatorname{det}(Y) \in R'$$

- XY ∈ R'
- $X^2Y = \operatorname{tr}(X)XY \operatorname{det}(X)Y \in R'$
- $XY^2 = \operatorname{tr}(Y)XY \operatorname{det}(Y)X \in R'$
- Et YX? → Théorème de Cayley-Hamilton bilinéaire

On a
$$XY + YX - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X + \operatorname{tr}(X)\operatorname{tr}(Y) - \operatorname{tr}(XY) = 0$$

c'est la formule de polarisation de l'application quadratique

$$X \longmapsto X^2 - \operatorname{tr}(X)X + \operatorname{det}(X) = X^2 - \operatorname{tr}(X)X + \frac{1}{2}(\operatorname{tr}(X)^2 - \operatorname{tr}(X^2))$$

On en déduit que $YX \in R'$ puis

$$XYX = -X^2Y + \operatorname{tr}(X)XY + \operatorname{tr}(Y)X^2 - \operatorname{tr}(X)\operatorname{tr}(Y)X + \operatorname{tr}(XY)X \in R'$$

On raisonne à présent par récurrence sur le degré du monôme en X et Y.

On en déduit que $YX \in R'$ puis

$$XYX = -X^2Y + \operatorname{tr}(X)XY + \operatorname{tr}(Y)X^2 - \operatorname{tr}(X)\operatorname{tr}(Y)X + \operatorname{tr}(XY)X \in R'$$

On raisonne à présent par récurrence sur le degré du monôme en X et Y. Tout monôme de degré inférieur ou égal à 2 dans R'.

On en déduit que $YX \in R'$ puis

$$XYX = -X^2Y + \operatorname{tr}(X)XY + \operatorname{tr}(Y)X^2 - \operatorname{tr}(X)\operatorname{tr}(Y)X + \operatorname{tr}(XY)X \in R'$$

On raisonne à présent par récurrence sur le degré du monôme en X et Y. Tout monôme de degré inférieur ou égal à 2 dans R'. Soit β un monôme de degré $\ell+1$ avec $\ell\geqslant 2$.

On en déduit que $YX \in R'$ puis

$$XYX = -X^2Y + \operatorname{tr}(X)XY + \operatorname{tr}(Y)X^2 - \operatorname{tr}(X)\operatorname{tr}(Y)X + \operatorname{tr}(XY)X \in R'$$

On raisonne à présent par récurrence sur le degré du monôme en X et Y. Tout monôme de degré inférieur ou égal à 2 dans R'. Soit β un monôme de degré $\ell+1$ avec $\ell\geqslant 2$. On écrit $\beta=\alpha X$ ou $\beta=\alpha Y$ avec α qui est un monôme de degré ℓ .

On en déduit que $YX \in R'$ puis

$$XYX = -X^2Y + \operatorname{tr}(X)XY + \operatorname{tr}(Y)X^2 - \operatorname{tr}(X)\operatorname{tr}(Y)X + \operatorname{tr}(XY)X \in R'$$

On raisonne à présent par récurrence sur le degré du monôme en X et Y. Tout monôme de degré inférieur ou égal à 2 dans R'. Soit β un monôme de degré $\ell+1$ avec $\ell\geqslant 2$. On écrit $\beta=\alpha X$ ou $\beta=\alpha Y$ avec α qui est un monôme de degré ℓ .

On en déduit que $\beta \in C'X + C'X^2 + C'YX + C'XYX \subset R'$ ou $\beta \in C'Y + C'XY + C'Y^2 + C'XY^2$.

On en déduit que $YX \in R'$ puis

$$XYX = -X^2Y + \operatorname{tr}(X)XY + \operatorname{tr}(Y)X^2 - \operatorname{tr}(X)\operatorname{tr}(Y)X + \operatorname{tr}(XY)X \in R'$$

On raisonne à présent par récurrence sur le degré du monôme en X et Y. Tout monôme de degré inférieur ou égal à 2 dans R'. Soit β un monôme de degré $\ell+1$ avec $\ell\geqslant 2$. On écrit $\beta=\alpha X$ ou $\beta=\alpha Y$ avec α qui est un monôme de degré ℓ .

On en déduit que $\beta \in C'X + C'X^2 + C'YX + C'XYX \subset R'$ ou $\beta \in C'Y + C'XY + C'Y^2 + C'XY^2$.

Ainsi, on a bien $R \subset R' = C'1 + C'X + C'Y + C'XY$. En particulier, la trace de tout élément de R est dans C'.

Étape 2. Soit $P_0 + P_1X + P_2Y + P_3XY = 0$ avec $P_i \in S$.

Étape 2. Soit $P_0 + P_1X + P_2Y + P_3XY = 0$ avec $P_i \in S$. En calculant les quatre coefficients matricielles, on obtient que (P_0, P_1, P_2, P_3) est solution du système linéaire homogène de matrice

$$\begin{bmatrix} 1 & a & e & ae + bg \\ 1 & d & h & cf + dh \\ 0 & b & f & af + bh \\ 0 & c & g & cd + dg \end{bmatrix}$$

de déterminant non nul.

Étape 2. Soit $P_0 + P_1X + P_2Y + P_3XY = 0$ avec $P_i \in S$. En calculant les quatre coefficients matricielles, on obtient que (P_0, P_1, P_2, P_3) est solution du système linéaire homogène de matrice

$$\begin{bmatrix} 1 & a & e & ae + bg \\ 1 & d & h & cf + dh \\ 0 & b & f & af + bh \\ 0 & c & g & cd + dg \end{bmatrix}$$

de déterminant non nul.

Étape 3. Soit $U \in R$, on a $det(U) = -U^2 + tr(U)U \in R' \cap S1$.

Étape 2. Soit $P_0 + P_1X + P_2Y + P_3XY = 0$ avec $P_i \in S$. En calculant les quatre coefficients matricielles, on obtient que (P_0, P_1, P_2, P_3) est solution du système linéaire homogène de matrice

$$\begin{bmatrix} 1 & a & e & ae + bg \\ 1 & d & h & cf + dh \\ 0 & b & f & af + bh \\ 0 & c & g & cd + dg \end{bmatrix}$$

de déterminant non nul.

Étape 3. Soit $U \in R$, on a $det(U) = -U^2 + tr(U)U \in R' \cap S1$. On a donc d'après l'étape 2, $det(U) \in C'$.

Étape 2. Soit $P_0 + P_1X + P_2Y + P_3XY = 0$ avec $P_i \in S$. En calculant les quatre coefficients matricielles, on obtient que (P_0, P_1, P_2, P_3) est solution du système linéaire homogène de matrice

$$\begin{bmatrix} 1 & a & e & ae + bg \\ 1 & d & h & cf + dh \\ 0 & b & f & af + bh \\ 0 & c & g & cd + dg \end{bmatrix}$$

de déterminant non nul.

Étape 3. Soit $U \in R$, on a $\det(U) = -U^2 + \operatorname{tr}(U)U \in R' \cap S1$. On a donc d'après l'étape 2, $\det(U) \in C'$. Ainsi C' = C et $\overline{R} = C1 \oplus CX \oplus CY \oplus CXY$.

En évaluant en
$$d=0, e=0$$
 et $b=-1$, on obtient
$$C\mapsto k[a,c,h,-fg,cf-g]=S'$$

En évaluant en d = 0, e = 0 et b = -1, on obtient

$$C \mapsto k[a, c, h, -fg, cf - g] = S'$$

De plus, g et f sont algébriques sur Frac(S'):

En évaluant en d = 0, e = 0 et b = -1, on obtient

$$C \mapsto k[a, c, h, -fg, cf - g] = S'$$

De plus, g et f sont algébriques sur Frac(S') : f est racine de $-fg + T(g - cf) + cT^2$

En évaluant en d = 0, e = 0 et b = -1, on obtient

$$C \mapsto k[a, c, h, -fg, cf - g] = S'$$

De plus, g et f sont algébriques sur Frac(S'): f est racine de $-fg + T(g - cf) + cT^2$ et g est racine de $cfg - (cf - g)T + T^2$.

En évaluant en d = 0, e = 0 et b = -1, on obtient

$$C \mapsto k[a, c, h, -fg, cf - g] = S'$$

De plus, g et f sont algébriques sur Frac(S'): f est racine de $-fg + T(g - cf) + cT^2$ et g est racine de $cfg - (cf - g)T + T^2$.

Ainsi k(a, c, h, f, g) est une extension algébrique de Frac(S')

En évaluant en d = 0, e = 0 et b = -1, on obtient

$$C \mapsto k[a, c, h, -fg, cf - g] = S'$$

De plus, g et f sont algébriques sur Frac(S'): f est racine de $-fg + T(g - cf) + cT^2$ et g est racine de $cfg - (cf - g)T + T^2$.

Ainsi k(a, c, h, f, g) est une extension algébrique de Frac(S') et a, c, h, -fg, cf - g est une base de transcendance de k(a, c, h, f, g).

En évaluant en d = 0, e = 0 et b = -1, on obtient

$$C \mapsto k[a, c, h, -fg, cf - g] = S'$$

De plus, g et f sont algébriques sur Frac(S'): f est racine de $-fg + T(g - cf) + cT^2$ et g est racine de $cfg - (cf - g)T + T^2$.

Ainsi k(a, c, h, f, g) est une extension algébrique de Frac(S') et a, c, h, -fg, cf - g est une base de transcendance de k(a, c, h, f, g).

Donc C est bien une algèbre de polynômes en 5 indéterminées.

On définit les algèbres suivantes :

- $A = k[\operatorname{tr}(X), \operatorname{det}(X), \operatorname{tr}(Y), \operatorname{det}(Y)]$
- $P_X = k[\operatorname{tr}(X), X, \operatorname{tr}(Y), \operatorname{det}(Y)]$
- $P_Y = k[\operatorname{tr}(X), \operatorname{det}(X), \operatorname{tr}(Y), Y]$

On définit les algèbres suivantes :

- $A = k[\operatorname{tr}(X), \operatorname{det}(X), \operatorname{tr}(Y), \operatorname{det}(Y)]$
- $P_X = k[\operatorname{tr}(X), X, \operatorname{tr}(Y), \operatorname{det}(Y)]$
- $P_Y = k[\operatorname{tr}(X), \operatorname{det}(X), \operatorname{tr}(Y), Y]$

D'après le cas r=1, A,P,Q sont des algèbres de polynômes en 4 indéterminées et on a $P_X=A\oplus AX$ et $P_Y=A\oplus AY$.

On définit les algèbres suivantes :

- $A = k[\operatorname{tr}(X), \operatorname{det}(X), \operatorname{tr}(Y), \operatorname{det}(Y)]$
- $P_X = k[\operatorname{tr}(X), X, \operatorname{tr}(Y), \operatorname{det}(Y)]$
- $P_Y = k[\operatorname{tr}(X), \operatorname{det}(X), \operatorname{tr}(Y), Y]$

D'après le cas r=1, A,P,Q sont des algèbres de polynômes en 4 indéterminées et on a $P_X=A\oplus AX$ et $P_Y=A\oplus AY$. De plus, on a le carré commutatif suivant :

où les flèches sont les inclusions.

On définit les algèbres suivantes :

- $A = k[\operatorname{tr}(X), \operatorname{det}(X), \operatorname{tr}(Y), \operatorname{det}(Y)]$
- $P_X = k[\operatorname{tr}(X), X, \operatorname{tr}(Y), \operatorname{det}(Y)]$
- $P_Y = k[\operatorname{tr}(X), \operatorname{det}(X), \operatorname{tr}(Y), Y]$

D'après le cas r=1, A,P,Q sont des algèbres de polynômes en 4 indéterminées et on a $P_X=A\oplus AX$ et $P_Y=A\oplus AY$. De plus, on a le carré commutatif suivant :

où les flèches sont les inclusions.

On en déduit un morphisme canonique $\Phi: P_X \sqcup_A P_Y \longrightarrow \overline{R}$.

Le morphisme Φ est surjectif car P_X et P_Y engendrent \overline{R} .

Le morphisme Φ est surjectif car P_X et P_Y engendrent \overline{R} . En effet, grâce au théorème de Cayley-Hamilton bilinéaire, on a

$$\operatorname{tr}(XY) \in \langle P_X, P_Y \rangle_{k-\mathsf{alg.}}$$

Le morphisme Φ est surjectif car P_X et P_Y engendrent \overline{R} . En effet, grâce au théorème de Cayley-Hamilton bilinéaire, on a

$$\operatorname{tr}(XY) \in \langle P_X, P_Y \rangle_{k-\mathsf{alg.}}$$

Montrons que Φ est injectif.

L'élément
$$Z = XY + YX - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X \in Z(P_X \sqcup_A P_Y).$$

Le morphisme Φ est surjectif car P_X et P_Y engendrent \overline{R} . En effet, grâce au théorème de Cayley-Hamilton bilinéaire, on a

$$\operatorname{tr}(XY) \in \langle P_X, P_Y \rangle_{k-\mathsf{alg.}}$$

Montrons que Φ est injectif.

L'élément $Z = XY + YX - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X \in Z(P_X \sqcup_A P_Y)$. En effet, on a

$$XZ = XYX + \operatorname{tr}(X)XY - \operatorname{det}(X)Y - \operatorname{tr}(X)XY - \operatorname{tr}(Y)X^{2}$$

et
$$ZX = XYX + \operatorname{tr}(X)YX - \operatorname{det}(X)Y - \operatorname{tr}(X)YX - \operatorname{tr}(Y)X^2$$

Le morphisme Φ est surjectif car P_X et P_Y engendrent \overline{R} . En effet, grâce au théorème de Cayley-Hamilton bilinéaire, on a

$$\operatorname{tr}(XY) \in \langle P_X, P_Y \rangle_{k-\mathsf{alg.}}$$

Montrons que Φ est injectif.

L'élément $Z = XY + YX - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X \in Z(P_X \sqcup_A P_Y)$. En effet, on a

$$XZ = XYX + \operatorname{tr}(X)XY - \operatorname{det}(X)Y - \operatorname{tr}(X)XY - \operatorname{tr}(Y)X^{2}$$

et
$$ZX = XYX + \operatorname{tr}(X)YX - \operatorname{det}(X)Y - \operatorname{tr}(X)YX - \operatorname{tr}(Y)X^2$$

et de même avec Y .

Le morphisme Φ est surjectif car P_X et P_Y engendrent \overline{R} . En effet, grâce au théorème de Cayley-Hamilton bilinéaire, on a

$$\operatorname{tr}(XY) \in \langle P_X, P_Y \rangle_{k-\mathsf{alg.}}$$

Montrons que Φ est injectif.

L'élément $Z = XY + YX - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X \in Z(P_X \sqcup_A P_Y)$. En effet, on a

$$XZ = XYX + \operatorname{tr}(X)XY - \operatorname{det}(X)Y - \operatorname{tr}(X)XY - \operatorname{tr}(Y)X^{2}$$

et
$$ZX = XYX + \operatorname{tr}(X)YX - \operatorname{det}(X)Y - \operatorname{tr}(X)YX - \operatorname{tr}(Y)X^2$$

et de même avec Y.

Par ailleurs, on a $P_X \sqcup_A P_Y = A[Z] + A[Z]X + A[Z]Y + A[Z]XY$.

Le morphisme Φ est surjectif car P_X et P_Y engendrent \overline{R} . En effet, grâce au théorème de Cayley-Hamilton bilinéaire, on a

$$\operatorname{tr}(XY) \in \langle P_X, P_Y \rangle_{k-\mathsf{alg.}}$$

Montrons que Φ est injectif.

L'élément $Z = XY + YX - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X \in Z(P_X \sqcup_A P_Y)$. En effet, on a

$$XZ = XYX + \operatorname{tr}(X)XY - \operatorname{det}(X)Y - \operatorname{tr}(X)XY - \operatorname{tr}(Y)X^{2}$$

et
$$ZX = XYX + \operatorname{tr}(X)YX - \operatorname{det}(X)Y - \operatorname{tr}(X)YX - \operatorname{tr}(Y)X^2$$

et de même avec Y.

Par ailleurs, on a $P_X \sqcup_A P_Y = A[Z] + A[Z]X + A[Z]Y + A[Z]XY$. Cela résulte de la relation YX = Z + tr(Y)X + tr(X)Y - XY.

On a $\Phi(Z) = \operatorname{tr}(XY) - \operatorname{tr}(X)\operatorname{tr}(Y)$ (d'après le théorème de Cayley-Hamilton bilinéaire).

On a $\Phi(Z) = \operatorname{tr}(XY) - \operatorname{tr}(X)\operatorname{tr}(Y)$ (d'après le théorème de Cayley-Hamilton bilinéaire). Ainsi

$$\Phi:A[Z]\longrightarrow A[\operatorname{tr}(XY)-\operatorname{tr}(X)\operatorname{tr}(Y)]=C$$

est injective

On a $\Phi(Z) = \operatorname{tr}(XY) - \operatorname{tr}(X)\operatorname{tr}(Y)$ (d'après le théorème de Cayley-Hamilton bilinéaire). Ainsi

$$\Phi: A[Z] \longrightarrow A[\operatorname{tr}(XY) - \operatorname{tr}(X)\operatorname{tr}(Y)] = C$$

est injective puisque $\operatorname{tr}(XY) - \operatorname{tr}(X)\operatorname{tr}(Y)$ est transcendant sur A.

On a $\Phi(Z) = \operatorname{tr}(XY) - \operatorname{tr}(X)\operatorname{tr}(Y)$ (d'après le théorème de Cayley-Hamilton bilinéaire). Ainsi

$$\Phi:A[Z]{\:\longrightarrow\:} A[\operatorname{tr}(XY)-\operatorname{tr}(X)\operatorname{tr}(Y)]=C$$

est injective puisque $\operatorname{tr}(XY) - \operatorname{tr}(X)\operatorname{tr}(Y)$ est transcendant sur A. Comme $P_X \sqcup_A P_Y = A[Z] + A[Z]X + A[Z]Y + A[Z]XY$ et $\overline{R} = C1 \oplus CX \oplus CY \oplus CXY$, on en déduit que Φ est injective.

Graduation

La k-algèbre $M_2(S)$ est une k-algèbre graduée (par le degré des polynômes).

Graduation

La k-algèbre $\mathrm{M}_2(S)$ est une k-algèbre graduée (par le degré des polynômes).

Les générateurs X et Y de R sont de degré 1.

La k-algèbre $M_2(S)$ est une k-algèbre graduée (par le degré des polynômes).

Les générateurs X et Y de R sont de degré 1.

Ainsi R est une k-algèbre graduée avec $R_0 = k$.

La k-algèbre $M_2(S)$ est une k-algèbre graduée (par le degré des polynômes).

Les générateurs X et Y de R sont de degré 1.

Ainsi R est une k-algèbre graduée avec $R_0 = k$.

Soit J l'idéal (bilatère) engendré par les commutateurs de R.

La k-algèbre $M_2(S)$ est une k-algèbre graduée (par le degré des polynômes).

Les générateurs X et Y de R sont de degré 1. Ainsi R est une k-algèbre graduée avec $R_0 = k$.

Soit J l'idéal (bilatère) engendré par les commutateurs de R. Il est homogène.

La k-algèbre $M_2(S)$ est une k-algèbre graduée (par le degré des polynômes).

Les générateurs X et Y de R sont de degré 1. Ainsi R est une k-algèbre graduée avec $R_0 = k$.

Soit J l'idéal (bilatère) engendré par les commutateurs de R. Il est homogène.

De plus, R/J=k[X,Y] est une algèbre graduée de polynômes en deux indéterminées avec X et Y en degré 1

La k-algèbre $M_2(S)$ est une k-algèbre graduée (par le degré des polynômes).

Les générateurs X et Y de R sont de degré 1. Ainsi R est une k-algèbre graduée avec $R_0 = k$.

Soit J l'idéal (bilatère) engendré par les commutateurs de R. Il est homogène.

De plus, R/J = k[X, Y] est une algèbre graduée de polynômes en deux indéterminées avec X et Y en degré 1 (on fait b = c = d = f = g = h = 0).

Action de groupes

Le groupe $\mathrm{GL}_2(k)$ agit de façon homogène sur la k-algèbre R de la façon suivante : soit $g=\begin{bmatrix} u & v \\ w & x \end{bmatrix}$ $gX=uX+vY \qquad \mathrm{et} \qquad gY=wX+xY$

Action de groupes

Le groupe $\mathrm{GL}_2(k)$ agit de façon homogène sur la k-algèbre R de la façon suivante : soit $g=\begin{bmatrix}u&v\\w&x\end{bmatrix}$ $gX=uX+vY\qquad\text{et}\qquad gY=wX+xY$

En effet, g agit par automorphisme sur k[a,e], k[b,f], k[c,g] et k[d,h] via $a\mapsto ua+ve$ et $e\mapsto wa+xe...$

Le décor

Soit G un sous-groupe fini de $GL_2(k)$. On a

Lemme - Finitude.

- $(R/J)^G$ est une k-algèbre de type fini et R/J est de type fini comme $(R/J)^G$ -module.
- J/J^2 est un $(R/J \otimes (R/J)^{op})$ -module monogène.
- $(J/J^2)^G$ est un module de type fini sur $(R/J)^G \otimes (R/J)^G$.

Le décor

Soit G un sous-groupe fini de $GL_2(k)$. On a

Lemme - Finitude.

- $(R/J)^G$ est une k-algèbre de type fini et R/J est de type fini comme $(R/J)^G$ -module.
- J/J^2 est un $(R/J \otimes (R/J)^{op})$ -module monogène.
- $(J/J^2)^G$ est un module de type fini sur $(R/J)^G \otimes (R/J)^G$.

Preuve.

- Merci Emmy!
- XY YX engendre l'idéal bilatère J.
- J/J^2 est de type fini et donc noethérien sur $(R/J)^G \otimes (R/J)^G$.

Lemme On suppose que $\operatorname{car} k \nmid |G|$ alors $(R/J^2)^G$ est une k-algèbre de type fini.

Lemme On suppose que $\operatorname{car} k \nmid |G|$ alors $(R/J^2)^G$ est une k-algèbre de type fini.

Preuve. Soit a_1, \ldots, a_ℓ des relevés dans $(R/J^2)^G$ des générateurs de $(R/J)^G$

Lemme On suppose que $\operatorname{car} k \nmid |G|$ alors $(R/J^2)^G$ est une k-algèbre de type fini.

Preuve. Soit a_1, \ldots, a_ℓ des relevés dans $(R/J^2)^G$ des générateurs de $(R/J)^G$ et b_1, \ldots, b_m des générateurs de $(J/J^2)^G$ (en tant qu'idéal bilatère de $(R/J^2)^G$).

Lemme On suppose que $\operatorname{car} k \nmid |G|$ alors $(R/J^2)^G$ est une k-algèbre de type fini.

Preuve. Soit a_1, \ldots, a_ℓ des relevés dans $(R/J^2)^G$ des générateurs de $(R/J)^G$ et b_1, \ldots, b_m des générateurs de $(J/J^2)^G$ (en tant qu'idéal bilatère de $(R/J^2)^G$). Alors $a_1, \ldots, a_\ell, b_1, \ldots, b_m$ engendre R/J^2 .

Lemme On suppose que $\operatorname{car} k \nmid |G|$ alors $(R/J^2)^G$ est une k-algèbre de type fini.

Preuve. Soit a_1, \ldots, a_ℓ des relevés dans $(R/J^2)^G$ des générateurs de $(R/J)^G$ et b_1, \ldots, b_m des générateurs de $(J/J^2)^G$ (en tant qu'idéal bilatère de $(R/J^2)^G$). Alors $a_1, \ldots, a_\ell, b_1, \ldots, b_m$ engendre R/J^2 . En effet, on peut écrire $x \in R/J^2$ sous la forme

$$x = f(a_1, \ldots, a_\ell) + \sum_i x_i b_i y_i$$
.

Lemme On suppose que $\operatorname{car} k \nmid |G|$ alors $(R/J^2)^G$ est une k-algèbre de type fini.

Preuve. Soit a_1,\ldots,a_ℓ des relevés dans $(R/J^2)^G$ des générateurs de $(R/J)^G$ et b_1,\ldots,b_m des générateurs de $(J/J^2)^G$ (en tant qu'idéal bilatère de $(R/J^2)^G$). Alors $a_1,\ldots,a_\ell,b_1,\ldots,b_m$ engendre R/J^2 . En effet, on peut écrire $x\in R/J^2$ sous la forme

$$x = f(a_1, \ldots, a_\ell) + \sum_i x_i b_i y_i$$
.

Mais chacun des x_i et des y_i est congru modulo J à un polynôme (non commutatif) en les a_i

Lemme On suppose que $\operatorname{car} k \nmid |G|$ alors $(R/J^2)^G$ est une k-algèbre de type fini.

Preuve. Soit a_1, \ldots, a_ℓ des relevés dans $(R/J^2)^G$ des générateurs de $(R/J)^G$ et b_1, \ldots, b_m des générateurs de $(J/J^2)^G$ (en tant qu'idéal bilatère de $(R/J^2)^G$). Alors $a_1, \ldots, a_\ell, b_1, \ldots, b_m$ engendre R/J^2 . En effet, on peut écrire $x \in R/J^2$ sous la forme

$$x = f(a_1, \ldots, a_\ell) + \sum_i x_i b_i y_i$$
.

Mais chacun des x_i et des y_i est congru modulo J à un polynôme (non commutatif) en les a_i et les produits x_ib_i et b_iy_i ne dépendent que de la classe modulo J de x_i et y_i .

Lemme On a $J^2 = J(XY - YX)$

Lemme On a
$$J^2 = J(XY - YX)$$

Preuve. Cela résulte directement de

$$J = \overline{R}(XY - YX) = (XY - YX)\overline{R}.$$

Lemme On a $J^2 = J(XY - YX)$

Preuve. Cela résulte directement de

$$J = \overline{R}(XY - YX) = (XY - YX)\overline{R}.$$

L'égalité $J = \overline{R}(XY - YX)$ résulte quant à elle des relations suivantes

$$(XY-YX)X=\operatorname{tr}(X)(XY-YX)-X(XY-YX)$$

Lemme On a $J^2 = J(XY - YX)$

Preuve. Cela résulte directement de

$$J = \overline{R}(XY - YX) = (XY - YX)\overline{R}.$$

L'égalité $J = \overline{R}(XY - YX)$ résulte quant à elle des relations suivantes

$$(XY - YX)X = \operatorname{tr}(X)(XY - YX) - X(XY - YX)$$
$$\det(X)(XY - YX) = -X(XY - YX)X$$

Lemme On a $J^2 = J(XY - YX)$

Preuve. Cela résulte directement de

$$J = \overline{R}(XY - YX) = (XY - YX)\overline{R}.$$

L'égalité $J = \overline{R}(XY - YX)$ résulte quant à elle des relations suivantes

$$(XY - YX)X = \operatorname{tr}(X)(XY - YX) - X(XY - YX)$$
$$\det(X)(XY - YX) = -X(XY - YX)X$$
$$\operatorname{tr}(XY)(XY - YX) = XYXY - YXYX = XY[X, Y] - [X, Y]YX$$

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$.

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$. Ainsi, on a $XY - YX \in \mathbb{R}^G$.

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$. Ainsi, on a $XY - YX \in R^G$.

Le morphisme canonique $R^G \mapsto (R/J^2)^G$ est gradué de degré 0 et surjectif.

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$. Ainsi, on a $XY - YX \in R^G$.

Le morphisme canonique $R^G \mapsto (R/J^2)^G$ est gradué de degré 0 et surjectif. Soit a_1, \ldots, a_m des relevés homogènes dans R^G des générateurs de $(R/J^2)^G$.

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$. Ainsi, on a $XY - YX \in R^G$.

Le morphisme canonique $R^G \mapsto (R/J^2)^G$ est gradué de degré 0 et surjectif. Soit a_1, \ldots, a_m des relevés homogènes dans R^G des générateurs de $(R/J^2)^G$.

Montrons, par récurrence sur le degré, que R^G est engendré par $a_1, \ldots, a_m, XY - YX$.

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$. Ainsi, on a $XY - YX \in R^G$.

Le morphisme canonique $R^G \mapsto (R/J^2)^G$ est gradué de degré 0 et surjectif. Soit a_1, \ldots, a_m des relevés homogènes dans R^G des générateurs de $(R/J^2)^G$.

Montrons, par récurrence sur le degré, que R^G est engendré par $a_1, \ldots, a_m, XY - YX$.

En degré 0, il n'y a que le corps k.

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$. Ainsi, on a $XY - YX \in R^G$.

Le morphisme canonique $R^G \mapsto (R/J^2)^G$ est gradué de degré 0 et surjectif. Soit a_1, \ldots, a_m des relevés homogènes dans R^G des générateurs de $(R/J^2)^G$.

Montrons, par récurrence sur le degré, que R^G est engendré par $a_1, \ldots, a_m, XY - YX$.

En degré 0, il n'y a que le corps k.

Soit u homogène dans R^G .

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$. Ainsi, on a $XY - YX \in \mathbb{R}^G$.

Le morphisme canonique $R^G \mapsto (R/J^2)^G$ est gradué de degré 0 et surjectif. Soit a_1, \ldots, a_m des relevés homogènes dans R^G des générateurs de $(R/J^2)^G$.

Montrons, par récurrence sur le degré, que R^G est engendré par $a_1, \ldots, a_m, XY - YX$.

En degré 0, il n'y a que le corps k.

Soit u homogène dans R^G . Il existe f polynôme non commutatif tel que $v := u - f(a_1, \ldots, a_m) \in (J^2)^G$ (et deg $v \leq \deg u$).

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$. Ainsi, on a $XY - YX \in R^G$.

Le morphisme canonique $R^G \mapsto (R/J^2)^G$ est gradué de degré 0 et surjectif. Soit a_1, \ldots, a_m des relevés homogènes dans R^G des générateurs de $(R/J^2)^G$.

Montrons, par récurrence sur le degré, que R^G est engendré par $a_1, \ldots, a_m, XY - YX$.

En degré 0, il n'y a que le corps k.

Soit u homogène dans R^G . Il existe f polynôme non commutatif tel que $v := u - f(a_1, \ldots, a_m) \in (J^2)^G$ (et deg $v \leq \deg u$). On écrit v = w(XY - YX) avec $w \in J$.

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$. Ainsi, on a $XY - YX \in R^G$.

Le morphisme canonique $R^G \mapsto (R/J^2)^G$ est gradué de degré 0 et surjectif. Soit a_1, \ldots, a_m des relevés homogènes dans R^G des générateurs de $(R/J^2)^G$.

Montrons, par récurrence sur le degré, que R^G est engendré par $a_1, \ldots, a_m, XY - YX$.

En degré 0, il n'y a que le corps k.

Soit u homogène dans R^G . Il existe f polynôme non commutatif tel que $v := u - f(a_1, \ldots, a_m) \in (J^2)^G$ (et deg $v \leq \deg u$). On écrit v = w(XY - YX) avec $w \in J$. Comme XY - YX n'est pas un diviseur de 0 dans $M_2(S)$ (det $(XY - YX) \neq 0$),

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$. Ainsi, on a $XY - YX \in R^G$.

Le morphisme canonique $R^G \mapsto (R/J^2)^G$ est gradué de degré 0 et surjectif. Soit a_1, \ldots, a_m des relevés homogènes dans R^G des générateurs de $(R/J^2)^G$.

Montrons, par récurrence sur le degré, que R^G est engendré par $a_1, \ldots, a_m, XY - YX$.

En degré 0, il n'y a que le corps k.

Soit u homogène dans R^G . Il existe f polynôme non commutatif tel que $v:=u-f(a_1,\ldots,a_m)\in (J^2)^G$ (et $\deg v\leqslant \deg u$). On écrit v=w(XY-YX) avec $w\in J$. Comme XY-YX n'est pas un diviseur de 0 dans $\mathrm{M}_2(S)$ ($\det(XY-YX)\neq 0$), on en déduit que $w\in J^G$

Pour $g \in GL_2(k)$, on a $g \cdot (XY - YX) = \det g(XY - YX)$. Ainsi, on a $XY - YX \in R^G$.

Le morphisme canonique $R^G \mapsto (R/J^2)^G$ est gradué de degré 0 et surjectif. Soit a_1, \ldots, a_m des relevés homogènes dans R^G des générateurs de $(R/J^2)^G$.

Montrons, par récurrence sur le degré, que R^G est engendré par $a_1, \ldots, a_m, XY - YX$.

En degré 0, il n'y a que le corps k.

Soit u homogène dans R^G . Il existe f polynôme non commutatif tel que $v:=u-f(a_1,\ldots,a_m)\in (J^2)^G$ (et $\deg v\leqslant \deg u$). On écrit v=w(XY-YX) avec $w\in J$. Comme XY-YX n'est pas un diviseur de 0 dans $\mathrm{M}_2(S)$ ($\det(XY-YX)\neq 0$), on en déduit que $w\in J^G$ et $\deg w<\deg v\leqslant \deg u$.

Et si $G \not\subset \operatorname{SL}_2(k)$

Pour l'action de $\mathbb{Z}/2\mathbb{Z}$ donnée par $X\mapsto X$ et $Y\mapsto -Y$, on a $R^G=\langle X,YX^iY,i\in\mathbb{N}\rangle_{k-\mathsf{alg.}}\,.$