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Introduction

Definition

MEMS := “MicroElectroMechanical System” : An electronic device consisting in an elastic
membrane hanging above a rigid plate connected to an electrical source and a capacitor.

Figure: Mems diagram, Courtesy of Jindal, Varma and Thukral, Microelectronics Journal, 2018

MEMS are available in many electronic devices : microphones, transducers, sensors, etc.
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Introduction

General Model

We consider the (normalized) distance u(x, t) ∈ [0, 1) between the elastic membrane and the
rigid plate.

Figure: Courtesy of Carlos Esteve, Deusto University
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Introduction

Hyperbolic Equations

Remember that u(x, t) ∈ [0, 1).

ε2∂ttu + ∂tu = ∆u +
f (x, t)

(1− u)2

(
1 + γ

∫
Ω

1
1− u

dx
)2 , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.
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Introduction

Parabolic limit

We take ε = 0.

We also take f (x, t) ≡ 1 and γ > 0.

This is our model:
∂tu = ∆u +

1

(1− u)2

(
1 + γ

∫
Ω

1
1− u

dx
)2 , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω.

(1)

Rk. This is a non local parabolic equation.
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Introduction

The “Touch-Down” phenomenon
Thanks to the Cauchy problem, we have two possibilities:

either the solution is global,
or there exists T > 0 such that u(x, t) ∈ [0, 1),∀(x, t) ∈ Ω̄× [0,T) and

lim inf
t→T

[
min
x∈Ω̄
{1− u(x, t)}

]
= 0. (2)

This is finite-time quenching,
Or, in the MEMS context, this is “Touch-Down”, i.e. the membrane “touches down” the
rigid plate: the MEMS device is broken !!!

Figure: Mems diagram, Courtesy of Jindal, Varma and Thukral, Microelectronics Journal, 2018
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Introduction

Touch-down time and point

Def. 1. T is the touch-down time.

Def. 2. x0 ∈ Ω is a touch-down point, if there exists (xn, tn) such that

u(xn, tn)→ 1 as n→ 0,

with (xn, tn)→ (x0,T) as n→ +∞.

Hatem ZAAG (CNRS & USPN) Profile of a touch-down solution to a nonlocal MEMS mode NYU Abu Dhabi, May 25-29, 2020



Introduction

Our aim

Construct a solution of equation (1) with only one touch-down point x0 ∈ Ω, i.e.

u(x0, t)→ 1 quand t→ T.

Describe the shape of the solution around x0 at the touch-down time.

⇓

Find a “profile” ϕ(x) such that

1− u(x,T) ∼ ϕ(x) as x→ x0.
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Introduction

Some earlier results

Guo, Hu and Wang (Quart. Appl. Math. 2009): They give a sufficient touch-down
condition, and provide a lower bound on the touch-down profile:

ϕ(x) ≥ C(β)|x|β, β ∈
(

2
3
, 1
)
.

Guo and Kavallaris (Discrete Contin. Dyn. Syst. 2012): They prove touch-down under
the following sufficient condition:

|Ω| < 1
2
, γ > 0.

Guo and Hu (J. Diff. Eqs. 2018): They estimate the “Touch-Down Rate”:

inf
x∈Ω

1− u(x, t) ∼ C(T − t)
1
3 as t→ T.
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Main result

Existence of a Touch-Down solution

Th. 1[Duong-Z., Math. Models Meth. Appl. Sc., 2019]

There exists a Touch-Down solution, with only one touch-down point 0, at time T , such that:

(i) Intermediate profile (0 < t < T):

(T − t)
1
3

1− u(x, t)
∼ θ∗

(
3 +

9
8

|x|2

(T − t)| ln(T − t)|

)− 1
3

for some θ∗ > 0.

(ii) Final profile (t = T): u(x, t)→ u∗(x) as t→ T with

1− u∗(x) ∼ θ∗
[

9
16
|x|2

| ln |x||

] 1
3

as x→ 0.
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Main result

Some comments on Th. 1

Rk. 0: The final profile is a cusp (not C1).
Rk. 1: By a simple translation, we may make the solution touch down at any point x0 ∈ Ω.

Rk. 2: Thanks to Merle (CPAM 1992), we may construct a solution which touches down at
any arbitrary given x1, . . . , xk.

Rk. 3: The Touch-Down rate is given at the Touch-Down point:

u(0, t) = 1−
3
√

3
θ∗

(T − t)
1
3 + o((T − t)

1
3 ), as t→ T.

Rk. 4 (An open question): Can we construct a Touch-Down solution with a prescribed θ∗ ?

Conjecture: yes, for any
θ∗ ∈

(
(1 + γ|Ω|)

2
3 ,+∞

)
.
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Main result

Stability of the Touch-Down profile

Th. 2 [Duong-Z., Math. Mod. Meth. Appl. Sc., 2019]

From Th. 1, we have a solution û, with initial data û0, a Touch-Down time T̂ and a
Touch-Down point â and a profile parameter θ̂∗.

Then, for any nearby u0, the solution u(x, t) Touches Down at time Tu0 at some point au0 with
the same profile showing a profile parameter θ∗u0

, such that

(au0,Tu0, θ
∗
u0

)→ (â, T̂, θ̂∗) as u0 → û0.

Proof: The existence result uses a reduction to a (N + 1)−dimensional problem, which is the
dimension of the geometric features of the problem:

The Touch-Down time: 1 dimension;
The Touch-Down point: N dimensions.
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A formal approach

A step by step reduction of the problem

The difficulty: This is a non-local PDE.

Introducing

v = 1− u and α(v) =
1(

1 + γ

∫
Ω

1
v

dx
)2 ,

equation (1) becomes

∂tv = ∆v− α(v)

v2 . (3)

and our goal becomes to construct a solution to (3) such that

v→ 0 as t→ T.

Rk. The behavior of α(v(t)) is crucial in the study.
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A formal approach

The simple case when α(v) is replaced by a constant ≡ α0 > 0
In this case, we have the following PDE, with no integral terms.

∂tv = ∆v− α0

v2 .

From Merle-Z. (Nonlinearity 1997), we have a solution such that

(i) Intermediate profile (0 < t < T):

v(x, t) ∼ (α0(T − t))
1
3

(
3 +

9
8

|x|2

(T − t)| ln(T − t)|

) 1
3

(ii) Final profile (t = T): v(x, t)→ v∗(x) as t→ T with

v∗(x) ∼
[

9α0

16
|x|2

| ln |x||

] 1
3

as x→ 0.
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A formal approach

Another simple case : α(v) is replaced by α(t)→ α0

Here again, α = α(t) doesn’t depend on the solution v(x, t).

If
α(t)→ α0 as t→ T,

then, this case is a perturbation of the simple case

α(t) ≡ α0.

Hatem ZAAG (CNRS & USPN) Profile of a touch-down solution to a nonlocal MEMS mode NYU Abu Dhabi, May 25-29, 2020



A formal approach

Our case seen as a perturbation of the simple case

We write our equation as a system
∂tv = ∆v− θ(t)

v2 ,

θ(t) = 1

(1+γ
∫
Ω

1
v dx)

2 .

The idea: We try to make θ(t) converge to some θ0 > 0, so that we reduce to the simple case.

The difficulty: θ(t) = α(v(t)) ! It depends on the solution itself !

Idea: Let us introduce
V = θ(t)−

1
3 v.
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A formal approach

The reduced problem

We obtain the following equation for V(x, t):
∂tV = ∆V − 1

V2 − θ′

3θV,

θ(t) = 1(
1+γθ(t)−

1
3
∫
Ω

1
V dx
)2 .

(4)

and the following new goal: to construct a solution for (4) such that

θ(t)
1
3 V(x, t)→ 0.

Rk. : We see that λ(t) ≡ θ(t)−
1
3 satisfies a polynomial equation, with

∫
Ω

1
V(x,t)dx being one of

the coefficients: (
1 + γλ(t)

∫
Ω

1
V

dx
)2

= λ(t)3.
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A formal approach

Solution of the reduced problem
Let us first recall the reduced problem

∂tV = ∆V − 1
V2 − θ′

3θV,

θ(t) = 1(
1+γθ(t)−

1
3
∫
Ω

1
V dx
)2 .

and the goal:
θ(t)

1
3 V(x, t)→ 0.

Idea: If we stick to our idea to get

θ(t)→ θ0 > 0 (and θ′(t)→ 0) as t→ T, (H)

then, our goal becomes to have
V(x, t)→ 0.

Hence, we may think that ∣∣∣∣ θ′3θ
V
∣∣∣∣� 1

V2 as t→ T,

so, we end-up with the following question:
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A formal approach

Approximate problem

 ∂tV ' ∆V − 1
V2 ,(

1 + γλ(t)
∫

Ω
1
V dx
)2

= λ(t)3 where λ(t) = θ(t)−
1
3 .

Good news, this system in decoupled, and we can solve the first equation (PDE), then the
second (polynomial).
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A formal approach

Solving the first equation (PDE)

∂tV ' ∆V − 1
V2 .

This is a perturbation of the PDE solved by Merle and Z. in Nonlinearity 1997. With some
care about the perturbative terms, we can construct a solution such that

(i) Intermediate profile (0 < t < T):

V(x, t) ∼ (T − t)
1
3

(
3 +

9
8

|x|2√
(T − t)| ln(T − t)|

) 1
3

(ii) Final profile (t = T): V(x, t)→ V∗(x) as t→ T with

V∗(x) ∼
[

9
16
|x|2

| ln |x||

] 1
3

as x→ 0.

With such a solution, we move to the polynomial equation satisfied by λ(t) = α(t)−
1
3 :
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A formal approach

The second equation (polynomial)

(
1 + γλ(t)

∫
Ω

1
V

dx
)2

= λ(t)3 where λ(t) = θ(t)−
1
3 . (5)

Now, since we have the final profile, we may estimate
∫

Ω
1

V(x,t)dx as follows:

∫
Ω

1
V(x, t)

dx ∼
∫

Ω

1
V∗(x)

dx ∼
∫

Ω

[
9
16
|x|2

| ln |x||

]− 1
3

dx < +∞.

Since this coefficient is finite, we see from (5) that λ(t)→ λ0 positive and finite, hence

θ(t)→ θ0 > 0 as t→ T.

Since
1− u(x, t) = v(x, t) = θ(t)

1
3 V(x, t),

We get our solution AND its profile.
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The rigorous proof

Strategy of the proof

We follow the constructive existence proof used by Bressan (1990), Bricmont-Kupiainen
(1994), Merle-Z. (1997) for the standard semilinear heat equation.

That method is based on two parts:

The construction of an approximate solution (candidate for the “profile”). This was (the
formal approach);
A perturbative argument, where we linearize around the approximate solution and show
that the linearized PDE has a solution converging to zero. This is a rigorous proof.
Here, two steps are needed:
- The reduction of the problem to a finite-dimensional one (N + 1 parameters);
- The solution of the finite-dimensional problem thanks to the degree theory.
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The rigorous proof

Earlier (non exhaustive) literature
We are in the framework of constructing a solution to some PDE with some prescribed
behavior (Courtesy of Van Tien NGUYEN, NYU Abu Dhabi):

heat equation:
Bressan, Indiana 1990;
Bricmont and Kupiainen, Nonlinearity 1994;
Merle and Z., Duke1998,
Ghoul- Nguyen - Zaag, AIHP 2018, JDE 2019 (Type I blowup, system)
Schweyer, JFA 2012 (Type II, N = 4, energy critical );
Mahmoudi, Nouaili and Z. (periodic),
del Pino - Musso - Wei, arXiv 2019 (Type II, N=5, energy critical),
del Pino - Musso - Wei, APDE 2020 (Infinite time blowup, N = 3, energy critical)
del Pino - Musso- Wei - Zhang - Zhang, arXiv 2020 (Type II, N = 3, energy critical)
del Pino - Musso - Wei - Zhou, DCDS-A 2020 (Type II, N = 4, energy critical)
Cortázar - del Pino - Musso, JEMS 2020 (Infinite time blowup, energy critical)
Collot, APDE 2017 (Type II, energy supercritical)
Tayachi and Z., TAMS 2019,
Collot-Merle-Raphael, JAMS 2020 (Type II anisotropic, energy supercritical)
Merle - Raphaël - Szeftel, IMRN 2020 (Type I anisotropic)
Harada, AIHP 2020 (Type II, N =5, energy critical)
Seki, JDE 2020 (Type II, energy supercritical, Lepin exponent)
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The rigorous proof

Earlier literature

NLS:
Merle, 1990,
Martel and Merle, 2006;
Martel - Raphaël, AENS 2018 (interacting blowup bubbles, mass critical)
Merle - Raphaël - Rodnianski, CJM 2015 (energy supercritical)
Merle, P. Raphaël, J. Szeftel, Duke 2014 (collapsing ring blowup, mass supercritical)
Merle -Raphael - Rodnianski - Szeftel, arXiv 2019 (blowup defocusing , energy supercritical, N >=5)
Raphael- Szeftel, CMP 2009 (standing ring blowup)

Wave-type equations:
Côte and Z., CPAM 2013,
Ming-Rousset-Tzvetkov, 2013 (Water waves),
Collot, MEMS 2018 (type II blowup, energy supercritical wave equation, non radial)
Hillairet - Raphaël, APDE 2014 (type II blowup, energy critical wave equation, N = 4 )
Krieger, W. Schlag, D. Tataru, Duke 2009 (Type II blowup, energy critical wave equation, N =3)
Ibrahim - Ghoul - Nguyen, JDE 2019 (type II blowup, energy supercritical (d >=7) wave maps)
Krieger - Schlag - Tataru, Invent. Math 2008 (type II blowup, energy critical (d = 2) wave maps)
Raphael - Rodnianski, IHES 2012 (Type II blowup, energy critical (d=2) wave maps)
Donninger and Schörkhuber, 2017 (supreconformal case)
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The rigorous proof

Earlier literature

Other equations:
Martel, 2005, Côte 2006, 2007, (KdV and gKdV),
Masmoudi and Z., 2008, Nouaili and Z., 2018 (Complex Ginzburg-Landau),
Merle-Raphaël-Rodniansky, 2013, (Schrödinger maps),
Ibrahim - Ghoul - Nguyen, APDE 2019 (Type II energy supercritical (d >=7) heat flow)
Schweyer - Raphael, APDE 2014 & CPAM 2013 (Type II energy critical (d= 2) heat flow)
Dávila- del Pino - Wei, Invent math 2020 (Type II energy critical (d=2) heat flow, non radial)
Collot - Ghoul - Masmoudi - Nguyen, arXiv 2019 (Type II, 2D Keller segel)
Schweyer - Raphael, MA 2014 (Type II, 2D Keller-Segel)
Collot, Ghoul, Ibrahim and Masmoudi, 2018, (Prandtl’s system),
Hadzic, Raphaël, 2019 (Stefan problem),
Merle, Raphaël, Rodnianski, Szeftel, 2019 (Fluids)
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The rigorous proof

Change of variables: A blow-up question
Introducing

ū =
u

1− u
, θ̄(t) =

(
1 + γ|Ω|+ γ

∫
Ω

ū(x, t)dx
) 2

3

and
U(x, t) =

1
θ̄(t)

ū(x, t),

we write the following equation for U:
∂tU = ∆U − 2 |∇U|2

U+ 1
θ̄(t)

+
(

U + 1
θ̄(t)

)4
− θ̄′(t)

θ̄(t) U, x ∈ Ω, t > 0,

θ̄(t) =
(
1 + γ|Ω|+ γθ̄(t)

∫
Ω U(x, t)dx

) 2
3 ,

U(x, t) = 0, x ∈ ∂Ω, t > 0.

This way, the question of constructing a Touch-Down solution u⇔ the question of
constructing a blow-up solution U.
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The rigorous proof

Similarity variables framework

Thinking about the “twin” equation

∂tU = ∆U + U4,

we use the similarity variables first introduced by Giga and Kohn (CPAM, 1985):

W(y, s) = (T − t)−
1
3 U(x, t), y =

x√
T − t

and s = − ln(T − t).
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The rigorous proof

Equation in similarity variables (y, s)


∂sW = ∆W − 1

2y · ∇W − W
3 − 2 |∇W|2

W+ e
− s

3
θ(s)

+
(

W + e−
s
3

θ(s)

)4
− θ′(s)

θ(s) W, y ∈ Ωs, s > − ln T,

W(y, s) = 0, y ∈ ∂Ωs, s > − ln T,

where Ωs = e
s
2 Ω, θ(s) = θ̄(t(s)) = θ̄(T − e−s), and

θ̄(t) =

(
1 + γ|Ω|+ γθ̄(t)

∫
Ω

U(x, t)dx
) 2

3

.

A key remark: Given t and U(x, t), θ̄(t) solves an algebraic equation !
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The rigorous proof

Main terms in the equation
We rewrite the equation:

∂sw = ∆w− 1
2

y · ∇w− 1
3

w− 2
|∇w|2

w + e−
s
3

θ(s)

+

(
w +

e−
s
3

θ(s)

)4

−θ
′(s)
θ(s)

w.

As in the formal approach, we will control the red and blue terms to be small.
This way, we reduce to the following equation

∂sw ' ∆w− 1
2

y · ∇w− 1
3

w− 2
|∇w|2

w
+ w4,

already studied in Merle and Z., Nonlinearity, 1997.
In particular, we may find a solution such that

w(y, s) ∼
(

3 +
9
8
|y|2

s

)− 1
3

+
(3)−

1
3 n

4s
the intermediate profile.
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The rigorous proof

3 Regions with 3 Different controls for the solution of the PDE
We control the solution in 3 different regions:

The inner region P1(t) =
{

x ∈ RN | |x| ≤ K0
√

(T − t)| ln(T − t)|
}

, with a control:

w(y, s) ∼
(

3 +
9
8
|y|2

s

)− 1
3

+
(3)−

1
3 n

4s
; intermediate profile

The intermediate region P2(t) =
{

x ∈ RN | K0
4

√
(T − t)| ln(T − t)| ≤ |x| ≤ ε0

}
, with a

control:

U(x, t) ∼
[

9
16
|x|2

| ln |x||

]− 1
3

; final profile

The outer region P3(t) =
{

x ∈ RN | |x| ≥ ε0
4

}
, with a control

U(x, t) ∼ U0(x, t); initial data

(we will in fact take T small).
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The rigorous proof

Control of the solution of the polynomial equation

We will have the following control:

|θ′(s)| ≤ e−ηs,

for some η > 0. This will imply that

θ(s)→ θ0 > 0 as s→∞.

Hatem ZAAG (CNRS & USPN) Profile of a touch-down solution to a nonlocal MEMS mode NYU Abu Dhabi, May 25-29, 2020



Technical details in the blow-up region

Contents

1 Introduction

2 Main result

3 A formal approach

4 The rigorous proof

5 Technical details in the blow-up region

Hatem ZAAG (CNRS & USPN) Profile of a touch-down solution to a nonlocal MEMS mode NYU Abu Dhabi, May 25-29, 2020



Technical details in the blow-up region

Control in the inner region P1 (setting)

In P1, we control w instead of U,

w(y, s) ∼ ϕ(y, s)⇔ ‖w− ϕ‖L∞(RN) → 0.

Therefore, we introduce q = w− ϕ, and we try to control

‖q‖L∞(RN) → 0.
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Technical details in the blow-up region

Control in the inner region P1 (equation on q)

∂sq = (L + V)q + T(q) + B(q) + N(q) + R(y, s),

L = ∆− 1
2

y · ∇+ Id,V(y, s) = 4
(
ϕ3(y, s)− 1

3

)
,

T(q, θ(s)) = −2
|∇q +∇ϕ|2

q + ϕ+ λ
1
3 e−

s
3

θ(s)

+ 2
|∇ϕ|2

ϕ+ λ
1
3 e−

s
3

θ(s)

,

B(q) =

(
q + ϕ+

λ
1
3 e−

s
3

θ(s)

)4

− ϕ4 − 4ϕ3q,

R(y, s) = −∂sϕ+ ∆ϕ− 1
2

y · ∇ϕ− ϕ

3
+ ϕ4 − 2

|∇ϕ|2

ϕ+ λ
1
3 e−

s
3

θ(s)

,

N(q) = −θ
′(s)
θ(s)

(q + ϕ) .

+ The blue and red terms are small ; The linear part driven by L + V remains to be
controlled.
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Technical details in the blow-up region

The inner region P1 (spectral properties)
- The operator L + V has 2 important properties:

On {|y| ≥ K
√

s}, L + V has a negative spectrum, provided that K � 1: Control of q in
this region is easy.
On {|y| ≤ K

√
s} (the inner region), the potential V can be considered as a perturbation

of L.
- This justifies the introduction of a Cut-Off function χ defined by

χ(y, s) = 1,∀|y| ≤ K
√

s et χ(y, s) = 0,∀|y| ≥ 2K
√

s.

- We will decompose q as follows:

q = χq + (1− χ)q ≡ qb + qe.

- Since supp(qe) ⊂ {|y| ≥ K
√

s}, by the first property of the potential, the control of qe is
easy.

- It remains to control qb.
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Technical details in the blow-up region

The inner region P1 (spectral properties)
- The operator L = ∆− 1

2y · ∇+ Id is self-adjoint in L2
ρ(RN) with

ρ(y) =
e−
|y|2

4

(4π)
N
2

.

Its spectrum is given by
SpecL = {1− m

2
,m ≥ 0}.

The eigenspace Em corresponding to the eigenvalue 1− m
2 is given by

Em = 〈hm1(y1).hm2(y2)....hmN (yN) | m1 + ...+ mN = m〉 ,

where hmi is the (rescaled) Hermite polynomial.

- Thus, we decompose qb, according to the sign of eigenvalues:

qb(y, s) = q0(s) + q1(s) · y + yT · q2(s) · y− 2 Tr(q2(s)) + q−(y, s).
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Technical details in the blow-up region

The inner region P1 (control of non-positive directions

- Control of q− : This is the negative part of the spectrum ; Easily controlled.

- Control of q2(s): This corresponds to the eigenvalue λ = 0 o L⇒ : It is delicate. We need
the Potential and also the Gradient term to derive this ODE:

q′2(s) = −2
s

q2(s) + O
(

1
s2

)
.

Introducing the slow variable τ = ln s, this yields

q2

dτ
(τ) = −2q2(τ) + O(e−2τ ),

we see a negative eigenvalue⇒ control of q2 is easy.

- We are left with the two nonnegative directions q0, q1.
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Technical details in the blow-up region

The inner region P1 (A topological argument)

This is the ODE satisfied by (q0, q1):

q′0 = q0 + O
(

1
s2

)
,

q′1 =
1
2

q1 + O
(

1
s2

)
.

Proceeding by contradiction and using the degree theory, we find initial data (q0, q1)(s0)
such that

(q0, q1)(s)→ 0 quand s→ +∞.

Finally, we conclude that all the components can be controlled, hence

‖q‖L∞(RN) → 0.
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Technical details in the blow-up region

Thank you for your attention !
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