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This short note is intended to non specialists. We aim at showing a
surprising fact : how a “parabolic” program initially developed for blow-up
solutions of the semilinear heat equation works for blow-up solutions of
the semilinear wave equation. We feel this fact surprising because for the
linear equations, everything separates the heat and the wave equations.

For simplicity, all equations are considered on the whole space R
N .
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Differences between linear equations

Heat equation ∂tu = ∆u

- Regularizing effect
- Infinite speed of propagation

- Dissipation of the energy

∫

|∇u|2dx, non reversible equation

Wave equation ∂2
ttu = ∆u

- No gain of regularity
- finite speed of propagation (c = 1)

- conservation of the energy

∫

(

|∂tu|2 + |∇u|2
)

dx, reversible equation
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Semilinear equations

the heat: ∂tu = ∆u + |u|p−1u where p > 1 is subcritical with respect to
the Sobolev injection:

p < 1 +
4

N − 2
if N ≥ 3.

the wave: ∂2
ttu = ∆u + |u|p−1u where p > 1 is subcritical with respect

to the conformal invariance:

p ≤ 1 +
4

N − 1
if N ≥ 2.
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Solution of the Cauchy problem and existence of blow-up
solutions

The maximal solution either exists for all t > 0 (global solution) or on
[0, T ) for some T > 0. In that case:

the heat: ‖u(t)‖L∞ → ∞ as t → T ,

the wave: ‖u(t)‖L2
loc,u

+ ‖u(t)‖L2
loc,u

+ ‖u(t)‖L2
loc,u

→ ∞ as t → T where

L2
loc,u is the set of all v such that

‖v‖2
L2

loc,u
≡ sup

a∈RN

∫

|x−a|<1
|v(x)|2dx < +∞.
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Remark: For the semilinear heat equation, no matter how weak is the
initial regularity (let’s stay in Lq spaces), blow-up occurs always in L∞

due to the regularizing effect. See Weissler [10]. For the wave equation,
there is no regularizing effect. We work with weak solutions and consider
the case where u, ∂tu and ∇u are in L2

loc,u.
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Trivial solutions

When initial data do not depend on space, we just have to solve an ODE.
We have the following solutions

the heat: v′ = vp whose solution is v(t) = κh(T − t)
− 1

p−1 where κh =

(p − 1)
− 1

p−1 for any T > 0.

the wave: v′′ = vp whose solution is v(t) = κw(T − t)
− 2

p−1 where

κw =
(

2(p+1)
(p−1)2

)
1

p−1
for any T > 0.
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Question: Take an arbitrary solution which blows up at time T . Can
we estimate its blow-up rate ? More precisely, can we find an equivalent of
its norm in the Cauchy space ?

Answer (the same for the heat and the wave): the blow-up rate is given
by the solution of the associated ODE which blows-up at the same time T .

More precisely,
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Heat equation

Theorem (A result due to Giga and Kohn [2] and [3] and
Giga, Matsui and Sasayama [4]). Let u be a solution of ∂tu =
∆u + |u|p−1u where p > 1 and p < 1 + 4/(N − 2) if N ≥ 3 which blows

up at time T > 0. Then, for all t ∈ [0, T ),

κh(T − t)
− 1

p−1 ≤ ‖u(t)‖L∞ ≤ C(T − t)
− 1

p−1

where C = C(‖u0‖, T ).

Near the blow-up time, we have this better estimate:

Theorem (Merle and Zaag [6] and [5], see also the note [7]).
Under the same hypotheses,

‖u(t)‖L∞ ∼ κh(T − t)
− 1

p−1 as t → T.
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Wave equation

Theorem (Merle and Zaag [8] and [9]). Let u be a solution of

∂2
ttu = ∆u+ |u|p−1u where p > 1 and p ≤ 1+4/(N −1) if N ≥ 2 which

blows up at time T > 0. Then, for all t > 0,

εN,p ≤ (T − t)
2

p−1‖u(t)‖L2
loc,u

+ (T − t)
2

p−1+1
(

‖∇u(t)‖L2
loc,u

+ ‖∂tu(t)‖L2
loc,u

)

≤ C.

Remark: In both cases (heat and wave), lower bounds on the blow-up
rate are trivial.
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A common method for the proof: the self-similar change of
variables

Let u be a solution that blows up at time T > 0. For each a ∈ R
N , we

introduce wa(y, s) defined by:

heat equation:

wa(y, s) = (T − t)
1

p−1u(x, t), y =
x − a√
T − t

, s = − log(T − t).

wave equation:

wa(y, s) = (T − t)
2

p−1u(x, t), y =
x − a

T − t
, s = − log(T − t).
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Remark: In both cases, wa is the ratio between the blow-up solution u
and its supposed blow-up rate (given by the ode). Hence, the goal is to
show that for all s ≥ − log T ,

1/C0 ≤ ‖w(s)‖ ≤ C0.

Remark: In both cases, studying the behavior of u(x, t) when (x, t) ap-
proaches (a, T ) is equivalent to the study of the long-time asymptotics of
wa(y, s) when y is near 0 and the new time variable s goes to infinity.

Remark: In both cases, the new space variable y is a time dependent
zoom of the old one x near the point a. This zoom becomes sharper as
t → T (that is s → ∞). However, y is not the same in the heat and
the wave setting, since in the former, a derivative in space is like half a
derivative in time, whereas in the latter, space and time play the same role.
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Equations satisfied by wa(y, s) (or w(y, s) for simplicity)

For all y ∈ R
N and s ≥ − log T ,

the heat:

∂sw = ∆w − 1

2
y.∇w − w

p − 1
+ |w|p−1w,

the wave:

∂2
ssw − div (∇w − (y.∇w)y) +

2(p + 1)

(p − 1)2
w − |w|p−1w

= −p + 3

p − 1
∂sw − 2y.∇∂sw.

Remark: Surprisingly, the new wave equation is dissipative, unlike the
original. This means that we are unveiling a new structure in the problem.
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A new structure derived from the self-similar transforma-
tion: a Lyapunov functional: the heat (Giga and Kohn [2])

If

Eh(w) =

∫

RN

(

1

2
|∇w|2 +

1

2(p − 1)
− 1

p + 1
|w|p+1

)

exp(−|y|2/4)dy,

then
d

ds
Eh(w(s)) = −

∫

RN
(∂sw)2 exp(−|y|2/4)dy.
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A new structure derived from the self-similar transforma-
tion: a Lyapunov functional: the wave (Antonini and Merle
[1])

If

Ew(w) =

∫

B(0,1)

(

1

2
(∂sw)2 +

1

2
|∇w|2 − 1

2
(y.∇w)2

+
(p + 1)

(p − 1)2
w2 − 1

p + 1
|w|p+1

)

(1 − |y|2)αdy

where α = 2
p−1 − N−1

2 ≥ 0, then

d

ds
Ew(w(s)) = −2α

∫

B(0,1)
(∂sw)2 (1 − |y|2)α−1 when p < 1 +

4

N − 1
.
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Remark: The natural space domain in the wave setting is the unit ball
which corresponds in the (x, t) variable to the backward light cone with
vertex (a, T ), a notion adapted to the finite speed of propagation (c = 1).

Remark: For the wave equation, when p = 1 + 4
N−1 (critical case), the

dissipation of Ew becomes degenerate and is supported in the boundary of
the unit ball.

Remark: Still for the wave equation, please note that this Lyapunov
functional is not the energy in conformal coordinates.
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The same blow-up criterion in similarity variables

Prop. If a solution W satisfies E(W (s0)) < 0 for some s0 ∈ R, then

W blows up in finite time S∗ > s0.

Proof: For the heat, this is classical. For the wave, see Antonini and
Merle [1]).

Since all wa(y, s) are defined for all s ≥ − log T by construction, they
never blow-up. More precisely, we have the following:

Corollary. For all a ∈ R
N ands ≥ − log T ,

E(wa(s)) ≥ 0.

Remark: E stands for Eh or Ew here.
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Control of the energy

Because of the blow-up criterion and the monotonicity of E, it holds that

∀a ∈ R
N , ∀s ≥ − log T, 0 ≤ E(wa(s)) ≤ E(wa(− log T )) ≤ C0(T, ‖u0‖).

End of the proof:

Since the energy is bounded, one has to use interpolation is Sobolev spaces
and show that each term in the energy is bounded, uniformly with respect to
the scaling point a. See Giga and Kohn [3] and Giga, Matsui and Sasayama
[4] for the heat; see Merle and Zaag [8] and [9] for the wave equation.
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