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I. Real Theories:

Everything is localized (possibly completed) at the prime p = 2.

We may construct a Z/2 = Gal(C/R)-equivariant model for
complex cobordism by retaining the Galois (i.e. complex
conjugation) action on the pre-spectrum given by Thom spaces:
BU(k)", where BU(k) is the Grassmannian of complex k-planes
in C* supporting the tautological bundle .

The structure maps are of the form:
Y (1 T)BUK)* —s BU(k+1)%+,

where ¥(1*9) represents the one point compactification of the
representation 1 + a = C (here « is the sign representation).

Notation: VX := S A X, where SV is the one-point
compactification of a representation V.



Real complex cobordism MU is defined as the RO(Z/2) i.e
(Z & Za)-graded complex cobordism spectrum given by
spectrifying the Z/2 pre-spectrum above:

MU := colim, T *(+)BU k),

Define bigraded cohomology: MU#2%(X) := [X, £&+bMU}4/2

By construction, the spectrum MU supports a tautological
orientation 1 € MU'+%(CP>). So that:

MU(+e)(CB®) = MU +I[[,]]

MU (CP* x CP*) = MU [ug, o]

This yields a formal group law over 7,(1,)(MU) that refines
the formal group law of MU. So one obtains classes
Vi € MU(2k_1)(1+q) that lift the usual classes v € MUp(px_4).



We can now define the Z /2-equivariant versions of the spectra:
BP, BP(n) and Real equivariant Johnson-Wilson spectra E(n):

E(n) := BP(n) [V;1] = IB31}1}[‘@71]/(‘%-&-17Vn—s-27 )

These equivariant spectra have been extensively studied by
Hu-Kriz. They show, for example E(1) is equivalent to Atiyah’s
“real" K-theory KR.

Definition: The real Johnson-Wilson spectrum ER(n) is defined
as the homotopy fixed point spectrum: E(n)"%/2,

The (integer graded) homotopy groups of [E(n) and ER(n)
agree:
mt(ER(n)) = m¢(E(n))-

For example, ER(1) is equivalent to usual real K-theory KO.



Two Remarks:

(1) Let A =2™2(2"=1 — 1) + 1. Then there is a nilpotent class:
n € m(E(n)) = m(ER(n)), 2n=n""1=0.

So for example, for n =1, we have A = 1 and : ) € m1(KO).

(2) There is an invertible class y € 744 (E(n)) lifting V%gn_ﬂ.

So we may shift cohomology classes to integral degree:
E(n)f09(X) — E(nf O I(X),  z—2:=yrz
In particular, v; € E(N)(2i_1)(1.4q) have integral shifts: ¥;

Vi € E(N@i_1y-» =ER(M@i_1)1-n, <0

In the example of n =1, we have: Vg =2, ¥4 = 1. For general
n, the classes ¥; will typically have nonzero grading.



I1. The Bockstein Spectral Sequence E,(X):
Theorem (KW): There is a fibration of ER(n)-module spectra:

un

Y ER(n) — ER(n) — E(n).

Multiplication by 1 generates a tower, and gives rise to a first
and fourth quadrant spectral sequence of ER(n)*-modules
called the Bockstein spectral sequence:

E(X)” = ER(n)~/(X), |dr| = (r,r+1).
The Eq-term is given by:
X = Bm™7(X), di(2) = v @71 ~0)(2).
where o is complex conjugation acting on E(n)*(X). Also,

_ok ~ K+1_ _on+k
dori 1 (Va2 ) = 0kn® T2, Il = (1, =A+ 1),



Three Facts:

(1) Since n2""'~1 = 0, the spectral sequence collapses at
Esni1(X). In other words:

Epni1(X) = Eoo(X).

(2) For X = pt, the coefficients ER(n)* are a subquotient of

Z(Z)[nv‘,}'l PR 7‘/}n71 7V%1]
(20, 2" =1 1y

(3) The invertible class V%n+1 survives and generates the

periodicity of ER(n). In other words, ER(n) is
2M2(2" — 1)-periodic.



Internal structure of the BSS:

Notice that there is an Algebraic map:
¢ E(N)2v = Z2)[v1,- -,V vy '] — ER(N)(1_n), Vi 9.

This map scales the degrees of classes by the factor (1 — \)/2.
The Bockstein spectral sequence for X = pt, is a spectral
sequence of finitely presented E(n).E(n)-comodules under the
map .

Corollary (KW): Let M be a Landweber flat E(n)*-module, and
let (E;, d,) denote the Bockstein spectral sequence for X = pt.
Then (M ®,, E,,id ® d;) is a spectral sequence of
ER(n)*-modules converging to M ®,, ER(n)*.

The goal now is to identify those spaces X, so that we may
model E/(X) as M ®,, E/(pt) for a suitable subalgebra of
permanent cycles: M C ER(n)*(X). Such spaces are
surprisingly common.



III. The Projective Property and LFRP:

Definition: A pointed Z/2-space Z is called Projective if
H.(Z,Z) is of finite type, and Z is homeomorphic to a space of
the form \/, (CP>)¥ for some sequence K.

A 7 /2-equivariant H-space Y is said to have the Projective
Property if there exists a projective space Z endowed with an
equivarinat map f : Z — Y, such that H.(Y,Z/2) is generated
as an algebra by the image of f.

Eamples of spaces with projective propery:
MUpk(11a)y  BPk(11a)y, BP(N)k@4qa) for k <21,

Theorem (KW): If Y is a space with the projective property,
then the map p given by forgetting the equivariant structure:

p E(n) (O (Y) — B(n)*(Y),

(14a)

is an isomorphism of MU* -algebras.



The above theorem, along with the shift isomorphism yields:
Corollary (KW): If Y is a space with the projective property,
then we have an isomorphism:

@ : E(n)%(Y) — ER(n)*"=N(Y).

Definition (LFRP): Let X be a (non-equivariant) space such that
E(n)*(X) is Landweber flat. Assume that there exists a space Y
with the projective property equipped with a map: X — Y%/2
such that the composite map: + : X — YZ/2 — Y is surjective
in E(n), and that the natural map:

o E(n)2*(Y) — ER(n)*("Y(X),

factors through E(n)?*(X). Then we call the pair (X, Y), a
Landweber Flat Real Pair. One can show that the factorization:
E(n)?*(X) — ER(n)*('=Y(X) is injective. Call its image
E(n)*(X). We treat the case n = 1 separately.



IV. The Main theorem and Examples:

Theorem (KLW): Assume that (X, Y) is a LFRP. Let
E(n)*(X) € ER(n)*('=Y(X) denote the (injective) image of the
above factorization. Then there is an isomorphism of algebras:

ER(n)* @ E(n)*(X) — ER(n)*(X),

where the tensor product is being taken over E(n)*(pt).
Two Remarks:

(1) The ring E(n)*(X) is abstractly isomorphic to E(n)*(X) with
a rescaling of degrees and so the above theorem shows that
ER(n)*(X) is obtained from E(n)*(X) by a subtle base change.

(2) The Kiinneth theorem holds:
ER(n)* (X1 x X2) = ER(n)"(X1) ® ER(n)"(X2),

where the completed tensor product is over ER(n)*.



Examples of LERP (X, Y):

X=K(Z,2m+1), Y=BP
X=K(Z/29,2m), Y =BP(2m —1)zem_1)(1+a)
X=K(Z/2,m), Y =BP(m—1)emn_1)1+a)
X =BO, Y =BP(1)(1,a) = BU
X =BSO, Y =BP(1)p1,a) = BSU
X =BSpin, Y =BP(1)s11q) = BSU

BP(2m — 1) (22n_1y(1+a)

X = BSpin, Y = BP(1)5(1:a) = BU(6)

B/S—ID_El is the fiber of p, : BSpin — K(Z, 4).



We can be more explicit in some cases, for example:
ER(n)*(BO) = ER(n)"[[&, . .., ]1/(& = &) ~ E(n)"(BU)/{ci — ¢f).

In general E(n)*(X) is a regraded quotient of E(n)*(Y).

All the previous examples tie into short exact sequences of
completed algebras.

Definition: A sequence of complete, augmented topological R
algebras:
A—B—C,

is a called SES of completed algebras if the following is a SES of
R-modules:

0 —B&I(A) —B—C—0,

where I(A) denotes the augmentation ideal of A, and the
completed tensor product is taken over R.



Theorem (KLW): The following are SES of completed
ER(n)*-algebras:

ER(n)*(K(Z/2,1)) —> ER(n)*(BO) — ER(n)*(BSO),

ER(n)*(K(Z/2,2)) — ER(n)*(BSO) —» ER(n)*(BSpin),

ER(n)*(BSpin) — ER(n)*(BSpin) — ER(n)*(K(Z, 3)),
ER(n)*(K(Z/2,3)) — ER(n)*(BSpin) — ER(n)*(BO(8)).

Two Remarks:

(1) All the above SES’s are induced by topological connective
covers.

(2) The ring ER(n)*(K(Z/2,3)) is trivial if n < 3, so we notice:

ER(n)"(BSpin) = ER(n)*(BO(8)), n<2.



