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Divisibility of the Dirac Magnetic Monopole

as a Two-Vector Bundle over the Three-Sphere

Christian Ausoni, Bjørn Ian Dundas and John Rognes

Received: September 10, 2008

Revised: October 18, 2008

Communicated by Lars Hesselholt

Abstract. We show that when the gerbe µ representing a magnetic
monopole is viewed as a virtual 2-vector bundle, then it decomposes,
modulo torsion, as two times a virtual 2-vector bundle ς. We therefore
interpret ς as representing half a magnetic monopole, or a semipole.
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§1. Introduction

Let A be a connective S-algebra, where S is the sphere spectrum, and let
K(A) = K0(π0(A)) × BGL∞(A)+ be its algebraic K-theory space. The nat-
ural map w : BGL1(A) → K(A) is given by the inclusion of 1 × 1 matrices
BGL1(A) → BGL∞(A), followed by the canonical map into the plus con-
struction. Let ku denote the connective complex K-theory spectrum, with
π∗ku = Z[u], |u| = 2, and let π : ku → HZ be the unique 2-connected S-
algebra map to the integral Eilenberg–MacLane spectrum. Its homotopy fiber
is bu, with π∗bu = (u) ⊂ Z[u]. We define BSL1(ku) and K(π) as the homotopy
fibers of the induced maps π : BGL1(ku) → BGL1(Z) and π : K(ku) → K(Z),
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respectively, so that we have the following commutative diagram of horizontal
homotopy fiber sequences

(1.1) BSL1(ku) //

��

BGL1(ku)
π

//

w

��

BGL1(Z)

w

��

K(π) // K(ku)
π

// K(Z) .

We have a map from the Eilenberg–MacLane complex K(Z, 3) to the upper
left hand corner of this diagram, induced by the infinite loop space inclu-
sion BU(1) → BU⊗ and the equivalences K(Z, 3) ≃ BBU(1) and BBU⊗ ≃
BSL1(ku). Recall that the space K(Z, 3) represents gerbes with band U(1)
[Br93, Ch. V], whereas K(ku) represents virtual 2-vector bundles [BDR04,
Thm. 4.10], [BDRR]. A 2-vector bundle of rank 1 is the same as a gerbe, and
the composite map

(1.2) K(Z, 3) → K(ku)

represents the construction that views a gerbe as a virtual 2-vector bundle.
We now consider gerbes and 2-vector bundles over the base space S3. There
is a map µ : S3 → K(Z, 3) representing a generator of H3(S3) = Z, or dually,
corepresenting a generator of π3K(Z, 3) = Z. It also represents a U(1)-gerbe
over S3, which is interpreted in [Br93, Ch. VII] as a mathematical model for a
magnetic monopole, stationary in time and localized at one point.
Parallel transport in this gerbe, around closed loops in S3, defines a holo-
nomy line bundle over the free loop space of S3 [Br93, Ch. VI]. Its complex
1-dimensional fibers can be interpreted as the state spaces of these free loops,
viewed as strings in S3. Parallel transport over compact surfaces in S3, between
tensor products of copies of this line bundle, defines an action functional that
makes these state spaces part of a field theory. Here the compact surfaces are
viewed as world sheets in S3. In a quantized theory one would consider Hilbert
spaces of sections in the holonomy line bundle, rather than its individual fibers,
as the state spaces.
Following the point of view explained in [AR, §5.5], we also view 2-vector
bundles over a base space as data defining (virtual) state spaces and action
functionals for strings in that base. More field theories arise this way, since
the state spaces are no longer restricted to being 1-dimensional, hence it is also
possible to model more kinds of particles by 2-vector bundles than those arising
from gerbes.
In particular we may ask, as the second author did, how the magnetic monopole
µ over S3 decomposes when viewed as a virtual 2-vector bundle. Does it remain
a single particle?
The addition in the abelian group π3K(ku) is induced by the H-group multi-
plication of K(ku), which represents the direct sum of virtual 2-vector bundles,
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or in the above terms, the superposition of two particles. Therefore, a mathe-
matical formulation of the question stated above is: “What is the structure of
π3K(ku) = K3(ku), and what is the image of µ ∈ π3K(Z, 3) in that group?”
The surprising answer, which the title of this paper refers to, is that modulo
torsion, µ becomes divisible by two as a virtual 2-vector bundle. In more detail,
there are virtual 2-vector bundles ς and ν over S3, with 24ν = 0, such that

(1.3) µ + ν = 2ς

in K3(ku). Modulo torsion, ς is therefore half a magnetic monopole. Ignoring
torsion is justified in the physical interpretation, since the numerical invariants
of a field theory traditionally take torsion-free values, and will send ν to zero.
On the other hand, both µ and ς have infinite order in K3(ku).

§2. Statement of results

Let i : S → K(ku) be the unit map, and recall that π3(S) = Z/24{ν} and
K3(Z) ∼= Z/48{λ} [LS76]. The composite map πi : S → K(Z) induces the
injection π3(S) → K3(Z) that takes ν to 2λ.
By [Wa78, Prop. 1.2], as generalized in [BM94, Prop. 10.9], the homotopy fiber
K(π) is 2-connected. Hence Ki(ku) → Ki(Z) is an isomorphism for i ≤ 2.
Here is what happens in dimension three:

Theorem 2.1. (a) The maps K(Z, 3) → BSL1(ku) → K(π) induce isomor-
phisms

Z{µ} = π3K(Z, 3)
∼=
−→ π3BSL1(ku)

∼=
−→ K3(π) .

(b) The unit map i : S → K(ku) induces a homomorphism

Z/24{ν} = π3(S)
i∗−→ K3(ku)

that identifies the source with the torsion subgroup in the target. We abbreviate
i∗(ν) to ν ∈ K3(ku).
(c) The homotopy fiber sequence K(π) → K(ku) → K(Z) induces a short
exact sequence

0 → K3(π) → K3(ku)
π∗−→ K3(Z) → 0

which is isomorphic to the nontrivial extension

0 → Z{µ} → Z{ς} ⊕ Z/24{ν}
π∗−→ Z/48{λ} → 0 .

Here the first map takes µ to 2ς − ν, and the second map takes ς to λ and ν to
2λ.

Corollary 2.2. The map K(Z, 3) → K(ku) that represents viewing U(1)-
gerbes as virtual 2-vector bundles induces the homomorphism

Z{µ} = π3K(Z, 3) → K3(ku) = Z{ς} ⊕ Z/24{ν}

that takes µ to 2ς − ν, where 24ν = 0. The image of ς ∈ K3(ku) in K3(Z) is
the generating element λ of order forty-eight.
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Corollary 2.3. There is no “determinant map”

det : K(ku) → BGL1(ku)

such that the composite det ◦w is an equivalence.

Corollary 2.2 is readily extracted from Theorem 2.1(a) and (c). Corollary 2.3
follows, since det : K3(ku) → π3BGL1(ku) ∼= Z{µ} cannot map 2ς − ν to µ.

Remark 2.4. For commutative rings R there is a determinant map
det : K(R) → BGL1(R), which is left inverse to w. On the other hand,
it follows from [Wa82, Cor. 3.7] that w : BGL1(S) → K(S) admits no such re-
traction up to homotopy. In [AR, §5.2], the first and third authors used the ex-
istence of a rational determinant map detQ : K(ku) → BSL1(ku)Q ≃ (BBU⊗)Q

to define the rational anomaly bundle of a 2-vector bundle, generalizing the
definition of the anomaly line bundle of a gerbe. Corollary 2.3 shows that no
such generalization can be integrally defined on all of K(ku). This suggests
that an integral anomaly bundle will only be defined on a space covering
K(ku), classifying 2-vector bundles with some form of higher orientation.

§3. Proofs

Proof of Thm. 2.1(a). In view of the infinite loop space splitting BU⊗ ≃
BU(1) × BSU⊗ it is clear that K(Z, 3) ≃ BBU(1) → BBU⊗ ≃ BSL1(ku) is
4-connected. For the second part, we refer to the proof of [BM94, Prop. 10.9]
to see that there is an isomorphism

(3.1) colim
n

Mn(π2(bu))/[GLn(π0(ku)), Mn(π2(bu))] ∼= K3(π) .

Here Mn denotes the ring of n × n matrices, and GLn acts on Mn by con-
jugation. Furthermore, under the isomorphism (3.1), π3BSL1(ku) → K3(π)
factors as

(3.2) π3BSL1(ku) ∼= π2(bu) = M1(π2(bu))/[GL1(π0(ku)), M1(π2(bu))] ,

followed by the canonical map from the term n = 1 into the colimit in (3.1).
For each n ≥ 1 the matrix trace induces an isomorphism [Ka83, Prop. 1.3]

Mn(π2(bu))/[GLn(π0(ku)), Mn(π2(bu))]
∼=
−→ π2(bu)/[π0(ku), π2(bu)] = π2(bu) ,

hence each structure map in the colimit is an isomorphism, and therefore the
canonical map from (3.2) to K3(π) is also an isomorphism. �

To proceed, we make use of the natural trace map tr : K(A) → THH(A) to
topological Hochschild homology [BHM93]. We define THH(π) as the homo-
topy fiber of π : THH(ku) → THH(Z), so as to obtain the following commu-
tative diagram of horizontal homotopy fiber sequences

(3.3) K(π) //

��

K(ku)
π

//

tr

��

K(Z)

tr

��

THH(π) // THH(ku)
π

// THH(Z) .
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Proof of Thm. 2.1(b) and (c). Passing to homotopy groups, we get the following
vertical map of short exact sequences

(3.4) 0 // K3(π) //

(∼=)

��

K3(ku)
π∗

//

tr∗

��

K3(Z) //

tr∗

��

0

0 // THH3(π) // THH3(ku)
π∗

// THH3(Z) // 0 .

Here K3(π) → K3(ku) is injective because K4(Z) = 0 [Ro00], and K3(ku) →
K3(Z) is surjective because K2(π) = 0. Furthermore, THH3(π) → THH3(ku)
is injective because THH4(Z) = 0 [Bö], [FP98, Cor. 3.2] and THH3(ku) →
THH3(Z) is surjective because

Z/48{λ} = K3(Z)
tr∗−−→ THH3(Z) = Z/2{e}

takes λ to e [BM94, Thm. 10.14], [Ro98, Thm. 1.1] and the right hand square
commutes. The left hand vertical map K3(π) → THH3(π) is split injective,
by [BM94, Thm. 10.12]. We shall soon see that it is in fact an isomorphism.
The 2-primary homotopy of THH(ku) is fully computed in [AHL], but in low
dimensions the following direct argument suffices. The homotopy cofiber ku/S
of S → ku is 1-connected, with π2(ku/S) ∼= Z. By construction, THH(ku)
is the geometric realization of a simplicial spectrum, and the map from the
(n − 1)-skeleton to the n-skeleton has cofiber Σnku ∧ (ku/S) ∧ · · · ∧ (ku/S),
with n copies of ku/S, which is (3n − 1)-connected. By induction, the map
from the 1-skeleton to all of THH(ku) is 5-connected. Furthermore, the 0-
simplices ku split off from the 1-skeleton of THH(ku) since ku is commutative,
so THH3(ku) ∼= π3(ku) ⊕ π3(Σku ∧ (ku/S)) ∼= Z{ǫ}, for some choice of gene-
rator ǫ.
Diagram (3.4) is therefore isomorphic to

(3.5) 0 // Z{µ} //

∼=

��

K3(ku)
π∗

//

tr∗
��
��

Z/48{λ} //

tr∗
��
��

0

0 // Z{2ǫ} // Z{ǫ}
π∗

// Z/2{e} // 0 ,

where the split injection Z{µ} → Z{2ǫ} must be an isomorphism. (We assume
that we have chosen our orientations so that µ maps to 2ǫ, rather than −2ǫ.)
The right hand square is a pullback, so there is a short exact sequence

(3.6) 0 → Z/24{ν}
i∗−→ K3(ku)

tr∗−−→ Z{ǫ} → 0 ,

where the image of the injective homomorphism i∗ : π3(S) → K3(ku) is iden-
tified under π∗ : K3(ku) → K3(Z) with the kernel of tr∗ : K3(Z) → THH3(Z).
Hence the image of i∗ equals the kernel of tr∗ : K3(ku) → THH3(ku).

Documenta Mathematica 13 (2008) 795–801



800 Christian Ausoni, Bjørn Ian Dundas and John Rognes

To fix a splitting of (3.6), we let ς ∈ K3(ku) be the class mapping to ǫ in
THH3(ku) and to λ in K3(Z). This is admissible, since both classes map to e
in THH3(Z). Then

K3(ku) ∼= Z{ς} ⊕ Z/24{ν} ,

and µ ∈ K3(π) maps to 2ς in K3(ku) modulo the image of i∗. Since µ continues
to 0 in K3(Z), the exact formula must be 2ς − ν. �
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