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Towards topological Hochschild homology of
Johnson—Wilson spectra

CHRISTIAN AUSONI
BIRGIT RICHTER

We present computations in Hochschild homology that lead to results on the K(i)—
local behaviour of THH(E(n)) for all # = 2 and 0 < i < n, where E(n) is
the Johnson—Wilson spectrum at an odd prime. This permits a computation of
K(i)«THH(E(n)) under the assumption that E(n) is an E3;-ring spectrum. We
offer a complete description of THH(E(2)) as an E(2)—module in the form of a
splitting into chromatic localizations of E(2), under the assumption that E(2) carries
an Eo—structure. If E(2) is admits an E;—structure, we obtain a similar splitting of
the cofiber of the unit map E(2) — THH(E(2)).

55N35, 55P43

1 Introduction

The first Johnson—Wilson spectrum E£(1) at a prime p is the Adams summand of p—
local periodic complex topological K—theory KUp). McClure and Staffeldt showed
thata p—completed connective version of E(1) isan E,—ring spectrum [18, Section 9]
and Baker and Richter [4, Theorem 6.2] show that E (1) carries a unique F oo —structure.
Thus THH(E(1)) is a commutative £(1)—algebra spectrum. McClure and Staffeldt
show that the unit map E(1), — THH(E(1),) is a K(1)-local equivalence, hence
its cofiber THH(E (1) p) is a rational spectrum. It is easy to calculate the rational
homology of THH(E(1),) as

HQ.THH(E(1),) = Qi1 ®q Ag(dvy)
using the Bokstedt spectral sequence with E2—term
E; . = HH2. @),
There is a map

22?71 E(1), — THH(E(1),) — THH(E(1),)
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that factors through 227~ E(1)g — ﬁ-l(E(l)p) since m(E(l)p) is rational, and
that is defined such that the latter map is an equivalence detecting the HQ« E(1)—
summand generated by dv;. Since the unit map E(1), — THH(E(1),) splits, this
yields a splitting [18, Theorem 8.1]

THH(E(1),) ~ E(1), v 2*?"1E(1)g

as E(1)p—modules. This computation was also carried out for KU(,) by Ausoni [3],
and pushed further to provide formulas for THH(KU) as a commutative KU —algebra
by Stonek [27].

In this paper, we consider the higher Johnson—Wilson spectrum E(n) with coefficient
ring
E(n)x« =Z(p[v1.- .. V1. Va0, ']

for an arbitrary value of » = 1 and p an odd prime. Our main motivation is to
investigate whether the spectrum THH(ZE (7)) also splits into copies of E(n) and
its lower chromatic localizations, generalizing McClure and Staffeldt’s intriguing
transchromatic result.

Let K(i) be the i Morava K —theory at an odd prime. As a first step, we com-
pute the Hochschild homology HHf(i)*(K(i)*E(n)) of K(i)«E(n) for 0 <i <n;
see Theorem 3.4. We shy away from the prime 2 because Morava K —theory is
not homotopy commutative at the prime 2. Theorem 3.4 yields a computation of
K(i)«THH(E (n)) under the modest assumption that E(n) admits an E5—structure.

We then focus on E(2), and show in Theorem 5.4 that, under the same commutativity
assumption, THH(E(2)) sits in a cofiber sequence

E(Q2) - THH(E(2)) » S2?7 L EQ) v S2P° " EQ)g v S2P° 1202 £ (2) 0,

where L E(2) denotes the Bousfield localization of E(2) with respect to E(1). If the
unit £(2) - THH(E(2)) splits, we then get a decomposition of THH(E(2)) into four
summands, a higher analogue of McClure and Staffeldt’s formula for THH(E(1)).

Remark 1.1 To study THH(E (7)) by means of the Bokstedt spectral sequence, we
need sufficient commutativity of E(n). Here we summarize what is known about
multiplicative structures on E(n) and related spectra. Basterra and Mandell [7] showed
that the Brown—Peterson spectrum BP admits an E4—structure. The Johnson—Wilson
spectra E(n) are built out of the BP{n) = BP/(v; |i = n + 1) by inverting v,. In
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Towards topological Hochschild homology of Johnson—Wilson spectra 377

[15, Theorem 1.1.2], Tyler Lawson shows that the Brown—Peterson spectrum BP and
the spectra BP(n) for n = 4 at the prime 2 do not possess an E1,—structure. Andrew
Senger [25, Theorem 1.2] extends Lawson’s result to odd primes p, and shows that BP
and the BP(n) (for n = 4) do not have an E, 2 ,)-structure. In particular, the BP(n)
are not E,—ring spectra at any prime for n = 4. Hence, if E(n) actually possesses an
E 5 —structure for n = 4, then this structure does not come from one on BP(n). Richter
[20, Proposition 8.2] proves that E(n) at a prime p possesses at least a (2p—1)—
stage structure. It is unclear how such a structure relates to the E,—hierarchy, but
Barwick conjectures [5, page 1948] that a (2 p—1)—stage structure corresponds to an
Ag_l —structure which in turn is a filtration piece of an E;,_j—structure.

At the prime 2, Lawson and Naumann [16] show that there is an E,—model of BP(2)
and Hill and Lawson [13] prove that BP(2) at the prime 3 possesses a model as an
E »o-ring spectrum. With Mathew, Naumann and Noel [17, Theorem A.1] this yields
E so—structures on the corresponding Johnson—Wilson spectra E(2) at these primes.
Current work of Sanath Devalapurkar aims at adapting the arguments used in these
results to produce E,—models of BP(2) or E(2) at higher primes.

Acknowledgements Ausoni acknowledges support from the project ANR-16-CE40-
0003 ChroK. Richter thanks the University of Paris 13 for its hospitality and for the
possibility of a research stay as professeur invitée. Both authors benefited from a stay
at the Hausdorff Institute for Mathematics in Bonn during the Trimester Program on
K —theory and related fields.

We thank Paul Goerss for a crucial hint that simplified our original étaleness argument,
and Agnes Beaudry, Gerd Laures, Mike Mandell, John Rognes and Vesna Stojanoska
for helpful comments.

2 Rationalized E(n)

For n =1 the homotopy algebra of L) E(n) = E(n)g is Q[vy,...,v4—1, vffl] and
its algebra of cooperations is
nx(E(n)g A E(n)Q) = m+E(n)q ®q m« E(n)g
=~ Qg v v Vv ol

This implies the following result:

Lemma 2.1 There is a unique Eo,—ring structure on E(n)g forall n > 1.
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Proof The obstruction groups for such an E,—ring structure on E(n)g are contained
in the Gamma cohomology groups of 7« (E(n)g A E(n)g) as a mx E(n)g—algebra
[22, Theorem 5.6]. As we work in characteristic zero, Gamma cohomology agrees
with André—Quillen cohomology [23, Corollary 6.6]. The algebra

+1 7 ’ ==t
Qur, . s Vp—1, vy VY, U Uy ]
is smooth over Q[vy,...,Vy—1, vfl] and therefore André—Quillen cohomology is

concentrated in cohomological degree zero, where it consists of derivations. The
obstructions for existence and uniqueness of an Es,-ring structure on E(n)g are
concentrated in degrees bigger than zero. O

As Eo-rting structures can be rigidified to commutative ring structures (see eg
[12, Section 11.3]), we pass to the world of commutative ring spectra from now on.

Topological Hochschild homology of a ring spectrum A can be modelled as the
geometric realization of a simplicial spectrum. Using the inclusion of the 1-skeleton,
McClure and Staffeldt [18, Section 3] construct a map

@2-1) o: A — THH(A).

For a commutative ring spectrum A the multiplication maps from A" *1 to A4 give
rise to a map of commutative A—algebra spectra from THH(A) to A. Composing this
map with the map 4 — THH(A) gives the identity, hence we obtain a splitting of
A-modules

THH(A) ~ AV THH(A),

where THH(A) is the cofiber. The latter spectrum inherits the structure of a nonunital
commutative 4—algebra. In our case this implies the following result:

Corollary 2.2 The topological Hochschild homology of E(n)q splits, as an E(n)g—
module, as
THH(E (n)g) >~ E(n)g vV THH(E (n))q

where THH(E (n))q is the cofiber of the unit map
E(n)g — THH(E (n)g) ~ THH(E (n))q.
Moreover, the spectrum THH(E (n))q is a nonunital commutative E(n)g—algebra.

In the sequel, we follow Ronco [24, Definition E.1] for the definition of étale algebras.
It is straightforward to calculate the topological Hochschild homology of E(n)q:
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Towards topological Hochschild homology of Johnson—Wilson spectra 379

Proposition 2.3 We have
(2-2) 7+ THH(E (n))g = Qv ..., Uy—1, v,:,tl] ® Ag(dvy, ..., dv,)

with |dv;| =2p' —1.

Proof The Bokstedt spectral sequence for w4« (THH(E (n))g) = HQ«THH(E (n)) is
of the form

E?, = HHZ, (4 E(n)q) = m«(THH(E(n))q).

As Q[vq, ..., vp—1, v,jfl] is étale over Q[vy, ..., v,—1,Vy] and as Q[vy, ..., Vy—1, Us]
is smooth, we get

HH%*(”*E(’Z)Q) = Qvi, ... . vp—1, vnil] ® Ag(dvy, ..., dvy)

with dv; having homological degree one and internal degree 2p’ —2. As the Bokstedt
spectral sequence is multiplicative and as the algebra generator cannot support any
differentials for degree reasons, the spectral sequence collapses at E2. There are no
multiplicative extensions and hence we get the result. O

Remark 2.4 As we work rationally, THH(E (n))g is a commutative HQ-algebra
spectrum and hence corresponds to a commutative differential graded Q—algebra
(see [26] or [21]).

3 K(i).E(n) and K(i),THH(E (n))

In the following we assume that p is an odd prime, and that » and i are integers
with 1 <7 <n. The Hopf algebroid (BP., BP+BP) represents the groupoid of strict
isomorphisms of p—typical formal group laws [14] (see also [19, Theorem A2.1.27]).
There are isomorphisms of graded Z ,)—algebras

BP*’EZ(I,)[UI,UQ,...] and BP*BP’z\’BP*[ll,lz,...],

where |v;| = |t;] = 2(p" — 1). We use the Araki generators v; [19, Section A2.2]
and by convention vy = p and ¢y = 1. The i Morava K—theory K(i) is complex
oriented, and its formal group law F; (the Honda formal group law) corresponds to
the map BPyx — K(i)« = IFp[vl-i] sending v; to v; and vg for k # i to zero. The
p—typical formal group law G, over E(n)« comes from the map BPx — E(n) that
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kills all v; with i > n and inverts v,. Since FE(n) is a Landweber exact homology
theory, we obtain an isomorphism

(3-1) K(i)+«E(n) = K(i)x ®gp, BPyBP ®pp, E(1)s.

Note that K (i)« E (n) is trivial for i > n and that the Bousfield class (E(n)) of E(n)
is (K(O)v---Vv K(n)).

We first treat the case i = n.
The algebra K(n)«E(n) is isomorphic to K(n).BP(n), which is isomorphic to
K(n)+ ®pp, BP«BP ®gp, K(n)«
(see for instance [29, page 428]). The latter is known as X (7). It is of the form
S(n) = Kn)alty, 1, .1/ oat?" =021 |0 = 1);
see [19, Corollary 6.1.16].

Proposition 3.1 For all n = 1 the canonical map E(n) — THH(E(n)) is a K(n)—
local equivalence.

Proof If we set
C,fk) = K(n)«lt1, ..., tk]/(v,,ti”" — v,f;" tl1<i<k)

then C,fk) is étale over K(n)« and K(n)« E(n) is the directed colimit of the C,,Ek) .

The K(n)x-Bokstedt spectral sequence for THH(E (n)) has as an E2—term
HHE ™ (K1)« E(n)) = K(n)+ E(n)

concentrated in homological degree zero. Thus K(n)«THH(E (n)) = K(n)«E(n) and
the isomorphism is induced by the map E(n) — THH(E (n)). Therefore, this map is a
K(n)—equivalence and thus, K(n)-locally, THH(E (n)) is equivalent to E(n). |

We calculate K (i)« E(n) for 1 <i <n—1 using the following description of morphisms
of graded commutative BP,—algebras from K(i)«E(n) to some graded commutative
ring By. For n = 2 we had an argument that was rather involved and Paul Goerss
suggested the following simpler proof.

We consider the map g: BPxBP — K(i)« E(n) of graded commutative Z,)—algebras
given by

BP,BP — K(i)+ ®pp, BPBP ®pp, E(n)s = K(i)+E(n),
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which uses the canonical maps BPx — K (i)« and BPx — E (1)« and the isomorphism
from (3-1). By [19, Theorem A2.1.27], g corresponds to atriple (nz)« Fi, (MRr)«Gn, f)
where np: K(i)x — K@)« E(n) is the left unit, ng: E(n)x — K(i)xE(n) is the
right unit and (7 )« F; and (ng)«Gy are the p—typical formal group laws that are
given by the corresponding change of coefficients. Here, f is a strict isomorphism
between the p—typical formal group laws (1)« F; and (nR)«+G, over K(i)« E(n).
By [19, Lemma A2.1.26] such a strict isomorphism is always of the form

f(x) = Z (UR)*Gntijj'
J

The p-series of the Honda formal group law Fj is
[P]F, (x) = vix?

and the same is true for [p],, ), F;[x] because the left unit just embeds K(i)« into
K(i)« E(n). The p-series of (ng)«Gy is

[p](VIR)*Gn (.X) = wlxp +('IR)*Gn Tt +(TIR)*Gn wnxpn
for w; = ng(vi).
The strict isomorphism f(x) = }_; (1R)+Gn t xP’ satisfies

[p](nR)*Gn (.]((x)) = f([p](TIL)*F, (x))v
and using the above formulas for the p—series, this yields the equality
(3-2) WIS + )G Fr)sGu Wn (SN = f(ix?")
- Z (UR)*Gntj (vix? )P’
J

Lemma 3.2 In K(i)«E(n) the relations w, =0 forall 1 <r <i—1 and w; = v;
hold.

Proof In equality (3-2), the right-hand side starts with the summand v; x? " followed

by higher powers of x. Looking at the left-hand side, we deduce that wq, ..., w;—; =0,
and from the coefficient of x?' we obtain that w; = v; in K(i)«E(n). |
Proposition 3.3 K (i)« E(n) is a colimit of étale K(I)«[w;+1, - - -, w,;—Ll]—algebras for

all 1 <i <n.

Proof Inthe following we fix i and n. We denote by B(i, n)x the graded commutative
K(i)s—algebra K(i)s[wit1,..., Wp—1, wfl]. For a given m = 1 consider the graded
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commutative BP,—subalgebra BP«[t1, ..., #;;] of BP«BP, and define the subalgebra
B = gBPy[tq, ..., tm]) C K(i)« E(n).
By Lemma 3.2, we deduce that B, can be written as the quotient
By, = B(@i,n)t1, ..., tm]/~,

where ~ denotes the relations that the #, and w; satisfy in K (i)« E(n). Note that B
is free as a B(i,n)-module, and By, is free as a B, —module for all 7 > 1. Indeed,
in each step we adjoin a new polynomial generator x to a graded commutative ring R
that satisfies relations of the form x?" —ux — y with aunit u € R and y € R«. In
particular, we have a sequence of subalgebras

B(i,n)CBiC---CBpC---CK(@i)xEn),
and K(i)«E(n) is the colimit of this sequence.

We prove that B is étale over B(i,n)x« and that for every m, B,, is étale over B,,_1.
This then yields that the algebras By, are étale over B(i,n)s which proves the claim.
Thus we have to show that the modules of relative Kihler differentials le \B(i.n).
and Qlel B,,_, are trivial for all m = 2. To this end we have to control the Kihler
differentials dt,, and we do this now by deriving explicit relations for the #,, that we

extract from the equality (3-2).

The first relation for #,, is obtained by looking at the coefficients of x? " on the left-
and right-hand sides of the equality (3-2).

Let s =2, let r,/q,...,I; be natural numbers bigger or equal to 1, and assume that
g8 q
lj # Iy for j # k. Then, as p” has a unique representation in base p, it cannot be
. . . i+
written as a sum pl L R pls. This ensures that, for a given x? ™ we only have to
. . J . . . . . .
consider the coefficient #; vip with i + j =i 4 r coming from the linear term of the
. .. r
R)xGp—sum ) ng;vP” xP'™ and this is P
n G j (mRr)+G tj lp D ;

. i+1 . . .
For B; we compare the coefficients of xP'"" in (3-2). In this case only the linear
terms of the (ng)«Gn—sums contribute something and we obtain (using w; = v;)

»' _ P
Vil + Wiyt =110;

and therefore ¢; = vl._ p (v,-tlp l + w;+1). This gives that the Kihler differential on #; is
equal to
diy =0+ Ul-_pde_l

and hence B is étale over B(i,n)x.
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We consider now the general case of By, for m = 2, and study the first relation for #,,
given by the coefficients of P in (3-2).

We know that the formal group law G, (x, y) is of the form

Gu(x.p)=x+y+ Y aijx'y/.
i,j=1
where the a; ; € E(n)« = Zp)[vi,....0p—1, v,jfl]. Equation (3-2) relates power
series with coefficients in K (i)« E(n), hence the coefficients a; ; of (ng)+Gp are
now considered in K(i)+E(n) and are elements of Fy[w;, ..., wy—1, w,jfl]. On the
left- hand side of (3-2) we get coefficients that involve some polynomials of the a; ;,
some p™ powers of the t; and some expressions in the wy . For m +i <n we actually

m—+i—+0

get a coefficient wm+,tp = Wi+4m-

The a; j are in B(i,n)«, so they don’t contrlbute anything to the relative Kahler

differentials. The Kihler differentials on the lp are trivial because we are over Fp.

m
Hence we can express the Kihler differential dtm up to a factor of v = wf via

Kihler differentials in the wy . As vl. P is invertible in B (i,n)«, the relative Kéhler

differentials 1 are trivial for all m > 1. O

By | Bp—

Theorem 3.4 For all 1 <i <n we have an isomorphism of K(i )y E(n)—algebras

HHE D+ (K (i)« E(n)) = K(i)x E(n) ®F, Ag, (dwiyy, ..., dwy).

Proof We have shown that K(i)« E(n) is the sequential colimit of the By,. As the
K(i),—algebras By, are étale over B(i,n)s and as Hochschild homology commutes
with localization, we can rewrite HH.(B;,) as

HHEX D" (B)y) = By ® iy, HHE O* (B(i, 1))
> Bm ®B(in). (B(i,n)x ®F, Ax,(dWit1,...,dwy))
~ B, QF, AIF,, (dwis1,...,dwy)

using [28] and the Hochschild—Kostant—Rosenberg theorem. Hochschild homology
commutes with colimits, hence we obtain

HHE D= (K (1), E ) = colim HHE " (B)
m

=~ K(i)x E(n) ®F, Af, (dWit1,...,dwy). |
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Theorem 3.5 Assume that p is an odd prime and that E(n) is an E3-ring spectrum.
Then, for all 1 <i <n, we have an isomorphism of K (i)« E (n)—algebras

K(i)«THH(E (1)) 2= K(i)+ E(n) ®F, AR, (dwit1, ..., dwy).

Proof We use the Bokstedt spectral sequence [9; 12, Theorem IX.2.9], with E2—term

E} = (HHKO<(K (i)« E(n))),,

where r denotes the homological and s the internal degree. By a result of Angeltveit
and Rognes [1, Proposition 4.3], an Ej3—structure on E(n) implies that this spectral
is one of commutative K (i)« E (n)—algebras. The multiplicative generators dw; for
i < j < n sit in bidegree (1,2p/ —2) and hence they cannot carry any nontrivial
differentials. Therefore the spectral sequence collapses at the E>—term. As the abutment
is a free graded commutative K(i)4 E(n)—algebra, there cannot be any multiplicative
extensions. d

Remark 3.6 If £(n) admits an E,—structure, the Bokstedt spectral sequence is one of
K(i)«—algebras by [1, Proposition 4.3]. It therefore collapses since all K (i), —algebra
generators lie in columns 0 and 1. This gives the same formula for K(i)«THH(E (n))
as a K(i)x—module, but not as a K(i)«—algebra, since there is now room for K(i)«—
algebra extensions.

4 Blue-shift for THH(E (n))

If we assume that p is an odd prime and that E(n) is an Eso-ring spectrum, then
THH(E (n)) is a commutative E(n)-algebra spectrum and the cofiber of the unit map

THH(E (n)) = cofiber(E (n) — THH(E (n)))

is a nonunital commutative E (n)—algebra spectrum. If E(n) carries an E3—structure,
then by [10, Section 3.3; 6] the morphism E(n) — THH(E (n)) is an E,—map. This
implies the following useful fact:

Lemma 4.1 If E(n) is an E3—spectrum, then THH(E (n)) is an E(n)-module spec-
trum and, in particular, THH(E (n)) is E(n)-local.
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Let L, denote the localization at E(n), and in particular L is the rationalization.
Recall that there is a well-known chromatic fracture square

Ly X — LK(n)X

| |

Ly X — Ln—lLK(n)X

It is shown for instance in [2, Example 3.3; 8, Proposition 2.2] that the homotopy
pullback of
LgmX

|

Ly X — Ln—lLK(n)X

is an E(n)-localization of X. The statement in [8, Proposition 2.2] is more general
and [2] works out far more general local-to-global statements.

The chromatic square for THH(E (n)) is

THH(E (n)) = L k(v E(i—1) THH(E (1)) ——— L g(» THH(E (n))

| l

L gu-1)THH(E(n)) —— L g—1)(L k( THH(E (n)))
The K(n)-homology of THH(E (n)) is zero, since by Proposition 3.1 the unit map is
a K(n)-equivalence. It follows that the localization L g,y THH(E (n)) is trivial, and

hence L g,—1) (L kK THH(E (n))) is also trivial. Therefore the vertical map on the
left-hand side is an equivalence and we obtain a nice example of blue-shift:

Lemma 4.2 If E(n) is an E3—spectrum, then the cofiber THH(E (n)) is E(n—1)—
local.

5 Topological Hochschild homology of E(2)

In this section, we discuss in more detail the topological Hochschild homology of E(2),
which we will denote by £ = E(2) to simplify the notation. As explained in the proof
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of Lemma 5.1, the computations of Theorem 3.5 for E(2) can be expressed as

(5-1) K(0)«THH(E) =~ K(0)«E ® Ag(dty. dt>),
(5-2) K(1)«THH(E) = K(1)+E ® AF, (d1y),
(5-3) K(2)+THH(E) =~ K(2)+E.

Notice that these computations do not require the assumption that £ is an E3-ring
spectrum: for the rational case we have a commutative structure anyhow, while, in the
K(1) and K(2) cases, the E? page of the Bokstedt spectral sequences is concentrated
on columns 0 and 1 (respectively 0).

Lemma 5.1 Fori = 1,2, there exist classes A; € THH, i, (E) with the following
properties. Under the Hurewicz homomorphism,

(a) the class A; maps to dt; € K(0),,i_; THH(E) fori =1,2;
(b) the class Ay maps to dty € K(1),,2_1 THH(E).

Proof We use McClure and Staffeldt’s computation of THH.. (BP) in [18, Remark 4.3],
which has been validated by the proof [7] that BP admits an E4—structure. We briefly
recall the computation. The integral, rational and mod p homology of BP are given as

HZBP=Z(pltili =1], K(0)«BP=Q[;|i >1] and HF, BP=Z[§|i>1],

where the class t; € HZ, i _BP maps to & under mod (p) reduction [19, Proof of
Theorem 5.2.8] and to the class with same name #; under rationalization. The associated
Bokstedt spectral sequences collapse, providing isomorphisms

HZ,THH(BP) =~ HZ.BP® Az, (dt; |i = 1),
K(0)«THH(BP) = K(0)«BP® Aq(dt; |i = 1),
HF,, THH(BP) =~ HF,,BP® A, (d& |i = 1),

with dx = 0«(x), where 0: XBP — THH(BP) is the map given in (2-1). There is an
isomorphism
THH, (BP) = BP, ® Az, (Ai |i = 1),

and the Hurewicz homomorphism

THH, (BP) — HZ,THH(BP)
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is an inclusion mapping A; to dt;. In particular, the classes dt; (integral and rational)
and d§; are spherical: they are the image of A; under the Hurewicz homomorphism
mapping from THH4(BP). For i = 1, let us define

Ai € THH, i (E)
as the image of the class with same name under the natural map
THH«(BP) — THH.(E).
In the rational case, we have
nr(vi) = it
modulo decomposables in K(0)«BP, where «; € Q is a unit. We deduce that
K(0)+E = Qlt1. 2]l (v2) ']

and the Bokstedt spectral sequence recovers

K(0)sTHH(E) = K(0)+E ® Ag(dt;, dt,).

By naturality, comparing with the case of BP, we deduce that the Hurewicz homomor-
phism THH,(E) — K(0),THH(E) maps A; to dt;.

For K(1)«—homology, we argue similarly, using the commutative square

THH. (BP) —— K(1),THH(BP)

| J

THH4(E) —— K(1)«THH(E)
We have K(1)«BP = K(1)«[t; |i = 1], and the Bokstedt spectral sequence yields
K(1)+xTHH(BP) = K(1)+BP ® AF, (dt; | i = 1).

Comparing the Bokstedt spectral sequences for HZ,THH(BP) and K(1)+THH(BP),
we deduce that the class A; € THH4(BP) maps to dt; € K(1),THH(BP). Recall that

K(W«E = K(W«[ti |i = Nnr(2) ™)/ (r@;) | j = 3)
is a colimit of étale algebras over K(1)«[wy, w5 11, where

wy = ngr(va) = vl —vyef.
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In particular, dw, = vf dt;, and the Bokstedt spectral sequence provides the formula
given above for K(1)«THH(E). Now obviously d#; € K(1)+THH(BP) maps to
dt; € K(1)«THH(E). This implies assertion (b) of the lemma. a

Remark 5.2 The above proof does not require the map BP — E(n) to be an £3—map.

The class Ay € THH;,_{(E) of Lemma 5.1 corresponds to a map Aj: S2p=1
THH(E). Smashing with E, using the E-module structure of THH(E) (assuming
an Ej-structure on E), and composing with the cofiber THH(E) — THH(E) of the
unit, we obtain a map

j1: 22P7VE ~ EAS?PT1 5 E ATHH(E) — THH(E) — THH(E).
In the same fashion, we obtain a map j»: £27°~! E — THH(E) corresponding to the
class A,.
Lemma 5.3 The map j; factors through a map
7i: 2P~ E — THH(E)
that is a K(1)x—isomorphism, and whose cofiber C(J1) is a rational spectrum.
Proof Recall from Lemma 4.2 that the cofiber THH(E) of the unit map is £(1)-local.
In particular, the map j; factors through a map
71: 22P~1L,E — THH(E).

The localization map £ — L{E is a K(1)x—isomorphism, and therefore so are
the induced maps ¢: THH(E) — THH(L, E) and ¢{: THH(E) — THH(L, E), by
convergence of the K(1)-based Bokstedt spectral sequence. Hence, to prove the claim,
it suffices to show that the composition

(5-4) s2r=1 1, £ 2 THH(E) -5 THH(L, E)

is a K(1)x—isomorphism. The K(1)-based Bokstedt spectral sequence for L E is
identical to the one of E, computed above as

E; .= K()xE ® A, (dty) = K(1)«THH(E),

where K(1)4E is in filtration degree zero and K(1)x E{dt,} is in filtration degree 1,
and where all differentials are zero. By definition of the map j;, if 1 € K(1)oE is
the unit, then j;,(X2?7!1) is represented modulo lower filtration by the permanent
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cycle dt; in E 12 .- Since this is a spectral sequence of K(1)«E-modules, the com-
position (5-4) induces a map in K(1) homology that is represented modulo lower
filtration by the isomorphism Z27~1K(1),E — Elz* = K(1)« E{dt,} sending a class
%27~y to wdt, . It is therefore a K(1)4—isomorphism, proving the claim.

Now we consider the cofiber C(7;) of i, sitting in an exact triangle

(5-5) 2= E 2L THH(E) X5 ¢(7) -5 =27 L, E.

Since 77 is a K(1)«—isomorphism, we know that K(1)+C(7;) =0, and since THH(E)

and thus C(J7) are E(1)-local, we deduce (as in Lemma 4.2) that C(7;) is E(0)-local

(ie rational). O

We now define amap A, LoS?? =2p-2 _, ¢ (J1) as a composition over the cofibers,
LoS2P*=2P=2 _, [ 'THH(E) — LoTHH(E) — C(7)),

where the first map above realizes the class dt;dt, € K(0),THH(E). Smashing Aq,
with £ and using the module structure, we obtain a map

Jia: BPTTRT2L0E S C(7).
Similarly, A, induces a map
Jo: B2 TULGE - C(Rh).
Theorem 5.4 Let p be an odd prime such that E = E(2), the second Johnson—Wilson
spectrum at p, is an E3-ring spectrum. Then the map j, V ji, lifts to a map
TV T2 STV LGE v X222 L0 E s THH(E)
and the sum B of jy, J» and Ji, is a weak equivalence of E —-modules

B: 2P E v B2 L E v £ T22 1 E S THH(E).

Proof The composition §o(j,V ji) is trivial, so that j, V jq, liftstoamap j, V Jio:

»2P2 -1 E v R2PP 4202 F
J_2VJ_12__,..._,,..~--""' l o ~x%
J2VJ12

k — )
C(J1)

L
THH(E) S2PLE
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Indeed, X7 L E fits in the chromatic fracture pullback diagram

S E—— 3P Lg)E

| l

TP LoE —— Z*PLo(Lg(1)E)

The composition of § o (j, V ji2) with the left vertical map to 2?7 LyE is trivial,
since it factors over the composition

LoTHH(E) — LoC(7;) — S*PLoE

of two consecutive maps in the ( £ (0)—localized) cofiber sequence (5-5). The composi-
tion of § o (j, V ji2) with the top map to T?7 L k(1) E is trivial as well; indeed, there
is no nontrivial map from a K(1)—acyclic to a K(1)-local spectrum. This finishes the
proof that § o (j, V ji2) is trivial and that the lift exists. We now define 8 as the sum

B=TiV TV T2 S22 IL EV 2P L E v 22P°H2072 1 E  THA(E).

Finally, we claim that § is a K(0)«—isomorphism: this is analogous to the proof above
that 71 is a K(1)4—isomorphism, working this time with the K(0)—based Bokstedt
spectral sequence. Since B is a K(0)x— and a K(1)4—isomorphism of E(1)-local
spectra, it is a weak equivalence. a

Assume now that in addition to E being an E3-ring spectrum, the unit map £ —
THH(E) splits in the homotopy category (this holds for example if E is an Es,-ring
spectrum). We then have a weak equivalence of E-modules £V THH(E) — THH(E).
On the other hand, summing 8 with the identity of E gives a weak equivalence

idv p: EVEPIL EV S I L E Y £2PPH2P-2 1 0 F o E v THH(E).

This implies the following corollary of Theorem 5.4:

Corollary 5.5 Assume that p is an odd prime, and that the second Johnson—Wilson
spectrum E = E(2) admits an E3—structure. If the unit map E — THH(E) splits in
the homotopy category, then the maps above provide a weak equivalence of E —-modules

EvE? L Ev 2P LoE v s T2 2L F s THH(E).

Remark 5.6 Corollary 5.5 implies that
o the 2° summand of K(2)+E in K(2),THH(E) indexed by 1,
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o the 2! summands of K(1)«E in K(1)+THH(E) indexed by 1 and d¢, and
o the 22 summands of K(0)4E in K(0)+THH(E) indexed by 1, dt;, dt, and
dtidty
assemble, in THH(E), into

o the 2° summand E indexed by 1 and detected by K(0)s, K(1)x and K(2)4,

o the 2! —2° summand L E indexed by dt; and detected by K(0)« and K(1)s,
and

e the 22—2! summands L E indexed by dt, and dt,dt, and detected by K(0).

Bruner and Rognes [11] obtain very similar computations for K (i)« THH(tmf) for
i =0,1,2, where tmf denotes the connective spectrum of topological modular form.

We can picture the summands of THH(E) in a 2—dimensional cube of local pieces
(up to suspensions, where £ = L, E):
1 dty
1 E | LWE
dty | LoE | LoE

We conjecture that this picture extends to describe a decomposition of THH(E (7))
into 2” summands, with summands placed in an n—dimensional cube, where the i
edge has two coordinates 1 and d¢;. We formulate this as follows:

Conjecture 5.7 If p is an odd prime such that E(n) is a sufficiently commutative
S—algebra, then THH(E (1)) decomposes as a sum of 2" factors, namely 2"~%~!
suspended copies of L; E(n) for each 0 <i < n — 1 plus one copy of E(n). More
precisely, the L; E(n)—summands are indexed by the 2"~/~! monomial generators

o € Ag(dt.....dtyi—1){dtn_i} C K(0)THH(E(n)),

and the summand corresponding to such a monomial @ is slelL; E(n).
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