Towards topological Hochschild homology of Johnson-Wilson spectra

Christian Ausoni

Birgit Richter

Abstract

We present computations in Hochschild homology that lead to results on the $K(i)-$ local behaviour of $\operatorname{THH}(E(n))$ for all $n \geqslant 2$ and $0 \leqslant i \leqslant n$, where $E(n)$ is the Johnson-Wilson spectrum at an odd prime. This permits a computation of $K(i)_{*} \operatorname{THH}(E(n))$ under the assumption that $E(n)$ is an $E_{3}-$ ring spectrum. We offer a complete description of $\operatorname{THH}(E(2))$ as an $E(2)$-module in the form of a splitting into chromatic localizations of $E(2)$, under the assumption that $E(2)$ carries an E_{∞}-structure. If $E(2)$ is admits an E_{3}-structure, we obtain a similar splitting of the cofiber of the unit map $E(2) \rightarrow \mathrm{THH}(E(2))$.

55N35, 55P43

1 Introduction

The first Johnson-Wilson spectrum $E(1)$ at a prime p is the Adams summand of $p-$ local periodic complex topological K-theory $K U_{(p)}$. McClure and Staffeldt showed that a p-completed connective version of $E(1)$ is an E_{∞}-ring spectrum [18, Section 9] and Baker and Richter [4, Theorem 6.2] show that E (1) carries a unique E_{∞}-structure. Thus $\operatorname{THH}(E(1))$ is a commutative $E(1)$-algebra spectrum. McClure and Staffeldt show that the unit map $E(1)_{p} \rightarrow \mathrm{THH}\left(E(1)_{p}\right)$ is a $K(1)$-local equivalence, hence its cofiber $\overline{\mathrm{THH}}\left(E(1)_{p}\right)$ is a rational spectrum. It is easy to calculate the rational homology of $\operatorname{THH}\left(E(1)_{p}\right)$ as

$$
H \mathbb{Q}_{*} \operatorname{THH}\left(E(1)_{p}\right) \cong \mathbb{Q}\left[v_{1}^{ \pm 1}\right] \otimes_{\mathbb{Q}} \Lambda_{\mathbb{Q}}\left(d v_{1}\right)
$$

using the Bökstedt spectral sequence with E^{2}-term

$$
E_{*, *}^{2}=\mathrm{HH}_{*, *}^{\mathbb{Q}}\left(\mathbb{Q}\left[v_{1}^{ \pm 1}\right]\right)
$$

There is a map

$$
\Sigma^{2 p-1} E(1)_{p} \rightarrow \mathrm{THH}\left(E(1)_{p}\right) \rightarrow \overline{\mathrm{THH}}\left(E(1)_{p}\right)
$$

that factors through $\Sigma^{2 p-1} E(1)_{\mathbb{Q}} \rightarrow \overline{\mathrm{THH}}\left(E(1)_{p}\right)$ since $\overline{\mathrm{THH}}\left(E(1)_{p}\right)$ is rational, and that is defined such that the latter map is an equivalence detecting the $H \mathbb{Q}_{*} E(1)-$ summand generated by $d v_{1}$. Since the unit map $E(1)_{p} \rightarrow \mathrm{THH}\left(E(1)_{p}\right)$ splits, this yields a splitting [18, Theorem 8.1]

$$
\operatorname{THH}\left(E(1)_{p}\right) \simeq E(1)_{p} \vee \Sigma^{2 p-1} E(1)_{\mathbb{Q}}
$$

as $E(1)_{p}$-modules. This computation was also carried out for $K U_{(p)}$ by Ausoni [3], and pushed further to provide formulas for $\mathrm{THH}(K U)$ as a commutative $K U$-algebra by Stonek [27].

In this paper, we consider the higher Johnson-Wilson spectrum $E(n)$ with coefficient ring

$$
E(n)_{*}=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n-1}, v_{n}, v_{n}^{-1}\right]
$$

for an arbitrary value of $n \geqslant 1$ and p an odd prime. Our main motivation is to investigate whether the spectrum $\mathrm{THH}(E(n))$ also splits into copies of $E(n)$ and its lower chromatic localizations, generalizing McClure and Staffeldt's intriguing transchromatic result.

Let $K(i)$ be the $i^{\text {th }}$ Morava K-theory at an odd prime. As a first step, we compute the Hochschild homology $\mathrm{HH}_{*}^{K(i)_{*}}\left(K(i)_{*} E(n)\right)$ of $K(i)_{*} E(n)$ for $0 \leqslant i \leqslant n$; see Theorem 3.4. We shy away from the prime 2 because Morava K-theory is not homotopy commutative at the prime 2 . Theorem 3.4 yields a computation of $K(i)_{*} \mathrm{THH}(E(n))$ under the modest assumption that $E(n)$ admits an E_{3}-structure.

We then focus on $E(2)$, and show in Theorem 5.4 that, under the same commutativity assumption, $\mathrm{THH}(E(2))$ sits in a cofiber sequence

$$
E(2) \rightarrow \mathrm{THH}(E(2)) \rightarrow \Sigma^{2 p-1} L_{1} E(2) \vee \Sigma^{2 p^{2}-1} E(2)_{\mathbb{Q}} \vee \Sigma^{2 p^{2}+2 p-2} E(2)_{\mathbb{Q}}
$$

where $L_{1} E(2)$ denotes the Bousfield localization of $E(2)$ with respect to $E(1)$. If the unit $E(2) \rightarrow \mathrm{THH}(E(2))$ splits, we then get a decomposition of $\mathrm{THH}(E(2))$ into four summands, a higher analogue of McClure and Staffeldt's formula for $\operatorname{THH}(E(1))$.

Remark 1.1 To study $\operatorname{THH}(E(n))$ by means of the Bökstedt spectral sequence, we need sufficient commutativity of $E(n)$. Here we summarize what is known about multiplicative structures on $E(n)$ and related spectra. Basterra and Mandell [7] showed that the Brown-Peterson spectrum BP admits an E_{4}-structure. The Johnson-Wilson spectra $E(n)$ are built out of the $\mathrm{BP}\langle n\rangle=\mathrm{BP} /\left(v_{i} \mid i \geqslant n+1\right)$ by inverting v_{n}. In
[15, Theorem 1.1.2], Tyler Lawson shows that the Brown-Peterson spectrum BP and the spectra $\mathrm{BP}\langle n\rangle$ for $n \geqslant 4$ at the prime 2 do not possess an E_{12}-structure. Andrew Senger [25, Theorem 1.2] extends Lawson's result to odd primes p, and shows that BP and the $\mathrm{BP}\langle n\rangle$ (for $n \geqslant 4$) do not have an $E_{2\left(p^{2}+2\right)}$-structure. In particular, the $\mathrm{BP}\langle n\rangle$ are not E_{∞}-ring spectra at any prime for $n \geqslant 4$. Hence, if $E(n)$ actually possesses an E_{∞}-structure for $n \geqslant 4$, then this structure does not come from one on $\mathrm{BP}\langle n\rangle$. Richter [20, Proposition 8.2] proves that $E(n)$ at a prime p possesses at least a ($2 p-1$)stage structure. It is unclear how such a structure relates to the E_{n}-hierarchy, but Barwick conjectures [5, page 1948] that a ($2 p-1$)-stage structure corresponds to an $A_{2 p}^{2 p-1}$-structure which in turn is a filtration piece of an $E_{2 p-1}$-structure.
At the prime 2, Lawson and Naumann [16] show that there is an $E_{\infty}-$ model of $\mathrm{BP}\langle 2\rangle$ and Hill and Lawson [13] prove that $\mathrm{BP}\langle 2\rangle$ at the prime 3 possesses a model as an $E_{\infty}-$ ring spectrum. With Mathew, Naumann and Noel [17, Theorem A.1] this yields $E_{\infty}-$ structures on the corresponding Johnson-Wilson spectra $E(2)$ at these primes. Current work of Sanath Devalapurkar aims at adapting the arguments used in these results to produce E_{∞}-models of $\mathrm{BP}\langle 2\rangle$ or $E(2)$ at higher primes.

Acknowledgements Ausoni acknowledges support from the project ANR-16-CE400003 ChroK. Richter thanks the University of Paris 13 for its hospitality and for the possibility of a research stay as professeur invitée. Both authors benefited from a stay at the Hausdorff Institute for Mathematics in Bonn during the Trimester Program on K-theory and related fields.

We thank Paul Goerss for a crucial hint that simplified our original étaleness argument, and Agnès Beaudry, Gerd Laures, Mike Mandell, John Rognes and Vesna Stojanoska for helpful comments.

2 Rationalized $E(n)$

For $n \geqslant 1$ the homotopy algebra of $L_{K(0)} E(n)=E(n)_{\mathbb{Q}}$ is $\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right]$ and its algebra of cooperations is

$$
\begin{aligned}
\pi_{*}\left(E(n)_{\mathbb{Q}} \wedge E(n)_{\mathbb{Q}}\right) & \cong \pi_{*} E(n)_{\mathbb{Q}} \otimes_{\mathbb{Q}} \pi_{*} E(n)_{\mathbb{Q}} \\
& \cong \mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}, v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}, v_{n}^{\prime \pm 1}\right]
\end{aligned}
$$

This implies the following result:
Lemma 2.1 There is a unique E_{∞}-ring structure on $E(n)_{\mathbb{Q}}$ for all $n \geqslant 1$.

Proof The obstruction groups for such an E_{∞}-ring structure on $E(n)_{\mathbb{Q}}$ are contained in the Gamma cohomology groups of $\pi_{*}\left(E(n)_{\mathbb{Q}} \wedge E(n)_{\mathbb{Q}}\right)$ as a $\pi_{*} E(n)_{\mathbb{Q}}$-algebra [22, Theorem 5.6]. As we work in characteristic zero, Gamma cohomology agrees with André-Quillen cohomology [23, Corollary 6.6]. The algebra

$$
\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}, v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}, v_{n}^{\prime \pm 1}\right]
$$

is smooth over $\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right]$ and therefore André-Quillen cohomology is concentrated in cohomological degree zero, where it consists of derivations. The obstructions for existence and uniqueness of an E_{∞}-ring structure on $E(n)_{\mathbb{Q}}$ are concentrated in degrees bigger than zero.

As E_{∞}-ring structures can be rigidified to commutative ring structures (see eg [12, Section II.3]), we pass to the world of commutative ring spectra from now on.
Topological Hochschild homology of a ring spectrum A can be modelled as the geometric realization of a simplicial spectrum. Using the inclusion of the 1 -skeleton, McClure and Staffeldt [18, Section 3] construct a map

$$
\begin{equation*}
\sigma: \Sigma A \rightarrow \operatorname{THH}(A) \tag{2-1}
\end{equation*}
$$

For a commutative ring spectrum A the multiplication maps from $A^{\wedge n+1}$ to A give rise to a map of commutative A-algebra spectra from $\operatorname{THH}(A)$ to A. Composing this map with the map $A \rightarrow \mathrm{THH}(A)$ gives the identity, hence we obtain a splitting of A-modules

$$
\operatorname{THH}(A) \simeq A \vee \overline{\mathrm{THH}}(A),
$$

where $\overline{\mathrm{THH}}(A)$ is the cofiber. The latter spectrum inherits the structure of a nonunital commutative A-algebra. In our case this implies the following result:

Corollary 2.2 The topological Hochschild homology of $E(n)_{\mathbb{Q}}$ splits, as an $E(n)_{\mathbb{Q}^{-}}-$ module, as

$$
\mathrm{THH}\left(E(n)_{\mathbb{Q}}\right) \simeq E(n)_{\mathbb{Q}} \vee \overline{\operatorname{THH}}(E(n))_{\mathbb{Q}}
$$

where $\overline{\mathrm{THH}}(E(n))_{\mathbb{Q}}$ is the cofiber of the unit map

$$
E(n)_{\mathbb{Q}} \rightarrow \operatorname{THH}\left(E(n)_{\mathbb{Q}}\right) \simeq \operatorname{THH}(E(n))_{\mathbb{Q}}
$$

Moreover, the spectrum $\overline{\operatorname{THH}}(E(n))_{\mathbb{Q}}$ is a nonunital commutative $E(n)_{\mathbb{Q}}$-algebra.
In the sequel, we follow Ronco [24, Definition E.1] for the definition of étale algebras. It is straightforward to calculate the topological Hochschild homology of $E(n)_{\mathbb{Q}}$:

Proposition 2.3 We have

$$
\begin{equation*}
\pi_{*} \operatorname{THH}(E(n))_{\mathbb{Q}} \cong \mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right] \otimes \Lambda_{\mathbb{Q}}\left(d v_{1}, \ldots, d v_{n}\right) \tag{2-2}
\end{equation*}
$$

with $\left|d v_{i}\right|=2 p^{i}-1$.

Proof The Bökstedt spectral sequence for $\pi_{*}\left(\operatorname{THH}(E(n))_{\mathbb{Q}}\right) \cong H \mathbb{Q}_{*} \operatorname{THH}(E(n))$ is of the form

$$
E_{*, *}^{2}=\mathrm{HH}_{*, *}^{\mathbb{Q}}\left(\pi_{*} E(n)_{\mathbb{Q}}\right) \Rightarrow \pi_{*}\left(\mathrm{THH}(E(n))_{\mathbb{Q}}\right)
$$

As $\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right]$ is étale over $\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}\right]$ and as $\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}\right]$ is smooth, we get

$$
\mathrm{HH}_{*, *}^{\mathbb{Q}}\left(\pi_{*} E(n)_{\mathbb{Q}}\right) \cong \mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right] \otimes \Lambda_{\mathbb{Q}}\left(d v_{1}, \ldots, d v_{n}\right)
$$

with $d v_{i}$ having homological degree one and internal degree $2 p^{i}-2$. As the Bökstedt spectral sequence is multiplicative and as the algebra generator cannot support any differentials for degree reasons, the spectral sequence collapses at E^{2}. There are no multiplicative extensions and hence we get the result.

Remark 2.4 As we work rationally, $\operatorname{THH}(E(n))_{\mathbb{Q}}$ is a commutative $H \mathbb{Q}$-algebra spectrum and hence corresponds to a commutative differential graded \mathbb{Q}-algebra (see [26] or [21]).

$3 K(i)_{*} E(n)$ and $K(i)_{*} \mathbf{T H H}(E(n))$

In the following we assume that p is an odd prime, and that n and i are integers with $1 \leqslant i \leqslant n$. The Hopf algebroid $\left(\mathrm{BP}_{*}, \mathrm{BP}_{*} \mathrm{BP}\right)$ represents the groupoid of strict isomorphisms of p-typical formal group laws [14] (see also [19, Theorem A2.1.27]). There are isomorphisms of graded $\mathbb{Z}_{(p)}$-algebras

$$
\mathrm{BP}_{*} \cong \mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right] \quad \text { and } \quad \mathrm{BP}_{*} \mathrm{BP} \cong \mathrm{BP}_{*}\left[t_{1}, t_{2}, \ldots\right]
$$

where $\left|v_{i}\right|=\left|t_{i}\right|=2\left(p^{i}-1\right)$. We use the Araki generators v_{i} [19, Section A2.2] and by convention $v_{0}=p$ and $t_{0}=1$. The $i^{\text {th }}$ Morava K-theory $K(i)$ is complex oriented, and its formal group law F_{i} (the Honda formal group law) corresponds to the map $\mathrm{BP}_{*} \rightarrow K(i)_{*}=\mathbb{F}_{p}\left[v_{i}^{ \pm}\right]$sending v_{i} to v_{i} and v_{k} for $k \neq i$ to zero. The p-typical formal group law G_{n} over $E(n)_{*}$ comes from the map $\mathrm{BP}_{*} \rightarrow E(n)_{*}$ that
kills all v_{i} with $i>n$ and inverts v_{n}. Since $E(n)$ is a Landweber exact homology theory, we obtain an isomorphism

$$
\begin{equation*}
K(i)_{*} E(n) \cong K(i)_{*} \otimes_{\mathrm{BP}_{*}} \mathrm{BP}_{*} \mathrm{BP} \otimes_{\mathrm{BP}_{*}} E(n)_{*} \tag{3-1}
\end{equation*}
$$

Note that $K(i)_{*} E(n)$ is trivial for $i>n$ and that the Bousfield class $\langle E(n)\rangle$ of $E(n)$ is $\langle K(0) \vee \cdots \vee K(n)\rangle$.
We first treat the case $i=n$.
The algebra $K(n)_{*} E(n)$ is isomorphic to $K(n)_{*} \mathrm{BP}\langle n\rangle$, which is isomorphic to

$$
K(n)_{*} \otimes_{\mathrm{BP}_{*}} \mathrm{BP}_{*} \mathrm{BP} \otimes_{\mathrm{BP}_{*}} K(n)_{*}
$$

(see for instance [29, page 428]). The latter is known as $\Sigma(n)$. It is of the form

$$
\Sigma(n) \cong K(n)_{*}\left[t_{1}, t_{2}, \ldots\right] /\left(v_{n} t_{i}^{p^{n}}-v_{n}^{p^{i}} t_{i} \mid i \geqslant 1\right)
$$

see [19, Corollary 6.1.16].
Proposition 3.1 For all $n \geqslant 1$ the canonical map $E(n) \rightarrow \mathrm{THH}(E(n))$ is a $K(n)-$ local equivalence.

Proof If we set

$$
C_{*}^{(k)}:=K(n)_{*}\left[t_{1}, \ldots, t_{k}\right] /\left(v_{n} t_{i}^{p^{n}}-v_{n}^{p^{i}} t_{i} \mid 1 \leqslant i \leqslant k\right)
$$

then $C_{*}^{(k)}$ is étale over $K(n)_{*}$ and $K(n)_{*} E(n)$ is the directed colimit of the $C_{*}^{(k)}$. The $K(n)_{*}$-Bökstedt spectral sequence for $\operatorname{THH}(E(n))$ has as an E^{2}-term

$$
\mathrm{HH}_{*}^{K(n)_{*}}\left(K(n)_{*} E(n)\right) \cong K(n)_{*} E(n)
$$

concentrated in homological degree zero. Thus $K(n)_{*} \operatorname{THH}(E(n)) \cong K(n)_{*} E(n)$ and the isomorphism is induced by the map $E(n) \rightarrow \mathrm{THH}(E(n))$. Therefore, this map is a $K(n)$-equivalence and thus, $K(n)$-locally, $\operatorname{THH}(E(n))$ is equivalent to $E(n)$.

We calculate $K(i)_{*} E(n)$ for $1 \leqslant i \leqslant n-1$ using the following description of morphisms of graded commutative BP_{*}-algebras from $K(i)_{*} E(n)$ to some graded commutative ring B_{*}. For $n=2$ we had an argument that was rather involved and Paul Goerss suggested the following simpler proof.
We consider the map $g: \mathrm{BP}_{*} \mathrm{BP} \rightarrow K(i)_{*} E(n)$ of graded commutative $\mathbb{Z}_{(p)}$-algebras given by

$$
\mathrm{BP}_{*} \mathrm{BP} \rightarrow K(i)_{*} \otimes_{\mathrm{BP}_{*}} \mathrm{BP}_{*} \mathrm{BP} \otimes_{\mathrm{BP}_{*}} E(n)_{*} \cong K(i)_{*} E(n),
$$

which uses the canonical maps $\mathrm{BP}_{*} \rightarrow K(i)_{*}$ and $\mathrm{BP}_{*} \rightarrow E(n)_{*}$ and the isomorphism from (3-1). By [19, Theorem A2.1.27], g corresponds to a triple $\left(\left(\eta_{L}\right)_{*} F_{i},\left(\eta_{R}\right)_{*} G_{n}, f\right)$ where $\eta_{L}: K(i)_{*} \rightarrow K(i)_{*} E(n)$ is the left unit, $\eta_{R}: E(n)_{*} \rightarrow K(i)_{*} E(n)$ is the right unit and $\left(\eta_{L}\right)_{*} F_{i}$ and $\left(\eta_{R}\right)_{*} G_{n}$ are the p-typical formal group laws that are given by the corresponding change of coefficients. Here, f is a strict isomorphism between the p-typical formal group laws $\left(\eta_{L}\right)_{*} F_{i}$ and $\left(\eta_{R}\right)_{*} G_{n}$ over $K(i)_{*} E(n)$. By [19, Lemma A2.1.26] such a strict isomorphism is always of the form

$$
f(x)=\sum_{j}^{\left(\eta_{R}\right)_{*} G_{n}} t_{j} x^{p^{j}}
$$

The p-series of the Honda formal group law F_{i} is

$$
[p]_{F_{i}}(x)=v_{i} x^{p^{i}}
$$

and the same is true for $[p]_{\left(\eta_{L}\right)_{*} F_{i}}[x]$ because the left unit just embeds $K(i)_{*}$ into $K(i)_{*} E(n)$. The p-series of $\left(\eta_{R}\right)_{*} G_{n}$ is

$$
[p]_{\left(\eta_{R}\right)_{*} G_{n}}(x)=w_{1} x^{p}+{ }_{\left(\eta_{R}\right)_{*} G_{n}} \cdots+{ }_{\left(\eta_{R}\right)_{*} G_{n}} w_{n} x^{p^{n}}
$$

for $w_{i}=\eta_{R}\left(v_{i}\right)$.
The strict isomorphism $f(x)=\sum_{j}\left(\eta_{R}\right)_{*} G_{n} t_{j} x^{p^{j}}$ satisfies

$$
[p]_{\left(\eta_{R}\right)_{*} G_{n}}(f(x))=f\left([p]_{\left(\eta_{L}\right)_{*} F_{i}}(x)\right)
$$

and using the above formulas for the p-series, this yields the equality

$$
\begin{align*}
w_{1}(f(x))^{p}+{ }_{\left(\eta_{R}\right)_{*} G_{n}} \cdots+{ }_{\left(\eta_{R}\right)_{*} G_{n}} w_{n}(f(x))^{p^{n}} & =f\left(v_{i} x^{p^{i}}\right) \tag{3-2}\\
& =\sum_{j}{ }^{\left(\eta_{R}\right)_{*} G_{n}} t_{j}\left(v_{i} x^{p^{i}}\right)^{p^{j}}
\end{align*}
$$

Lemma 3.2 In $K(i)_{*} E(n)$ the relations $w_{r}=0$ for all $1 \leqslant r \leqslant i-1$ and $w_{i}=v_{i}$ hold.

Proof In equality (3-2), the right-hand side starts with the summand $v_{i} x^{p^{i}}$ followed by higher powers of x. Looking at the left-hand side, we deduce that $w_{1}, \ldots, w_{i-1}=0$, and from the coefficient of $x^{p^{i}}$ we obtain that $w_{i}=v_{i}$ in $K(i)_{*} E(n)$.

Proposition 3.3 $K(i)_{*} E(n)$ is a colimit of étale $K(i)_{*}\left[w_{i+1}, \ldots, w_{n}^{ \pm 1}\right]$-algebras for all $1 \leqslant i \leqslant n$.

Proof In the following we fix i and n. We denote by $B(i, n)_{*}$ the graded commutative $K(i)_{*}$-algebra $K(i)_{*}\left[w_{i+1}, \ldots, w_{n-1}, w_{n}^{ \pm 1}\right]$. For a given $m \geqslant 1$ consider the graded
commutative $\mathrm{BP}_{*}-$ subalgebra $\mathrm{BP}_{*}\left[t_{1}, \ldots, t_{m}\right]$ of $\mathrm{BP}_{*} \mathrm{BP}$, and define the subalgebra

$$
B_{m}=g\left(\mathrm{BP}_{*}\left[t_{1}, \ldots, t_{m}\right]\right) \subset K(i)_{*} E(n)
$$

By Lemma 3.2, we deduce that B_{m} can be written as the quotient

$$
B_{m}=B(i, n)\left[t_{1}, \ldots, t_{m}\right] / \sim,
$$

where \sim denotes the relations that the t_{r} and w_{j} satisfy in $K(i)_{*} E(n)$. Note that B_{1} is free as a $B(i, n)$-module, and B_{m+1} is free as a B_{m}-module for all $m \geqslant 1$. Indeed, in each step we adjoin a new polynomial generator x to a graded commutative ring R_{*} that satisfies relations of the form $x^{p^{r}}-u x-y$ with a unit $u \in R_{*}^{\times}$and $y \in R_{*}$. In particular, we have a sequence of subalgebras

$$
B(i, n) \subset B_{1} \subset \cdots \subset B_{m} \subset \cdots \subset K(i)_{*} E(n)
$$

and $K(i)_{*} E(n)$ is the colimit of this sequence.
We prove that B_{1} is étale over $B(i, n)_{*}$ and that for every m, B_{m} is étale over B_{m-1}. This then yields that the algebras B_{m} are étale over $B(i, n)_{*}$ which proves the claim. Thus we have to show that the modules of relative Kähler differentials $\Omega_{B_{1} \mid B(i, n)_{*}}^{1}$ and $\Omega_{B_{m} \mid B_{m-1}}^{1}$ are trivial for all $m \geqslant 2$. To this end we have to control the Kähler differentials $d t_{m}$ and we do this now by deriving explicit relations for the t_{m} that we extract from the equality (3-2).
The first relation for t_{m} is obtained by looking at the coefficients of $x^{p^{i+m}}$ on the leftand right-hand sides of the equality (3-2).
Let $s \geqslant 2$, let r, l_{1}, \ldots, l_{s} be natural numbers bigger or equal to 1 , and assume that $l_{j} \neq l_{k}$ for $j \neq k$. Then, as p^{r} has a unique representation in base p, it cannot be written as a sum $p^{l_{1}}+\cdots+p^{l_{s}}$. This ensures that, for a given $x^{p^{i+r}}$, we only have to consider the coefficient $t_{j} v_{i}^{p^{j}}$ with $i+j=i+r$ coming from the linear term of the $\left(\eta_{R}\right)_{*} G_{n}-\operatorname{sum} \sum_{j}\left(\eta_{R}\right)_{*} G_{n} t_{j} v_{i}^{p^{j}} x^{p^{i+j}}$ and this is $t_{r} v_{i}^{p^{r}}$.
For B_{1} we compare the coefficients of $x^{p^{i+1}}$ in (3-2). In this case only the linear terms of the $\left(\eta_{R}\right)_{*} G_{n}$-sums contribute something and we obtain (using $w_{i}=v_{i}$)

$$
v_{i} t_{1}^{p^{i}}+w_{i+1} t_{0}=t_{1} v_{i}^{p}
$$

and therefore $t_{1}=v_{i}^{-p}\left(v_{i} t_{1}^{p^{i}}+w_{i+1}\right)$. This gives that the Kähler differential on t_{1} is equal to

$$
d t_{1}=0+v_{i}^{-p} d w_{i+1}
$$

and hence B_{1} is étale over $B(i, n)_{*}$.

We consider now the general case of B_{m} for $m \geqslant 2$, and study the first relation for t_{m} given by the coefficients of $x^{p^{i+m}}$ in (3-2).

We know that the formal group law $G_{n}(x, y)$ is of the form

$$
G_{n}(x, y)=x+y+\sum_{i, j \geqslant 1} a_{i, j} x^{i} y^{j}
$$

where the $a_{i, j} \in E(n)_{*}=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right]$. Equation (3-2) relates power series with coefficients in $K(i)_{*} E(n)$, hence the coefficients $\bar{a}_{i, j}$ of $\left(\eta_{R}\right)_{*} G_{n}$ are now considered in $K(i)_{*} E(n)$ and are elements of $\mathbb{F}_{p}\left[w_{i}, \ldots, w_{n-1}, w_{n}^{ \pm 1}\right]$. On the left-hand side of (3-2) we get coefficients that involve some polynomials of the $\bar{a}_{i, j}$, some $p^{\text {th }}$ powers of the t_{j} and some expressions in the w_{k}. For $m+i \leqslant n$ we actually get a coefficient $w_{m+i} t_{0}^{p^{m+i+0}}=w_{i+m}$.

The $\bar{a}_{i, j}$ are in $B(i, n)_{*}$, so they don't contribute anything to the relative Kähler differentials. The Kähler differentials on the $t_{j}^{p^{k}}$ are trivial because we are over \mathbb{F}_{p}. Hence we can express the Kähler differential $d t_{m}$ up to a factor of $v_{i}^{p^{m}}=w_{i}^{p^{m}}$ via Kähler differentials in the w_{k}. As $v_{i}^{p^{m}}$ is invertible in $B(i, n)_{*}$, the relative Kähler differentials $\Omega_{\boldsymbol{B}_{m} \mid \boldsymbol{B}_{m-1}}^{1}$ are trivial for all $m \geqslant 1$.

Theorem 3.4 For all $1 \leqslant i \leqslant n$ we have an isomorphism of $K(i)_{*} E(n)$-algebras

$$
\mathrm{HH}_{*}^{K(i)_{*}}\left(K(i)_{*} E(n)\right) \cong K(i)_{*} E(n) \otimes_{\mathbb{F}_{p}} \Lambda_{\mathbb{F}_{p}}\left(d w_{i+1}, \ldots, d w_{n}\right)
$$

Proof We have shown that $K(i)_{*} E(n)$ is the sequential colimit of the B_{m}. As the $K(i)_{*}$-algebras B_{m} are étale over $B(i, n)_{*}$ and as Hochschild homology commutes with localization, we can rewrite $\mathrm{HH}_{*}\left(B_{m}\right)$ as

$$
\begin{aligned}
\mathrm{HH}_{*}^{K(i)_{*}}\left(B_{m}\right) & \cong B_{m} \otimes_{B(i, n)_{*}} \mathrm{HH}_{*}^{K(i)_{*}}\left(B(i, n)_{*}\right) \\
& \cong B_{m} \otimes_{B(i, n)_{*}}\left(B(i, n)_{*} \otimes_{\mathbb{F}_{p}} \Lambda_{\mathbb{F}_{p}}\left(d w_{i+1}, \ldots, d w_{n}\right)\right) \\
& \cong B_{m} \otimes_{\mathbb{F}_{p}} \Lambda_{\mathbb{F}_{p}}\left(d w_{i+1}, \ldots, d w_{n}\right)
\end{aligned}
$$

using [28] and the Hochschild-Kostant-Rosenberg theorem. Hochschild homology commutes with colimits, hence we obtain

$$
\begin{aligned}
\mathrm{HH}_{*}^{K(i)_{*}}\left(K(i)_{*} E(n)\right) & \cong \operatorname{colim}_{m} \mathrm{HH}_{*}^{K(i)_{*}}\left(B_{m}\right) \\
& \cong K(i)_{*} E(n) \otimes_{\mathbb{F}_{p}} \Lambda_{\mathbb{F}_{p}}\left(d w_{i+1}, \ldots, d w_{n}\right)
\end{aligned}
$$

Theorem 3.5 Assume that p is an odd prime and that $E(n)$ is an E_{3}-ring spectrum. Then, for all $1 \leqslant i \leqslant n$, we have an isomorphism of $K(i)_{*} E(n)$-algebras

$$
K(i)_{*} \operatorname{THH}(E(n)) \cong K(i)_{*} E(n) \otimes_{\mathbb{F}_{p}} \Lambda_{\mathbb{F}_{p}}\left(d w_{i+1}, \ldots, d w_{n}\right)
$$

Proof We use the Bökstedt spectral sequence [9; 12, Theorem IX.2.9], with E^{2}-term

$$
\left.E_{r, s}^{2}=\left(\mathrm{HH}_{r}^{K(i)}\right)_{*}\left(K(i)_{*} E(n)\right)\right)_{s},
$$

where r denotes the homological and s the internal degree. By a result of Angeltveit and Rognes [1, Proposition 4.3], an E_{3}-structure on $E(n)$ implies that this spectral is one of commutative $K(i)_{*} E(n)$-algebras. The multiplicative generators $d w_{j}$ for $i \leqslant j \leqslant n$ sit in bidegree $\left(1,2 p^{j}-2\right)$ and hence they cannot carry any nontrivial differentials. Therefore the spectral sequence collapses at the E^{2}-term. As the abutment is a free graded commutative $K(i)_{*} E(n)$-algebra, there cannot be any multiplicative extensions.

Remark 3.6 If $E(n)$ admits an E_{2}-structure, the Bökstedt spectral sequence is one of $K(i)_{*}$-algebras by [1, Proposition 4.3]. It therefore collapses since all $K(i)_{*}$-algebra generators lie in columns 0 and 1 . This gives the same formula for $K(i)_{*} \operatorname{THH}(E(n))$ as a $K(i)_{*}$-module, but not as a $K(i)_{*}$-algebra, since there is now room for $K(i)_{*-}$ algebra extensions.

4 Blue-shift for THH ($E(n)$)

If we assume that p is an odd prime and that $E(n)$ is an E_{∞}-ring spectrum, then $\operatorname{THH}(E(n))$ is a commutative $E(n)$-algebra spectrum and the cofiber of the unit map

$$
\overline{\mathrm{THH}}(E(n))=\operatorname{cofiber}(E(n) \rightarrow \mathrm{THH}(E(n)))
$$

is a nonunital commutative $E(n)$-algebra spectrum. If $E(n)$ carries an E_{3}-structure, then by [10, Section 3.3; 6] the morphism $E(n) \rightarrow \mathrm{THH}(E(n))$ is an E_{2}-map. This implies the following useful fact:

Lemma 4.1 If $E(n)$ is an E_{3}-spectrum, then $\operatorname{THH}(E(n))$ is an $E(n)$-module spectrum and, in particular, $\operatorname{THH}(E(n))$ is $E(n)$-local.

Let L_{n} denote the localization at $E(n)$, and in particular L_{0} is the rationalization. Recall that there is a well-known chromatic fracture square

It is shown for instance in [2, Example 3.3; 8, Proposition 2.2] that the homotopy pullback of

is an $E(n)$-localization of X. The statement in [8, Proposition 2.2] is more general and [2] works out far more general local-to-global statements.

The chromatic square for $\overline{\operatorname{THH}}(E(n))$ is

The $K(n)$-homology of $\overline{\operatorname{THH}}(E(n))$ is zero, since by Proposition 3.1 the unit map is a $K(n)$-equivalence. It follows that the localization $L_{K(n)} \overline{\mathrm{THH}}(E(n))$ is trivial, and hence $L_{E(n-1)}\left(L_{K(n)} \overline{\mathrm{THH}}(E(n))\right)$ is also trivial. Therefore the vertical map on the left-hand side is an equivalence and we obtain a nice example of blue-shift:

Lemma 4.2 If $E(n)$ is an E_{3}-spectrum, then the cofiber $\overline{\mathrm{THH}}(E(n))$ is $E(n-1)$ local.

5 Topological Hochschild homology of E (2)

In this section, we discuss in more detail the topological Hochschild homology of $E(2)$, which we will denote by $E=E(2)$ to simplify the notation. As explained in the proof
of Lemma 5.1, the computations of Theorem 3.5 for $E(2)$ can be expressed as

$$
\begin{align*}
& K(0)_{*} \mathrm{THH}(E) \cong K(0)_{*} E \otimes \Lambda_{\mathbb{Q}}\left(d t_{1}, d t_{2}\right), \tag{5-1}\\
& K(1)_{*} \mathrm{THH}(E) \cong K(1)_{*} E \otimes \Lambda_{\mathbb{F}_{p}}\left(d t_{1}\right) \tag{5-2}\\
& K(2)_{*} \mathrm{THH}(E) \cong K(2)_{*} E . \tag{5-3}
\end{align*}
$$

Notice that these computations do not require the assumption that E is an E_{3}-ring spectrum: for the rational case we have a commutative structure anyhow, while, in the $K(1)$ and $K(2)$ cases, the E^{2} page of the Bökstedt spectral sequences is concentrated on columns 0 and 1 (respectively 0).

Lemma 5.1 For $i=1,2$, there exist classes $\lambda_{i} \in \mathrm{THH}_{2 p^{i}-1}(E)$ with the following properties. Under the Hurewicz homomorphism,
(a) the class λ_{i} maps to $d t_{i} \in K(0)_{2 p^{i}-1} \mathrm{THH}(E)$ for $i=1,2$;
(b) the class λ_{1} maps to $d t_{1} \in K(1)_{2 p^{2}-1} \mathrm{THH}(E)$.

Proof We use McClure and Staffeldt's computation of $\mathrm{THH}_{*}(\mathrm{BP})$ in [18, Remark 4.3], which has been validated by the proof [7] that BP admits an E_{4}-structure. We briefly recall the computation. The integral, rational and mod p homology of BP are given as $H \mathbb{Z}_{*} \mathrm{BP} \cong \mathbb{Z}_{(p)}\left[t_{i} \mid i \geqslant 1\right], \quad K(0)_{*} \mathrm{BP} \cong \mathbb{Q}\left[t_{i} \mid i \geqslant 1\right] \quad$ and $\quad H \mathbb{F}_{p_{*}} \mathrm{BP} \cong \mathbb{Z}\left[\bar{\xi}_{i} \mid i \geqslant 1\right]$, where the class $t_{i} \in H \mathbb{Z}_{2 p^{i}-1}$ BP maps to $\bar{\xi}_{i}$ under $\bmod (p)$ reduction [19, Proof of Theorem 5.2.8] and to the class with same name t_{i} under rationalization. The associated Bökstedt spectral sequences collapse, providing isomorphisms

$$
\begin{aligned}
H \mathbb{Z}_{*} \mathrm{THH}(\mathrm{BP}) & \cong H \mathbb{Z}_{*} \mathrm{BP} \otimes \Lambda_{\mathbb{Z}_{(p)}}\left(d t_{i} \mid i \geqslant 1\right), \\
K(0)_{*} \mathrm{THH}(\mathrm{BP}) & \cong K(0)_{*} \mathrm{BP} \otimes \Lambda_{\mathbb{Q}}\left(d t_{i} \mid i \geqslant 1\right) \\
H \mathbb{F}_{p_{*}} \mathrm{THH}(\mathrm{BP}) & \cong H \mathbb{F}_{p_{*}} \mathrm{BP} \otimes \Lambda_{\mathbb{F}_{p}}\left(d \bar{\xi}_{i} \mid i \geqslant 1\right),
\end{aligned}
$$

with $d x=\sigma_{*}(x)$, where $\sigma: \Sigma \mathrm{BP} \rightarrow \mathrm{THH}(\mathrm{BP})$ is the map given in (2-1). There is an isomorphism

$$
\mathrm{THH}_{*}(\mathrm{BP}) \cong \mathrm{BP}_{*} \otimes \Lambda_{\mathbb{Z}_{(p)}}\left(\lambda_{i} \mid i \geqslant 1\right)
$$

and the Hurewicz homomorphism

$$
\mathrm{THH}_{*}(\mathrm{BP}) \rightarrow H \mathbb{Z}_{*} \mathrm{THH}(\mathrm{BP})
$$

is an inclusion mapping λ_{i} to $d t_{i}$. In particular, the classes $d t_{i}$ (integral and rational) and $d \bar{\xi}_{i}$ are spherical: they are the image of λ_{i} under the Hurewicz homomorphism mapping from $\mathrm{THH}_{*}(\mathrm{BP})$. For $i \geqslant 1$, let us define

$$
\lambda_{i} \in \mathrm{THH}_{2 p^{i}-1}(E)
$$

as the image of the class with same name under the natural map

$$
\mathrm{THH}_{*}(\mathrm{BP}) \rightarrow \mathrm{THH}_{*}(E)
$$

In the rational case, we have

$$
\eta_{R}\left(v_{i}\right) \equiv \alpha_{i} t_{i}
$$

modulo decomposables in $K(0)_{*} \mathrm{BP}$, where $\alpha_{i} \in \mathbb{Q}$ is a unit. We deduce that

$$
K(0)_{*} E \cong \mathbb{Q}\left[t_{1}, t_{2}\right]\left[\eta_{R}\left(v_{2}\right)^{-1}\right]
$$

and the Bökstedt spectral sequence recovers

$$
K(0)_{*} \mathrm{THH}(E) \cong K(0)_{*} E \otimes \Lambda_{\mathbb{Q}}\left(d t_{1}, d t_{2}\right)
$$

By naturality, comparing with the case of BP, we deduce that the Hurewicz homomorphism $\mathrm{THH}_{*}(E) \rightarrow K(0)_{*} \mathrm{THH}(E)$ maps λ_{i} to $d t_{i}$.

For $K(1)_{*}$-homology, we argue similarly, using the commutative square

We have $K(1)_{*} \mathrm{BP} \cong K(1)_{*}\left[t_{i} \mid i \geqslant 1\right]$, and the Bökstedt spectral sequence yields

$$
K(1)_{*} \mathrm{THH}(\mathrm{BP}) \cong K(1)_{*} \mathrm{BP} \otimes \Lambda_{\mathbb{F}_{p}}\left(d t_{i} \mid i \geqslant 1\right)
$$

Comparing the Bökstedt spectral sequences for $H \mathbb{Z}_{*} \mathrm{THH}(\mathrm{BP})$ and $K(1)_{*} \mathrm{THH}(\mathrm{BP})$, we deduce that the class $\lambda_{1} \in \mathrm{THH}_{*}(\mathrm{BP})$ maps to $d t_{1} \in K(1)_{*} \mathrm{THH}(\mathrm{BP})$. Recall that

$$
K(1)_{*} E=K(1)_{*}\left[t_{i} \mid i \geqslant 1\right]\left[\eta_{R}\left(v_{2}\right)^{-1}\right] /\left(\eta_{R}\left(v_{j}\right) \mid j \geqslant 3\right)
$$

is a colimit of étale algebras over $K(1)_{*}\left[w_{2}, w_{2}^{-1}\right]$, where

$$
w_{2}=\eta_{R}\left(v_{2}\right)=v_{1}^{p} t_{1}-v_{1} t_{1}^{p}
$$

In particular, $d w_{2}=v_{1}^{p} d t_{1}$, and the Bökstedt spectral sequence provides the formula given above for $K(1)_{*} \mathrm{THH}(E)$. Now obviously $d t_{1} \in K(1)_{*} \mathrm{THH}(\mathrm{BP})$ maps to $d t_{1} \in K(1)_{*} \mathrm{THH}(E)$. This implies assertion (b) of the lemma.

Remark 5.2 The above proof does not require the map $\mathrm{BP} \rightarrow E(n)$ to be an E_{3}-map.
The class $\lambda_{1} \in \mathrm{THH}_{2 p-1}(E)$ of Lemma 5.1 corresponds to a map $\lambda_{1}: S^{2 p-1} \rightarrow$ $\mathrm{THH}(E)$. Smashing with E, using the E-module structure of $\mathrm{THH}(E)$ (assuming an E_{3}-structure on E), and composing with the cofiber $\mathrm{THH}(E) \rightarrow \overline{\mathrm{THH}}(E)$ of the unit, we obtain a map

$$
j_{1}: \Sigma^{2 p-1} E \cong E \wedge S^{2 p-1} \rightarrow E \wedge \mathrm{THH}(E) \rightarrow \mathrm{THH}(E) \rightarrow \overline{\mathrm{THH}}(E)
$$

In the same fashion, we obtain a map $j_{2}: \Sigma^{2 p^{2}-1} E \rightarrow \overline{\mathrm{THH}}(E)$ corresponding to the class λ_{2}.

Lemma 5.3 The map j_{1} factors through a map

$$
\bar{J}_{1}: \Sigma^{2 p-1} L_{1} E \rightarrow \overline{\mathrm{THH}}(E)
$$

that is a $K(1)_{*}$-isomorphism, and whose cofiber $C\left(\bar{J}_{1}\right)$ is a rational spectrum.
Proof Recall from Lemma 4.2 that the cofiber $\overline{\mathrm{THH}}(E)$ of the unit map is $E(1)-$ local. In particular, the map j_{1} factors through a map

$$
\bar{J}_{1}: \Sigma^{2 p-1} L_{1} E \rightarrow \overline{\mathrm{THH}}(E)
$$

The localization map $E \rightarrow L_{1} E$ is a $K(1)_{*}$-isomorphism, and therefore so are the induced maps $\ell: \mathrm{THH}(E) \rightarrow \mathrm{THH}\left(L_{1} E\right)$ and $\bar{\ell}: \overline{\mathrm{THH}}(E) \rightarrow \overline{\mathrm{THH}}\left(L_{1} E\right)$, by convergence of the $K(1)$-based Bökstedt spectral sequence. Hence, to prove the claim, it suffices to show that the composition

$$
\begin{equation*}
\Sigma^{2 p-1} L_{1} E \xrightarrow{\bar{J}_{1}} \overline{\mathrm{THH}}(E) \xrightarrow{\bar{\ell}} \overline{\mathrm{THH}}\left(L_{1} E\right) \tag{5-4}
\end{equation*}
$$

is a $K(1)_{*}$-isomorphism. The $K(1)$-based Bökstedt spectral sequence for $L_{1} E$ is identical to the one of E, computed above as

$$
E_{*, *}^{2}=K(1)_{*} E \otimes \Lambda_{\mathbb{F}_{p}}\left(d t_{1}\right) \Rightarrow K(1)_{*} \mathrm{THH}(E)
$$

where $K(1)_{*} E$ is in filtration degree zero and $K(1)_{*} E\left\{d t_{1}\right\}$ is in filtration degree 1 , and where all differentials are zero. By definition of the map j_{1}, if $1 \in K(1)_{0} E$ is the unit, then $j_{1 *}\left(\Sigma^{2 p-1} 1\right)$ is represented modulo lower filtration by the permanent
cycle $d t_{1}$ in $E_{1, *}^{2}$. Since this is a spectral sequence of $K(1)_{*} E$-modules, the composition (5-4) induces a map in $K(1)$ homology that is represented modulo lower filtration by the isomorphism $\Sigma^{2 p-1} K(1)_{*} E \rightarrow E_{1, *}^{2}=K(1)_{*} E\left\{d t_{1}\right\}$ sending a class $\Sigma^{2 p-1} w$ to $w d t_{1}$. It is therefore a $K(1)_{*}-$ isomorphism, proving the claim.

Now we consider the cofiber $C\left(\bar{J}_{1}\right)$ of \bar{J}_{1}, sitting in an exact triangle

$$
\begin{equation*}
\Sigma^{2 p-1} L_{1} E \xrightarrow{\bar{J}_{1}} \overline{\mathrm{THH}}(E) \xrightarrow{k} C\left(\bar{\jmath}_{1}\right) \xrightarrow{\delta} \Sigma^{2 p} L_{1} E . \tag{5-5}
\end{equation*}
$$

Since \bar{J}_{1} is a $K(1)_{*}$-isomorphism, we know that $K(1)_{*} C\left(\bar{J}_{1}\right)=0$, and since $\overline{\mathrm{THH}}(E)$ and thus $C\left(\bar{J}_{1}\right)$ are $E(1)$-local, we deduce (as in Lemma 4.2) that $C\left(\bar{J}_{1}\right)$ is $E(0)$-local (ie rational).

We now define a map $\lambda_{12}: L_{0} S^{2 p^{2}-2 p-2} \rightarrow C\left(\bar{J}_{1}\right)$ as a composition over the cofibers,

$$
L_{0} S^{2 p^{2}-2 p-2} \rightarrow L_{0} \mathrm{THH}(E) \rightarrow L_{0} \overline{\mathrm{THH}}(E) \rightarrow C\left(\bar{\jmath}_{1}\right)
$$

where the first map above realizes the class $d t_{1} d t_{2} \in K(0)_{*} \mathrm{THH}(E)$. Smashing λ_{12} with E and using the module structure, we obtain a map

$$
j_{12}: \Sigma^{2 p^{2}-2 p-2} L_{0} E \rightarrow C\left(\bar{J}_{1}\right)
$$

Similarly, λ_{2} induces a map

$$
j_{2}: \Sigma^{2 p^{2}-1} L_{0} E \rightarrow C\left(\bar{J}_{1}\right)
$$

Theorem 5.4 Let p be an odd prime such that $E=E(2)$, the second Johnson-Wilson spectrum at p, is an $E_{3}-$ ring spectrum. Then the map $j_{2} \vee j_{12}$ lifts to a map

$$
\bar{J}_{2} \vee \bar{J}_{12}: \Sigma^{2 p^{2}-1} L_{0} E \vee \Sigma^{2 p^{2}-2 p-2} L_{0} E \rightarrow \overline{\mathrm{THH}}(E)
$$

and the sum β of \bar{J}_{1}, \bar{J}_{2} and \bar{J}_{12} is a weak equivalence of E-modules

$$
\beta: \Sigma^{2 p-1} L_{1} E \vee \Sigma^{2 p^{2}-1} L_{0} E \vee \Sigma^{2 p^{2}+2 p-2} L_{0} E \rightarrow \overline{\mathrm{THH}}(E)
$$

Proof The composition $\delta \circ\left(j_{2} \vee j_{12}\right)$ is trivial, so that $j_{2} \vee j_{12}$ lifts to a map $\bar{J}_{2} \vee \bar{J}_{12}$:

Indeed, $\Sigma^{2 p} L_{1} E$ fits in the chromatic fracture pullback diagram

The composition of $\delta \circ\left(j_{2} \vee j_{12}\right)$ with the left vertical map to $\Sigma^{2 p} L_{0} E$ is trivial, since it factors over the composition

$$
L_{0} \overline{\mathrm{THH}}(E) \rightarrow L_{0} C\left(\bar{J}_{1}\right) \rightarrow \Sigma^{2 p} L_{0} E
$$

of two consecutive maps in the ($E(0)$-localized) cofiber sequence (5-5). The composition of $\delta \circ\left(j_{2} \vee j_{12}\right)$ with the top map to $\Sigma^{2 p} L_{K(1)} E$ is trivial as well; indeed, there is no nontrivial map from a $K(1)$-acyclic to a $K(1)$-local spectrum. This finishes the proof that $\delta \circ\left(j_{2} \vee j_{12}\right)$ is trivial and that the lift exists. We now define β as the sum

$$
\beta=\bar{J}_{1} \vee \bar{J}_{2} \vee \bar{J}_{12}: \Sigma^{2 p-1} L_{1} E \vee \Sigma^{2 p^{2}-1} L_{0} E \vee \Sigma^{2 p^{2}+2 p-2} L_{0} E \rightarrow \overline{\mathrm{THH}}(E)
$$

Finally, we claim that β is a $K(0)_{*}$-isomorphism: this is analogous to the proof above that \bar{J}_{1} is a $K(1)_{*}$-isomorphism, working this time with the $K(0)$-based Bökstedt spectral sequence. Since β is a $K(0)_{*}$ and a $K(1)_{*}$-isomorphism of $E(1)$-local spectra, it is a weak equivalence.

Assume now that in addition to E being an E_{3}-ring spectrum, the unit map $E \rightarrow$ $\mathrm{THH}(E)$ splits in the homotopy category (this holds for example if E is an E_{∞}-ring spectrum). We then have a weak equivalence of E-modules $E \vee \overline{\mathrm{THH}}(E) \rightarrow \mathrm{THH}(E)$. On the other hand, summing β with the identity of E gives a weak equivalence

$$
\mathrm{id} \vee \beta: E \vee \Sigma^{2 p-1} L_{1} E \vee \Sigma^{2 p^{2}-1} L_{0} E \vee \Sigma^{2 p^{2}+2 p-2} L_{0} E \rightarrow E \vee \overline{\mathrm{THH}}(E)
$$

This implies the following corollary of Theorem 5.4:
Corollary 5.5 Assume that p is an odd prime, and that the second Johnson-Wilson spectrum $E=E(2)$ admits an E_{3}-structure. If the unit map $E \rightarrow \mathrm{THH}(E)$ splits in the homotopy category, then the maps above provide a weak equivalence of E-modules

$$
E \vee \Sigma^{2 p-1} L_{1} E \vee \Sigma^{2 p^{2}-1} L_{0} E \vee \Sigma^{2 p^{2}+2 p-2} L_{0} E \rightarrow \mathrm{THH}(E)
$$

Remark 5.6 Corollary 5.5 implies that

- the 2^{0} summand of $K(2)_{*} E$ in $K(2)_{*} \mathrm{THH}(E)$ indexed by 1 ,
- the 2^{1} summands of $K(1)_{*} E$ in $K(1)_{*} \mathrm{THH}(E)$ indexed by 1 and $d t_{1}$, and
- the 2^{2} summands of $K(0)_{*} E$ in $K(0)_{*} \operatorname{THH}(E)$ indexed by $1, d t_{1}, d t_{2}$ and $d t_{1} d t_{2}$
assemble, in $\mathrm{THH}(E)$, into
- the 2^{0} summand E indexed by 1 and detected by $K(0)_{*}, K(1)_{*}$ and $K(2)_{*}$,
- the $2^{1}-2^{0}$ summand $L_{1} E$ indexed by $d t_{1}$ and detected by $K(0)_{*}$ and $K(1)_{*}$, and
- the $2^{2}-2^{1}$ summands $L_{0} E$ indexed by $d t_{2}$ and $d t_{1} d t_{2}$ and detected by $K(0)_{*}$. Bruner and Rognes [11] obtain very similar computations for $K(i)_{*} \mathrm{THH}(\mathrm{tmf})$ for $i=0,1,2$, where tmf denotes the connective spectrum of topological modular form.

We can picture the summands of $\operatorname{THH}(E)$ in a 2-dimensional cube of local pieces (up to suspensions, where $E=L_{2} E$):

	1	$d t_{1}$
	E	$L_{1} E$
$d t_{2}$	$L_{0} E$	$L_{0} E$

We conjecture that this picture extends to describe a decomposition of $\operatorname{THH}(E(n))$ into 2^{n} summands, with summands placed in an n-dimensional cube, where the $i^{\text {th }}$ edge has two coordinates 1 and $d t_{i}$. We formulate this as follows:

Conjecture 5.7 If p is an odd prime such that $E(n)$ is a sufficiently commutative S-algebra, then $\operatorname{THH}(E(n))$ decomposes as a sum of 2^{n} factors, namely 2^{n-i-1} suspended copies of $L_{i} E(n)$ for each $0 \leqslant i \leqslant n-1$ plus one copy of $E(n)$. More precisely, the $L_{i} E(n)$-summands are indexed by the 2^{n-i-1} monomial generators

$$
\omega \in \Lambda_{\mathbb{Q}}\left(d t_{1}, \ldots, d t_{n-i-1}\right)\left\{d t_{n-i}\right\} \subset K(0)_{*} \operatorname{THH}(E(n)),
$$

and the summand corresponding to such a monomial ω is $\Sigma^{|\omega|} L_{i} E(n)$.

References

[1] V Angeltveit, J Rognes, Hopf algebra structure on topological Hochschild homology, Algebr. Geom. Topol. 5 (2005) 1223-1290 MR
[2] O Antolín-Camarena, T Barthel, Chromatic fracture cubes, preprint (2014) arXiv
[3] C Ausoni, Topological Hochschild homology of connective complex K-theory, Amer. J. Math. 127 (2005) 1261-1313 MR
[4] A Baker, B Richter, On the Γ-cohomology of rings of numerical polynomials and E_{∞} structures on K-theory, Comment. Math. Helv. 80 (2005) 691-723 MR
[5] C Barwick, From operator categories to higher operads, Geom. Topol. 22 (2018) 1893-1959 MR
[6] M Basterra, M A Mandell, Homology of E_{n} ring spectra and iterated THH, Algebr. Geom. Topol. 11 (2011) 939-981 MR
[7] M Basterra, M A Mandell, The multiplication on BP, J. Topol. 6 (2013) 285-310 MR
[8] T Bauer, Bousfield localization and the Hasse square, from "Topological modular forms" (CL Douglas, J Francis, A G Henriques, M A Hill, editors), Mathematical Surveys and Monographs 201, Amer. Math. Soc., Providence, RI (2014) 112-121 MR
[9] M Bökstedt, The topological Hochschild homology of \mathbb{Z} and of $\mathbb{Z} / p \mathbb{Z}$, unpublished manuscript (1987)
[10] M Brun, Z Fiedorowicz, R M Vogt, On the multiplicative structure of topological Hochschild homology, Algebr. Geom. Topol. 7 (2007) 1633-1650 MR
[11] R Bruner, J Rognes, Topological Hochschild homology of topological modular forms, talk slides (2008) Available at https://folk.uio.no/rognes/papers/ ntnu08.pdf
[12] A D Elmendorf, I Kriz, MA Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, Amer. Math. Soc., Providence, RI (1997) MR
[13] M Hill, T Lawson, Automorphic forms and cohomology theories on Shimura curves of small discriminant, Adv. Math. 225 (2010) 1013-1045 MR
[14] PS Landweber, $\mathrm{BP}_{*}(\mathrm{BP})$ and typical formal groups, Osaka Math. J. 12 (1975) 357363 MR
[15] T Lawson, Secondary power operations and the Brown-Peterson spectrum at the prime 2, Ann. of Math. 188 (2018) 513-576 MR
[16] T Lawson, N Naumann, Commutativity conditions for truncated Brown-Peterson spectra of height 2, J. Topol. 5 (2012) 137-168 MR
[17] A Mathew, N Naumann, J Noel, On a nilpotence conjecture of JP May, J. Topol. 8 (2015) 917-932 MR
[18] J E McClure, R E Staffeldt, On the topological Hochschild homology of bu, I, Amer. J. Math. 115 (1993) 1-45 MR
[19] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic, Orlando (1986) MR
[20] B Richter, A lower bound for coherences on the Brown-Peterson spectrum, Algebr. Geom. Topol. 6 (2006) 287-308 MR
[21] B Richter, B Shipley, An algebraic model for commutative $H \mathbb{Z}$-algebras, Algebr. Geom. Topol. 17 (2017) 2013-2038 MR
[22] A Robinson, Gamma homology, Lie representations and E_{∞} multiplications, Invent. Math. 152 (2003) 331-348 MR
[23] A Robinson, S Whitehouse, Operads and Γ-homology of commutative rings, Math. Proc. Cambridge Philos. Soc. 132 (2002) 197-234 MR
[24] M O Ronco, Smooth algebras Appendix E to J-L Loday, Cyclic homology, 2nd edition, Grundl. Math. Wissen. 301, Springer (1998) MR
[25] A Senger, The Brown-Peterson spectrum is not $E_{2\left(p^{2}+2\right)}$ at odd primes, preprint (2017) arXiv
[26] B Shipley, HZ-algebra spectra are differential graded algebras, Amer. J. Math. 129 (2007) 351-379 MR
[27] B Stonek, Higher topological Hochschild homology of periodic complex K-theory, preprint (2018) arXiv
[28] C A Weibel, S C Geller, Étale descent for Hochschild and cyclic homology, Comment. Math. Helv. 66 (1991) 368-388 MR
[29] N Yagita, On the Steenrod algebra of Morava K-theory, J. London Math. Soc. 22 (1980) 423-438 MR

LAGA (UMR7539), Institut Galilée, Université Paris 13
Villetaneuse, France
Fachbereich Mathematik, Universität Hamburg
Hamburg, Germany

```
ausoni@math.univ-paris13.fr, birgit.richter@uni-hamburg.de
http://www.math.univ-paris13.fr/~ausoni/,
http://www.math.uni-hamburg.de/home/richter/
```

Received: 4 October 2018 Revised: 29 March 2019

