
msp
Algebraic & Geometric Topology 20 (2020) 375–393

Towards topological Hochschild homology of
Johnson–Wilson spectra

CHRISTIAN AUSONI

BIRGIT RICHTER

We present computations in Hochschild homology that lead to results on the K.i/–
local behaviour of THH.E.n// for all n > 2 and 0 6 i 6 n , where E.n/ is
the Johnson–Wilson spectrum at an odd prime. This permits a computation of
K.i/�THH.E.n// under the assumption that E.n/ is an E3 –ring spectrum. We
offer a complete description of THH.E.2// as an E.2/–module in the form of a
splitting into chromatic localizations of E.2/ , under the assumption that E.2/ carries
an E1–structure. If E.2/ is admits an E3 –structure, we obtain a similar splitting of
the cofiber of the unit map E.2/! THH.E.2// .

55N35, 55P43

1 Introduction

The first Johnson–Wilson spectrum E.1/ at a prime p is the Adams summand of p–
local periodic complex topological K–theory KU.p/ . McClure and Staffeldt showed
that a p–completed connective version of E.1/ is an E1–ring spectrum [18, Section 9]
and Baker and Richter [4, Theorem 6.2] show that E.1/ carries a unique E1–structure.
Thus THH.E.1// is a commutative E.1/–algebra spectrum. McClure and Staffeldt
show that the unit map E.1/p ! THH.E.1/p/ is a K.1/–local equivalence, hence
its cofiber THH.E.1/p/ is a rational spectrum. It is easy to calculate the rational
homology of THH.E.1/p/ as

HQ�THH.E.1/p/ŠQŒv˙1
1 �˝QƒQ.dv1/

using the Bökstedt spectral sequence with E2 –term

E2
�;� D HHQ

�;�.QŒv
˙1
1 �/:

There is a map

†2p�1E.1/p! THH.E.1/p/! THH.E.1/p/
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that factors through †2p�1E.1/Q!THH.E.1/p/ since THH.E.1/p/ is rational, and
that is defined such that the latter map is an equivalence detecting the HQ�E.1/–
summand generated by dv1 . Since the unit map E.1/p ! THH.E.1/p/ splits, this
yields a splitting [18, Theorem 8.1]

THH.E.1/p/'E.1/p _†
2p�1E.1/Q

as E.1/p –modules. This computation was also carried out for KU.p/ by Ausoni [3],
and pushed further to provide formulas for THH.KU / as a commutative KU –algebra
by Stonek [27].

In this paper, we consider the higher Johnson–Wilson spectrum E.n/ with coefficient
ring

E.n/� D Z.p/Œv1; : : : ; vn�1; vn; v
�1
n �

for an arbitrary value of n > 1 and p an odd prime. Our main motivation is to
investigate whether the spectrum THH.E.n// also splits into copies of E.n/ and
its lower chromatic localizations, generalizing McClure and Staffeldt’s intriguing
transchromatic result.

Let K.i/ be the i th Morava K–theory at an odd prime. As a first step, we com-
pute the Hochschild homology HH

K.i/�
� .K.i/�E.n// of K.i/�E.n/ for 0 6 i 6 n;

see Theorem 3.4. We shy away from the prime 2 because Morava K–theory is
not homotopy commutative at the prime 2. Theorem 3.4 yields a computation of
K.i/�THH.E.n// under the modest assumption that E.n/ admits an E3 –structure.

We then focus on E.2/, and show in Theorem 5.4 that, under the same commutativity
assumption, THH.E.2// sits in a cofiber sequence

E.2/! THH.E.2//!†2p�1L1E.2/_†2p2�1E.2/Q _†
2p2C2p�2E.2/Q;

where L1E.2/ denotes the Bousfield localization of E.2/ with respect to E.1/. If the
unit E.2/! THH.E.2// splits, we then get a decomposition of THH.E.2// into four
summands, a higher analogue of McClure and Staffeldt’s formula for THH.E.1//.

Remark 1.1 To study THH.E.n// by means of the Bökstedt spectral sequence, we
need sufficient commutativity of E.n/. Here we summarize what is known about
multiplicative structures on E.n/ and related spectra. Basterra and Mandell [7] showed
that the Brown–Peterson spectrum BP admits an E4 –structure. The Johnson–Wilson
spectra E.n/ are built out of the BPhni D BP=.vi j i > nC 1/ by inverting vn . In
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[15, Theorem 1.1.2], Tyler Lawson shows that the Brown–Peterson spectrum BP and
the spectra BPhni for n > 4 at the prime 2 do not possess an E12 –structure. Andrew
Senger [25, Theorem 1.2] extends Lawson’s result to odd primes p , and shows that BP
and the BPhni (for n > 4) do not have an E2.p2C2/–structure. In particular, the BPhni
are not E1–ring spectra at any prime for n > 4. Hence, if E.n/ actually possesses an
E1–structure for n > 4, then this structure does not come from one on BPhni. Richter
[20, Proposition 8.2] proves that E.n/ at a prime p possesses at least a .2p�1/–
stage structure. It is unclear how such a structure relates to the En –hierarchy, but
Barwick conjectures [5, page 1948] that a .2p�1/–stage structure corresponds to an
A

2p�1
2p

–structure which in turn is a filtration piece of an E2p�1 –structure.

At the prime 2, Lawson and Naumann [16] show that there is an E1–model of BPh2i
and Hill and Lawson [13] prove that BPh2i at the prime 3 possesses a model as an
E1–ring spectrum. With Mathew, Naumann and Noel [17, Theorem A.1] this yields
E1–structures on the corresponding Johnson–Wilson spectra E.2/ at these primes.
Current work of Sanath Devalapurkar aims at adapting the arguments used in these
results to produce E1–models of BPh2i or E.2/ at higher primes.

Acknowledgements Ausoni acknowledges support from the project ANR-16-CE40-
0003 ChroK. Richter thanks the University of Paris 13 for its hospitality and for the
possibility of a research stay as professeur invitée. Both authors benefited from a stay
at the Hausdorff Institute for Mathematics in Bonn during the Trimester Program on
K–theory and related fields.

We thank Paul Goerss for a crucial hint that simplified our original étaleness argument,
and Agnès Beaudry, Gerd Laures, Mike Mandell, John Rognes and Vesna Stojanoska
for helpful comments.

2 Rationalized E.n/

For n > 1 the homotopy algebra of LK.0/E.n/DE.n/Q is QŒv1; : : : ; vn�1; v
˙1
n � and

its algebra of cooperations is

��.E.n/Q ^E.n/Q/Š ��E.n/Q˝Q ��E.n/Q

ŠQŒv1; : : : ; vn�1; v
˙1
n ; v01; : : : ; v

0
n�1; v

0
n
˙1
�:

This implies the following result:

Lemma 2.1 There is a unique E1–ring structure on E.n/Q for all n > 1.
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Proof The obstruction groups for such an E1–ring structure on E.n/Q are contained
in the Gamma cohomology groups of ��.E.n/Q ^E.n/Q/ as a ��E.n/Q –algebra
[22, Theorem 5.6]. As we work in characteristic zero, Gamma cohomology agrees
with André–Quillen cohomology [23, Corollary 6.6]. The algebra

QŒv1; : : : ; vn�1; v
˙1
n ; v01; : : : ; v

0
n�1; v

0
n
˙1
�

is smooth over QŒv1; : : : ; vn�1; v
˙1
n � and therefore André–Quillen cohomology is

concentrated in cohomological degree zero, where it consists of derivations. The
obstructions for existence and uniqueness of an E1–ring structure on E.n/Q are
concentrated in degrees bigger than zero.

As E1–ring structures can be rigidified to commutative ring structures (see eg
[12, Section II.3]), we pass to the world of commutative ring spectra from now on.

Topological Hochschild homology of a ring spectrum A can be modelled as the
geometric realization of a simplicial spectrum. Using the inclusion of the 1–skeleton,
McClure and Staffeldt [18, Section 3] construct a map

(2-1) � W †A! THH.A/:

For a commutative ring spectrum A the multiplication maps from A^nC1 to A give
rise to a map of commutative A–algebra spectra from THH.A/ to A. Composing this
map with the map A! THH.A/ gives the identity, hence we obtain a splitting of
A–modules

THH.A/'A_THH.A/;

where THH.A/ is the cofiber. The latter spectrum inherits the structure of a nonunital
commutative A–algebra. In our case this implies the following result:

Corollary 2.2 The topological Hochschild homology of E.n/Q splits, as an E.n/Q –
module, as

THH.E.n/Q/'E.n/Q _THH.E.n//Q

where THH.E.n//Q is the cofiber of the unit map

E.n/Q! THH.E.n/Q/' THH.E.n//Q:

Moreover, the spectrum THH.E.n//Q is a nonunital commutative E.n/Q –algebra.

In the sequel, we follow Ronco [24, Definition E.1] for the definition of étale algebras.
It is straightforward to calculate the topological Hochschild homology of E.n/Q :
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Proposition 2.3 We have

(2-2) ��THH.E.n//Q ŠQŒv1; : : : ; vn�1; v
˙1
n �˝ƒQ.dv1; : : : ; dvn/

with jdvi j D 2pi � 1.

Proof The Bökstedt spectral sequence for ��.THH.E.n//Q/ŠHQ�THH.E.n// is
of the form

E2
�;� D HHQ

�;�.��E.n/Q/) ��.THH.E.n//Q/:

As QŒv1; : : : ; vn�1; v
˙1
n � is étale over QŒv1; : : : ; vn�1; vn� and as QŒv1; : : : ; vn�1; vn�

is smooth, we get

HHQ
�;�.��E.n/Q/ŠQŒv1; : : : ; vn�1; v

˙1
n �˝ƒQ.dv1; : : : ; dvn/

with dvi having homological degree one and internal degree 2pi � 2. As the Bökstedt
spectral sequence is multiplicative and as the algebra generator cannot support any
differentials for degree reasons, the spectral sequence collapses at E2 . There are no
multiplicative extensions and hence we get the result.

Remark 2.4 As we work rationally, THH.E.n//Q is a commutative HQ–algebra
spectrum and hence corresponds to a commutative differential graded Q–algebra
(see [26] or [21]).

3 K.i /�E.n/ and K.i /�THH.E.n//

In the following we assume that p is an odd prime, and that n and i are integers
with 1 6 i 6 n. The Hopf algebroid .BP�;BP�BP/ represents the groupoid of strict
isomorphisms of p–typical formal group laws [14] (see also [19, Theorem A2.1.27]).
There are isomorphisms of graded Z.p/–algebras

BP� Š Z.p/Œv1; v2; : : : � and BP�BPŠ BP�Œt1; t2; : : : �;

where jvi j D jti j D 2.pi � 1/. We use the Araki generators vi [19, Section A2.2]
and by convention v0 D p and t0 D 1. The i th Morava K–theory K.i/ is complex
oriented, and its formal group law Fi (the Honda formal group law) corresponds to
the map BP� ! K.i/� D Fp Œv

˙
i � sending vi to vi and vk for k ¤ i to zero. The

p–typical formal group law Gn over E.n/� comes from the map BP�!E.n/� that
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kills all vi with i > n and inverts vn . Since E.n/ is a Landweber exact homology
theory, we obtain an isomorphism

(3-1) K.i/�E.n/ŠK.i/�˝BP� BP�BP˝BP� E.n/�:

Note that K.i/�E.n/ is trivial for i > n and that the Bousfield class hE.n/i of E.n/

is hK.0/_ � � � _K.n/i.

We first treat the case i D n.

The algebra K.n/�E.n/ is isomorphic to K.n/�BPhni, which is isomorphic to

K.n/�˝BP� BP�BP˝BP� K.n/�

(see for instance [29, page 428]). The latter is known as †.n/. It is of the form

†.n/ŠK.n/�Œt1; t2; : : : �=.vnt
pn

i � v
pi

n ti j i > 1/I

see [19, Corollary 6.1.16].

Proposition 3.1 For all n > 1 the canonical map E.n/! THH.E.n// is a K.n/–
local equivalence.

Proof If we set

C
.k/
� WDK.n/�Œt1; : : : ; tk �=.vnt

pn

i � v
pi

n ti j 1 6 i 6 k/

then C
.k/
� is étale over K.n/� and K.n/�E.n/ is the directed colimit of the C

.k/
� .

The K.n/�–Bökstedt spectral sequence for THH.E.n// has as an E2 –term

HH
K.n/�
� .K.n/�E.n//ŠK.n/�E.n/

concentrated in homological degree zero. Thus K.n/�THH.E.n//ŠK.n/�E.n/ and
the isomorphism is induced by the map E.n/! THH.E.n//. Therefore, this map is a
K.n/–equivalence and thus, K.n/–locally, THH.E.n// is equivalent to E.n/.

We calculate K.i/�E.n/ for 1 6 i 6 n�1 using the following description of morphisms
of graded commutative BP�–algebras from K.i/�E.n/ to some graded commutative
ring B� . For n D 2 we had an argument that was rather involved and Paul Goerss
suggested the following simpler proof.

We consider the map gW BP�BP!K.i/�E.n/ of graded commutative Z.p/–algebras
given by

BP�BP!K.i/�˝BP� BP�BP˝BP� E.n/� ŠK.i/�E.n/;
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which uses the canonical maps BP�!K.i/� and BP�!E.n/� and the isomorphism
from (3-1). By [19, Theorem A2.1.27], g corresponds to a triple ..�L/�Fi ; .�R/�Gn;f /

where �LW K.i/� ! K.i/�E.n/ is the left unit, �RW E.n/� ! K.i/�E.n/ is the
right unit and .�L/�Fi and .�R/�Gn are the p–typical formal group laws that are
given by the corresponding change of coefficients. Here, f is a strict isomorphism
between the p–typical formal group laws .�L/�Fi and .�R/�Gn over K.i/�E.n/.
By [19, Lemma A2.1.26] such a strict isomorphism is always of the form

f .x/D
X

j

.�R/�Gn tj xpj

:

The p–series of the Honda formal group law Fi is

Œp�Fi
.x/D vix

pi

and the same is true for Œp�.�L/�Fi
Œx� because the left unit just embeds K.i/� into

K.i/�E.n/. The p–series of .�R/�Gn is

Œp�.�R/�Gn
.x/D w1xp

C.�R/�Gn
� � � C.�R/�Gn

wnxpn

for wi D �R.vi/.

The strict isomorphism f .x/D
P

j
.�R/�Gn tj xpj

satisfies

Œp�.�R/�Gn
.f .x//D f .Œp�.�L/�Fi

.x//;

and using the above formulas for the p–series, this yields the equality

(3-2) w1.f .x//
p
C.�R/�Gn

� � � C.�R/�Gn
wn.f .x//

pn

D f .vix
pi

/

D

X
j

.�R/�Gn tj .vix
pi

/p
j

:

Lemma 3.2 In K.i/�E.n/ the relations wr D 0 for all 1 6 r 6 i � 1 and wi D vi

hold.

Proof In equality (3-2), the right-hand side starts with the summand vix
pi

followed
by higher powers of x . Looking at the left-hand side, we deduce that w1; : : : ; wi�1D0,
and from the coefficient of xpi

we obtain that wi D vi in K.i/�E.n/.

Proposition 3.3 K.i/�E.n/ is a colimit of étale K.i/�ŒwiC1; : : : ; w
˙1
n �–algebras for

all 1 6 i 6 n.

Proof In the following we fix i and n. We denote by B.i; n/� the graded commutative
K.i/�–algebra K.i/�ŒwiC1; : : : ; wn�1; w

˙1
n �. For a given m > 1 consider the graded
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commutative BP�–subalgebra BP�Œt1; : : : ; tm� of BP�BP, and define the subalgebra

Bm D g.BP�Œt1; : : : ; tm�/�K.i/�E.n/:

By Lemma 3.2, we deduce that Bm can be written as the quotient

Bm D B.i; n/Œt1; : : : ; tm�=�;

where � denotes the relations that the tr and wj satisfy in K.i/�E.n/. Note that B1

is free as a B.i; n/–module, and BmC1 is free as a Bm –module for all m > 1. Indeed,
in each step we adjoin a new polynomial generator x to a graded commutative ring R�

that satisfies relations of the form xpr

�ux�y with a unit u 2R�� and y 2R� . In
particular, we have a sequence of subalgebras

B.i; n/� B1 � � � � � Bm � � � � �K.i/�E.n/;

and K.i/�E.n/ is the colimit of this sequence.

We prove that B1 is étale over B.i; n/� and that for every m, Bm is étale over Bm�1 .
This then yields that the algebras Bm are étale over B.i; n/� which proves the claim.
Thus we have to show that the modules of relative Kähler differentials �1

B1jB.i;n/�

and �1
BmjBm�1

are trivial for all m > 2. To this end we have to control the Kähler
differentials dtm and we do this now by deriving explicit relations for the tm that we
extract from the equality (3-2).

The first relation for tm is obtained by looking at the coefficients of xpiCm

on the left-
and right-hand sides of the equality (3-2).

Let s > 2, let r; l1; : : : ; ls be natural numbers bigger or equal to 1, and assume that
lj ¤ lk for j ¤ k . Then, as pr has a unique representation in base p , it cannot be
written as a sum pl1C� � �Cpls . This ensures that, for a given xpiCr

, we only have to
consider the coefficient tjv

pj

i with i C j D i C r coming from the linear term of the
.�R/�Gn –sum

P
j
.�R/�Gn tjv

pj

i xpiCj

and this is trv
pr

i .

For B1 we compare the coefficients of xpiC1

in (3-2). In this case only the linear
terms of the .�R/�Gn –sums contribute something and we obtain (using wi D vi )

vi t
pi

1
CwiC1t0 D t1v

p
i

and therefore t1 D v
�p
i .vi t

pi

1
CwiC1/. This gives that the Kähler differential on t1 is

equal to
dt1 D 0C v

�p
i dwiC1

and hence B1 is étale over B.i; n/� .
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We consider now the general case of Bm for m > 2, and study the first relation for tm

given by the coefficients of xpiCm

in (3-2).

We know that the formal group law Gn.x;y/ is of the form

Gn.x;y/D xCyC
X

i;j>1

ai;j xiyj ;

where the ai;j 2 E.n/� D Z.p/Œv1; : : : ; vn�1; v
˙1
n �. Equation (3-2) relates power

series with coefficients in K.i/�E.n/, hence the coefficients xai;j of .�R/�Gn are
now considered in K.i/�E.n/ and are elements of Fp Œwi ; : : : ; wn�1; w

˙1
n �. On the

left-hand side of (3-2) we get coefficients that involve some polynomials of the xai;j ,
some pth powers of the tj and some expressions in the wk . For mC i 6 n we actually
get a coefficient wmCi t

pmCiC0

0
D wiCm .

The xai;j are in B.i; n/� , so they don’t contribute anything to the relative Kähler
differentials. The Kähler differentials on the t

pk

j are trivial because we are over Fp .
Hence we can express the Kähler differential dtm up to a factor of vpm

i D w
pm

i via
Kähler differentials in the wk . As vpm

i is invertible in B.i; n/� , the relative Kähler
differentials �1

BmjBm�1
are trivial for all m > 1.

Theorem 3.4 For all 1 6 i 6 n we have an isomorphism of K.i/�E.n/–algebras

HH
K.i/�
� .K.i/�E.n//ŠK.i/�E.n/˝Fp

ƒFp
.dwiC1; : : : ; dwn/:

Proof We have shown that K.i/�E.n/ is the sequential colimit of the Bm . As the
K.i/�–algebras Bm are étale over B.i; n/� and as Hochschild homology commutes
with localization, we can rewrite HH�.Bm/ as

HH
K.i/�
� .Bm/Š Bm˝B.i;n/� HH

K.i/�
� .B.i; n/�/

Š Bm˝B.i;n/� .B.i; n/�˝Fp
ƒFp

.dwiC1; : : : ; dwn//

Š Bm˝Fp
ƒFp

.dwiC1; : : : ; dwn/

using [28] and the Hochschild–Kostant–Rosenberg theorem. Hochschild homology
commutes with colimits, hence we obtain

HH
K.i/�
� .K.i/�E.n//Š colim

m
HH

K.i/�
� .Bm/

ŠK.i/�E.n/˝Fp
ƒFp

.dwiC1; : : : ; dwn/:
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Theorem 3.5 Assume that p is an odd prime and that E.n/ is an E3 –ring spectrum.
Then, for all 1 6 i 6 n, we have an isomorphism of K.i/�E.n/–algebras

K.i/�THH.E.n//ŠK.i/�E.n/˝Fp
ƒFp

.dwiC1; : : : ; dwn/:

Proof We use the Bökstedt spectral sequence [9; 12, Theorem IX.2.9], with E2 –term

E2
r;s D

�
HHK.i/�

r .K.i/�E.n//
�
s
;

where r denotes the homological and s the internal degree. By a result of Angeltveit
and Rognes [1, Proposition 4.3], an E3 –structure on E.n/ implies that this spectral
is one of commutative K.i/�E.n/–algebras. The multiplicative generators dwj for
i 6 j 6 n sit in bidegree .1; 2pj � 2/ and hence they cannot carry any nontrivial
differentials. Therefore the spectral sequence collapses at the E2 –term. As the abutment
is a free graded commutative K.i/�E.n/–algebra, there cannot be any multiplicative
extensions.

Remark 3.6 If E.n/ admits an E2 –structure, the Bökstedt spectral sequence is one of
K.i/�–algebras by [1, Proposition 4.3]. It therefore collapses since all K.i/�–algebra
generators lie in columns 0 and 1. This gives the same formula for K.i/�THH.E.n//
as a K.i/�–module, but not as a K.i/�–algebra, since there is now room for K.i/�–
algebra extensions.

4 Blue-shift for THH.E.n//

If we assume that p is an odd prime and that E.n/ is an E1–ring spectrum, then
THH.E.n// is a commutative E.n/–algebra spectrum and the cofiber of the unit map

THH.E.n//D cofiber
�
E.n/! THH.E.n//

�
is a nonunital commutative E.n/–algebra spectrum. If E.n/ carries an E3 –structure,
then by [10, Section 3.3; 6] the morphism E.n/! THH.E.n// is an E2 –map. This
implies the following useful fact:

Lemma 4.1 If E.n/ is an E3 –spectrum, then THH.E.n// is an E.n/–module spec-
trum and, in particular, THH.E.n// is E.n/–local.

Algebraic & Geometric Topology, Volume 20 (2020)



Towards topological Hochschild homology of Johnson–Wilson spectra 385

Let Ln denote the localization at E.n/, and in particular L0 is the rationalization.
Recall that there is a well-known chromatic fracture square

LnX //

��

LK.n/X

��

Ln�1X // Ln�1LK.n/X

It is shown for instance in [2, Example 3.3; 8, Proposition 2.2] that the homotopy
pullback of

LK.n/X

��

Ln�1X // Ln�1LK.n/X

is an E.n/–localization of X. The statement in [8, Proposition 2.2] is more general
and [2] works out far more general local-to-global statements.

The chromatic square for THH.E.n// is

THH.E.n//DLK.n/_E.n�1/THH.E.n// //

��

LK.n/THH.E.n//

��

LE.n�1/THH.E.n// // LE.n�1/

�
LK.n/THH.E.n//

�
The K.n/–homology of THH.E.n// is zero, since by Proposition 3.1 the unit map is
a K.n/–equivalence. It follows that the localization LK.n/THH.E.n// is trivial, and
hence LE.n�1/

�
LK.n/THH.E.n//

�
is also trivial. Therefore the vertical map on the

left-hand side is an equivalence and we obtain a nice example of blue-shift:

Lemma 4.2 If E.n/ is an E3 –spectrum, then the cofiber THH.E.n// is E.n�1/–
local.

5 Topological Hochschild homology of E.2/

In this section, we discuss in more detail the topological Hochschild homology of E.2/,
which we will denote by E DE.2/ to simplify the notation. As explained in the proof
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of Lemma 5.1, the computations of Theorem 3.5 for E.2/ can be expressed as

K.0/�THH.E/ŠK.0/�E˝ƒQ.dt1; dt2/;(5-1)

K.1/�THH.E/ŠK.1/�E˝ƒFp
.dt1/;(5-2)

K.2/�THH.E/ŠK.2/�E:(5-3)

Notice that these computations do not require the assumption that E is an E3 –ring
spectrum: for the rational case we have a commutative structure anyhow, while, in the
K.1/ and K.2/ cases, the E2 page of the Bökstedt spectral sequences is concentrated
on columns 0 and 1 (respectively 0).

Lemma 5.1 For i D 1; 2, there exist classes �i 2 THH2pi�1.E/ with the following
properties. Under the Hurewicz homomorphism ,

(a) the class �i maps to dti 2K.0/2pi�1THH.E/ for i D 1; 2;

(b) the class �1 maps to dt1 2K.1/2p2�1THH.E/.

Proof We use McClure and Staffeldt’s computation of THH�.BP/ in [18, Remark 4.3],
which has been validated by the proof [7] that BP admits an E4 –structure. We briefly
recall the computation. The integral, rational and mod p homology of BP are given as

HZ�BPŠZ.p/Œti j i > 1�; K.0/�BPŠQŒti j i > 1� and HFp�BPŠZŒx�i j i > 1�;

where the class ti 2HZ2pi�1BP maps to x�i under mod .p/ reduction [19, Proof of
Theorem 5.2.8] and to the class with same name ti under rationalization. The associated
Bökstedt spectral sequences collapse, providing isomorphisms

HZ�THH.BP/ŠHZ�BP˝ƒZ.p/
.dti j i > 1/;

K.0/�THH.BP/ŠK.0/�BP˝ƒQ.dti j i > 1/;

HFp�THH.BP/ŠHFp�BP˝ƒFp
.dx�i j i > 1/;

with dx D ��.x/, where � W †BP! THH.BP/ is the map given in (2-1). There is an
isomorphism

THH�.BP/Š BP�˝ƒZ.p/
.�i j i > 1/;

and the Hurewicz homomorphism

THH�.BP/!HZ�THH.BP/
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is an inclusion mapping �i to dti . In particular, the classes dti (integral and rational)
and dx�i are spherical: they are the image of �i under the Hurewicz homomorphism
mapping from THH�.BP/. For i > 1, let us define

�i 2 THH2pi�1.E/

as the image of the class with same name under the natural map

THH�.BP/! THH�.E/:

In the rational case, we have

�R.vi/� ˛i ti

modulo decomposables in K.0/�BP, where ˛i 2Q is a unit. We deduce that

K.0/�E ŠQŒt1; t2�Œ�R.v2/
�1�

and the Bökstedt spectral sequence recovers

K.0/�THH.E/ŠK.0/�E˝ƒQ.dt1; dt2/:

By naturality, comparing with the case of BP, we deduce that the Hurewicz homomor-
phism THH�.E/!K.0/�THH.E/ maps �i to dti .

For K.1/�–homology, we argue similarly, using the commutative square

THH�.BP/ //

��

K.1/�THH.BP/

��

THH�.E/ // K.1/�THH.E/

We have K.1/�BPŠK.1/�Œti j i > 1�, and the Bökstedt spectral sequence yields

K.1/�THH.BP/ŠK.1/�BP˝ƒFp
.dti j i > 1/:

Comparing the Bökstedt spectral sequences for HZ�THH.BP/ and K.1/�THH.BP/,
we deduce that the class �1 2 THH�.BP/ maps to dt1 2K.1/�THH.BP/. Recall that

K.1/�E DK.1/�Œti j i > 1�Œ�R.v2/
�1�=.�R.vj / j j > 3/

is a colimit of étale algebras over K.1/�Œw2; w
�1
2
�, where

w2 D �R.v2/D v
p
1

t1� v1t
p
1
:
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In particular, dw2 D v
p
1

dt1 , and the Bökstedt spectral sequence provides the formula
given above for K.1/�THH.E/. Now obviously dt1 2 K.1/�THH.BP/ maps to
dt1 2K.1/�THH.E/. This implies assertion (b) of the lemma.

Remark 5.2 The above proof does not require the map BP!E.n/ to be an E3 –map.

The class �1 2 THH2p�1.E/ of Lemma 5.1 corresponds to a map �1W S
2p�1 !

THH.E/. Smashing with E , using the E–module structure of THH.E/ (assuming
an E3 –structure on E ), and composing with the cofiber THH.E/! THH.E/ of the
unit, we obtain a map

j1W †
2p�1E ŠE ^S2p�1

!E ^THH.E/! THH.E/! THH.E/:

In the same fashion, we obtain a map j2W †
2p2�1E! THH.E/ corresponding to the

class �2 .

Lemma 5.3 The map j1 factors through a map

x|1W †
2p�1L1E! THH.E/

that is a K.1/�–isomorphism, and whose cofiber C.x|1/ is a rational spectrum.

Proof Recall from Lemma 4.2 that the cofiber THH.E/ of the unit map is E.1/–local.
In particular, the map j1 factors through a map

x|1W †
2p�1L1E! THH.E/:

The localization map E ! L1E is a K.1/�–isomorphism, and therefore so are
the induced maps `W THH.E/ ! THH.L1E/ and x̀W THH.E/ ! THH.L1E/, by
convergence of the K.1/–based Bökstedt spectral sequence. Hence, to prove the claim,
it suffices to show that the composition

(5-4) †2p�1L1E
x|1
�! THH.E/

x̀
�! THH.L1E/

is a K.1/�–isomorphism. The K.1/–based Bökstedt spectral sequence for L1E is
identical to the one of E , computed above as

E2
�;� DK.1/�E˝ƒFp

.dt1/)K.1/�THH.E/;

where K.1/�E is in filtration degree zero and K.1/�Efdt1g is in filtration degree 1,
and where all differentials are zero. By definition of the map j1 , if 1 2 K.1/0E is
the unit, then j1�.†

2p�11/ is represented modulo lower filtration by the permanent
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cycle dt1 in E2
1;�

. Since this is a spectral sequence of K.1/�E–modules, the com-
position (5-4) induces a map in K.1/ homology that is represented modulo lower
filtration by the isomorphism †2p�1K.1/�E!E2

1;�
DK.1/�Efdt1g sending a class

†2p�1w to wdt1 . It is therefore a K.1/�–isomorphism, proving the claim.

Now we consider the cofiber C.x|1/ of x|1 , sitting in an exact triangle

(5-5) †2p�1L1E
x|1
�! THH.E/ k

�! C.x|1/
ı
�!†2pL1E:

Since x|1 is a K.1/�–isomorphism, we know that K.1/�C.x|1/D 0, and since THH.E/
and thus C.x|1/ are E.1/–local, we deduce (as in Lemma 4.2) that C.x|1/ is E.0/–local
(ie rational).

We now define a map �12W L0S2p2�2p�2!C.x|1/ as a composition over the cofibers,

L0S2p2�2p�2
!L0THH.E/!L0THH.E/! C.x|1/;

where the first map above realizes the class dt1dt2 2K.0/�THH.E/. Smashing �12

with E and using the module structure, we obtain a map

j12W †
2p2�2p�2L0E! C.x|1/:

Similarly, �2 induces a map

j2W †
2p2�1L0E! C.x|1/:

Theorem 5.4 Let p be an odd prime such that EDE.2/, the second Johnson–Wilson
spectrum at p , is an E3 –ring spectrum. Then the map j2 _ j12 lifts to a map

x|2 _ x|12W †
2p2�1L0E _†2p2�2p�2L0E! THH.E/

and the sum ˇ of x|1 , x|2 and x|12 is a weak equivalence of E–modules

ˇW †2p�1L1E _†2p2�1L0E _†2p2C2p�2L0E! THH.E/:

Proof The composition ıı.j2_j12/ is trivial, so that j2_j12 lifts to a map x|2_ x|12 :

†2p2�1L0E _†2p2C2p�2L0E

x|2_x|12

uu

j2_j12

��

'�

))

THH.E/ k
// C.x|1/

ı
// †2pL1E
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Indeed, †2pL1E fits in the chromatic fracture pullback diagram

†2pL1E //

��

†2pLK.1/E

��

†2pL0E // †2pL0.LK.1/E/

The composition of ı ı .j2 _ j12/ with the left vertical map to †2pL0E is trivial,
since it factors over the composition

L0THH.E/!L0C.x|1/!†2pL0E

of two consecutive maps in the (E.0/–localized) cofiber sequence (5-5). The composi-
tion of ı ı .j2 _ j12/ with the top map to †2pLK.1/E is trivial as well; indeed, there
is no nontrivial map from a K.1/–acyclic to a K.1/–local spectrum. This finishes the
proof that ı ı .j2 _ j12/ is trivial and that the lift exists. We now define ˇ as the sum

ˇ D x|1 _ x|2 _ x|12W †
2p�1L1E _†2p2�1L0E _†2p2C2p�2L0E! THH.E/:

Finally, we claim that ˇ is a K.0/�–isomorphism: this is analogous to the proof above
that x|1 is a K.1/�–isomorphism, working this time with the K.0/–based Bökstedt
spectral sequence. Since ˇ is a K.0/�– and a K.1/�–isomorphism of E.1/–local
spectra, it is a weak equivalence.

Assume now that in addition to E being an E3 –ring spectrum, the unit map E !

THH.E/ splits in the homotopy category (this holds for example if E is an E1–ring
spectrum). We then have a weak equivalence of E–modules E_THH.E/!THH.E/.
On the other hand, summing ˇ with the identity of E gives a weak equivalence

id_ˇW E _†2p�1L1E _†2p2�1L0E _†2p2C2p�2L0E!E _THH.E/:

This implies the following corollary of Theorem 5.4:

Corollary 5.5 Assume that p is an odd prime, and that the second Johnson–Wilson
spectrum E DE.2/ admits an E3 –structure. If the unit map E! THH.E/ splits in
the homotopy category, then the maps above provide a weak equivalence of E–modules

E _†2p�1L1E _†2p2�1L0E _†2p2C2p�2L0E! THH.E/:

Remark 5.6 Corollary 5.5 implies that

� the 20 summand of K.2/�E in K.2/�THH.E/ indexed by 1,
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� the 21 summands of K.1/�E in K.1/�THH.E/ indexed by 1 and dt1 , and

� the 22 summands of K.0/�E in K.0/�THH.E/ indexed by 1, dt1 , dt2 and
dt1dt2

assemble, in THH.E/, into

� the 20 summand E indexed by 1 and detected by K.0/� , K.1/� and K.2/� ,

� the 21�20 summand L1E indexed by dt1 and detected by K.0/� and K.1/� ,
and

� the 22�21 summands L0E indexed by dt2 and dt1dt2 and detected by K.0/� .

Bruner and Rognes [11] obtain very similar computations for K.i/�THH.tmf/ for
i D 0; 1; 2, where tmf denotes the connective spectrum of topological modular form.

We can picture the summands of THH.E/ in a 2–dimensional cube of local pieces
(up to suspensions, where E DL2E ):

1 dt1

1 E L1E

dt2 L0E L0E

We conjecture that this picture extends to describe a decomposition of THH.E.n//
into 2n summands, with summands placed in an n–dimensional cube, where the i th

edge has two coordinates 1 and dti . We formulate this as follows:

Conjecture 5.7 If p is an odd prime such that E.n/ is a sufficiently commutative
S –algebra, then THH.E.n// decomposes as a sum of 2n factors, namely 2n�i�1

suspended copies of LiE.n/ for each 0 6 i 6 n� 1 plus one copy of E.n/. More
precisely, the LiE.n/–summands are indexed by the 2n�i�1 monomial generators

! 2ƒQ.dt1; : : : ; dtn�i�1/fdtn�ig �K.0/�THH.E.n//;

and the summand corresponding to such a monomial ! is †j!jLiE.n/.

References
[1] V Angeltveit, J Rognes, Hopf algebra structure on topological Hochschild homology,

Algebr. Geom. Topol. 5 (2005) 1223–1290 MR

[2] O Antolín-Camarena, T Barthel, Chromatic fracture cubes, preprint (2014) arXiv

Algebraic & Geometric Topology, Volume 20 (2020)

http://dx.doi.org/10.2140/agt.2005.5.1223
http://msp.org/idx/mr/2171809
http://msp.org/idx/arx/1410.7271


392 Christian Ausoni and Birgit Richter

[3] C Ausoni, Topological Hochschild homology of connective complex K–theory, Amer.
J. Math. 127 (2005) 1261–1313 MR

[4] A Baker, B Richter, On the � –cohomology of rings of numerical polynomials and
E1 structures on K–theory, Comment. Math. Helv. 80 (2005) 691–723 MR

[5] C Barwick, From operator categories to higher operads, Geom. Topol. 22 (2018)
1893–1959 MR

[6] M Basterra, M A Mandell, Homology of En ring spectra and iterated THH , Algebr.
Geom. Topol. 11 (2011) 939–981 MR

[7] M Basterra, M A Mandell, The multiplication on BP, J. Topol. 6 (2013) 285–310 MR

[8] T Bauer, Bousfield localization and the Hasse square, from “Topological modular
forms” (C L Douglas, J Francis, A G Henriques, M A Hill, editors), Mathematical
Surveys and Monographs 201, Amer. Math. Soc., Providence, RI (2014) 112–121 MR

[9] M Bökstedt, The topological Hochschild homology of Z and of Z=pZ , unpublished
manuscript (1987)

[10] M Brun, Z Fiedorowicz, R M Vogt, On the multiplicative structure of topological
Hochschild homology, Algebr. Geom. Topol. 7 (2007) 1633–1650 MR

[11] R Bruner, J Rognes, Topological Hochschild homology of topological modular
forms, talk slides (2008) Available at https://folk.uio.no/rognes/papers/
ntnu08.pdf

[12] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in
stable homotopy theory, Mathematical Surveys and Monographs 47, Amer. Math. Soc.,
Providence, RI (1997) MR

[13] M Hill, T Lawson, Automorphic forms and cohomology theories on Shimura curves of
small discriminant, Adv. Math. 225 (2010) 1013–1045 MR

[14] P S Landweber, BP�.BP/ and typical formal groups, Osaka Math. J. 12 (1975) 357–
363 MR

[15] T Lawson, Secondary power operations and the Brown–Peterson spectrum at the
prime 2 , Ann. of Math. 188 (2018) 513–576 MR

[16] T Lawson, N Naumann, Commutativity conditions for truncated Brown–Peterson
spectra of height 2 , J. Topol. 5 (2012) 137–168 MR

[17] A Mathew, N Naumann, J Noel, On a nilpotence conjecture of J P May, J. Topol. 8
(2015) 917–932 MR

[18] J E McClure, R E Staffeldt, On the topological Hochschild homology of bu , I, Amer.
J. Math. 115 (1993) 1–45 MR

[19] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and
Applied Mathematics 121, Academic, Orlando (1986) MR

Algebraic & Geometric Topology, Volume 20 (2020)

http://dx.doi.org/10.1353/ajm.2005.0036
http://msp.org/idx/mr/2183525
http://dx.doi.org/10.4171/CMH/31
http://dx.doi.org/10.4171/CMH/31
http://msp.org/idx/mr/2182697
http://dx.doi.org/10.2140/gt.2018.22.1893
http://msp.org/idx/mr/3784514
http://dx.doi.org/10.2140/agt.2011.11.939
http://msp.org/idx/mr/2782549
http://dx.doi.org/10.1112/jtopol/jts032
http://msp.org/idx/mr/3065177
http://msp.org/idx/mr/3223024
http://dx.doi.org/10.2140/agt.2007.7.1633
http://dx.doi.org/10.2140/agt.2007.7.1633
http://msp.org/idx/mr/2366174
https://folk.uio.no/rognes/papers/ntnu08.pdf
https://folk.uio.no/rognes/papers/ntnu08.pdf
http://msp.org/idx/mr/1417719
http://dx.doi.org/10.1016/j.aim.2010.03.009
http://dx.doi.org/10.1016/j.aim.2010.03.009
http://msp.org/idx/mr/2671186
http://projecteuclid.org/euclid.ojm/1200757861
http://msp.org/idx/mr/377945
http://dx.doi.org/10.4007/annals.2018.188.2.3
http://dx.doi.org/10.4007/annals.2018.188.2.3
http://msp.org/idx/mr/3862946
http://dx.doi.org/10.1112/jtopol/jtr030
http://dx.doi.org/10.1112/jtopol/jtr030
http://msp.org/idx/mr/2897051
http://dx.doi.org/10.1112/jtopol/jtv021
http://msp.org/idx/mr/3431664
http://dx.doi.org/10.2307/2374721
http://msp.org/idx/mr/1209233
https://web.math.rochester.edu/people/faculty/doug/mu.html
http://msp.org/idx/mr/860042


Towards topological Hochschild homology of Johnson–Wilson spectra 393

[20] B Richter, A lower bound for coherences on the Brown–Peterson spectrum, Algebr.
Geom. Topol. 6 (2006) 287–308 MR

[21] B Richter, B Shipley, An algebraic model for commutative HZ–algebras, Algebr.
Geom. Topol. 17 (2017) 2013–2038 MR

[22] A Robinson, Gamma homology, Lie representations and E1 multiplications, Invent.
Math. 152 (2003) 331–348 MR

[23] A Robinson, S Whitehouse, Operads and � –homology of commutative rings, Math.
Proc. Cambridge Philos. Soc. 132 (2002) 197–234 MR

[24] M O Ronco, Smooth algebras Appendix E to J-L Loday, Cyclic homology, 2nd edition,
Grundl. Math. Wissen. 301, Springer (1998) MR

[25] A Senger, The Brown–Peterson spectrum is not E2.p2C2/ at odd primes, preprint
(2017) arXiv

[26] B Shipley, HZ–algebra spectra are differential graded algebras, Amer. J. Math. 129
(2007) 351–379 MR

[27] B Stonek, Higher topological Hochschild homology of periodic complex K–theory,
preprint (2018) arXiv

[28] C A Weibel, S C Geller, Étale descent for Hochschild and cyclic homology, Comment.
Math. Helv. 66 (1991) 368–388 MR

[29] N Yagita, On the Steenrod algebra of Morava K–theory, J. London Math. Soc. 22
(1980) 423–438 MR

LAGA (UMR7539), Institut Galilée, Université Paris 13
Villetaneuse, France

Fachbereich Mathematik, Universität Hamburg
Hamburg, Germany

ausoni@math.univ-paris13.fr, birgit.richter@uni-hamburg.de

http://www.math.univ-paris13.fr/~ausoni/,
http://www.math.uni-hamburg.de/home/richter/

Received: 4 October 2018 Revised: 29 March 2019

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2140/agt.2006.6.287
http://msp.org/idx/mr/2199461
http://dx.doi.org/10.2140/agt.2017.17.2013
http://msp.org/idx/mr/3685600
http://dx.doi.org/10.1007/s00222-002-0272-5
http://msp.org/idx/mr/1974890
http://dx.doi.org/10.1017/S0305004102005534
http://msp.org/idx/mr/1874215
http://dx.doi.org/10.1007/978-3-662-11389-9
http://msp.org/idx/mr/1600246
http://msp.org/idx/arx/1710.09822
http://dx.doi.org/10.1353/ajm.2007.0014
http://msp.org/idx/mr/2306038
http://msp.org/idx/arx/1801.00156
https://link.springer.com/article/10.1007/BF02566656
http://msp.org/idx/mr/1120653
http://dx.doi.org/10.1112/jlms/s2-22.3.423
http://msp.org/idx/mr/596321
mailto:ausoni@math.univ-paris13.fr
mailto:birgit.richter@uni-hamburg.de
http://www.math.univ-paris13.fr/~ausoni/
http://www.math.uni-hamburg.de/home/richter/
http://msp.org
http://msp.org



	1. Introduction
	2. Rationalized E(n)
	3. K(i)_*E(n) and K(i)_*THH(E(n))
	4. Blue-shift for THH(E(n))
	5. Topological Hochschild homology of E(2)
	References

