# On the Hurewicz map and Postnikov invariants of $K \mathbb{Z}$ 

Christian Ausoni


#### Abstract

The purpose of this note is to present a calculation of the Hurewicz homomorphism $h: K_{*} \mathbb{Z} \longrightarrow H_{*}(G L(\mathbb{Z}) ; \mathbb{Z})$ on the elements of $K_{*} \mathbb{Z}$ known to generate direct summands. These results are then used to produce lower bounds for the Postnikov invariants of the space $K \mathbb{Z}$. Under extra hypothesises (compatible with the Quillen-Lichtenbaum conjecture for $\mathbb{Z}$ ), we give the exact $p$-primary part of the order of the latter invariants.


## 1. Introduction

D. Quillen defined, for any integer $n \geq 1$, the higher algebraic $K$-theory group $K_{n} R$ of a ring $R$ as the homotopy group $K_{n} R=\pi_{n}\left(B G L(R)^{+}\right)$. In this paper, we will calculate the Hurewicz homomorphism

$$
h: K_{*} \mathbb{Z} \longrightarrow H_{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z}\right) \cong H_{*}(G L(\mathbb{Z}) ; \mathbb{Z})
$$

on elements of $K_{*} \mathbb{Z}$ that are known to generate direct summands. One motivation for such a calculation is to obtain information on the homotopy type of the space $B G L(\mathbb{Z})^{+}$, which we will denote in the sequel by $K \mathbb{Z}$. Its weak homotopy type is uniquely determined by its homotopy groups $K_{*} \mathbb{Z}$ and by its Postnikov invariants, which are related to the Hurewicz homomorphism.

The Hurewicz homomorphism $h: K_{*} \mathbb{Z} \longrightarrow H_{*}(G L(\mathbb{Z}) ; \mathbb{Z})$ has first been used by Borel $[7]$ to calculate the rank of the finitely generated abelian group $K_{m} \mathbb{Z}$ for all $m \geq 1$ : by the Milnor-Moore Theorem, the Hurewicz homomorphism induces an isomorphism from $K_{*} \mathbb{Z} \otimes \mathbb{Q}$ onto the primitives of $H_{*}(G L(\mathbb{Z}) ; \mathbb{Q}) \cong \bigwedge_{\mathbb{Q}}\left(u_{3}, u_{5}, \ldots\right)$, where $\left|u_{i}\right|=2 i-1$. Hence, if $n$ is an odd integer $\geq 3$, the group $K_{2 n-1} \mathbb{Z}$ contains an infinite cyclic direct summand which injects in $H_{2 n-1}(G L(\mathbb{Z}) ; \mathbb{Z})$. How? In Theorem 3.2, we show that this injection is far from being split : it is multiplication by ( $n-1$ )! (up to primes that do not satisfy Vandiver's Conjecture from number theory). Theorem 3.2 also gives the Hurewicz homomorphism on all 2-torsion classes of $K_{*} \mathbb{Z}$, and on the odd torsion classes of $K_{*} \mathbb{Z}$ corresponding to $\operatorname{Im} J$. We then apply these results to estimate the order of the Postnikov invariants of the space $K \mathbb{Z}$ (Theorem 4.1).

These calculations are made by comparing the $p$-adic completion $K \mathbb{Z}_{p}^{\wedge}$ of the space $K \mathbb{Z}$ to one of its topological models, called $J K \mathbb{Z}_{p}^{\wedge}$ and first defined by M. Bökstedt in [5]. We begin by reviewing some links between these spaces.

## 2. The model $J K \mathbb{Z}_{p}^{\wedge}$ for $K \mathbb{Z}_{p}^{\wedge}$

Let $\ell$ be an odd prime, and define $J K \mathbb{Z}(\ell)$ as the homotopy fibre of the composite map

$$
\begin{equation*}
B O \xrightarrow{\Psi_{\mathrm{R}}^{\ell}-1} B S p i n \xrightarrow{c} B S U \tag{2.1}
\end{equation*}
$$

where $\Psi_{\mathbb{R}}^{\ell}$ is the Adams operation ([1]), and where $c$ is induced by the complexification of vector bundles. The homotopy groups of the space $J K \mathbb{Z}(\ell)$ are given by

$$
\pi_{n}(J K \mathbb{Z}(\ell))= \begin{cases}\mathbb{Z} / 2 & \text { if } n=1 \text { or if } n \equiv 2 \bmod (8)  \tag{2.2}\\ \mathbb{Z} \oplus \mathbb{Z} / 2 & \text { if } n \geq 9 \operatorname{and} \text { if } n \equiv 1 \bmod (8) \\ \mathbb{Z} / 2\left(\ell^{\frac{n+1}{2}}-1\right) & \text { if } n \equiv 3 \bmod (8) \\ \mathbb{Z} & \text { if } n \equiv 5 \bmod (8) \\ \mathbb{Z} /\left(\ell^{\frac{n+1}{2}}-1\right) & \text { if } n \equiv 7 \bmod (8) \\ 0 & \text { otherwise. }\end{cases}
$$

Let $p$ be a prime number, and choose $\ell=3$ if $p=2$, $\ell$ a generator of the group of units of $\mathbb{Z} / p^{2}$ if $p$ is odd. Following Bökstedt [5], let us then call $J K \mathbb{Z}_{p}^{\wedge}$ the space $J K \mathbb{Z}(\ell)_{p}^{\wedge}$. Here, $X_{p}^{\wedge}$ means the $p$-adic completion of a suitable space or group $X$. The homotopy group $\pi_{n}\left(J K \mathbb{Z}_{p}^{\wedge}\right)$ is isomorphic to $\pi_{n}(J K \mathbb{Z}(\ell)) \otimes \mathbb{Z}_{p}^{\wedge}$ and can be explicitly computed using (2.1) and the following formulas : if $n \equiv 3,7 \bmod$ (8) and if $\ell$ is chosen as above with respect to $p$, then

$$
v_{p}\left(\ell^{\frac{n+1}{2}}-1\right)= \begin{cases}v_{p}(n+1)+1 & \left\{\begin{array}{l}
\text { if } p \neq 2 \text { and } 2(p-1) \mid n+1 \\
\text { or if } p=2 \operatorname{and} n \equiv 7 \bmod (8)
\end{array}\right.  \tag{2.3}\\
3 & \text { if } p=2 \text { and } n \equiv 3 \bmod (8) \\
0 & \text { otherwise }\end{cases}
$$

Here $v_{p}$ denotes the $p$-adic valuation.
Bökstedt showed that there is a map $\phi: K \mathbb{Z}_{2}^{\wedge} \longrightarrow J K \mathbb{Z}_{2}^{\wedge}$ which, after looping once, is a homotopy retraction (Theorem 2 of [5]). The recent calculation (in [18] and [15]) of the 2-primary part of $K_{*} \mathbb{Z}$ implies that the map

$$
\begin{equation*}
\phi: K \mathbb{Z}_{2}^{\wedge} \xrightarrow{\simeq} J K \mathbb{Z}_{2}^{\wedge} \tag{2.4}
\end{equation*}
$$

is actually a homotopy equivalence.
When $p$ is odd, the homotopy groups of $J K \mathbb{Z}_{p}^{\wedge}$ are isomorphic to direct summands of $\left(K_{*} \mathbb{Z}\right)_{p}^{\wedge}$ (see [7] and [14]). If $p$ is a regular prime, the Quillen-Lichtenbaum conjecture asserts that $K \mathbb{Z}_{p}^{\wedge}$ and $J K \mathbb{Z}_{p}^{\wedge}$ have same homotopy groups (see [10], Corollary 2.3), while if $p$ is irregular, there are $p$-torsion classes in $\left(K_{*} \mathbb{Z}\right)_{p}^{\wedge}$ which
do not appear in the homotopy groups of $J K \mathbb{Z}_{p}^{\wedge}$ (see [16]). It is not known in whole generality whether the group-level splitting

$$
\left(K_{*} \mathbb{Z}\right)_{p}^{\wedge} \cong \pi_{*}\left(J K \mathbb{Z}_{p}^{\wedge}\right) \oplus \ldots
$$

can be induced by a space level retraction $K \mathbb{Z}_{p}^{\wedge} \longrightarrow J K \mathbb{Z}_{p}^{\wedge}$ or not. However, it follows from the work of Quillen and Dwyer-Mitchell that this is the case when $p$ is a Vandiver prime (Proposition 2.5), that is when $p$ is an odd prime that does not divide the class number $h^{+}\left(\mathbb{Q}\left(\zeta_{p}\right)\right)$ of the maximal real subfield of the cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$. It is a conjecture by Vandiver that all primes verify this condition, and it is known to be true for $p<4^{\prime} 000^{\prime} 000$ (see [17], page 158).
Proposition 2.5. If $p$ is a Vandiver prime, then $J K \mathbb{Z}_{p}^{\wedge}$ is a retract of $K \mathbb{Z}_{p}^{\wedge}$.
Proof. If $p$ is an odd prime, the space $B S U_{p}^{\wedge}$ splits as a product $B S U_{p}^{\wedge} \simeq$ $B O_{p}^{\wedge} \times B(S U / S O)_{p}^{\wedge}$, thus induces a splitting $J K \mathbb{Z}_{p}^{\wedge} \simeq\left(\mathrm{F} \Psi_{\mathbb{C}}^{\ell}\right)_{p}^{\wedge} \times(S U / S O)_{p}^{\wedge}$, where $\left(\mathrm{F} \Psi_{\mathbb{C}}^{\ell}\right)_{p}^{\wedge}$ is the $p$-adic completion of the homotopy fibre $\mathrm{F} \Psi_{\mathbb{C}}^{\ell}$ of $\Psi_{\mathbb{C}}^{\ell}-1: B U \longrightarrow B U$, or equivalently the homotopy fibre of $\Psi_{\mathbb{R}}^{\ell}-1: B O_{p}^{\wedge} \longrightarrow B O_{p}^{\wedge}$ (because of the above choice of $\ell$ ). However, the space $\mathrm{F} \Psi_{\mathbb{C}}^{\ell}$ is homotopy equivalent to $K \mathbb{F}_{\ell}$, and the reduction map $K \mathbb{Z}_{p}^{\wedge} \longrightarrow\left(K \mathbb{F}_{\ell}\right)_{p}^{\wedge}$ is a retraction according to [14].

On the other hand, W. Dwyer and S. Mitchell proved in [11], Theorem 9.3 and Example 12.2, that if $p$ is a Vandiver prime, then $(U / O)_{p}^{\wedge}$ is a retract of $K \mathbb{Z}\left[\frac{1}{p}\right]_{p}^{\wedge}$. The space $(S U / S O)_{p}^{\wedge}$ is the universal cover of $(U / O)_{p}^{\wedge}$ and, by the localization exact sequence, $K \mathbb{Z}_{p}^{\wedge}$ is the universal cover of $K \mathbb{Z}\left[\frac{1}{p}\right]_{p}^{\wedge}$. This implies that $(S U / S O)_{p}^{\wedge}$ is a retract of $K \mathbb{Z}_{p}^{\wedge}$. The product of the above retractions

$$
K \mathbb{Z}_{p}^{\wedge} \longrightarrow\left(\mathrm{F} \Psi_{\mathbb{C}}^{\ell}\right)_{p}^{\wedge} \times(S U / S O)_{p}^{\wedge} \simeq J K \mathbb{Z}_{p}^{\wedge}
$$

is then itself a retraction.

## 3. The Hurewicz homomorphism for $K \mathbb{Z}$

Let us choose for all odd $n \geq 3$ a representative $b_{n} \in K_{2 n-1} \mathbb{Z}$ of a generator of $K_{2 n-1} \mathbb{Z} /($ Torsion $) \cong \mathbb{Z}$, thus obtaining a decomposition $K_{2 n-1} \mathbb{Z} \cong\left\langle b_{n}\right\rangle \oplus T_{2 n-1}$, where $T_{2 n-1}$ is the (finite) torsion subgroup of $K_{2 n-1} \mathbb{Z}$. Since the homomorphism $h: K_{2 n-1} \mathbb{Z} \longrightarrow H_{2 n-1}(G L(\mathbb{Z}) ; \mathbb{Z})$ is injective after rationalization, there exists a generator $v_{n}$ of an infinite cyclic summand of $H_{2 n-1}(G L(\mathbb{Z}) ; \mathbb{Z})$ and an integer $\mu_{n}>0$ such that $h\left(b_{n}\right) \equiv \mu_{n} v_{n}$ modulo torsion elements. Equivalently, we may define $\mu_{n}$ as the order of the torsion subgroup of the cokernel of the homomorphism $h: K_{2 n-1} \mathbb{Z} \longrightarrow H_{2 n-1}(G L(\mathbb{Z}) ; \mathbb{Z}) /\{$ Torsion $\}$. On the other hand, if $n \geq 1$, it is known that $K_{n} \mathbb{Z}$ contains the following finite cyclic groups as direct summands :

$$
\begin{cases}\mathbb{Z} / 2 & \text { if } n \equiv 1,2 \bmod (8)  \tag{3.1}\\ \mathbb{Z} / 16 & \text { if } n \equiv 3 \bmod (8) \\ \mathbb{Z} / 2^{v_{2}(n+1)+1} & \text { if } n \equiv 7 \bmod (8), \\ \mathbb{Z} / p^{v_{p}(n+1)+1} & \text { if } p \text { is an odd prime and if } 2(p-1) \mid n+1\end{cases}
$$

We know, because of the equivalence $\phi: K \mathbb{Z}_{2}^{\wedge} \xrightarrow{\simeq} J K \mathbb{Z}_{2}^{\wedge}$ and of (2.1), that this is all the 2 -torsion there is in $K_{*} \mathbb{Z}$. The odd torsion direct factors in (3.0) are given by [14] (see proof of Proposition 2.5). Let us choose a generator $\omega_{2, n}$ of the 2-torsion subgroup of $K_{n} \mathbb{Z}$ whenever $n \equiv 1,2,3,7 \bmod (8)$, and a generator $\omega_{p, n}$ of the $p$-torsion subgroup of $K_{n} \mathbb{Z}$ given by (3.0) whenever $p$ is an odd prime with $2(p-1) \mid n+1$.

Theorem 3.2. The Hurewicz homomorphism $h: K_{*} \mathbb{Z} \longrightarrow H_{*}(G L(\mathbb{Z}) ; \mathbb{Z})$ has the following properties :
a) If $p=2$ or if $p$ is a Vandiver prime, and if $n \geq 3$ is odd, then

$$
v_{p}\left(\mu_{n}\right)=v_{p}((n-1)!)
$$

b) If $p$ is an odd prime and if $(p, n) \neq(p, 2 p-3),(3,11)$, then $\omega_{p, n}$ belongs to the kernel of $h$. The image $h\left(\omega_{p, 2 p-3}\right)$ generates a direct summand of order $p$ of $H_{2 p-3}(G L(\mathbb{Z}) ; \mathbb{Z})$, and $h\left(\omega_{3,11}\right)$ is of order 3 in a direct summand of order 9 of $H_{11}(G L(\mathbb{Z}) ; \mathbb{Z})$.
c) If $n \neq 1,2,3,7,15$, then $\omega_{2, n}$ belongs to the kernel of $h$. If $n=1$ or 2 , then $K_{n} \mathbb{Z} \cong \mathbb{Z} / 2$ and $h: K_{n} \mathbb{Z} \longrightarrow H_{n}(G L(\mathbb{Z}) ; \mathbb{Z})$ is an isomorphism. The image $h\left(\omega_{2,3}\right)$ generates the 2-torsion subgroup of $H_{3}(G L(\mathbb{Z}) ; \mathbb{Z})$, which is of order 8 . The image $h\left(\omega_{2,7}\right)$ is of order 8 in a cyclic direct summand of order 16 of $H_{7}(G L(\mathbb{Z}) ; \mathbb{Z})$, and $h\left(\omega_{2,15}\right)$ is of order 2 in a cyclic direct summand of order 32 of $H_{15}(G L(\mathbb{Z}) ; \mathbb{Z})$.

To prove Theorem 3.2 we will need the equivalence (2.3), Proposition 2.5, as well as a computation of the Hurewicz homomorphism $h^{\prime}$ for $J K \mathbb{Z}(\ell)$. The next Lemma is the main ingredient of this computation.

For any $n \geq 2$, let us choose a generator $\varepsilon_{n}$ of $\pi_{2 n-1}(S U) \cong \mathbb{Z}$. Recall that there is an isomorphism of algebras $H_{*}(S U ; \mathbb{Z}) \cong \bigwedge_{\mathbb{Z}}\left(x_{2}, x_{3}, \ldots\right)$. Here $x_{i}$ is a primitive class of degree $2 i-1$, defined as the dual of the class $e_{i}=\sigma\left(c_{i}\right) \in$ $H^{2 i-1}(S U ; \mathbb{Z})$, where $\sigma$ is the cohomology suspension and $c_{i} \in H^{2 i}(B S U ; \mathbb{Z})$ is the $i$ th Chern class. The Hurewicz homomorphism for $S U$ was calculated by Douady ([9], Théorème 6), and is given by the rule

$$
\begin{equation*}
\varepsilon_{n} \longmapsto \pm(n-1)!x_{n} . \tag{3.3}
\end{equation*}
$$

By looping the fibration

$$
\begin{equation*}
J K \mathbb{Z}(\ell) \xrightarrow{f} B O \xrightarrow{g} B S U, \tag{3.4}
\end{equation*}
$$

where $g$ is the composition (2.0), we get a map $\partial: S U \longrightarrow J K \mathbb{Z}(\ell)$ having the following properties.

Lemma 3.5. Let $\ell$ be an odd prime and $n$ an integer $\geq 2$. The image of the element $x_{n} \in H_{2 n-1}(S U ; \mathbb{Z})$ under the homomorphism

$$
\partial_{*}: H_{2 n-1}(S U ; \mathbb{Z}) \longrightarrow H_{2 n-1}(J K \mathbb{Z}(\ell) ; \mathbb{Z})
$$

generates a direct summand in $H_{2 n-1}(J K \mathbb{Z}(\ell) ; \mathbb{Z})$. This summand is of infinite order if $n$ is odd, and of order $\left(\ell^{n}-1\right)$ if $n$ is even.

Proof. Suppose first $n$ is odd. The integral cohomology algebra of $S U$ is given by an isomorphism $H^{*}(S U ; \mathbb{Z}) \cong \bigwedge_{\mathbb{Z}}\left(e_{2}, e_{3}, \ldots\right)$, where $e_{i}$ is the dual class of $x_{i}$. We must show that the class $e_{n}$ is in the image of the homomorphism $\partial^{*}$ : $H^{*}(J K \mathbb{Z}(\ell) ; \mathbb{Z}) \longrightarrow H^{*}(S U ; \mathbb{Z})$.

Consider the homotopy commutative diagram

whose rows (1) and (2) are homotopy fibrations. Here $P B S U \longrightarrow B S U$ is the path fibration. For $i=1$ or 2 , let us call $\left(E_{*}^{*, *}(i), d_{*}^{i}\right)$ the Serre spectral sequence for $H^{*}(-; \mathbb{Z})$ associated to the fibration $(i)$. The fibration morphism $\varphi$ induces a morphism between these spectral sequences, which we will denote by $\varphi_{*}^{*, *}$. It suffices to verify that the element $e_{n}$ in $E_{2}^{0,2 n-1}(1) \cong H^{2 n-1}(S U ; \mathbb{Z})$ is a permanent cycle. Since the cohomology suspension $\sigma: H^{2 n}(B S U ; \mathbb{Z}) \longrightarrow H^{2 n-1}(S U ; \mathbb{Z})$ maps the $n$-th Chern class $c_{n}$ to $e_{n}, e_{n}$ is transgressive in $\left(E_{*}^{*, *}(2), d_{*}^{2}\right)$ and by naturality belongs to $E_{2 n}^{0,2 n-1}(1)$. Now $E_{2 n}^{2 n, 0}(1)$ is a quotient of $H^{2 n}(B O ; \mathbb{Z})$, which contains only elements of order 2 since $n$ is odd (see [6], Theorem 24.7 page 86). On the other hand, one can show by induction on $n$ that $d_{2 n}^{1}\left(e_{n}\right)$ is equal to $\varphi_{2 n}^{2 n, 0}\left(c_{n}\right)=$ $\left(\ell^{n}-1\right) c^{*}\left(c_{n}\right)$ in $E_{2 n}^{2 n, 0}(1)$, so is divisible by 2 . Hence $e_{n}$ is a permanent cycle in $E_{*}^{*, *}(1)$.

If $n$ is even, we work with the Serre spectral sequences $\left(E_{*, *}^{*}(i), d_{i}^{*}\right)$ for $H_{*}(-; \mathbb{Z})$ of the fibrations $(i=1,2)$ of diagram (3.5). Using the homology suspension, one verifies that there is a primitive generator $p_{n} \in H_{2 n}(B S U ; \mathbb{Z})=E_{2 n, 0}^{2}(2)$ that transgresses to $x_{n} \in H_{2 n-1}(S U)=E_{0,2 n-1}^{2}(2)$ at the $2 n$-th stage. Since $n$ is even, there is in $H_{2 n}(B O ; \mathbb{Z})$ an element $\bar{p}_{n}$ (the $n$-th Pontryagin class) that verifies $c_{*}\left(\bar{p}_{n}\right)=p_{n}$ (see [8], equation 61, page 19). Now $\left(\Psi_{\mathbb{C}}^{\ell}-1\right)_{*}\left(p_{n}\right)=\left(\ell^{n}-1\right) p_{n}$, so by naturality, the class $\bar{p}_{n} \in H_{2 n}(B O ; \mathbb{Z})=E_{2 n, 0}^{2}(1)$ is transgressive in the spectral sequence $\left(E_{*, *}^{*}(1), d_{1}^{*}\right)$ and transgresses to $\left(\ell^{n}-1\right) x_{n}$. It follows that $\partial_{*}\left(x_{n}\right)$ is of order $\ell^{n}-1$ in $H_{2 n-1}(J K \mathbb{Z}(\ell) ; \mathbb{Z})$. To verify that $\partial_{*}\left(x_{n}\right)$ indeed generates a direct summand, it is enough to check that the dual class of $x_{n}$ in $H^{2 n-1}\left(S U ; \mathbb{Z} /\left(\ell^{n}-1\right)\right)$ is in the image of $\partial^{*}: H^{2 n-1}\left(J K \mathbb{Z}(\ell) ; \mathbb{Z} /\left(\ell^{n}-1\right)\right) \longrightarrow H^{2 n-1}\left(S U ; \mathbb{Z} /\left(\ell^{n}-1\right)\right)$. This can be proven using again a Serre spectral sequence argument of the same flavour as above.

## Remarks 3.7.

a) Lemma 3.5, together with (3.2), allows one to compute the Hurewicz homomorphism $h^{\prime}$ of $J K \mathbb{Z}(\ell)$ on all elements of $\pi_{*}(J K \mathbb{Z}(\ell))$ that are in the image of $\partial_{*}: \pi_{*}(S U) \longrightarrow \pi_{*}(J K \mathbb{Z}(\ell))$. The only elements of $\pi_{*}(J K \mathbb{Z}(\ell))$ that are not in this image are the 2 -torsion elements in dimensions $n$ with $n \equiv 1,2 \bmod (8)$.
b) A very similar argument to the one of the proof of Lemma 3.5 implies that, for any prime $\ell$, the connecting map $\partial: S U \longrightarrow \mathrm{~F} \Psi_{\mathbb{C}}^{\ell}$ has the following property: for any integer $n \geq 2$, the image of the element $x_{n} \in H_{2 n-1}(S U ; \mathbb{Z})$ under the homomorphism $\partial_{*}: H_{2 n-1}(S U ; \mathbb{Z}) \longrightarrow H_{2 n-1}\left(\mathrm{~F} \Psi_{\mathbb{C}}^{\ell} ; \mathbb{Z}\right)$ generates a direct summand in $H_{2 n-1}\left(\mathrm{~F} \Psi_{\mathbb{C}}^{\ell} ; \mathbb{Z}\right)$ of order $\left(\ell^{n}-1\right)$.
c) Notice that if $n \equiv 2 \bmod (4)$, the element $\partial_{*}\left(\varepsilon_{n}\right)$ is of order $2\left(\ell^{n}-1\right)$ in $\pi_{2 n-1}(J K \mathbb{Z}(\ell))$, while $\partial_{*}\left(x_{n}\right)$ is of order $\left(\ell^{n}-1\right)$ in $H_{2 n-1}(J K \mathbb{Z}(\ell) ; \mathbb{Z})$.

## Proof of Theorem 3.2.

a) Let $p=2$ and $\ell=3$, or let $p$ be a Vandiver prime and $\ell$ an odd prime that generates the units of $\mathbb{Z} / p^{2}$. We compare the Hurewicz homomorphisms of $K \mathbb{Z}$ and $J K \mathbb{Z}(\ell)$ by means of the following commutative diagram. Let us call $\psi: J K \mathbb{Z}_{p}^{\wedge} \longrightarrow K \mathbb{Z}_{p}^{\wedge}$ the inclusion as a summand given by Proposition 2.5, and choose an integer $k>\max \left\{v_{p}\left(\mu_{n}\right), v_{p}((n-1)!)\right\}+v_{p}(T)$, where $T$ is the largest order of any $p$-torsion element in $K_{2 n-1} \mathbb{Z}$ or $H_{2 n-1}(K \mathbb{Z} ; \mathbb{Z})$.

$$
\begin{array}{cc}
\pi_{*}(J K \mathbb{Z}(\ell)) & \stackrel{\alpha_{J K \mathbb{Z}(\ell)}}{\longrightarrow}
\end{array} \pi_{*}\left(J K \mathbb{Z}_{p}^{\wedge} ; \mathbb{Z} / p^{k}\right) \xrightarrow{\psi_{*}} \pi_{*}\left(K \mathbb{Z}_{p}^{\wedge} ; \mathbb{Z} / p^{k}\right) \stackrel{\alpha_{K \mathbb{Z}}}{\Perp} \pi_{*}(K \mathbb{Z})
$$

Here $\pi_{*}\left(-, \mathbb{Z} / p^{k}\right)$ and $\bar{h}, \bar{h}^{\prime}$ are the $\bmod p^{k}$ homotopy groups and Hurewicz maps (see Chapter 3 of [13]). The map $\alpha_{X}$ given in the diagram is the composite

$$
\pi_{*}(X) \longrightarrow \pi_{*}(X) \otimes \mathbb{Z} / p^{k} \hookrightarrow \pi_{*}\left(X ; \mathbb{Z} / p^{k}\right) \cong \pi_{*}\left(X_{p}^{\wedge} ; \mathbb{Z} / p^{k}\right)
$$

and the map $\gamma_{X}$ is defined in a similar way. The assertion is proven by inspection of this diagram, using our knowledge of $h^{\prime}: \pi_{2 n-1}(J K \mathbb{Z}(\ell)) \longrightarrow H_{2 n-1}(J K \mathbb{Z}(\ell) ; \mathbb{Z})$ (see Remark 3.7.a).
b) If $p$ is any odd prime and $\ell$ an odd prime that generates the units of $\mathbb{Z} / p^{2}$, the space $\mathrm{F} \Psi_{\mathbb{C}}^{\ell}$ splits off $K \mathbb{Z}$ after being localized at $p$. The element $\omega_{p, n}$ generates the factor $\pi_{n}\left(\left(\mathrm{~F} \Psi_{\mathbb{C}}^{\ell}\right)_{(p)}\right)$ of $K_{n} \mathbb{Z}$, and is in the image of the homomorphism $\partial_{*}: \pi_{n}(S U) \longrightarrow \pi_{n}\left(\left(\mathrm{~F} \Psi_{\mathbb{C}}^{\ell}\right)_{(p)}\right)$. It then follows from the rule (3.2) and the Remark 3.7.b that $h\left(\omega_{p, n}\right)=\left(\frac{n-1}{2}\right)!z_{n}$, where $z_{n}$ is the generator of a direct summand of $H_{n}(K \mathbb{Z} ; \mathbb{Z})$ of order the $p$-primary part of $\ell^{\frac{n+1}{2}}-1$ (see (2.2) for a description of it). The assertions then follow from the arithmetic behavior of $\left(\frac{n-1}{2}\right)$ ! in $\mathbb{Z} /\left(\ell^{\frac{n+1}{2}}-1\right)$ at $p$.
c) If $X$ is a simple space of finite type, $p$ a prime and $\eta: X \longrightarrow X_{p}^{\wedge}$ the $p$-adic completion of $X$, the homomorphism $\eta_{*}: H_{*}(X ; \mathbb{Z}) \longrightarrow H_{*}\left(X_{p}^{\wedge} ; \mathbb{Z}\right)$ restricts to an
isomorphism from the $p$-torsion subgroup of $H_{*}(X ; \mathbb{Z})$ onto the $p$-torsion subgroup of $H_{*}\left(X_{p}^{\wedge} ; \mathbb{Z}\right)$. The same is also true for homotopy groups. For us, this means that using the equivalence $\phi: K \mathbb{Z}_{2}^{\wedge} \longrightarrow J K \mathbb{Z}_{2}^{\wedge}$, we can just read off the Hurewicz map of $K \mathbb{Z}$ on 2-torsion elements from the Hurewicz map $h^{\prime}$ of $J K \mathbb{Z}(3)$.

The Eilenberg-Mac Lane space $K(\mathbb{Z} / 2,1)$ splits off $J K \mathbb{Z}(3)$, so by the Hurewicz Theorem, $h^{\prime}$ must be an isomorphism in dimensions 1 and 2, and surjective in dimension 3.

The classes $\omega_{2, n}$ with $n \equiv 3 \bmod (4)$ correspond to classes of $\pi_{n}(J K \mathbb{Z}(3))$ coming from $\pi_{n}(S U)$. Their image under the Hurewicz homomorphism can therefore be calculated as for the odd- $p$-torsion classes $\omega_{p, n}$ in part b) of this proof.

Choose $n \geq 9$ satisfying $n \equiv 1,2 \bmod (8)$, and let us show that the class $\omega_{2, n}^{\prime} \in \pi_{n}(J K \mathbb{Z}(3))$ corresponding to $\omega_{2, n}$ is in the kernel of $h^{\prime}$. Consider the following diagram

$$
\begin{array}{cc}
\pi_{n+1}(J K \mathbb{Z}(3) ; \mathbb{Z} / 2) \xrightarrow{d_{*}} & \pi_{n}(J K \mathbb{Z}(3)) \\
\bar{h}^{\prime} \downarrow & \\
H_{n+1}(J K \mathbb{Z}(3) ; \mathbb{Z} / 2) \xrightarrow{d_{*}} & h_{n}(J K \mathbb{Z}(3) ; \mathbb{Z})
\end{array}
$$

where $d_{*}$ denotes the connecting homomorphism associated to the coefficient exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} / 2 \rightarrow 0$. It is commutative (see [13], Lemma 3.2). The class $\omega_{2, n}^{\prime} \in \pi_{n}(J K \mathbb{Z}(3))$ is of order 2 and is in the image of $d_{*}$, so it suffices to show that the mod 2 Hurewicz homomorphism $\bar{h}^{\prime}$ is trivial in dimension $n+1$.

Consider the mod 2 Moore space $P^{n+1}(2)=S^{n} / 2$. By definition, an element $\alpha$ in $\pi_{n+1}(J K \mathbb{Z}(3) ; \mathbb{Z} / 2)$ is the homotopy class of a map $\alpha: P^{n+1}(2) \longrightarrow J K \mathbb{Z}(3)$, and $\bar{h}(\alpha)$ is defined as $\alpha_{*}(e)$, where $\alpha_{*}$ is the homomorphism induced by $\alpha$ in $\bmod 2$ homology, and where $e$ is the generator of $H_{n+1}\left(P^{n+1}(2) ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2$. We claim that any such induced homomorphism $\alpha_{*}$ is zero. By duality, it is equivalent to prove the corresponding statement in mod 2 cohomology. There exists an isomorphism of Hopf algebras and of modules over the Steenrod algebra

$$
H^{*}(J K \mathbb{Z}(3) ; \mathbb{Z} / 2) \cong H^{*}(B O ; \mathbb{Z} / 2) \otimes H^{*}(S U ; \mathbb{Z} / 2)
$$

(see [12], Remark 4.5). Recall the isomorphisms $H^{*}(B O ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]$ and $H^{*}(S U ; \mathbb{Z} / 2) \cong \bigwedge_{\mathbb{Z} / 2}\left(e_{2}, e_{3}, \ldots\right)$, where $w_{i}$ is the Stiefel-Whitney class of degree $i$, and $e_{i}$ is primitive of degree $2 i-1$. The action of the Steenrod algebra on these cohomology classes is well known. For instance, $S q^{1}\left(w_{i}\right)=w_{i+1}+w_{1} w_{i}$ and $S q^{2}\left(w_{i}\right)=w_{i+2}+w_{2} w_{i}$ if $i$ is even, and $S q^{2 k} e_{i}=\binom{i-1}{k} e_{i+k}$. These relations, as well as the fact that $H^{*}\left(P^{n+1}(2) ; \mathbb{Z} / 2\right)$ is concentrated in dimensions $0, n$ and $n+1$, force any induced homomorphism $H^{n+1}(J K \mathbb{Z}(3) ; \mathbb{Z} / 2) \longrightarrow H^{n+1}\left(P^{n+1}(2) ; \mathbb{Z} / 2\right)$ to be zero for the above choices of $n$.

## 4. The order of the Postnikov invariants of $K \mathbb{Z}$

Let $X$ be a connected simple space, for instance a connected H-space. For any integer $n \geq 1$, let us denote by $X \longrightarrow X[n]$ the $n$ th-Postnikov section of $X$, and
by $k_{X}^{n+1}$ the $(n+1)$ th-Postnikov invariant of $X$. Recall that $k_{X}^{n+1}$ is an element of the cohomology group $H^{n+1}\left(X[n-1] ; \pi_{n}(X)\right)$, which can be chosen canonically as the image of the fundamental class $u_{X}^{n+1} \in H^{n+1}\left(X[n-1], X ; \pi_{n}(X)\right)$ under the homomorphism induced by the inclusion of pairs $(X[n-1], \emptyset) \hookrightarrow(X[n-1], X)$. The Postnikov invariant $k_{X}^{n+1}$ corresponds to a map $X[n-1] \longrightarrow K\left(\pi_{n} X, n+1\right)$ whose homotopy fiber is the $n$ th-Postnikov section $X[n]$ of $X$.

If $X$ is an H -space of finite type, all its Postnikov invariants are cohomology classes of finite order : this is the Arkowicz-Curjel Theorem ([2]). In particular, the Postnikov invariant of $K \mathbb{Z}$ are of finite order. The orders $\rho_{n}$ of the Postnikov invariants $k_{K \mathbb{Z}}^{n+1}$ of $K \mathbb{Z}$ have previously been studied by Arlettaz and Banaszak in [3]. See especially their Proposition 5, which states that if $n \geq 5$ is an integer with $n \equiv 1 \bmod (4)$ and if $K_{n} \mathbb{Z}$ has no $p$-torsion, where $p$ is an odd prime, then $v_{p}\left(\rho_{n}\right) \leq v_{p}\left(\frac{n-1}{2}!\right)$.

Theorem 4.1. For any integer $n \geq 2$, the order $\rho_{n}$ of the Postnikov invariant $k_{K \mathbb{Z}}^{n+1}$ of $K \mathbb{Z}$ verifies :
a)

$$
v_{2}\left(\rho_{n}\right)= \begin{cases}1 & \text { if } n=3,7, \text { or if } n \geq 10 \text { and } n \equiv 2 \bmod (8) \\ v_{2}\left(\frac{n-1}{2}!\right) & \text { if } n \equiv 1 \bmod (4) \\ 4 & \text { if } n \geq 11 \text { and } n \equiv 3 \bmod (8), \text { or if } n=15 \\ v_{2}(n+1)+1 & \text { if } n \geq 23 \text { and } n \equiv 7 \bmod (8) \\ 0 & \text { otherwise }\end{cases}
$$

b) If $p$ is a Vandiver prime, and if $n \geq 5$ is an integer with $n \equiv 1 \bmod (4)$, then

$$
v_{p}\left(\rho_{n}\right) \geq v_{p}\left(\frac{n-1}{2}!\right)
$$

and equality holds if the order $e$ of the torsion subgroup of $K_{n} \mathbb{Z}$ verifies $v_{p}(e) \leq$ $v_{p}\left(\frac{n-1}{2}!\right)$.
c) Let $p$ be an odd prime. If $2(p-1)$ is a proper divisor of $n+1$, then

$$
v_{p}\left(\rho_{n}\right) \geq v_{p}(n+1)+1
$$

(except if $p=3$ and $n=11$, where $v_{3}\left(\rho_{11}\right) \geq 1$ holds).
Proof. This is a consequence of Theorem 3.2, using the following general argument. If $X$ is a connected simple space, $n$ an integer $\geq 2$, and $\rho$ an integer $\geq 1$, then the following statements are equivalent :
a) The Postnikov invariant $k_{X}^{n+1}$ verifies $\rho k_{X}^{n+1}=0$ in $H^{n+1}\left(X[n-1], \pi_{n}(X)\right)$.
b) There exists a homomorphism $g: H_{n}(X ; \mathbb{Z}) \longrightarrow \pi_{n}(X)$ the composition $g h$ : $\pi_{n}(X) \longrightarrow \pi_{n}(X)$ is multiplication by $\rho$, where $h: \pi_{n}(X) \longrightarrow H_{n}(X ; \mathbb{Z})$ is the Hurewicz homomorphism.

Remark 4.2. If $p$ is a regular prime and if the $p$-adic Quillen-Lichtenbaum Conjecture for $\mathbb{Z}$ holds, then equality for $v_{p}\left(\rho_{n}\right)$ holds in the inequalities b ) and c ) of Theorem 4.1, and for other values of $n, v_{p}\left(\rho_{n}\right)=0$.

Acknowledgement. The considerations in this note are part of my Ph.D. thesis [4]. It's a pleasure to thank my adviser Professor D. Arlettaz for his friendly help and support.

## References

[1] J. F. Adams, Vector fields on spheres, Ann. Math. 75, 3 (1962), 603-632.
[2] M. Arkowitz and C. R. Curjel, The Hurewicz homomorphism and finite homotopy invariants, Trans. Amer. Math. Soc. 110 (1964), 538-551.
[3] D. Arlettaz and G. Banaszak, On the non-torsion elements in the algebraic K-theory of rings of integers, J. Reine Angew. Math. 461 (1995), 63-79.
[4] Ch. Ausoni, Propriétés homotopiques de la K-théorie algébrique des entiers, Thèse de Doctorat, Université de Lausanne, (1998).
[5] M. Bökstedt, The rational homotopy type of $\Omega \mathrm{Wh}^{\text {Diff }}(*)$, Algebraic Topology, Aarhus 1982, Lect. Notes Math. 1051 Springer (1984), 25-37.
[6] A. Borel, Topics in the homology theory of fibre bundles, Lect. Notes Math. 36 Springer (1967).
[7] A. Borel, Stable real cohomology of arithmetic groups, Ann. sci. Ecole Norm. Sup. 4ème série 7 (1974), 235-272.
[8] H. Cartan, Démonstration homologique des théorèmes de périodicité de Bott, 2. Homologie et cohomologie des groupes classiques et de leurs espaces homogènes, Sém. H. Cartan 1959/60, exposé 17, Ecole Norm. Sup.
[9] A. Douady, Périodicité du groupe unitaire, Sém. H. Cartan 1959/60, exposé 11, Ecole Norm. Sup.
[10] W. G. Dwyer and E. M. Friedlander, Topological models for arithmetic, Topology 33 (1994), 1-24.
[11] W. G. Dwyer and S. A. Mitchell, On the K-theory spectrum of a ring of algebraic integers, $K$-Theory 14 (1998), 201-263.
[12] S. A. Mitchell, On the plus construction for BGLZ $\left[\frac{1}{2}\right]$ at the prime 2, Math. Z. 209 (1992), 205-222.
[13] J. Neisendorfer, Primary homotopy theory, Mem. Am. Math. Soc. 232 (1980).
[14] D. Quillen, Letter from Quillen to Milnor on $\operatorname{Im}\left(\pi_{i} O \rightarrow \pi_{i}^{\mathrm{s}} \rightarrow K_{i} \mathbb{Z}\right)$, Algebraic K-theory, Evanston 1976, Lect. Notes Math. 551 Springer (1976), 182-188.
[15] J. Rognes and C. Weibel, Two-primary algebraic K-theory of rings of integers in number fields, to appear in J. Amer. Math. Soc.
[16] C. Soulé, $K$-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Inventiones Math. 55 (1979), 251-295.
[17] L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in Math. 83, Springer (1997).
[18] C. Weibel, The 2-torsion in the K-theory of the integers, C. R. Acad. Sci., Paris, Sér I 324, 6 (1997), 615-620.

D-Math HG G 27.1
ETH-Zentrum
CH-8092 Zurich
E-mail address: ausoni@math.ethz.ch

