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Abstract. The purpose of this note is to present a calculation of the Hurewicz
homomorphism h : K.Z — H,(GL(Z);Z) on the elements of K.Z known
to generate direct summands. These results are then used to produce lower
bounds for the Postnikov invariants of the space KZ. Under extra hypothesises
(compatible with the Quillen-Lichtenbaum conjecture for Z), we give the exact
p-primary part of the order of the latter invariants.

1. Introduction

D. Quillen defined, for any integer n > 1, the higher algebraic K-theory group
K, R of aring R as the homotopy group K, R = m,(BGL(R)"). In this paper, we
will calculate the Hurewicz homomorphism

h:K,7Z — H,(BGL(Z)";Z) = H,(GL(Z); Z)

on elements of K,Z that are known to generate direct summands. One motivation
for such a calculation is to obtain information on the homotopy type of the space
BGL(Z)*, which we will denote in the sequel by KZ. Its weak homotopy type is
uniquely determined by its homotopy groups K.Z and by its Postnikov invariants,
which are related to the Hurewicz homomorphism.

The Hurewicz homomorphism h : K.Z — H,(GL(Z);Z) has first been used
by Borel [7] to calculate the rank of the finitely generated abelian group K,,Z for all
m > 1 : by the Milnor-Moore Theorem, the Hurewicz homomorphism induces an
isomorphism from K.Z®Q onto the primitives of H.(GL(Z); Q) = Ag(us, us, - .. ),
where |u;| = 2i — 1. Hence, if n is an odd integer > 3, the group Ky, _17Z contains
an infinite cyclic direct summand which injects in Ha,,—1(GL(Z);Z). How? In The-
orem 3.2, we show that this injection is far from being split : it is multiplication
by (n — 1)! (up to primes that do not satisfy Vandiver’s Conjecture from num-
ber theory). Theorem 3.2 also gives the Hurewicz homomorphism on all 2-torsion
classes of K,Z, and on the odd torsion classes of K,Z corresponding to Im.J. We
then apply these results to estimate the order of the Postnikov invariants of the
space KZ (Theorem 4.1).
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These calculations are made by comparing the p-adic completion K ZQ of the
space KZ to one of its topological models, called JK Z]’D\ and first defined by M.
Bokstedt in [5]. We begin by reviewing some links between these spaces.

2. The model JKZ;, for K7Z)
Let £ be an odd prime, and define JKZ(¥) as the homotopy fibre of the composite

map
£_

BO Y72 BSpin — BSU (2.1)

where W§ is the Adams operation ([1]), and where ¢ is induced by the complex-

ification of vector bundles. The homotopy groups of the space JKZ({) are given
by

Z]2 ifn=1orif n=2mod (8),
7Z&ZL)2 if n>9 and if n =1 mod (8),
e (JKZ(0) = Z/2(¢"% — 1) if n =3 mod (8), (22)
Z if n =5 mod (8),
Z)(0"7 —1)  ifn=7mod (8),
0 otherwise.

Let p be a prime number, and choose ¢ = 3 if p = 2, £ a generator of the group of
units of Z/p? if p is odd. Following Bokstedt [5], let us then call JK Zz/>\ the space
JK Z(é)ﬁ. Here, X/ means the p-adic completion of a suitable space or group X.
The homotopy group 7, (JKZ)) is isomorphic to 7, (JKZ({)) ® Z) and can be
explicitly computed using (2.1) and the following formulas : if n = 3,7 mod (8)
and if ¢ is chosen as above with respect to p, then

if 2 and 2(p—1 1
vp(n+1)+1 1p7$ and 2(p —1)ln + 1,
)= or if p=2and n =7 mod (8), (2.3)
3 if p=2and n =3 mod (8), .
0 otherwise.

Here v, denotes the p-adic valuation.

Bokstedt showed that there is a map ¢ : KZ — JKZ% which, after looping
once, is a homotopy retraction (Theorem 2 of [5]). The recent calculation (in [18]
and [15]) of the 2-primary part of K,Z implies that the map

¢: K7, — JKZ) (2.4)
is actually a homotopy equivalence.

When p is odd, the homotopy groups of JK ZQ are isomorphic to direct sum-
mands of (K,Z); (see [7] and [14]). If p is a regular prime, the Quillen-Lichtenbaum
conjecture asserts that K77 and JKZ) have same homotopy groups (see [10],
Corollary 2.3), while if p is irregular, there are p-torsion classes in (K*Z)Q which
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do not appear in the homotopy groups of JK Zz’j\ (see [16]). It is not known in
whole generality whether the group-level splitting

(K.Z)) = m.(JKZ)) @ ...

can be induced by a space level retraction K ZZ/,\ — JK Z;,\ or not. However, it
follows from the work of Quillen and Dwyer-Mitchell that this is the case when p is
a Vandiver prime (Proposition 2.5), that is when p is an odd prime that does not
divide the class number hA*(Q((,)) of the maximal real subfield of the cyclotomic
field Q(¢p). It is a conjecture by Vandiver that all primes verify this condition, and
it is known to be true for p < 4'000'000 (see [17], page 158).

Proposition 2.5. If p is a Vandiver prime, then JKZ;\ s a retract of KZ;\.

Proof. 1If p is an odd prime, the space BSU;\ splits as a product BSU? ~
BO}) x B(SU/SO);, thus induces a splitting JKZ) ~ (FUL)) x (SU/SO), where
(F\Ilf:)ﬁ is the p-adic completion of the homotopy fibre F\Iff: of \I/é—l : BU — BU,
or equivalently the homotopy fibre of \Ilﬂg —1: BOQ — BO]/; (because of the above
choice of ¢). However, the space F\I/é is homotopy equivalent to KFy, and the re-
duction map KZj —(KTF,), is a retraction according to [14].

On the other hand, W. Dwyer and S. Mitchell proved in [11], Theorem 9.3 and
Example 12.2, that if p is a Vandiver prime, then (U/O); is a retract of KZ[%]Q.
The space (SU/SO); is the universal cover of (U/O); and, by the localization
exact sequence, KZ is the universal cover of KZ[%]]/D\. This implies that (SU/SO);
is a retract of K Z;)\. The product of the above retractions

K7}, —(FVE)) x (SU/SO)) ~ JKZ)

is then itself a retraction. O

3. The Hurewicz homomorphism for K7

Let us choose for all odd n > 3 a representative b, € Ko, 1Z of a generator of
Ko, —1Z/(Torsion) = Z, thus obtaining a decomposition Ko, 17 = (b,) ® To,_1,
where T5,,_1 is the (finite) torsion subgroup of Ks,,_1Z. Since the homomorphism
h: Kop 12— Ho,_1(GL(Z);Z) is injective after rationalization, there exists a
generator v, of an infinite cyclic summand of Ha,—1(GL(Z);Z) and an integer
tn > 0 such that h(b,) = pnv, modulo torsion elements. Equivalently, we may
define p,, as the order of the torsion subgroup of the cokernel of the homomorphism
h: Kop_1Z — Ha,_1(GL(Z);Z)/{Torsion}. On the other hand, if n > 1, it is
known that K,,Z contains the following finite cyclic groups as direct summands :

7)2 if n=1,2 mod (8),

Z]16 if n =3 mod (8),

7,/2v2( D+ if g = 7 mod (8),

7,/p’ D+ if g is an odd prime and if 2(p — 1)|n + 1.

(3.1)



4 Ch. Ausoni

We know, because of the equivalence ¢ : KZ,) — JK74 and of (2.1), that this
is all the 2-torsion there is in K,Z. The odd torsion direct factors in (3.0) are
given by [14] (see proof of Proposition 2.5). Let us choose a generator wy ,, of the
2-torsion subgroup of K,,Z whenever n = 1,2,3,7 mod (8), and a generator wy, ,,
of the p-torsion subgroup of K, Z given by (3.0) whenever p is an odd prime with
2(p—1D|n+1.

Theorem 3.2. The Hurewicz homomorphism h : K,Z — H,.(GL(Z);Z) has the
following properties :
a) If p=2 or if p is a Vandiver prime, and if n > 3 is odd, then

Op (i) = v ((n — 1))

b) If p is an odd prime and if (p,n) # (p,2p — 3),(3,11), then w, , belongs to
the kernel of h. The image h(wp2p—3) generates a direct summand of order p of
Hypy 3(GL(Z);Z), and h(ws11) is of order 3 in a direct summand of order 9 of
c) If n # 1,2,3,7,15, then way belongs to the kernel of h. If n = 1 or 2, then
K,Z=7Z/2 and h: K,Z — H,(GL(Z);Z) is an isomorphism. The image h(w23)
generates the 2-torsion subgroup of H3(GL(Z);7Z), which is of order 8. The image
h(wa,7) is of order 8 in a cyclic direct summand of order 16 of H;(GL(Z);Z), and
hwa,15) is of order 2 in a cyclic direct summand of order 32 of Hi5(GL(Z);Z).

To prove Theorem 3.2 we will need the equivalence (2.3), Proposition 2.5, as
well as a computation of the Hurewicz homomorphism A’ for JKZ({). The next
Lemma is the main ingredient of this computation.

For any n > 2, let us choose a generator &,, of mg,_1(SU) = Z. Recall that
there is an isomorphism of algebras H.(SU;Z) = A (z2,23,...). Here z; is a
primitive class of degree 2i — 1, defined as the dual of the class e; = o(¢;) €
H?=Y(SU;Z), where o is the cohomology suspension and ¢; € H?*'(BSU;Z) is the
ith Chern class. The Hurewicz homomorphism for SU was calculated by Douady
([9], Théoreme 6), and is given by the rule

en — £(n—1)! z,. (3.3)
By looping the fibration
JKZ(0) - BO L. BSU, (3.4)

where ¢ is the composition (2.0), we get a map 0 : SU — JKZ({) having the
following properties.

Lemma 3.5. Let £ be an odd prime and n an integer > 2. The image of the element
Xy € Hop—1(SU;Z) under the homomorphism

Oy : Hopn—1(SU;Z) — Hap_1(JKZ(£); Z)

generates a direct summand in Hop_1(JKZ(£);Z). This summand is of infinite
order if n is odd, and of order (¢™ — 1) if n is even.
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Proof. Suppose first n is odd. The integral cohomology algebra of SU is given
by an isomorphism H*(SU;Z) = A\,(ez,e3,...), where e; is the dual class of
;. We must show that the class e, is in the image of the homomorphism 9* :
H*(JKZ(¢);Z) — H*(SU;Z).

Consider the homotopy commutative diagram

1)  SU-2-JKz(t)—L— BO

; l l _ l l 9= (W1 (3.6)

(2) SU—— PBSU —— BSU

whose rows (1) and (2) are homotopy fibrations. Here PBSU — BSU is the
path fibration. For i = 1 or 2, let us call (E:"(i),d%) the Serre spectral sequence
for H*(—;Z) associated to the fibration (z). The fibration morphism ¢ induces
a morphism between these spectral sequences, which we will denote by 3. It
suffices to verify that the element e,, in 32" (1) = H2"~1(SU;Z) is a permanent
cycle. Since the cohomology suspension o : H?>"(BSU;Z) — H?*"~Y(SU;Z) maps
the n-th Chern class ¢, to e,, e, is transgressive in (E3*(2),d?) and by naturality
belongs to EY>" (1), Now E3™°(1) is a quotient of H2*(BO;Z), which contains
only elements of order 2 since n is odd (see [6], Theorem 24.7 page 86). On the
other hand, one can show by induction on n that d,(e,) is equal to @i (c,) =
(0" —1)¢*(cp) in Ea%(1), so is divisible by 2. Hence e,, is a permanent cycle in
EZ (D).

If n is even, we work with the Serre spectral sequences (E7 .(i),d;) for
H.(—;Z) of the fibrations (i=1,2) of diagram (3.5). Using the homology suspen-
sion, one verifies that there is a primitive generator p,, € Ha,(BSU;Z) = E3,, ((2)
that transgresses to x, € Hop_1(SU) = Ef,, 1(2) at the 2n-th stage. Since n is
even, there is in Ha, (BO;Z) an element p,, (the n-th Pontryagin class) that verifies
c«(Pn) = pn (see [8], equation 61, page 19). Now (W& —1).(p,) = (£ — 1)py, so by
naturality, the class p, € Ha,(BO;Z) = E3, (1) is transgressive in the spectral
sequence (E7 ,(1),d7) and transgresses to (¢ — 1)x,. It follows that Oi(z,) is of
order " — 1 in Hoy—1(JKZ(L);Z). To verify that 0. (z,) indeed generates a direct
summand, it is enough to check that the dual class of z,, in H*"~*(SU;Z/ (" —1))
is in the image of 0* : H*"" ' (JKZ((); Z/(t™ — 1)) — H?*""Y(SU;Z/((™ - 1)).
This can be proven using again a Serre spectral sequence argument of the same
flavour as above. O
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Remarks 3.7.

a) Lemma 3.5, together with (3.2), allows one to compute the Hurewicz homo-
morphism 1/ of JKZ({) on all elements of m, (JKZ({)) that are in the image of
Oy : m(SU) — m,(JKZ(()). The only elements of m, (JKZ(()) that are not in
this image are the 2-torsion elements in dimensions n with n = 1,2 mod (8).

b) A very similar argument to the one of the proof of Lemma 3.5 implies that, for
any prime ¢, the connecting map 9 : SU — F\I/é has the following property: for
any integer n > 2, the image of the element x,, € Ha,_1(SU;Z) under the homo-
morphism 9, : Hoy—1(SU;Z) — Hgn_l(F\I’é;Z) generates a direct summand in
Ha,—1(FUEL;Z) of order (47 — 1).

c) Notice that if n = 2 mod (4), the element J.(e,) is of order 2(¢™ — 1) in
Ton—1(JKZ(()), while 9, (z,) is of order ((" — 1) in Hoy—1 (JKZ({); Z).

Proof of Theorem 3.2.

a) Let p = 2 and ¢ = 3, or let p be a Vandiver prime and ¢ an odd prime
that generates the units of Z/p?. We compare the Hurewicz homomorphisms of
K7 and JKZ(¢) by means of the following commutative diagram. Let us call
Y JK Z]/g\ — K Z;)\ the inclusion as a summand given by Proposition 2.5, and
choose an integer k > max {v,(pn), vp((n — 1)!) } 4+ v,(T), where T is the largest
order of any p-torsion element in Ky, 1Z or Ha,_1(KZ;Z).

m (JKZ(f)) "L

‘| | A h
H(JKZ(0);2) "™ H.(JKLZ)Z/pF) " H(KZ);Z/p") <% H,(KZ; Z)

T (JKZ)Z/pb) o m (KZ; Z/pF) 5% 7, (KZ)

Here 7,(—,Z/p") and h, b’ are the mod p* homotopy groups and Hurewicz maps
(see Chapter 3 of [13]). The map ax given in the diagram is the composite

(X)) — m(X) @ Z/p* — 1 (X Z/p") = (X5 Z/pF)

and the map yx is defined in a similar way. The assertion is proven by inspection of
this diagram, using our knowledge of 1/ : wa,—1 (JKZ({)) — Hap—1(JKZ(L); Z)
(see Remark 3.7.a).

b) If p is any odd prime and ¢ an odd prime that generates the units of
7/p?, the space F\I/é splits off KZ after being localized at p. The element wy
generates the factor 7, ((F¥E)(,)) of K,Z, and is in the image of the homomor-
phism 9, : m,(SU) — Wn((F‘I’é)(p)). It then follows from the rule (3.2) and

the Remark 3.7.b that h(w,.,) = ("T_l)!zn, where z, is the generator of a direct

summand of H,,(KZ;Z) of order the p-primary part of i | (see (2.2) for a de-
scription of it). The assertions then follow from the arithmetic behavior of (Z251)!
inZ/(¢"5 — 1) at p.

c¢) If X is a simple space of finite type, p a prime and n : X — X;\ the p-adic
completion of X, the homomorphism 7. : H.(X;Z) — H.(X});Z) restricts to an
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isomorphism from the p-torsion subgroup of H,(X;Z) onto the p-torsion subgroup
of H.(X});Z). The same is also true for homotopy groups. For us, this means that
using the equivalence ¢ : KZ5 — JKZ%, we can just read off the Hurewicz map
of K7 on 2-torsion elements from the Hurewicz map h' of JKZ(3).

The Eilenberg-Mac Lane space K(Z/2,1) splits off JKZ(3), so by the Hure-
wicz Theorem, h’ must be an isomorphism in dimensions 1 and 2, and surjective
in dimension 3.

The classes wa,, with n = 3 mod (4) correspond to classes of m, (JKZ(?)))
coming from 7, (SU). Their image under the Hurewicz homomorphism can there-
fore be calculated as for the odd-p-torsion classes wy, ,, in part b) of this proof.

Choose n > 9 satisfying n = 1,2 mod (8), and let us show that the class
wh,, € mp(JKZ(3)) corresponding to ws, is in the kernel of A’. Consider the
following diagram

Tt (JKZ(3);2/2) 2= 7, (JKZ(3))
v .
H, 1 (JKZ(3);Z/2) = H, (JKZ(3); Z)
where d, denotes the connecting homomorphism associated to the coefficient exact
sequence 0 — Z — Z — Z/2 — 0. It is commutative (see [13], Lemma 3.2). The
class wj ,, € m, (JKZ(3)) is of order 2 and is in the image of d., so it suffices to
show that the mod 2 Hurewicz homomorphism A’ is trivial in dimension n + 1.

Consider the mod 2 Moore space P"T1(2) = S™/2. By definition, an element
o in m,41(JKZ(3);Z/2) is the homotopy class of a map « : P"*1(2) — JKZ(3),
and h(a) is defined as a.(e), where a, is the homomorphism induced by « in
mod 2 homology, and where e is the generator of H, 1 (P""1(2);Z/2) 2 Z/2. We
claim that any such induced homomorphism «, is zero. By duality, it is equiva-
lent to prove the corresponding statement in mod 2 cohomology. There exists an
isomorphism of Hopf algebras and of modules over the Steenrod algebra

H*(JKZ(3);Z/2) = H*(BO;Z/2) ® H*(SU;Z/2)

(see [12], Remark 4.5). Recall the isomorphisms H*(BO;Z/2) = Z/2[wy,wa, . . .|
and H*(SU;Z/2) = Ngj(e2,€3,...), where w; is the Stiefel-Whitney class of
degree i, and e; is primitive of degree 2i — 1. The action of the Steenrod algebra on
these cohomology classes is well known. For instance, Sq*(w;) = w;;1 +wiw; and
Sq*(w;) = wito+waw; if i is even, and Sq**e; = (i;1)6i+;€. These relations, as well
as the fact that H*(P"*1(2);Z/2) is concentrated in dimensions 0, n and n + 1,
force any induced homomorphism H"*1(JKZ(3);Z/2) — H"(P"t1(2);Z/2)
to be zero for the above choices of n. O

4. The order of the Postnikov invariants of K7

Let X be a connected simple space, for instance a connected H-space. For any
integer n > 1, let us denote by X — X|[n] the nth-Postnikov section of X, and
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by k‘?{‘"l the (n + 1)th-Postnikov invariant of X . Recall that k}“ is an element of
the cohomology group H" ™! (X [n—1];m, (X)), which can be chosen canonically as
the image of the fundamental class vyt € H" ! (X[n —1], X;m, (X)) under the
homomorphism induced by the inclusion of pairs (X[n — 1],0) — (X[n — 1], X).
The Postnikov invariant k™' corresponds to a map X[n — 1] — K(m,X,n + 1)
whose homotopy fiber is the nth-Postnikov section X[n] of X.

If X is an H-space of finite type, all its Postnikov invariants are cohomology
classes of finite order : this is the Arkowicz-Curjel Theorem ([2]). In particular,
the Postnikov invariant of KZ are of finite order. The orders p,, of the Postnikov
invariants k?il of K7 have previously been studied by Arlettaz and Banaszak
in [3]. See especially their Proposition 5, which states that if n > 5 is an integer
with n = 1 mod (4) and if K, Z has no p-torsion, where p is an odd prime, then

Vp(pn) < vp (%')

Theorem 4.1. For any integer n > 2, the order p, of the Postnikov invariant k:}?il
of K7 verifies :

a)

1 ifn=23,7, orif n>10 and n =2 mod (8),
va(252L1) if n =1 mod (4),

va(pn) = ¢ 4 if n > 11 and n = 3 mod (8), or if n = 15,
va(n+1)+1 ifn>23 andn =7 mod (8),
0 otherwise.

b) If p is a Vandiver prime, and if n > 5 is an integer with n =1 mod (4), then

p(pn) = vp ("5H!)
and equality holds if the order e of the torsion subgroup of K,Z verifies vp(e) <

Vp ("T’l')

c) Let p be an odd prime. If 2(p — 1) is a proper divisor of n+ 1, then
Up(pn) 2 vp(n+1) +1
(except if p =3 and n = 11, where vs(p11) > 1 holds).

Proof. This is a consequence of Theorem 3.2, using the following general argument.
If X is a connected simple space, n an integer > 2, and p an integer > 1, then the
following statements are equivalent :

a) The Postnikov invariant k%™ verifies pk’yt" = 0 in H" (X [n — 1], 7, (X)).
b) There exists a homomorphism g : H,(X;Z) — m,(X) the composition gh :
Tn(X) — m,(X) is multiplication by p, where h : 7, (X) — H,(X;Z) is the
Hurewicz homomorphism. O

Remark 4.2. If p is a regular prime and if the p-adic Quillen-Lichtenbaum Con-
jecture for Z holds, then equality for v,(p,) holds in the inequalities b) and c) of
Theorem 4.1, and for other values of n, v,(p,) = 0.
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