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In this paper, we give a complete description of the finite groups which can act on
2-dimensional Z-acyclic complexes without fixed points. One example of such an action
(by the group A5) has been known for a long time, but as far as we know it is the only
such action constructed earlier. In fact, we construct here actions of this type for many
different finite simple groups.

More precisely, our main theorem is the following.

Theorem A. For any finite group G, there is an essential fixed point free 2-dimensional
(finite) Z-acyclic G-complex if and only if G is isomorphic to one of the simple groups
PSL2(2

k) for k ≥ 2, PSL2(q) for q ≡ ±3 (mod 8) and q ≥ 5, or Sz(2k) for odd k ≥ 3.
Furthermore, the isotropy subgroups of any such G-complex are all solvable.

Here “G-complex” means a G-CW complex; but the same result holds if one instead
uses simplicial complexes with admissible G-action in the sense of [S1] or [AS] (see
Proposition A.4 in the appendix). The word “finite” is in parentheses because the
theorem holds whether or not this condition is included. The condition that the action
be essential was put in to insure that an action of a quotient group G/N does not
automatically produce an action of G:

Definition. A G-complex X is essential if there is no normal subgroup 1 6= N ⊳ G with
the property that for each H ⊆ G, the inclusion XHN → XH induces an isomorphism
on integral homology.

In other words, if there is such a subgroup N ⊳ G, then the G-action on X is
“essentially” the same as the G-action on XN , which factors through a G/N -action. In
the case of actions on acyclic 2-complexes, the relation between essential actions and
arbitrary actions is made precise in the next theorem.

Theorem B. Let G be any finite group, and let X be any 2-dimensional Z-acyclic G-
complex. Let N be the subgroup generated by all normal subgroups N ′

⊳ G such that
XN ′ 6= ∅. Then XN is Z-acyclic; X is essential if and only if N = 1; and if N 6= 1 then
the action of G/N on XN is essential.

The proofs of Theorems A and B rely on the earlier works [O1], [O2], [S1], and [AS],
as well as on the classification theorem for finite simple groups. In [S1], Y. Segev proved
that if a finite group G acts on an acyclic 2-complex X , the fixed point set XG is either
Z-acyclic or empty, and is Z-acyclic if G is solvable or G ∼= An for n ≥ 6. Later, in [AS],
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Aschbacher and Segev extended these results, and proved that XG 6= ∅ if G is simple,
except perhaps when G is of Lie type and Lie rank one, or the first Janko group J1 (a
sporadic group).

Techniques for constructing fixed point free actions of finite groups on finite acyclic or
contractible complexes (without restrictions on dimension) were developed by B. Oliver
in several earlier papers such as [O1] and [O2]. In particular, in [O2], actions for which
the fixed point set of each subgroup is contractible or empty are studied.

The proof of Theorem A — both when constructing actions of G and when proving
their nonexistence — is based on refinements of the techniques developed in these earlier
papers of both authors. The main new input comes from a more detailed analysis of the
subgroup lattice of G and its orbit space. In particular, necessary and sufficient condi-
tions for the existence of actions are stated in terms of this lattice in Proposition 1.9.
Afterwards, the proofs of nonexistence of actions of particular groups require identifying
homology in certain “pieces” of the subgroup lattice of G.

In fact, relatively few solvable subgroups need occur as isotropy groups for the actions
constructed when proving Theorem A, and those which do occur are listed explicitly. It
is possible that these and similarly constructed G-complexes can give new information
about decompositions of BG, and about the cohomology of G.

Theorem A leaves open the question as to whether or not it is possible for a finite group
to act on a 2-dimensional contractible complex without fixed points. Understanding
actions on acyclic 2-complexes is clearly a first step towards investigating this question,
but the first author feels that any serious attempt to answer it will require some very
different methods than those used here.

This paper is intended for both group theorists and topologists, and we have at-
tempted to write it in a way which will be appealing and readable for both. In par-
ticular, more background material has been included than might normally be the case,
although we have tried to put most of that in the appendix at the end of the paper.

The paper is organized as follows. In Section 1, conditions are established, in terms
of homological properties of the subgroup lattice of G, which determine the minimal
dimensions of certain “universal” G-complexes. In particular, this section includes the
general machinery for constructing such actions. After proving some technical results in
Section 2, the constructions of the G-complexes described in Theorem A are carried out
in Section 3. In Section 4, we show that any finite group G which acts essentially on a
2-dimensional acyclic complex must be almost simple (i.e., there is a nonabelian simple
group L such that L ⊆ G ⊆ Aut(L)). In Section 5, we develop machinery to show the
nonexistence of actions on acyclic 2-complexes; and this is applied in Section 6 to prove
Theorem A for simple groups of Lie type and Lie rank one. The sporadic groups are
dealt with in Theorem 7; except for the first Janko group J1 this repeats results already
shown in [AS]. Theorem B is proven in Section 4, and Theorem A in Section 8. All
of this is preceded by a preliminary “Section 0” where we present some general results
about G-posets and construction of G-complexes; and is followed by an appendix which
includes background material about G-complexes, Z[G]-modules, and simple groups of
Lie type, as well as a sketch of the proofs in [S1] and [AS] of certain cases of Theorem
A. References of the form A.x, B.x, etc. all refer to the appendix. After the appendix,
we attach a list of the notation used throughout the paper.
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0. G-complexes and G-posets

Posets, and in particular families of subgroups considered as posets, will play an
important role as “bookkeeping” devices for controlling dimensions of certain acyclic
complexes. For any poset S, we let N (S) denote its nerve: the simplicial complex with
one vertex for each element of S, and one n-simplex for each chain α0 < α1 < · · · < αn

of elements of S. By a G-poset is meant a poset with G-action which preserves the
ordering. A terminal subposet of a poset S is a subset S ′ ⊆ S such that β ≥ α ∈ S ′

implies β ∈ S ′. For any element α in a poset S, we set S≥α = {β ∈ S | β ≥ α}. The
next lemma provides a general setting for comparing G-complexes with coverings to the
nerves of the coverings.

Lemma 0.1. Let X be a G-complex, let S be a finite G-poset, and let {Xα}α∈S be a
covering of X by subcomplexes which satisfies the following conditions:

(a) α ≤ β implies Xα ⊇ Xβ.

(b) For all x ∈ X , the set {α ∈ S | x ∈ Xα} has a largest element.

(c) Xg(α) = g(Xα) for all α ∈ S, g ∈ G.
Then there is a G-map fX : X → N (S) with the property that

fX(Xα) ⊆ N (S≥α) for all α ∈ S. (1)

If, furthermore, Xα is acyclic (contractible) for each α, then for any map f : X →
N (S) which satisfies (1), and any terminal subposet S ′ ⊆ S, f restricts to a homology
equivalence (homotopy equivalence) fS′ : XS′ =

⋃
α∈S′ Xα → N (S ′).

Proof. For each n ≥ 0, let Jn denote the G-set of n-cells of X , and let ϕn : Jn×Dn → X
denote the characteristic map for the n-cells. Let θ : Jn → S be the map which sends
j ∈ Jn to the largest element in the set {α ∈ S |ϕn(j, 0) ∈ Xα}; this is well defined by
(b) and equivariant by (c). For each α ∈ S, we let [α] denote the corresponding vertex
in N (S).

First define f0 : X
(0) → N (S) by setting f0(ϕ0(j, 0)) = [θ(j)] for each j ∈ J0. This

clearly satisfies condition (1).

Now assume that fn−1 : X
(n−1) → N (S) has been defined, satisfying (1). For any

j ∈ Jn and any v ∈ Sn−1, ϕn(j, 0) ∈ Xθ(j) by construction, and so ϕn(j, v) ∈ Xθ(j) since
Xθ(j) is a subcomplex of X . So fn−1(ϕn(j, v)) ∈ N (S≥θ(j)) by (1), hence it is in some
simplex which contains the vertex [θ(j)], and the segment from fn−1(ϕn(j, v)) to [θ(j)]
lies in N (S). So we can define

fn : X
(n) −−−−−→ N (S)



4 Fixed point free actions on acyclic 2-complexes

by setting fn(x) = fn−1(x) for x ∈ X(n−1), and

fn(ϕn(j, tv)) = t·fn−1(ϕn(j, v)) + (1− t)·[θ(j)] for j ∈ Jn, v ∈ Sn−1, t ∈ [0, 1].

This is well defined as a map of sets, since the two definitions agree on ϕn(Jn×Sn−1) ⊆
X(n−1). So it is continuous by Lemma A.3 (fn|X(n−1) and fn ◦ϕn are both continuous).
Condition (1) still holds for fn, since for all j ∈ Jn and v ∈ int(Dn), and all α ∈ S,

ϕn(j, v) ∈ Xα ⇐⇒ ϕn(j, 0) ∈ Xα =⇒ α ≤ θ(j)

=⇒ fn(ϕn(j, v)) ∈ N (S≥θ(j)) ⊆ N (S≥α).

And fn is equivariant since θ is equivariant, since fn−1 is equivariant (by induction),
and since the G-action on N (S) is affine.

Finally, define fX : X → N (S) to be the union of the fn; this is again continuous by
Lemma A.3, and condition (1) holds since it holds for each fn.

Now let f be any map which satisfies (1), and assume that Xα is acyclic (contractible)
for each α ∈ S. We want to show that f is a homology (homotopy) equivalence.
The group action no longer plays a role here, so we can assume G = 1. We can
assume inductively that for any properly contained terminal poset S ′ $ S, f restricts
to an equivalence

⋃
α∈S′ Xα → N (S ′) (since the subspace and subposet still satisfy

conditions (a) and (b) above). If S has a smallest element σ, then X = Xσ is acyclic
(contractible) and N (S) is contractible, so any map f : X → N (S) is a homology
(homotopy) equivalence, and we are done.

Assume now that S contains no smallest element. In this case, we can write S =
S1 ∪ S2, where S1 and S2 are proper terminal subposets of S. Set S0 = S1 ∩ S2;
and set Xi =

⋃
α∈Si

Xα for each i = 0, 1, 2. Clearly, N (S0) = N (S1) ∩ N (S2), and
condition (b) implies that X0 = X1 ∩ X2. By the inductive assumption, f restricts to
homology (homotopy) equivalences fi : Xi → N (Si), and so f is a homology (homotopy)
equivalence by Proposition B.3.

By a family of subgroups of G will here be meant any subset F ⊆ S(G) which is
closed under conjugation. We do not assume here that subgroups of elements of the
family are also in the family.

For any family F of subgroups of G, a (G,F)-complex will mean a G-CW-complex
all of whose isotropy subgroups lie in F . A (G,F)-complex is universal if the fixed
point set of each subgroup in F is contractible. (The “universality” property of such
spaces is explained in Proposition A.6.) One can, in fact, construct universal (G,F)-
complexes for any family F of subgroups of G, but in most cases any such complex must
be infinite dimensional. For example, when F = {1} contains only the trivial subgroup,
a universal (G,F)-complex is just a contractible complex upon which G acts freely; and
so its orbit space is a classifying space for G. The results in Section 1 will make it clear
what conditions are needed on F for there to be a finite (or finite dimensional) universal
(G,F)-complex.

The following lemma is the starting point for the constructions of universal (G,F)-
complexes, and of otherG-complexes satisfying certain homological conditions. Roughly,
it describes the effect on the homology of X of attaching cells of one orbit type G/H
to X . By “attaching an orbit of cells of type G/H×Di” to a G-complex X , we mean
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replacing X by the complex X∪ϕ(G/H×Dn) for some G-map ϕ : G/H×Sn−1 → X(n−1).
We refer to Lemma A.2 for more detail.

Proposition 0.2. Fix a finite G-complex X , and a subgroup H ⊆ G. Then the follow-
ing hold.

(a) For any n ≥ 1, there is a finite G-complex Y ⊇ X , obtained by attaching to X
orbits of cells of type G/H×Di for 1 ≤ i ≤ n, such that Y H is (n − 1)-connected and
Hi(Y

H) ∼= Hi(X
H) for all i > n. Also, Hn(Y

H) is Z-free if Hn(X
H) is Z-free.

(b) Assume n ≥ 1, and that XH is (n− 1)-connected. For any homomorphism

ϕ : (Z[N(H)/H ])k −−−−−→ Hn(X
H)

of Z[N(H)/H ]-modules, there is a finite G-complex Y ⊇ X , obtained by attaching k
orbits of cells G/H×Dn+1 to X , such that Hi(Y

H) ∼= Hi(X
H) for all i 6= n, n + 1, such

that

Hn(Y
H) ∼= Coker(ϕ), (1)

and such that there is a short exact sequence

0 −−−→ Hn+1(X
H) −−−−→ Hn+1(Y

H) −−−−→ Ker(ϕ) −−−→ 0. (2)

(c) Assume, for some n ≥ 1, that H̃∗(X
H) = Hn(X

H) is a stably free Z[N(H)/H ]-
module; more precisely that

Hn(X
H)⊕ (Z[N(H)/H ])k ∼= (Z[N(H)/H ])m

(where k,m ≥ 0). Then there exists a G-complex Y ⊇ X , obtained by attaching to X
k orbits of cells of type G/H×Dn and m orbits of cells of type G/H×Dn+1, such that
Y H is acyclic.

(d) Assume that all connected components of XH are acyclic, and that one of the
components of XH is fixed by the action of N(H)/H and the others are permuted freely.
Then there exists a G-complex Y ⊇ X , obtained by attaching to X cells of orbit type
G/H×D1, such that Y H is acyclic.

Proof. (b) Since XH is (n− 1)-connected, the Hurewicz theorem applies to show that
each element h ∈ Hn(X

H) is represented by a map ϕ : Sn → XH , in the sense that
h = ϕ∗([S

n]) for some fixed generator [Sn] of Hn(S
n). (See, e.g., [Hu, Theorem II.9.1]

if n > 1, or [Hu, Theorem II.6.1] if n = 1). And we can assume that ϕ(Sn) ⊆ (XH)(n)

by the cellular approximation theorem [LW, Theorem II.8.5], which says that any map
Sn → XH is homotopic to a cellular map, and in particular a map with image in the
n-skeleton.

Now let E = {e1, . . . , ek} denote the canonical basis of (Z[N(H)/H ])k, and fix maps
fi : S

n → (XH)(n) which represent ϕ(ei) ∈ Hn(X
H). Define

f : (E×G/H)×Sn −−−−−→ X(n)

by setting f(ei, gH, x) = g·fi(x); and let fH be the restriction of f to the H-fixed
point sets. In particular, for each i and each g ∈ N(H), f |ei×gH×Sn (as a map Sn →
XH) represents the class g·ϕ(ei) ∈ Hn(X

H). In other words, Hn(f
H) = ϕ under the

identification

Hn((E×G/H)H×Sn) = Hn((E×N(H)/H)×Sn) ∼= (Z[N(H)/H ])k.
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Set

Y = X ∪f
(
(E×G/H)×Dn+1

)

(Lemma A.2). Then

Y H = XH ∪fH

(
(E×N(H)/H)×Dn+1

)
;

and (1) and (2) now follow from Lemma B.1.

(a) We prove this inductively. Fix n ≥ 0 such that XH is (n − 1)-connected. We
will construct a finite G-complex Y ⊇ X , obtained by attaching orbits of cells of type
G/H×Dn+1 to X , such that Y H is n-connected.

If n = 0 and XH is not connected, then let v−1 and v1 be two vertices in different
connected components of XH , define f : G/H×S0 → X by setting f(gH, t) = gvt, and
set X ′ = X ∪f (G/H×D1). By construction, (X ′)H has fewer connected components
than XH , and by continuing the procedure we obtain a finite G-complex Y such that
Y H is connected.

If n = 1 and π1(X
H) 6= 1, then choose any element 1 6= φ ∈ π1(X

H), represent it
by a map f0 : S

1 → XH , and extend this to a G-map f : G/H×S1 → X by setting
f(gH, v) = g·f0(v). Set X ′ = X ∪f (G/H×D2). Then π1((X

′)H) = π1(X
H)/N , where

N is a normal subgroup of π1(X
N) which contains φ (in fact, the normal closure of 〈φ〉).

Since π1(X
H) is finitely generated, we can repeat this procedure and obtain a finite

G-complex Y such that Y H is 1-connected.

If n > 1, then the result follows from part (b), where we choose ϕ to be any surjection
(Hn(X

H) is finitely generated as an abelian group, hence as a Z[N(H)/H ]-module).

(c) Upon applying point (b) to the trivial homomorphism

ϕ0 : (Z[N(H)/H ])k → Hn−1(X
H) = 0,

we get a finite G-complex Y0 ⊇ X , obtained by attaching k-orbits of cells G/H×Dn to
X , such that Hi((Y0)

H) ∼= Hi(X
H) = 0 for all i 6= n and

Hn((Y0)
H) ∼= Hn(X

H)⊕ (Z[N(H)/H ])k ∼= (Z[N(H)/H ])m.

If we now apply (b) to any isomorphism ϕ : (Z[N(H)/H ])m → Hn((Y0)
H), we obtain a

finite G-complex Y ⊇ Y0, constructed by attaching m orbits of cells G/H×Dn+1, such
that Y H is acyclic.

(d) Here, we assume that all connected components of XH are acyclic, and that one is
invariant under the action of N(H)/H and the others are permuted freely. Let X0 ⊆ XH

denote the component which is N(H)/H-invariant, and let X1, X2, . . . , Xk be N(H)/H-
orbit representatives for the other components. (If N(H)/H = 1, then let X0 be any of
the connected components.) Fix vertices xi ∈ Xi for i = 0, . . . , k. Set J = {1, . . . , k},
and define ϕ : (G/H×J)×S0 → X by setting

ϕ(gH, i, 1) = gxi and ϕ(gH, i,−1) = gx0.

Now set Y = X ∪ϕ ((G/H×J)×D1). Then

Y H = XH ∪ϕ| ((N(H)/H×J)×D1),

and this is acyclic since X0 has been connected (by a unique 1-cell) to each of the other
connected components of X .
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We finish the section with two lemmas which involve elementary properties of nerves
of posets. We first recall the following results of Quillen.

Lemma 0.3 [Q2, 1.3–1.5]. (a) Let T ⊆ S be posets, and let r : S → T be any order
preserving map such that r|T = IdT , and such that r(α) ≤ α for all α ∈ S (or r(α) ≥ α
for all α). Then the inclusion of N (T ) in N (S) is a homotopy equivalence.

(b) Let G be a finite group, and let H be any set of subgroups of G. Assume there
is some H0 ∈ H such that either H ∩ H0 ∈ H for all H ∈ H, or 〈H,H0〉 ∈ H for all
H ∈ H. Then N (H) is contractible.

Proof. Point (a) is shown in [Q2, 1.3]. In fact, N (T ) is a strong deformation retract of
N (S), where r induces the retraction N (S) → N (T ), and where the homotopy with
the identity comes from the assumption that r(x) is always ≤x or always ≥x [Q2, 1.3].

If H is as in (b), then its nerve is “conically contractible” in the sense of Quillen, and
hence is contractible [Q2, 1.4–1.5].

The following lemma will also be useful, when showing that certain subgroups of G
need not occur as isotropy subgroups in acyclic G-complexes.

Lemma 0.4. Let S be any finite poset, and let S ′ ⊆ S be any subposet with the
property that N (S>α) ≃ ∗ for all α ∈ SrS ′. Then N (S ′) ≃ N (S) (the inclusion
induces a homotopy equivalence).

Proof. It suffices to show this when SrS ′ contains just one element α. In this case,
N (S) is the union of N (S ′) with the cone over the subcomplex A ⊆ N (S ′), where

A = N
(
S<α ∐ S>α

)
= N (S<α)*

N (S>α). (1)

Note that the nerve of the disjoint union in (1) is identified with the join of the nerves,
since every element in S<α is less than every element in S>α. Then A is contractible,
since N (S>α) ≃ ∗ by assumption.

Lemma 0.4 does, in fact, hold without the assumption that S is finite: it follows as a
consequence of Quillen’s Theorem A [Q1] (see also [Q2, Proposition 1.6]).

A central problem throughout this paper, especially in Sections 5 and 6, is to find
ways to detect 2-dimensional homology in nerves of certain posets. Given a 2-cycle in
N (S), the simplest way to show it is nonvanishing in H2(N (S)) is to show that some
2-simplex with nonzero coefficient is maximal in N (S); i.e., not in the boundary of any
3-simplex. The following lemma provides a refinement of this observation, and will be
used in Section 5.

Lemma 0.5. Let S be a finite poset, and let z be a 2-cycle in the nerve of S. Fix ele-
ments m < M in S, where m is minimal andM is maximal. Set Q = {x∈S |m<x<M},
and let Q′ ⊆ Q be the set of all x ∈ Q such that the simplex (m, x,M) occurs with
nonzero coefficient in z. Assume that Q′ 6= ∅, and that some element of Q′ lies in a
separate connected component of N (Q) from all of the other elements of Q′. Then
0 6= [z] ∈ H2(N (S)).

Proof. Set X = N (S), for short, and let Y ⊆ X be the subcomplex of all simplices
which do not contain both vertices m,M . Let C∗(X) ⊇ C∗(Y ) be the simplicial chain
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complexes; and write

z =
∑

x∈Q′

ax(m, x,M) (mod C2(Y ))

(where 0 6= ax ∈ Z for each x).

For any 3-simplex σ in X , either σ is in Y (and so ∂(σ) ∈ C2(Y )), or σ = (m, x, y,M)
for some x, y ∈ Q in the same connected component of N (Q) and

∂(σ) = (m, x,M)− (m, y,M) (mod C2(Y )).

Thus, if z is a boundary, then the sum of the coefficients ax in the above expression
for z, taken over all x ∈ Q′ which lie in any given connected component of N (Q), is
zero. And this contradicts the assumption that some element of Q′ is in a component
by itself.

1. Minimal dimensions of universal G-spaces

We will now establish necessary and sufficient conditions for the existence of universal
complexes satisfying certain dimensional restrictions. These conditions will be expressed
in terms of the homology of the nerves of certain posets.

Throughout this section, G will be a finite group. A nonempty family F ⊆ S(G)
will be called separating if it has the following three properties: (a) G /∈ F ; (b) any
subgroup of an element of F is in F ; and (c) for any H ⊳ K ⊆ G with K/H solvable,
K ∈ F if H ∈ F . The following property of separating families is immediate.

Lemma 1.1. Each maximal subgroup in a separating family of subgroups of G is self-
normalizing.

If G is solvable, then it has no separating family of subgroups. If G is not solvable,
then we let SLV denote the family of solvable subgroups: the minimal separating family
for G. We also let MAX denote the maximal separating family for G, which can be
described as follows. Let L be the maximal normal perfect subgroup of G; i.e., the last
term in the derived series of G. ThenMAX is the family of all subgroups of G which
do not contain L. In particular, if G is perfect, thenMAX is the family of all proper
subgroups of G.

A (G,F)-complex will be called H-universal if the fixed point set of each H ∈ F is
acyclic. The importance of universal, and H-universal, (G,F)-complexes when studying
2-dimensional actions comes from the following lemma.

Lemma 1.2. Let X be any 2-dimensional acyclic G-complex without fixed points. Let
F be the set of subgroups H ⊆ G such that XH 6= ∅. Then F is a separating family of
subgroups of G, and X is an H-universal (G,F)-complex.

Proof. By [S1, Theorem 3.4], XH is acyclic for each H ∈ F ; i.e., for each H such that
XH 6= ∅. (Another proof of this, which does not depend on the odd order theorem, is
given in Theorem 4.1 here.) So by definition, X is an H-universal (G,F)-complex. Also,
if H ⊳ K ⊆ G are subgroups such that H ∈ F and K/H is solvable, then XH is acyclic,
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and so XK = (XH)K/H is acyclic by [S1, Theorem 3.1] (see also Theorem 4.1). Thus,
F is a separating family.

For any family F of subgroups of G, we consider N (F) as a G-complex via the
conjugation action. Note, however, that N (F) is not itself a (G,F)-complex in general.
For example, when F = {1}, then N (F) is a point, while a (G,F)-complex must have
a free G-action.

Recall that for any family F of subgroups of G and any set H of subgroups, F≥H
denotes the poset of those subgroups in F which contain some element of H. Also,
for any H ⊆ G, F≥H and F>H denote the posets of subgroups in F which contain H ,
or strictly contain H , respectively. The following proposition follows immediately from
Lemma 0.1.

Proposition 1.3. Fix any family F of subgroups of G. Let N (F) be the nerve of the
poset F , regarded as a G-complex via the action by conjugation. Then for any (G,F)-
complex X , there is a G-map f : X → N (F) with the property that f(XH) ⊆ N (F≥H)
for all H ⊆ G. And if X is universal (H-universal), then for any set H of subgroups of
G, any such map f restricts to a homotopy equivalence (homology equivalence) XH →
N (F≥H).

Proof. We apply Lemma 0.1, with S = F (regarded as a poset via inclusion), and
XH = XH for H ∈ F . Since X is a (G,F)-complex, every element of X is fixed by
some H ∈ F , and so {XH}X∈F is a covering of X . Condition (a) of Lemma 0.1 clearly
holds, and condition (b) holds since the largest element of {H ∈ F | x ∈ XH} is the

isotropy group Gx. And condition (c) holds since XgHg−1
= g(XH).

The following lemma, which helps to limit the number of orbit types needed when
constructing “minimal” universal (G,F)-complexes, is an easy consequence of Lemma
0.4.

Lemma 1.4. Let F be any family of subgroups of G, and let F0 ⊆ F be any subfamily
such that N (F>H) ≃ ∗ for all H ∈ FrF0. Then any (H-)universal (G,F0)-complex is
also an (H-)universal (G,F)-complex; and

N ((F0)≥H) ≃ N (F≥H) (1)

for any set H of subgroups of G.

Proof. For any set H of subgroups of G, point (1) follows from Lemma 0.4, applied to

the posets S
def
= F≥H and S ′ def

= (F0)≥H.

Let X be an (H-) universal (G,F0)-complex. All isotropy subgroups of X lie in
F0 ⊆ F , so X is also a (G,F)-complex. For each K ∈ F , XK is homotopy (homology)
equivalent to N ((F0)≥K) by Proposition 1.3 (applied with H = {K}); this in turn is
homotopy (homology) equivalent toN (F≥K) by (1); and this last complex is contractible
(acyclic). So X is also (H-) universal as a (G,F)-complex.

We are now ready to deal directly with the problem of controlling the dimensions of
universal or H-universal (G,F)-complexes. This will be done by attaching cells, one
orbit type at a time, at each stage arranging for the appropriate fixed point set to be
contractible or acyclic. The key problem is how to do this with cells in free orbits.
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This will be described in the following three lemmas. The first will be needed when
constructing contractible 1-complexes.

Lemma 1.5. Let X be any finite G-set with the property that |XH | = 1 for each
subgroup 1 6= H ⊆ G of prime power order. Then X has one fixed point and is
otherwise free.

Proof. We may assume that XG = ∅; otherwise the result is clear. We may also assume
that X has no free orbits (otherwise just remove them). By assumption, each Sylow
subgroup of G acts freely on X away from one fixed point; and so |X| ≡ 1 (mod |G|).

Write X = G/H1 ∐G/H2 ∐ · · · ∐G/Hk, where 1 6= Hi $ G for all i. In particular,

k∑

i=1

[G:Hi] = |X| = r·|G|+ 1 (1)

for some r. Furthermore, for each pair of distinct elements x, y ∈ X , the isotropy
subgroups Gx and Gy have trivial intersection, since otherwise Gx ∩ Gy contains a
nontrivial p-subgroup (some p) which fixes two points of X . It follows that

|G| − 1 ≥
∑

x∈X
(|Gx| − 1) =

k∑

i=1

[G:Hi]·(|Hi| − 1) = k·|G| −
k∑

i=1

[G:Hi]. (2)

Upon adding (1) and (2), we see that (2) is an equality, and that r = k − 1. But then
after dividing (1) by |G|, we get that

k∑

i=1

1

|Hi|
> k − 1.

Since |Hi| ≥ 2 for all i, we must have k = 1, and hence |X| = 1.

A complex X will be called homologically m-dimensional if Hn(X) = 0 for all n > m,
and Hm(X) is Z-free. (Technically, this should be called homologically ≤m-dimensional,
since it only provides an upper bound on the degrees of homology of X .) We note first
the following properties of subcomplexes of acyclic complexes.

Lemma 1.6. Let X be any m-dimensional acyclic CW complex (m ≥ 1). Then any
subcomplex of X is homologically (m−1)-dimensional. And if A1, . . . , An ⊆ X are
homologically (m−2)-dimensional subcomplexes, then their intersection is also homo-
logically (m−2)-dimensional.

Proof. For any subcomplex A ⊆ X , H̃i(A) ∼= Hi+1(X,A) must be zero for i ≥ m and
Z-free for i = m− 1. Hence A is homologically (m−1)-dimensional.

It suffices to prove the last statement when n = 2. For each i ≥ m − 2, there is a
Mayer-Vietoris exact sequence

0 −−−→ Hi+1(A1 ∪A2) −−−−→ Hi(A1 ∩A2) −−−−→ Hi(A1)⊕Hi(A2).

If i ≥ m − 1, then the first and last groups are zero, and so Hi(A1 ∩ A2) = 0. And
if i = m − 2, then the first and last groups are Z-free, and so Hm−2(A1 ∩ A2) is also
Z-free.

The next lemma is essentially included in the proof of [O2, Proposition 6].
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Proposition 1.7. Let X be a finite G-complex with the following two properties.

(a) For each 1 6= H ⊆ G, XH is acyclic or empty, and is acyclic if H has prime power
order.

(b) For some n > 0, H̃∗(X) = Hn(X), and is Z-free.

Then Hn(X) is stably free as a Z[G]-module.

Proof. For each prime p and each Sylow p-subgroup S ⊆ G, consider the subcomplex

X ′ =
⋃

16=H⊆S

XH = {x ∈ X |Sx 6= 1}.

By Proposition 1.3, applied with H = {1 6= H ⊆ S}, X ′ is acyclic (N (H) ≃ ∗ since H
has maximal element S). Hence H∗(X,X

′) ∼= H̃∗(X) also vanishes in degrees different
from n. Furthermore, since all cells in XrX ′ are permuted freely by S, C∗(X,X ′) is a
chain complex of finitely generated free Z[S]-modules (Lemma C.1). So by Proposition
C.2, the unique nonvanishing homology group Hn(X,X

′) ∼= Hn(X) is Z[S]-stably free.
(Since all but one summand in (1) of Proposition C.2 is stably free, so is the remaining
summand, by definition.) In particular, Hn(X) is a Z[G]-module which is projective
after restriction to each Sylow subgroup, and is hence Z[G]-projective by Rim’s theorem
[Rim, Proposition 4.9].

Now set Y = X×ΣX , where ΣX is the unreduced suspension of X (see Lemma
A.5). We identify X with the subcomplex X×{x0} of Y , where x0 ∈ ΣX is one of
the suspension vertices. Then H∗(ΣX, x0) = Hn+1(ΣX, x0) ∼= Hn(X); and so by the
Künneth formula

Hi(Y,X) ∼= Hi−n−1(X)⊗Hn+1(ΣX, x0) ∼=





Hn(X)⊗Z Hn(X) if i = 2n + 1

Hn(X) if i = n + 1

0 otherwise.

Consider the subcomplexes

Xs =
⋃

16=H⊆G

XH and Ys =
⋃

16=H⊆G

Y H .

We claim that the inclusion map Xs →֒ Ys is a homology equivalence. To see this, set
F = {1 6= H ⊆ G |XH 6= ∅}. By Proposition 1.3, there is a map f : Ys → N (F)
such that f((Ys)

H) ⊆ N ((F)≥H) for all H ⊆ G; and f |Xs
has the same property. Since

Xs and Ys are both H-universal (G,F)-complexes (Y H = XH×ΣXH is acyclic if XH

is), Proposition 1.3 implies that f restricts to homology equivalences Ys → N (F) and
Xs → N (F); and thus that the inclusion Xs ⊆ Ys is a homology equivalence.

In particular, this shows that H∗(Y,X) ∼= H∗(Y,X ∪ Ys) (see Lemma B.2). Thus,
C∗(Y,X ∪ Ys) is a chain complex of free Z[G]-modules (by Lemma C.1, since G acts
freely on Yr(X ∪Ys)) with only two nonzero homology groups. Since Hn(X)⊗ZHn(X)
is stably free by Proposition C.3, the other homology group Hn(X) must also be stably
free by Proposition C.2.

For any G-space X and any H ⊆ G, we write

X>H = {x ∈ X |Gx % H}:
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i.e., the union of fixed point sets of subgroups which strictly contain H . Also, for any
family F ⊆ S(G), F>H denotes the set of elements of F which strictly contain H .

Proposition 1.8. Let G be any finite group, and let F be a separating family forG. Let
F0 ⊆ F be any subfamily with the property thatN (F>H) is contractible (and nonempty)
for all H ∈ FrF0. Let d : F0 → N be any function which is constant on conjugacy
classes of subgroups, such that d(H) = 0 for H maximal in F , such that N ((F0)>H)
is homologically (d(H)−1)-dimensional for each non-maximal subgroup H ∈ F0, and
such that d(H) ≥ d(H ′) whenever H ⊆ H ′. Then there is a finite H-universal (G,F0)-
complex X with the property that dim(XH) ≤ d(H) for each H ∈ F0. Furthermore, X
can be taken to be universal if d(H) 6= 2 for each H ∈ F0. Also, X can be chosen such
that every vertex of X is fixed by some maximal subgroup in F .

Proof. Let Fmax be the set of maximal subgroups in F . Set X0 = Fmax, regarded
as a zero-dimensional G-complex. Since the elements of Fmax are all self-normalizing
(Lemma 1.1), this is a 0-dimensional (G,F)-complex, and (X0)

H contains exactly one
point for each H ∈ Fmax. Let H1, . . . , Hk = 1 be conjugacy class representatives for
the elements of FrFmax, ordered such that d(H1) ≤ d(H2) ≤ · · · d(Hk), and such that
i ≤ j if Hi contains a subgroup conjugate to Hj. For each i = 0, . . . , k, let Hi be the
set of all maximal subgroups in F , together with all subgroups conjugate to Hj for any
j ≤ i. In particular, H0 = Fmax and Hk = F . We construct a sequence of G-complexes
X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xk, such that for each i ≥ 1,

(a) dim(Xi) ≤ d(Hi) and X
(0)
i = X

(0)
0 ,

(b) XirXi−1 has only orbit types G/Hi,

(c) Xi = Xi−1 if Hi /∈ F0, and

(d) (Xi)
Hi is acyclic, and is contractible if Hi ∈ F0 and d(Hi) 6= 2.

Note that for each H ∈ Fmax, (X0)
H = {H} is contractible, and hence (Xi)

H will be
contractible for all i > 0. Once the Xi have been constructed, we set X = Xk. This
is a (G,F0)-complex; and for all H ∈ F0, dim(XH) ≤ d(H), and XH is acyclic, and
contractible if d(H) 6= 2. And by (a), each vertex of X is in X0, and hence fixed by a
maximal subgroup of F .

It remains to construct the Xi. Assume that Xi−1 has been constructed (i ≥ 1). Then
Xi−1 is an H-universal (G,Hi−1)-complex. By Proposition 1.3 (and by definition of the
Hj),

H∗
(
(Xi−1)

Hi
)
= H∗

(
(Xi−1)

>Hi
) ∼= H∗

(
N ((Hi−1)>Hi

)
)
= H∗

(
N (F>Hi

)
)
.

In particular, by Lemma 1.4, (Xi−1)
Hi is homologically (d(Hi)−1)-dimensional, and is

acyclic if Hi /∈ F0. Also, dim(Xi−1
Hi) ≤ d(Hi): this is clear if i = 0 (dim(X0) = 0), and

holds for i ≥ 1 by (a) since d(Hj) ≤ d(Hi) for j < i by assumption. Thus, if Hi /∈ F0,
we can set Xi = Xi−1.

Assume now that Hi ∈ F0. Write H = Hi and d=d(H) for short. If d = 1, then
(Xi−1)

H is 1-dimensional, and its connected components are all acyclic. By Lemma 1.5,
applied to the N(H)/H-set π0((Xi−1)

H) (the set of connected components of (Xi−1)
H),

(Xi−1)
H has one connected component which is fixed by the action of N(H)/H , and the

other components are permuted freely by N(H)/H . So Proposition 0.2(d) applies to
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show that there is a finite G-complex Xi, obtained by attaching orbits of cells G/H×D1

to Xi−1, such that (Xi)
H is acyclic.

If d > 1, then by Proposition 0.2(a), there is a G-complex Y ⊇ Xi−1, constructed
by attaching cells G/H×Dk for 1 ≤ k ≤ d − 1, such that Y H is (d − 2)-connected
and Hd−1(Y

H) is Z-free. In particular, Y H is still homologically (d − 1)-dimensional,
and dim(Y H) ≤ d. For any subgroup 1 6= K/H ⊆ N(H)/H of prime power order,
(Y H)K/H = Y K = (Xi−1)

K is acyclic by (d): K ∈ F by definition of a separating family,
and so K ∈ Hi−1. Proposition 1.7 now applies to show that Hd−1(Y

H) is stably free as
a Z[N(H)/H ]-module. So by Proposition 0.2(c), we can attach orbits of cells of type
G/H×Dk for k = d − 1, d to Y , to obtain a finite G-complex Xi ⊇ Y such that (Xi)

H

is acyclic.

In fact, one can show for any family F of subgroups of G that there is a universal
(G,F)-complex. But such a complex must be infinite dimensional if F is not a separating
family.

We can now state necessary and sufficient conditions for the existence of universal or
H-universal (G,F)-complexes of a given dimension.

Proposition 1.9. Let G be any finite group, and let F be a separating family for
G. Let F0 ⊆ F be any subfamily with the property that N (F>H) is contractible
(and nonempty) for all H ∈ FrF0. Then there is a finite universal (G,F0)-complex.
Furthermore, the following four conditions are equivalent for any m ≥ 2:

(a) There exists an m-dimensional universal (G,F)-complex (H-universal if m = 2).

(b) There exists a finite m-dimensional universal (G,F0)-complex (H-universal if m =
2).

(c) N (F>H) is homologically (m− 1)-dimensional for each subgroup H ∈ F0.

(d) N ((F0)≥H) is homologically (m − 1)-dimensional for each set H of subgroups of
G.

Proof. Since the nerve N (F) is finite dimensional, the existence of a finite universal
(G,F0)-complex follows from Proposition 1.8.

(a⇒ d) If X is an m-dimensional H-universal (G,F)-complex, then for any set of
subgroups H, XH is homologically (m− 1)-dimensional by Lemma 1.6. Since

H∗(X
H) ∼= H∗(N (F≥H)) ∼= H∗(N ((F0)≥H))

by Proposition 1.3 and Lemma 1.4,N ((F0)≥H) is also homologically (m−1)-dimensional.

(d⇒ c) Follows immediately from Lemma 1.4.

(c⇒ b) Follows immediately from Proposition 1.8.

(b⇒ a) Follows immediately from Lemma 1.4.

As an immediate corollary of Proposition 1.9, we get:

Corollary 1.10. Let G be any finite group, and let F be a separating family for G.
Then there is a (finite) 2-dimensional H-universal (G,F)-complex if and only if N (F>H)
is homologically 1-dimensional for each subgroup H ∈ F , if and only if N (F≥H) is
homologically 1-dimensional for each set H of subgroups of G.
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2. Numbers of cells

Again, G will always be a finite group throughout this section. We prove here some
results which will be useful for keeping track of Euler characteristics of (unions of) fixed
point sets in H-universal G-complexes. The notation used for doing this is defined as
follows:

Definition 2.1. For any family F of subgroups of G, define

iF(H) = i(G,F)(H) =
1

[N(H):H ]
·
(
1− χ(N (F>H))

)
.

for each H ∈ F . Set I(G,F) = i(G,F)(1).

We first note the following elementary relation between Euler characteristics of G-
complexes and of their orbit spaces.

Lemma 2.2. Let X ′ ⊆ X be any pair of finite G-complexes, and assume that all orbits
in XrX ′ are of type G/H for some fixed subgroup H ⊆ G. Then

χ(X)− χ(X ′) = |G/H|·
(
χ(X/G)− χ(X ′/G)

)
.

Proof. For each n ≥ 0, let cn denote the number of n-cells in X not in X ′. Then
χ(X)− χ(X ′) =

∑
n≥0(−1)ncn. By assumption, each G-orbit of cells has order exactly

|G/H|. So the number of n-cells in X/G not in X ′/G is 1
|G/H| ·cn for each n, and thus

χ(X/G)− χ(X ′/G) =
∑

n≥0

cn
|G/H| =

1

|G/H|
(
χ(X)− χ(X ′)

)
.

The relation between these indices and Euler characteristics of universal complexes is
given in the following two lemmas.

Lemma 2.3. Fix a separating family F , a finite H-universal (G,F)-complex X , and a
subgroup H ⊆ G. For each n, let cn(H) denote the number of orbits of n-cells of type
G/H . Then i(H) =

∑
n≥0(−1)ncn(H).

Proof. By Proposition 1.3, there is a G-map f : X → N (F), which restricts to homology
equivalences XH → N (F≥H) and X>H → N (F>H). Thus, by Definition 2.1, and by
Lemma 2.2 applied to the action of N(H) on the complexes X>H ⊆ XH ,

iF (H) =
1

[N(H):H ]
·
(
1− χ(N (F>H))

)
=

1

[N(H):H ]
·
(
χ(XH)− χ(X>H)

)

= χ(XH/N(H))− χ(X>H/N(H)).

Each orbit of cells of type G/H×Dn in X restricts to one of type (N(H)/H)×Dn in
XH , and hence to exactly one n-cell in the orbit space XH/N(H). These are precisely
the cells in XH/N(H) which are not in X>H/N(H), and hence

χ(XH/N(H))− χ(X>H/N(H)) =
∑

n≥0

(−1)ncn(H).
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Lemma 2.4. Let F be any separating family of subgroups of G, and let X be any
finite H-universal (G,F)-complex. Let H ⊆ F be any subset with the property that
K ⊇ H ∈ H and K ∈ F implies K ∈ H. Then

χ(N (H)) = χ
(
XH) =

∑

H∈H
[N(H):H ]·iF(H). (1)

If, furthermore, H is a family (i.e., a union of G-conjugacy classes), then

χ
(
XH/G

)
=

∑

H∈H/conj

iF(H). (2)

Proof. We prove these formulas by induction on |H|; they clearly (vacuously) hold when
H = ∅. Let H be a minimal subgroup of H, and set H′ = Hr{H}. Then N (H) =
N (H′) ∪N (F>H ) C(N (F>H)); in other words, the union of N (H′) and C(N (F>H)) (the
cone over N (F>H)) with intersection N (F>H). So by the Mayer-Vietoris sequence for
the union,

χ(N (H)) = χ(N (H′)) + 1− χ(N (F>H)) = χ(N (H′)) + [N(H):H ]·iF(H);

and so χ(N (H)) = ∑
H∈H[N(H):H ]·iF(H) by induction. Since χ(N (H)) = χ(XH) by

Proposition 1.3, this proves (1).

Now assume that H is a family. For each n ≥ 0 and each H ∈ H, let cn(H) be the
number of orbits of n-cells of type G/H . Let cn(H) be the sum, taken over conjugacy
class representatives for all H ∈ H, of the cn(H). Then cn(H) is precisely the number
of n-cells in XH/G; and so

χ
(
XH/G

)
=

∞∑

n=0

(−1)ncn(H) =
∑

H∈H/conj

∞∑

n=0

(−1)ncn(H) =
∑

H∈H/conj

iF(H)

by Lemma 2.3.

Corollary 2.5. For any separating family F of subgroups of G,
∑

H∈F/conj

iF(H) = 1.

Proof. If X is any finite H-universal (G,F)-complex, then in particular X is acyclic,
and so X/G is acyclic (cf. [Br, Theorem III.7.12]). Thus χ(X/G) = 1, and so the result
follows from Lemma 2.4 (applied with H = F).

The following relations will be useful later, when manipulating nerves of subgroups
of G.

Lemma 2.6. Fix a separating family F of subgroups ofG. Let Fc ⊆ F be the subfamily
of those subgroups H ∈ F such thatN (F>H) is not contractible. Fix a subgroupH ∈ Fc

such that H $ N(H) ∈ F , and let K1, . . . , Kr be G-conjugacy class representatives for
the subgroups K ∈ Fc such that K % H and NK(H) = H . For each j, let aj be the
number of Kj-conjugacy classes of subgroups in Kj which are G-conjugate to H and
self-normalizing in Kj . Then

i(G,F)(H) = −
r∑

j=1

aj·i(G,F)(Kj). (1)
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Proof. For any subgroup H ∈ FrFc, N (F>H) is contractible, and so iF(H) = 0
by Definition 2.1. So we can assume that the K1, . . . , Kr contain G-conjugacy class
representatives for all subgroups K ∈ F such that K % H and NK(H) = H (not just
those in Fc), without changing the right-hand side in (1).

Let X be any finite H-universal (G,F)-complex. Set H = F≥H , and set H0 = {K ∈
F |K ⊇ H, NK(H) % H}. Then N (H) and N (H0) are both contractible by Lemma
0.3(b): the first since H has smallest element H ; and the second since N(H) ∈ H0, and
N(H) ∩K ∈ H0 for all K ∈ H0.

By Lemma 2.4,
∑

K∈HrH0

[N(K):K]·iF (K) = χ(N (H))− χ(N (H0)) = 1− 1 = 0. (2)

Set R = {K ∈ F |K % H, NK(H) = H}; the subgroups K1, . . . , Kr are thus G-
conjugacy class representatives for the elements of R. For each j, set

Sj = {g ∈ G | gKjg
−1 ⊇ H, NgKjg−1(H) = H}

= {g ∈ G | gKjg
−1 ⊇ H, NKj

(g−1Hg) = g−1Hg}.
Then by (2),

iF (H) = −
∑

K∈R

|N(K)|·|H|
|N(H)|·|K|iF (K) = −

∑

K∈R

|N(K)|
|N(H)·K|iF (K)

= −
r∑

j=1


∑

g∈Sj

1

|N(g−1Hg)·Kj|


 iF(Kj);

and it remains only to show that the sum in parentheses is equal to aj : the number
of Kj-conjugacy classes of subgroups g−1Hg for g ∈ Sj. And this follows since for any
g, g0 ∈ Sj, g

−1Hg and g−1
0 Hg0 are Kj-conjugate if and only if there exists a ∈ Kj such

that a−1g−1
0 Hg0a = g−1Hg, if and only if g−1g0a ∈ N(g−1Hg) for some a ∈ Kj , if and

only if g−1g0 ∈ N(g−1Hg)·Kj.

3. Construction of 2-dimensional actions

Again, in this section, G always denotes a finite group. To simplify the statements
of results here and later, for any separating family F of subgroups of G, we write
(G,F) ∈ U2 whenever there exists a 2-dimensional H-universal (G,F)-complex (and
(G,F) /∈ U2 otherwise).

We are now ready to construct the 2-dimensional acyclic actions of the groups G listed
in Theorem A. But we first must look more closely at the question of which subgroups
of G need not appear as isotropy subgroups in a universal (G,F)-complex.

For any G and any separating family F of subgroups of G, we say that H ∈ F is
a critical subgroup in F if N (F>H) is not contractible. As seen in Proposition 1.9,
subgroups which are not critical need not occur as isotropy subgroups in (H-) universal
(G,F)-complexes. When notation is needed, we will denote by Fc the subfamily of
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critical subgroups in F . In the following lemma, we note some conditions which allow
us to show that certain subgroups in F are not critical.

Lemma 3.1. Let F be any family of subgroups of G which has the property that
H ⊆ H ′ ⊆ H ′′ and H,H ′′ ∈ F imply H ′ ∈ F . Fix a subgroup H ∈ F . Then
N (F>H) ≃ ∗ if any of the following conditions hold:

(a) H is not an intersection of maximal subgroups in F .
(b) There is a subgroup Ĥ % H , Ĥ ∈ F , such that K ∩ Ĥ % H for all H $ K ∈ Fc.

Proof. (a) Let F ′ ⊆ F be the subfamily of all intersections of maximal subgroups
in F , and let α : F → F ′ be the function which sends a subgroup to the intersection
of the members of Fmax which contain it. Then α induces a deformation retraction
N (F>H)→ N (F ′

>H) (Lemma 0.3(a)); and N (F ′
>H) is contractible since it contains the

minimal element α(H).

(b) Set H = {K ∈ F |K ∩ Ĥ % H}. Then Ĥ ∈ H, and K ∩ Ĥ ∈ H for all K ∈ H.
So N (H) is contractible by Lemma 0.3(b).

Now (Fc)>H = (Fc)≥H by assumption, and so

N (F>H) ≃ N ((Fc)>H) = N ((Fc)≥H) ≃ N (F≥H) = N (H) ≃ ∗;
where the homotopy equivalences follow from Lemma 1.4.

The following lemma provides a simple sufficient condition for the existence of a 2-
dimensional H-universal (G,F)-complex.

Lemma 3.2. Let F be any separating family of subgroups of G. Assume, for every
nonmaximal critical subgroup 1 6= H ∈ F , that N(H) ∈ F , and that K ∩ N(H) % H
for all nonmaximal critical subgroups K % H in F . Then (G,F) ∈ U2.

More precisely, let M1, . . . ,Mn be conjugacy class representatives for the maximal
subgroups of F , and letH1, . . . , Hk be conjugacy class representatives for all nonmaximal
critical subgroups of F . Then there is a 2-dimensional H-universal (G,F)-complex X
which consists of one orbit of vertices of type G/Mi for each 1 ≤ i ≤ n, (−iF (Hj))-
orbits of 1-cells of type G/Hj for each 1 ≤ j ≤ k, and free orbits of 1- and 2-cells. If,
furthermore, G is simple, then X can be constructed to contain exactly iF(1) free orbits
of 2-cells (and no free orbits of 1-cells).

Proof. Fix a nonmaximal critical subgroup H = Hj ∈ F . If (Fc)>H ⊆ Fmax, then
N (F>H) ≃ N ((Fc)>H) is homologically 0-dimensional by Lemma 1.4. Otherwise, let
H be the set of all K ∈ F>H such that K ∩ N(H) % H , and set Hc = H ∩ Fc. Then
N(H) ∈ H, and K ∩ N(H) ∈ H for all K ∈ H, so N (H) is contractible (Lemma
0.3(b)). Since H ⊆ F and Hc ⊆ Fc are terminal subposets, Lemma 0.4 now applies
to show that N (Hc) ≃ ∗. Thus, N ((Fc)>H) consists of one contractible component
N (Hc), together with some isolated vertices for those maximal subgroups M ∈ F>H

such that M ∩N(H) = H . In particular, N (F>H) is homologically 0-dimensional.

Hence, by Proposition 1.8, there is a finite H-universal (G,Fc)-complex X such that
dim(XM) = 0 for each maximal subgroup M ∈ F , such that dim(XH) = 1 for each
nonmaximal subgroup 1 6= H ∈ Fc, and such that each vertex ofX is fixed by a maximal
subgroup in F . But by Proposition 1.3 and Lemma 1.4, H∗(Xs) ∼= H∗(N (F>1)), so
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N (F>1) is homologically 1-dimensional since Xs is; and by Proposition 1.8 again, X
can be taken to be 2-dimensional.

By the above description of X , we see that all orbits of vertices in X are of type G/M
for maximal M ; that all orbits of edges are of type G/Hi for 1 ≤ i ≤ k or (possibly) free
(of type G/1); and that all orbits of 2-cells are free. Hence the numbers of orbits of cells
of type G/Mi or G/Hj follows from the formula in Lemma 2.3. (Note that iF(M) = 1
whenever M is maximal.) Also, by Proposition 1.7, H1(Xs) is stably free as a Z[G]-
module, and hence is free by Proposition C.4 if G is simple. So by Proposition 0.2(c),
X can be constructed by attaching only free orbits of 2-cells to Xs; and the number of
orbits of cells is again given by Lemma 2.3.

Lemma 3.2 will be applied to construct 2-dimensional actions of the simple groups
L2(q) (= PSL2(q)) for certain q, and of the Suzuki groups. We first list some of the
properties of subgroups of the L2(q) which will be needed here, and also later in Section
6.

Proposition 3.3. Fix q = pk ≥ 4, where p is prime. Then the maximal solvable

subgroups H ⊆ L2(q) = PSL2(q) and H ⊆ PGL2(q) are as described in the following
table. (Note that L2(q) = PGL2(q) when q is a power of 2.)

H ⊆ L2(q) (q odd) H ⊆ PGL2(q)

H Nr. classes H Nr. classes conditions

F⋊C(q−1)/2 1 F⋊Cq−1 1 ——

Dq−1 1 D2(q−1) 1 ——

Dq+1 1 D2(q+1) 1 ——

A4 1 Σ4 1 q ≡ ±3 (mod 8)

Σ4 2 Σ4 1 q ≡ ±1 (mod 8)

Here, in all cases (when q is odd), H = NPGL2(q)(H). Furthermore, each nonsolvable
subgroup of L2(q) is conjugate in PGL2(q) to one of the groups L2(q0) for q0 = pk0 and
k0|k; or to PGL2(q0) for q0 = pk0 and 2k0|k; or (if q is odd and q ≡ ±1 (mod 5)) is
isomorphic to A5.

Proof. See [Sz2, §3.6]. The subgroups of L2(q) are described in [Sz2, Theorems 3.6.25–
26], and in [H1, 8.27]. The uniqueness up to conjugacy of the dihedral groups follows
from [Sz2, 3.6.23]; and the uniqueness of the Fq⋊Cq−1 or Fq⋊C(q−1)/2 follows since they
are normalizers of Sylow p-subgroups. The maximal subgroups A4 or Σ4 are normalizers
of elementary abelian subgroups (C2)

2 ⊆ L2(q), of which there is one or two conjugacy
classes depending on q (mod 8) (see also [H1, 8.16]). The fact that any subgroup
isomorphic to L2(q0) or PGL2(q0) is conjugate (in PGL2(q)) to the standard one follows
from [Sz2, 3.6.20 and Ex. 3.6.1+3].

Note in particular that B (∼= Fq⋊Cq−1 or∼= Fq⋊C(q−1)/2) is represented by the group of
upper triangular matrices, and that D2(q−1) is the subgroup of monomial matrices. The
other dihedral group D2(q+1) or Dq+1 is the subgroup of GL(Fq2) (here Fq2 is viewed as a
2-dimensional vector space over Fq) of all transformations of determinant one generated



Bob Oliver and Yoav Segev 19

by multiplying by an element of Fq2 or by applying the Frobenius automorphism (x 7→
xq).

Finally, the results about maximal subgroups of PGL2(q) follow from the information
about subgroups of L2(q

2) ⊇ PGL2(q).

We first construct actions of the groups L2(2
k).

Example 3.4. Set G = L2(q), where q = 2k and k ≥ 2. Then there is a a 2-dimensional
acyclic fixed point free G-complex X , all of whose isotropy subgroups are solvable. More
precisely, X can be constructed to have three orbits of vertices with isotropy subgroups
isomorphic to Fq⋊Cq−1, D2(q−1), and D2(q+1); three orbits of edges with isotropy sub-
groups isomorphic to Cq−1, C2, and C2; and one free orbit of 2-cells.

Proof. Let SLV be the separating family of solvable subgroups of G, and let SLVc ⊆
SLV be the subfamily of all critical subgroups in SLV . By Proposition 3.3, the maximal
solvable subgroups of G are the groups B = Fq⋊Cq−1, D2(q−1), and D2(q+1), where each
occurs with exactly one conjugacy class.

The Borel subgroups of G are those conjugate to B; or equivalently those subgroups
of G which fix a line (a 1-dimensional subspace of (Fq)

2). Every subgroup of G of
even order is contained in at most one Borel subgroup, since the subgroup of elements
fixing any two distinct lines is cyclic of order q−1. Also, any subgroup contained in
both a Borel subgroup and a dihedral subgroup must have order 2. Thus, C2 is the
only subgroup of even order contained in more than one maximal subgroup in SLV .
Any nontrivial odd order subgroup is contained in a unique maximal dihedral subgroup
(its normalizer); and a subgroup Cr for 1 6= r|(q−1) is contained in exactly two Borel
subgroups corresponding to the two lines (eigenspaces) it leaves invariant. Thus, since
each critical subgroup must be an intersection of maximal subgroups in SLV (Lemma
3.1), the only possible critical subgroups are the maximal subgroups, together with Cq−1,
C2, and 1 (one conjugacy class each).

Computations using Lemma 2.6 (and Corollary 2.5 to determine iSLV(1)) now yield
the following table.

H ∈ SLVc K ∩N(H) = H i(H)

B = Fq ⋊ Cq−1 — 1

D2(q−1) — 1

D2(q+1) — 1

Cq−1 B −1
C2 D2(q±1) −2
1 — 1

Table 1
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From this, it is clear that the hypotheses of Lemma 3.2 are satisfied, and hence that
(L2(q),SLV) ∈ U2. More precisely, the lemma and table show that there is an H-
universal (G,SLVc)-complex, with three orbits G/B, G/D2(q−1), and G/D2(q+1) of ver-
tices; with three orbits G/C2, G/C2, and G/Cq−1 of 1-cells; and with one free orbit of
2-cells.

Before continuing with the construction of the actions of other groups, we want to
discuss the classical example of an A5-action, and its relationship with the construction
(when G = L2(4) ∼= A5) in Example 3.4. We first establish our notation. We write
SO(3) = SO(3,R), and write S3 = SL1(H) ∼= SU(2,C) for the group of unit quaternions
(elements of norm one in the quaternion algebra H over R). There is a homomorphism
S3 → SO(3), surjective with kernel {±1}, which is defined by sending a ∈ S3 ⊆ H to
the matrix of the conjugation map (x 7→ axa−1) on the subspace 〈i, j, k〉 ⊆ H. Thus,
we regard S3 as a two fold cover of SO(3).

We now identify A5
∼= L2(5) as the icosahedral subgroup of SO(3), and let A∗

5
∼=

SL2(5) (the binary icosahedral group) denote its inverse image in S3. Consider the
action of A5 via left multiplication on the space Σ3 = SO(3)/A5

∼= S3/A∗
5 of left cosets.

This space is the Poincaré sphere, a 3-manifold which has the homology of the 3-sphere,
and whose fundamental group is isomorphic to the perfect group A∗

5. Then A5 acts with
fixed point set (SO(3)/A5)

A5 = N(A5)/A5 = pt. Upon removing an open invariant ball
around the fixed point, we obtain a compact acyclic 3-manifoldM (with boundary) upon
which A5 acts without fixed points. This was the starting point for the construction by
Floyd and Richardson [FR] of an action of A5 on a disk without fixed points (see also
[Br, §I.8] for more details). Since ∂M 6= ∅, M can now be collapsed to a 2-dimensional
subcomplex X ≃M , upon which A5 still acts without fixed point.

This last step can be made more explicit. Let P denote the regular polytope with 120
dodecahedral faces, and let Γ be its symmetry group. Clearly, Γ ⊆ SO(4) ∼= S3×C2S

3,
and Γ contains A5 (the group of symmetries leaving one face invariant) with index
120. This implies that Γ ∼= A∗

5×C2A
∗
5; and hence that Γ contains a binary icosahedral

subgroup A∗
5 which permutes freely the faces of P . So Σ3 ∼= S3/A∗

5 can be identified
with the space D/∼, obtained by identifying opposite faces of the solid dodecahedron
D in an appropriate way. This is in fact Poincaré’s original construction of the Poincaré
sphere. For more details on the identification, and another way of showing that these
two constructions are equivalent, we refer to [KS, pp. 124–128].

Under this identification of Σ3 with D/∼, the A5 action on Σ3 is induced by the usual
action on the dodecahedron. The fixed point is thus the center of D; and the operation
of removing the fixed point and collapsing the remaining space to a 2-dimensional sub-
complex corresponds to removing the center of D and then collapsing to its boundary.
The result is an explicit 2-dimensional complex X = ∂D/∼ with fixed point free action
of A5, which has 6 pentagonal 2-cells, 10 edges, and 5 vertices.

Here’s another, quicker way to construct this last complex. Let X0 be the 1-skeleton
of the 4-simplex, with the obvious action of A5 permuting the five vertices. Any 5-cycle
in A5 (in the vertices of X0) tells us how to attach a pentagon to X0; and two such
pentagons will be in the same orbit of A5 if and only if the corresponding 5-cycles are
conjugate. So by attaching to X0 six pentagons corresponding to one conjugacy class of
5-cycles in A5, we obtain a 2-complex X with A5-action. One can check directly that
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X is acyclic (and with a bit more work show that π1(X) ∼= A∗
5); but one also sees easily

that it is identical with the previous construction based on the dodecahedron.

If we now subdivide each pentagon in (either of) these spaces, as a union of ten
2-simplices (by adding extra vertices at the midpoints of edges and centers of faces),
we have constructed an A5-complex of the type constructed in Example 3.4 — except
that the 2-cells have been attached explicitly. This is also identical to the A5-simplicial
complex constructed in [S1, §3] and in [AS, §9]. We also note here that for k ≥ 3, the
L2(2

k)-complexes constructed in Example 3.4 have the same 1-skeleton as the complexes
constructed in [AS, §9] (which were not acyclic); they differ only in the way the 2-cells
are attached.

We now consider G = L2(q), when q ≡ ±3 (mod 8) is an odd prime power.

Example 3.5. Assume that G = L2(q), where q = pk ≥ 5 and q ≡ ±3 (mod 8). Then
there is a a 2-dimensional acyclic fixed point free G-complex X , all of whose isotropy
subgroups are solvable. More precisely, X can be constructed to have four orbits of
vertices with isotropy subgroups isomorphic to Fq⋊C(q−1)/2, Dq−1, Dq+1, and A4; four
orbits of edges with isotropy subgroups isomorphic to C(q−1)/2, C

2
2 , C3, and C2; and one

free orbit of 2-cells.

Proof. Since L2(5) ∼= L2(4) has already been dealt with in Example 3.4, we assume for
simplicity that q > 5. Let SLV be the separating family of solvable subgroups of G,
and let SLVc ⊆ SLV be the subfamily of all critical subgroups in SLV . By Proposition
3.3, the maximal solvable subgroups of G are the groups

Dq−1, Dq+1, A4, and B = Fq⋊C(q−1)/2,

where each occurs with exactly one conjugacy class.

Any subgroup H ∈ SLV of order a multiple of p is contained in a unique subgroup
conjugate to B (it fixes a unique line in (Fq)

2); and is contained in one of the other
maximal subgroups only if p = 3 and H ∼= C3. If 1 6= H ∈ SLV has order prime to p,
is not maximal, and is not isomorphic to C2, then either it is cyclic of order dividing
(q− 1)/2 and contained in one dihedral group and two Borel subgroups (corresponding
to the two lines in (Fq)

2 fixed by H), or it is cyclic of order dividing (q + 1)/2 and is
contained in a unique Dq+1 (its normalizer), or H is dihedral and contained in a unique
maximal dihedral subgroup Dq±1 (the normalizer of its index 2 subgroup). Since each
critical subgroup must be an intersection of maximal subgroups in SLV (Lemma 3.1),
we have now shown that the only possible critical subgroups are the maximal subgroups,
together with one conjugacy class each of subgroups C(q−1)/2, C3, C

2
2 , C2, and 1.

In the following table, D+ denotes the maximal dihedral subgroup of order q± 1 ≡ 0
(mod 4), and D− the other (conjugacy class of) maximal dihedral subgroup (note that
D+ = N(C2)). Recall that we are assuming that q > 5 (otherwise Dq−1 = C2

2).
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H ∈ SLVc K ∩N(H) = H i(H)

B = Fq ⋊ C(q−1)/2 — 1

Dq−1 — 1

Dq+1 — 1

A4 — 1

C(q−1)/2 B −1
C2

2 D+ −1
C3 A4 −1
C2 D− −1
1 — 1

Table 2

As before, the computations of iSLV(H) for nonmaximal 1 6= H ⊆ G all follow from
Lemma 2.6, and the computation of iSLV(1) then follows from Corollary 2.5.

Lemma 3.2 now applies to show that (L2(q),SLV) ∈ U2. More precisely, together
with Table 2, it shows that a 2-dimensional H-universal (L2(q),SLV)-complex X can
be constructed with four orbits of vertices of types G/B, G/Dq−1, G/Dq+1, and G/A4;
four orbits of 1-cells of types G/C2

2 , G/C(q−1)/2, G/C3, and G/C2; and one free orbit
of 2-cells. Note that G/C(q−1)/2×D1 always connects the orbits G/B and G/Dq−1, and
G/C2×D1 always connects the orbits G/Dq−1 and G/Dq+1. The orbit of cells G/C

2
2×D1

connects G/A4 to G/Dq−1 or G/Dq+1, depending on q modulo 8. And the orbit of cells
G/C3×D1 connects G/A4 to one of G/B (if q = 3k), or to G/Dq±1 (whichever has order
a multiple of 3).

The third family of groups with 2-dimensional actions consists of the Suzuki groups
Sz(q), for all q = 22k+1 ≥ 8. In order to specify more precisely subgroups of Sz(q),
we regard it as a subgroup of GL4(Fq) as described in [HB3, §XI.3]. The following
properties of Sz(q) and its subgroups will be needed here, as well as in Section 6.

Proposition 3.6. Fix q = 22k+1, and let θ ∈ Aut(Fq) be the automorphism xθ =

x2
k+1

= x
√
2q (thus (xθ)θ = x2). For a, b ∈ Fq and λ ∈ (Fq)

∗, define elements

S(a, b) =




1 0 0 0
a 1 0 0
b aθ 1 0

a2+θ + ab+ bθ a1+θ + b a 1


 ,

and

M(λ) =




λ1+2k 0 0 0

0 λ2
k

0 0

0 0 λ−2k 0

0 0 0 λ−1−2k


 , τ =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 .

Set S(q, θ) = 〈S(a, b) | a, b ∈ Fq〉, T = 〈M(λ) | λ ∈ (Fq)
∗〉 ∼= Cq−1, and

B =M(q, θ) = S(q, θ)⋊T and N = 〈T, τ〉 ∼= D2(q−1).
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Then Sz(q) ∼= 〈M(q, θ), τ〉, and under this identification the following hold:

(a) S(q, θ) is a Sylow 2-subgroup of Sz(q).

(b) There are four conjugacy classes of maximal subgroups in Sz(q) which are solvable:
(B), (N), (M+), and (M−), where

M+
∼= Cq+

√
2q+1⋊C4 and M− ∼= Cq−√

2q+1⋊C4.

These are the only maximal solvable subgroups in Sz(q).

(c) Each nonsolvable subgroup of Sz(q) is conjugate to Sz(q0), for some q0 = 22m+1

where (2m+ 1)|(2k + 1).

(d) Sz(q) is contained in the 4-dimensional symplectic group over Fq:

Sz(q) ⊆ Sp4(q)
def
= {g ∈ GL4(q) | gτgt = τ},

where gt is the transpose of g and τ is as above.

(e) All of the subgroups B,N, T, S(q, θ), Sz(q) are invariant under the automorphisms
of GL4(q) induced by automorphisms of the field Fq.

(f) | Sz(q)| = q2(q−1)(q2+1) = q2·(q−1)·(q+√2q+1)·(q−√2q+1), where the four fac-
tors in the second expression are pairwise relatively prime.

Proof. See [HB3, §XI.3]. Note in particular the relations

S(a, b)·S(c, d) = S(a+ c, b+ d+ aθc) and M(λ)−1S(a, b)M(λ) = S(λa, λ1+θb).

The list of maximal subgroups of Sz(q) (points (b) and (c)) is shown in [Sz1, Theorem
9].

Note that if q0 = 22m+1, where (2m+1)|(2k+1), then Sz(q)∩GL4(q0) = Sz(q0) (and
similarly for the other subgroups). The inclusion Sz(q0) ⊆ Sz(q) follows since 2k ≡ 2m

(mod 22m+1−1), and hence x2
k

= x2
m

for all x ∈ Fq0. The inclusion Sz(q) ∩GL4(q0) ⊆
Sz(q0) then follows from (c).

We are now ready to construct actions of Sz(q) on acyclic 2-complexes.

Example 3.7. Set q = 22k+1, for any k ≥ 1. Then there is a 2-dimensional acyclic fixed
point free Sz(q)-complex X , all of whose isotropy subgroups are solvable. More precisely,
X can be constructed to have four orbits of vertices with isotropy subgroups isomorphic
to M(q, θ), D2(q−1), Cq+

√
2q+1⋊C4, and Cq−√

2q+1⋊C4; four orbits of edges with isotropy
subgroups isomorphic to Cq−1, C4, C4, and C2; and one free orbit of 2-cells.

Proof. Set G = Sz(q). By Proposition 3.6, G contains the following maximal solvable
subgroups:

M(q, θ), D2(q−1), Cq+
√
2q+1⋊C4, and Cq−√

2q+1⋊C4;

with one conjugacy class for each isomorphism type. If 1 6= H ∈ SLV and (|H|, q2+1) 6=
1, then H is contained in a unique maximal subgroup Cq2±√

2q+1⋊C4: the normalizer
of its unique maximal odd order subgroup. Likewise, if H is dihedral of order dividing
2(q−1) (and |H| 6= 2), then H is contained in a unique maximal subgroup D2(q−1); while

if |H|
∣∣(q − 1) then H is contained in the same maximal subgroups as its centralizer of

order q − 1. Any subgroup of even order which is not dihedral is contained in at most
one maximal subgroup, conjugate to M(q, θ). (The centralizer of any involution in G is
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a 2-group by [Sz1, Proposition 1], and each involution in the Sylow subgroup S(q, θ) is
central. So an involution cannot be in two Sylow subgroups.) Thus, any subgroup which
is an intersection of two or more maximal subgroups is isomorphic to one of the groups
Cq−1, C4, C2, or 1; and these are the only possible critical subgroups by Lemma 3.1(a).
There is just one conjugacy class each of subgroups Cq−1 or C2 (note, for example, that
all subgroups of order 2 in S(q, θ) are conjugate in M(q, θ)). By [Sz1, Proposition 18],
G contains two conjugacy classes of elements of order 4, and it is easy to check by direct
calculations that an element of order 4 in G is not conjugate to its inverse. Hence G
contains just one conjugacy class of C4’s.

Now let SLVc be the subfamily of critical subgroups in SLV . Consider the following
table of values for iSLV(H) for H ∈ SLVc:

H ∈ SLVc K ∩N(H) = H i(H)

B =M(q, θ) — 1

D2(q−1) — 1

Cq+
√
2q+1 ⋊ C4 — 1

Cq−√
2q+1 ⋊ C4 — 1

Cq−1 M(q, θ) −1
C4 Cq±√

2q+1 ⋊ C4 −2
C2 D2(q−1) −1
1 — 1

Table 3

When H ∼= Cq−1, C4, or C2, then iSLV(H) is computed using Lemma 2.6. (Note that
C2 can never be self-normalizing in any group of order a multiple of 4.) The value of
iSLV(1) then follows from Corollary 2.5.

Lemma 3.2 now applies to show that (Sz(q),SLV) ∈ U2. More precisely, there is a
2-dimensional H-universal (Sz(q),SLV)-complex which has four orbits of vertices and
four orbits of edges (with isotropy subgroups as given in Table 3), and one free orbit of
2-cells.

4. Reduction to simple groups

Throughout this section, G will be a finite group. Recall that a G-complex X is called
essential if there is no normal subgroup 1 6= N ⊳ G, with the property that the inclusion
XN ⊆ X is a G-Z-equivalence; i.e., such that XNH → XH is a homology equivalence
for all H ⊆ G. We would like to be able to show directly that all groups which have
essential fixed point free actions on acyclic 2-complexes are simple. Instead, in this
section, we prove a slightly weaker result (Proposition 4.4), where we show that any
group with such an action is an extension of a simple group by outer automorphisms.
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The proof of this uses the result in [S1] that the fixed point set of any group acting
on a 2-dimensional acyclic complex must be acyclic or empty. Since the proof in [S1]
requires the odd order theorem, we give here a different one, which is more elementary.

Theorem 4.1 [S1, Theorem 3.4]. Let X be any 2-dimensional acyclic G-complex (not
necessarily finite). Then XG is acyclic or empty, and is acyclic if G is solvable.

Proof. The first half of the following proof is essentially the same as that in [S1], but is
included here for the sake of completeness.

If G is a p-group for some prime p, then XG is Z/p-acyclic by Smith theory (cf. [Br,
Theorem III.7.12]), and homologically 1-dimensional by Lemma 1.6. It follows that XG

is Z-acyclic in this case.

Now assume that G is a minimal group for which there is a counterexample. Then G
must be simple and nonabelian — since if N ⊳ G were a proper normal subgroup, then
XN would be acyclic, and hence XG = (XN)G/N would be acyclic or empty (acyclic
if G is solvable) by the minimality of G. Also, XH is acyclic for all H $ G, and
XG =

⋂
H$GX

H is homologically 0-dimensional by Lemma 1.6 again. In other words,

each connected component of XG is acyclic, and it remains to show that there is at most
one component.

Assume otherwise: let k ≥ 2 be the number of connected components of XG. Let F
be the (separating) family of proper subgroups H $ G. Very roughly, we will show that
X “looks like” the join of an H-universal (G,F)-complex Y with a set of k points. But
for X to be 2-dimensional, Y would have to be 1-dimensional, i.e., a tree; and this is
impossible.

To make this precise, let F+ denote the poset which consists of F , together with k
elements (G, i) for i = 1, . . . , k. Extend the ordering on F by setting (G, i) ⊇ H for all
H ∈ F , and with no inclusion relations between the (G, i). Write XG = F1 ∐ · · · ∐ Fk,
where the Fi are the connected components. We now apply Lemma 0.1, with the
covering of X given by XH = XH for H ∈ F , and X(G,i) = Fi. Thus, Xα is acyclic for
each α ∈ F+. So by Lemma 0.1, for each H ∈ F , H∗(X>H) ∼= H∗(N ((F+)>H)), and
thus N ((F+)>H) is homologically 1-dimensional (Lemma 1.6). But the poset (F+)>H

consists of F>H together with the elements (G, i), and so its nerve is the union of k
cones over N (F>H). This complex contains the suspension of N (F>H) as a retract (i.e.,
the case k = 2); and hence N (F>H) is homologically 0-dimensional. Since this holds
for all H ∈ F , Proposition 1.8 now applies to show that there is a finite 1-dimensional
universal (G,F)-complex Y . But then Y is a tree upon which G acts without fixed
points, and this is impossible (cf. [Se, §I.6]).

The following easy consequence of Theorem 4.1 turns out to be very useful. Its proof
involves collapsing out certain subcomplexes of a CW complex to create new fixed points,
and get a contradiction to Theorem 4.1. In general, if X is a G-complex and A ⊆ X
is a G-invariant subcomplex, then X/A is defined to be the quotient space X/∼, where
x∼y if x = y or x, y ∈ A. This quotient space has an obvious structure as a G-complex:
where (X/A)(n) = X(n)/∼, and where X/A has one vertex for the identification point
A/A and otherwise one cell for each cell in X not in A (see [LW, Theorem II.5.11],
taking Y = pt). The homology groups of X , A, and X/A are linked by exact sequences
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(coming from the fact that Cn(X/A)/Cn(pt) ∼= Cn(X)/Cn(A)). In particular, if A is
acyclic, then H∗(X/A) ∼= H∗(X).

Corollary 4.2. LetX be any 2-dimensional acyclic G-complex. Assume that A,B ⊆ X
are G-invariant acyclic subcomplexes such that A ∪B ⊇ XG. Then A ∩ B 6= ∅.

Proof. Assume otherwise: that A ∩ B = ∅. Let Y be the G-complex obtained by
identifying the subcomplexes A and B each to a point. Then Y is still acyclic, since
A and B are, and Y G consists of the two identification points. And this contradicts
Theorem 4.1, which says that Y G must be acyclic or empty.

As immediate consequences of Corollary 4.2 we get:

Lemma 4.3. Let X be a 2-dimensional acyclic G-complex. Then the following hold.

(a) [AS, 4.5] If H,N ⊆ G are such that H ⊆ NG(K) and XH and XK are nonempty,
then XHK 6= ∅.

(b) If H ⊆ G is such that XH = ∅, then XCG(H) 6= ∅.

Proof. If XG 6= ∅, then (a) and (b) are obvious. So assume XG = ∅.
(a) Since H normalizes K, both XH and XK are H-invariant acyclic subcomplexes

of X . So by Corollary 4.2, if XH and XK are nonempty, then XH ∩XK = XHK 6= ∅.
(b) It suffices to prove this when H is minimal among subgroups without fixed points.

Fix a pair M,M ′ ⊆ H of distinct maximal subgroups (H is nonsolvable). Then XM

and XM ′

are nonempty, but XM ∩ XM ′

= X〈M,M ′〉 = XH = ∅. Thus XM and XM ′

are disjoint CG(H)-invariant acyclic subcomplexes of X , and so CG(H) must have fixed
points by Corollary 4.2.

As a first consequence of Lemma 4.3, we can now prove:

Theorem B. Let G be any finite group, and let X be any 2-dimensional acyclic G-
complex. Let N be the subgroup generated by all normal subgroups N ′

⊳ G such that
XN ′ 6= ∅. Then XN is acyclic; X is essential if and only if N = 1; and if N 6= 1 then
the action of G/N on XN is essential.

Proof. If XN1 6= ∅ and XN2 6= ∅, where N1, N2 ⊳ G, then X〈N1,N2〉 6= ∅ by Lemma
4.3(a). Thus XN is nonempty, and is acyclic by Theorem 4.1. The action of G/N on
XN is always essential, since any nontrivial normal subgroup of G/N has empty fixed
point set.

Now assume that N 6= 1. For all H ⊆ G, XH and XNH are acyclic or empty by
Theorem 4.1; andXNH is nonempty ifXH is by Lemma 4.3(a). So the inclusion XNH →
XH is always an equivalence of integral homology, and hence X is not essential.

We are now ready to prove:

Proposition 4.4. If G is a nontrivial finite group for which there exists an essential
2-dimensional acyclic G-complex X , then G is almost simple. More precisely, there is
a normal subgroup L ⊳ G, such that L is simple, such that XL = ∅, and such that
CG(L) = 1 (i.e., G ⊆ Aut(L)).
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Proof. By Theorem B, XN = ∅ for all proper normal subgroups 1 6= N ⊳ G. In
particular, XG = ∅.

Fix a minimal normal subgroup 1 6= L ⊳ G. Then L is nonsolvable, since XL 6= ∅.
Hence L is a direct product of isomorphic nonabelian simple groups (cf. [Go, Theorem
2.1.5]).

Assume first that L is not simple. By Lemma 4.3(b), XH 6= ∅ for some simple
factor H ⊳ L; and L = 〈gHg−1 | g ∈ G〉 since it is a minimal normal subgroup. Since

XgHg−1
= g(XH) 6= ∅ for all g, XL 6= ∅ by Lemma 4.3(a) (applied to the action of L on

X). And this is a contradiction.

Thus, L is simple. Set H = CG(L). Then H ⊳ G, and XH 6= ∅ by Lemma 4.3(b);
and so H = 1 (again since the G-action on X is essential).

Using Proposition 4.4, when determining which finite groups have essential fixed point
free actions on 2-dimensional acyclic complexes, it suffices first to determine which simple
groups have such actions, and then consider automorphism groups only of those simple
groups which do have them.

5. Some conditions for nonexistence of 2-dimensional actions

Again, throughout this section, G is a finite group. We recall two definitions intro-
duced in Section 3. If F is a separating family for G, then Fc denotes the subfamily
of critical subgroups for F : the set of all H ∈ F such that N (F>H) 6≃ ∗. And U2
denotes the class of pairs (G,F) (where F is a separating family for G) for which there
exists a 2-dimensional H-universal (G,F)-complex. We have already constructed some
examples of pairs (G,F) which do lie in U2, and next want to show that they are the
only ones. In this section, we develop some general techniques for doing this.

For any G-complex X , and any n > 1, it will be convenient to write X [n] to denote
the union of fixed point sets of subgroups of order a multiple of n; or equivalently the set
of all x ∈ X for which n

∣∣|Gx|. Also, for any family F of subgroups of G, we write F[n] to
denote the subfamily of those subgroups in F of order a multiple of n. We will see that
if (G,F) ∈ U2, then not only is N (F[n]) homologically 1-dimensional for all n, but its
orbit space N (F[n])/G is homologically 0-dimensional (i.e., its connected components
are acyclic).

In Section 5a, conditions are established which allow us to directly detect elements
in H2(N (F[n])), for appropriate n, via Euler characteristic arguments. The properties
of N (F[n])/G are shown in Section 5b, and then another set of criteria are found which
detect elements in H1(N (F[n])/G). Afterwards, conditions on G and F are set up in
Section 5c which imply that for any 2-dimensional H-universal (G,F)-complex X , the
singular set Xs is itself acyclic (and hence H-universal); and then Section 5d deals with
the problem of showing that this is impossible.
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5a. Detecting 2-cycles in nerves of posets of subgroups

Our main tool here for directly detecting elements in the second homology of nerves of
posets of subgroups will be certain “coset complexes”. We adopt the following notation:

Definition 5.1. Fix any group G, and any triple K1, K2, K3 of subgroups of G. Define

≪K1, K2, K3≫ =≪K1, K2, K3≫G

to be the G-simplicial complex with vertex set (G/K1) ∐ (G/K2) ∐ (G/K3) (where G
acts by left translation), and with a 1- or 2-simplex for every pair or triple of cosets with
nonempty intersection.

Thus, each edge in ≪K1, K2, K3≫ has the form [aKi, aKj ] for some a ∈ G and some
1 ≤ i < j ≤ 3, and each 2-simplex has the form [aK1, aK2, aK3] for some a ∈ G. In
many cases, one can show that H2(≪K1, K2, K3≫) 6= 0 via an easy counting argument:

Lemma 5.2. Fix any group G, and any sequence K1, K2, K3 of subgroups of G. Set
Kij = Ki∩Kj , K = K1∩K2∩K3, and G

′ = 〈K1, K2, K3〉. Assume that

1

[K12:K]
+

1

[K13:K]
+

1

[K23:K]
≤ 1; (1)

or (more generally) that

∑

i<j

1

[Kij :K]
< 1 +

3∑

i=1

1

[Ki:K]
− 1

[G′:K]
. (2)

Then H2(≪K1, K2, K3≫G) 6= 0.

Proof. Set X =≪K1, K2, K3≫G for short. By construction, X is the union of its closed

2-simplices, each of which is of the form a∆
def
= [aK1, aK2, aK3] for some a ∈ G. Two

2-simplices a∆ and b∆ intersect if and only if aKi = bKi for some i. Upon making this
relation transitive, we see that a∆ and b∆ are in the same connected component of X
if and only if a and b are in the same left coset of G′ = 〈K1, K2, K3〉; and so there are
exactly [G:G′] connected components.

By definition, X has three orbits of vertices of type G/Ki, three orbits of edges of
type G/Kij, and one orbit of 2-simplices of type G/K. Hence

χ(X) = [G:K]−
∑

i<j

[G:Kij ] +
3∑

i=1

[G:Ki]

= [G:K]·
(
1−

∑

i<j

1

[Kij :K]
+

3∑

i=1

1

[Ki:K]

)
> [G:G′] = rk(H0(X));

where the inequality follows from (1) or (2). And this implies that H2(X) 6= 0.

The following proposition is a first application of Lemma 5.2. Recall that Fc denotes
the subfamily of critical subgroups in a separating family F .
Proposition 5.3. Fix a finite group G and a separating family F for G. Fix subgroups
K0 % K1 % K2 in F , and set Ni = NG(Ki), Nij = Ni ∩Nj , and N = N0 ∩N1 ∩N2. Set
F0 = Fc ∪ (K1) ∪ (K2). Assume that the following hold:
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(a)
∑

i<j

1

[Nij :N ]
< 1 +

2∑

i=0

1

[Ni:N ]
− 1

[G′:N ]
, where G′ = 〈N0, N1, N2〉.

(b) K0 is maximal in F .
(c) If H,H ′ ∈ F0 are such that K2 $ H ⊆ K1 and H $ H ′ $ K0, then H

′ ⊆ K1.

Then H2(F≥(K2)) 6= 0; and so (G,F) /∈ U2.

Proof. Set H = (F0)≥(K2). Consider the 2-simplex σ = {K2, K1, K0} in N (H), and let
X ⊆ N (H) be the subcomplex generated by the 2-simplices gσ for all g ∈ G (where G
acts by conjugation). Then X ∼= ≪N0, N1, N2≫G; and H2(X) 6= 0 by (a) and Lemma
5.2.

Let z be any 2-cycle in X such that 0 6= [z] ∈ H2(X). After conjugating, if necessary,
we can assume that the coefficient in z of σ is nonzero. Set Q = H<K0

>K2
, and let Q′ be

the set of those H ∈ Q such that the coefficient in z of {K2, H,K0} is nonzero. By
construction, every element of Q′ is G-conjugate (in fact, N02-conjugate) to K1; and
by condition (c), every element of Q in the same N (Q)-connected component as K1 is
contained in K1. Lemma 0.5 now implies that 0 6= [z] ∈ H2(N (H)); and so (G,F) /∈ U2
by Proposition 1.9.

Two n-tuples of subgroups (H1, . . . , Hn) and (H ′
1, . . . , H

′
n) in G will be called G-

conjugate if there is some g ∈ G such that H ′
i = gHig

−1 for all i. The normalizer
NG(H1, . . . , Hn) of such an n-tuple is just the intersection of the normalizers NG(Hi).

The next proposition is a somewhat more complicated application of Lemma 5.2.

Proposition 5.4. Fix a separating family F of G. Let K1, K2, K3 ∈ F be three
subgroups such that neither K2 nor K3 is conjugate to K1. Set Kij = Ki ∩ Kj and
K = K1 ∩K2 ∩K3. Let F0 ⊆ F denote the subfamily consisting of Fc, together with
all subgroups conjugate to any of the Ki, Kij , or K. Assume the following conditions
hold:

(a1)
1

[K12:K]
+

1

[K13:K]
+

1

[K23:K]
≤ 1; or more generally

(a2)
1

[K12:K]
+

1

[K13:K]
+

1

[K23:K]
< 1+

1

[K1:K]
+

1

[K2:K]
+

1

[K3:K]
− 1

[G′:K]
, where

G′ = 〈K1, K2, K3〉.
(b) K1 is maximal in F .
(c) There is no H ∈ F0 such that K $ H $ K12 or K12 $ H $ K1.

(d) NG(K1, K12, K) = K.

(e) The triples (K1, K12, K) and (K1, K13, K) are not G-conjugate.

Then H2(F≥(K)) 6= 0; and so (G,F) /∈ U2.

Proof. Consider the complex X = ≪K1, K2, K3≫ of Definition 5.1, and let X∗ denote
its barycentric subdivision. To distinguish between simplices of X∗ and of N (F), we
put parentheses (−) around the former and curly brackets {−} around the latter. The
vertices in X∗ will be denoted (gKi) (the vertices in X), (gKij) (the midpoint of the
edge (gKi, gKj)), and (gK) (the barycenter of the 2-simplex (gK1, gK2, gK3)).
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We have H2(X) 6= 0 by (a1) or (a2), together with Lemma 5.2. Fix a 2-cycle z in
X such that 0 6= [z] ∈ H2(X). We can assume that the coefficient in z of the simplex
(K1, K2, K3) is nonzero (otherwise compose with the action of some appropriate element
of G). Let z∗ be the corresponding 2-cycle in the barycentric subdivision X∗ of X .

Let f : X∗ → N ((F0)≥(K)) be the G-equivariant simplicial map which sends each ver-
tex inX∗ to its isotropy subgroup. Thus f(gKi) = {gKig

−1}, f(gKij) = {gKijg
−1}, and

f(gK) = {gKg−1}. By conditions (d) and (e), and since neither K2 nor K3 is conjugate
toK1, the only simplex inX∗ which is sent to {K1, K12, K} is (K1, K12, K), and this sim-
plex has nonzero coefficient in the 2-cycle z∗. Hence {K1, K12, K} has nonzero coefficient
in the 2-cycle f(z∗). By (b) and (c), {K1, K12, K} is maximal in N ((F0)≥(K)) (not in the
boundary of any 3-simplex), and hence [f(z∗)] 6= 0 inH2(N ((F0)≥(K))) = H2(N (F≥(K)))
(Lemma 1.4). And thus (G,F) /∈ U2 by Proposition 1.9(a⇒ d).

5b. Detecting nonzero elements in H1(X
[n]/G)

Recall that for any n and F , F[n] ⊆ F denotes the subfamily of all subgroups in F of
order a multiple of n. We first show, for (G,F) ∈ U2, that the connected components of
the orbit space of N (F[n]) are all acyclic, and then set up some conditions which detect
elements in their first homology groups. The starting point for all of this is the following
result, a consequence of Smith theory.

Proposition 5.5. If X is any finite dimensional acyclic G-complex, then X/G is also
acyclic. If f : X → Y is any equivariant map between finite dimensional G-complexes
which induces an isomophism H∗(X ;Z) ∼= H∗(Y ;Z), then f/G induces an isomorphism
H∗(X/G;Z) ∼= H∗(Y/G;Z).

Proof. The first statement is shown, for example, in [Br, Theorem III.7.12]. The second
statement follows from the first, since f induces an isomorphism in integral homology
if and only if its mapping cone Cf is acyclic, and similarly for f/G. (Note that Cf/G

∼=
(Cf)/G.)

The following result is similar to one used in [O3], but formulated here for acyclic
rather than Fp-acyclic spaces.

Proposition 5.6. Fix a prime p, and let X be a finite dimensional acyclic G-complex
with the property that XP is acyclic for all p-subgroups P ⊆ G. Then for any
(nonempty) family P of p-subgroups of G, XP/G is acyclic.

Proof. We assume that any p-group which contains an element of P also lies in P (if
not just add these groups to the family). For the purposes of this proof, we define, for
any p-subgroup P ⊆ G,

XP
s =

⋃

Q%P
Q a p-subgr.

XQ and X(P )
s = G·XP

s =
⋃

Q%P
Q a p-subgr.

X(Q).

We first claim that for any P ∈ P, the inclusion ofXP into X(P ) induces an isomorphism
of homology groups

H∗(X
P/N(P ), XP

s /N(P ))
∼=−−−−−→ H∗(X

(P )/G,X(P )
s /G). (1)
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In fact, the inclusion induces an isomorphism

C∗(ι) : C∗(X
P/N(P ), XP

s /N(P ))
∼=−−−−−→ C∗(X

(P )/G,X(P )
s /G)

between the cellular chain complexes of these pairs. The surjectivity of C∗(ι) is clear,

since any open cell σ ⊆ X(P )rX(P )
s lies in the G-orbit of some σ ⊆ XPrXP

s . To see its
injectivity, fix open cells σ, a(σ) ⊆ XPrXP

s in the same G-orbit (a ∈ G). Then P is a
Sylow p-subgroup of the isotropy subgroups Gσ and Ga(σ) = aGσa

−1, so P and a−1Pa
are both Sylow p-subgroups of Gσ, and hence a−1Pa = gPg−1 for some g ∈ Gσ. It
follows that ag ∈ NG(P ), and thus that σ and a(σ) = ag(σ) lie in the same N(P )-orbit.
This proves the injectivity of C∗(ι); and finishes the proof that (1) is an isomorphism.

Now set

α = max{a ≥ 0 | pa|[G:P ], some P ∈ P}.
The proposition will be proven by induction on α. If α = 0, then for any Sylow p-

subgroup P of G, X(P ) = XP and X
(P )
s = XP

s = ∅; and so

H∗(X
P/G) ∼= H∗(X

(P )/G) ∼= H∗(X
P/N(P ))

by (1). Also, XP/N(P ) is acyclic by Proposition 5.5 (since XP is acyclic by assumption);
and thus XP/G is acyclic.

Now assume that α > 0. Let P0 ⊆ P be the subfamily of all P such that pα|∤|[G:P ].
Then XP0/G is acyclic by the induction hypothesis, and it remains to show that
H∗(XP/G,XP0/G) = 0. Let P1, . . . , Pk be conjugacy class representatives for the sub-
groups in PrP0, and set Pi = P0 ∪ (Pi). Then by excision,

H∗(X
P/G,XP0/G) ∼=

k⊕

i=1

H∗(X
Pi/G,XP0/G) ∼=

k⊕

i=1

H∗(X
(Pi)/G,X(Pi)

s /G).

It thus remains to show that H∗(X(P )/G,X
(P )
s /G) = 0 for each P = Pi. By (1), this

means showing that H∗(XP/N(P ), XP
s /N(P )) = 0. But XP

s /N(P ) is acyclic by the
induction hypothesis again, and XP/N(P ) is acyclic by Proposition 5.5 (since XP is
acyclic by assumption).

Proposition 5.6 will be applied in particular to get information about the spaces
X [n]/G and N (F[n])/G.

Corollary 5.7. Let F be any separating family for G, and let F0 ⊆ F be a subfamily
which contains Fc. Let X be a finite dimensional H-universal (G,F)-complex. Then for
any subfamily H of F ,

H∗(X
H/G) ∼= H∗(F≥H/G) ∼= H∗((F0)≥H/G).

In particular, H∗(Xs/G) ∼= H∗(N (F>1)/G) ∼= H∗(N ((F0)>1)/G); and H∗(X [n]/G) ∼=
H∗(N (F[n])/G) ∼= H∗(N ((F0)[n])/G) for all n > 1. And for any prime power q,
N (F[q])/G is acyclic.

Proof. By Proposition 1.3, for any H ⊆ F , there is a G-map f : X → N (F) which
restricts to a homology equivalence f≥H : XH → N (F≥H). By Lemma 1.4, the inclusion
N ((F0)≥H) ⊆ N (F≥H) is a homotopy equivalence. So by Proposition 5.5, these maps in-
duce homology equivalences in the orbit spaces. The isomorphisms involving H∗(Xs/G)
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and H∗(X
[n]/G) now follow from the case where H = F>1 or H = F[n]. In particular,

X [q]/G is acyclic by Proposition 5.6 (and since X exists by Proposition 1.8).

The importance of the families F[n] comes from the following lemma. Note that for
a family F of subgroups of G and a group A of automorphisms of G, the orbit space
N (F)/A need not be a simplicial complex: there could, for example, be two edges
of N (F) not in the same A-orbit, but whose endpoints are identified pairwise. But
N (F)/A does always have the structure of a CW complex in a natural way (cf. Lemma
A.5).

Lemma 5.8. Let F be a separating family of subgroups of G such that (G,F) ∈ U2,
and let F0 ⊆ F be any subfamily which contains Fc. Then for all n > 1, N ((F0)[n])/G

is homologically 0-dimensional. More generally, if G ⊆ Aut(G) is any subgroup which

contains Inn(G), and such that F and F0 are G-invariant, then N ((F0)[n])/G is homo-
logically 0-dimensional for all n > 1.

Proof. Let X be any 2-dimensional H-universal (G,F0)-complex (X exists by Propo-
sition 1.8). Then X/G is Z-acyclic by Proposition 5.5. If n = pk where p is prime,
then X [n]/G is acyclic by Proposition 5.6. If n is not a prime power, write n = q1· · ·qk,
where the qi are prime powers for distinct primes. Then X [n]/G =

⋂k
i=1X

[qi]/G is an
intersection of acyclic subspaces of X/G; and hence is homologically 0-dimensional by
Lemma 1.6 again.

Thus, N ((F0)[n])/G is also homologically 0-dimensional by Corollary 5.7, and its
connected components are all acyclic. The last statement now follows from Proposition

5.5, since N ((F0)[n])/G is the orbit space of the G/ Inn(G)-action on N ((F0)[n])/G.

We end this subsection with an application of Lemma 5.8: one situation in which we

can show that N (F[n])/G is not homologically 0-dimensional, and thus that (G,F) /∈ U2.
The argument is based on the following observation: given a 1-cycle φ in a simplicial
complex K which involves at least one “free” edge (an edge with no higher dimensional
simplices attached), then 0 6= [φ] ∈ H1(K). Here, “simplicial complex” is used in the
more general sense, where there can be two or more n-simplices (n ≥ 1) having the same
set of vertices.

When working with the orbit space N (F)/G, we will let [H ] denote the vertex cor-
responding to a conjugacy class (H) ⊆ F . More generally, for any chain H0 $ H1 $
· · · $ Hn of subgroups in F , [H0, H1, . . . , Hn] will denote the corresponding n-simplex
in N (F)/G.
Proposition 5.9. Let F be a separating family of subgroups of G. Assume that there
is a maximal subgroup M ∈ F , and a pair of maximal subgroups K,K ′ ⊆M which are
not conjugate in M , but are conjugate in G. Then (G,F) /∈ U2. More generally, the

same conclusion holds if there is a subgroup G ⊆ Aut(G) containing Inn(G), such that

F is G-invariant, and such that K and K ′ are in the same orbit of G, but not in the
same orbit of the action of the stabilizer of M .

Proof. Set n = |K|. Then F[n]/G contains (at least) two edges which connect the vertices
[K] and [M ]. The maximality properties guarantee that the resulting loop is nonzero in

H1(F[n]/G). So (G,F) /∈ U2 by Lemma 5.8.
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5c. Acyclicity of N (F>1)

We now find conditions for showing that N (F>1) is acyclic, under the assumption
that (G,F) ∈ U2. This can then be combined with results in Section 5d to obtain
contradictions. We first note the following equivalent conditions on F .
Lemma 5.10. Fix a separating family F of subgroups of G, and assume that (G,F) ∈
U2. Then the following are equivalent:

(a) N (F>1)/G is connected and H1(N (F>1)/G) = 0.

(b) N (F>1) is acyclic.

(c) N (F>1)/G is acyclic.

Proof. For any 2-dimensional H-universal (G,F)-complex X , H∗(Xs) ∼= H∗(N (F>1))
by Proposition 1.3, and H∗(Xs/G) ∼= H∗(N (F>1)/G) by Corollary 5.7. So it suffices to
show the equivalence of the above three conditions after replacing N (F>1) by Xs.

Since X/G is acyclic (Proposition 5.5), Xs and Xs/G are homologically 1-dimensional
by Lemma 1.6. Thus, (a) is equivalent to (c). Also, (b) implies (c) by Proposition 5.5
again; and it remains to show that (c) implies (b).

If Xs/G is acyclic, then in particular it has Euler characteristic one. Hence by Lemma
2.2,

1− χ(Xs) = χ(X)− χ(Xs) = |G|·
(
χ(X/G)− χ(Xs/G)

)
= |G|(1− 1) = 0;

and so χ(Xs) = 1. Since G acts transitively on the connected components of Xs (Xs/G
being connected), all components of Xs have the same Euler characteristic, and so Xs

must be connected. And since Xs is also homologically 1-dimensional, this shows that
Xs is acyclic.

The next proposition provides a tool for showing that condition (a) in Lemma 5.10
holds.

Proposition 5.11. Assume G has even order, and let F be a separating family for G.
Assume, for each member M ∈ Fmax of even order and each element x ∈ M of odd
prime order, that either

(1a) |NM(〈x〉)| is even; or
(1b) there is an element y ∈M of odd prime order such that |NG(〈x〉)∩NG(〈y〉)| and

|NM(〈y〉)| are both even.

Let (M1), ..., (Mk) be the conjugacy classes of odd order subgroups in Fmax. For 1 ≤
i ≤ k, let F ′

i be the set of all subgroups of Mi which are contained in members of Fmax

of even order or in subgroups conjugate to Mj for j < i; and assume that

(2) the image of N ((F ′
i)>1) in N (F>1)/G is connected and nonempty for each i.

Then N (F>1)/G is connected and H1(N (F>1)/G) = 0.

Proof. For any x ∈ H ⊆ G, we write NH(x)
def
= NH(〈x〉), for short. For each i = 0, ..., k,

let Fi be the family of all subgroups in F contained in even order members of Fmax,
or in subgroups conjugate to Mj for j ≤ i; and set Xi = N ((Fi)>1)/G and X = Xk.
In particular, Fk = F , and F0 is the set of all subgroups in F which are contained in
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members of Fmax of even order (k = 0 if all members of Fmax have even order). Set
Y = N (F[2])/G ⊆ X0. By Corollary 5.7, Y is connected and H1(Y ) = 0. Then X0 is
connected, since each vertex of X0 is joined by an edge to a vertex of Y . And for each
i ≥ 1, each vertex of Xi not in Xi−1 is joined to [Mi], which in turn is connected to
Xi−1 via a vertex in the nonempty set F ′

i . This shows that the Xi are all connected. In
particular, X is connected, and it remains to show that H1(X) = 0.

We first set up some notation for elements ofH1(X). The homology class of a loop will
be denoted [H0, H1, . . . , Hn], where (H0) = (Hn), and each Hi contains or is contained in
Hi+1. Note that by specifying subgroups rather than just conjugacy classes, we eliminate
all ambiguity as to which edge between two vertices is meant (recall that there can be
more than one edge connecting a pair of vertices of X). Finally, to simplify the notation,
we will sometimes replace a cyclic group Hi = 〈xi〉 by xi in this notation.

Step 1 We first show that H1(X0) maps trivially to H1(X). Whenever [H0, H1, . . . , Hn]
is a path in X with endpoints in Y , we write [H0, H1, . . . , Hn]Y ∈ H1(X) to denote the
homology class of the 1-cycle [H0, . . . , Hn] − φ for any path φ from [H0] to [Hn] in Y .
This is well defined since Y is connected and H1(Y ) = 0.

Fix a loop in X0; we can assume that it alternates “peaks” and “valleys” (vertices
corresponding to larger or smaller subgroups); and furthermore that each peak is max-
imal in F (hence of even order) and each valley is minimal (i.e., of prime order). The
loop thus splits into a sum of elements [M,x,M ′]Y , where M and M ′ are maximal of
even order, and where |x| is prime. If |x| = 2, then [M,x,M ′]Y ∈ Im(H1(Y )) = 0; so
we can assume that x has odd prime order.

In either of cases (1a) or (1b) above, NG(x) has even order. Choose a maximal sub-
groupMx ∈ F[2] which contains the extension of 〈x〉 by a Sylow 2-subgroup of NG(x)/〈x〉
(this extension is solvable and hence in F[2]). Then [M,x,M ′]Y = [M,x,Mx]Y +
[Mx, x,M

′]Y , and we are reduced to showing that [M,x,Mx]Y = 0 in H1(X).

If |NM(x)| is even, let H ⊆ M be any subgroup which contains 〈x〉 with index
2. Then H is conjugate in NG(x) to some H ′ ⊆ Mx (by choice of Mx); and so
[M,x,Mx]Y = [M,H, x,H ′,Mx]Y = [M,H ]Y + [H ′,Mx]Y (the last equality holds be-
cause [H, x] = [H ′, x]). But these edges lie in Y = N (F[2])/G, and so [M,x,Mx]Y = 0.
Thus, [M,x,Mx]Y = 0 whenever x ∈ M satisfies condition (1a).

Now assume that x ∈ M satisfies condition (1b), and fix y ∈ M as in (1b). Fix
subgroups My,Mxy ∈ Fmax of even order, such that My contains the extension of 〈y〉 by
a Sylow 2-subgroup of NG(y)/〈y〉, and Mxy contains the extension of 〈x, y〉 by a Sylow
2-subgroup of NG(x)∩NG(y) (this last extension must lie in F since 〈x, y〉 ⊆ M ∈ F
and F is separating). Consider the following diagram:

Mx
Mx ←−−− 〈x〉 −−−→ 〈x, y〉 ←−−− 〈y〉 −−−→ Myy

Mxy
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By construction, condition (1a) is satisfied by each of the pairs x ∈ Mxy, y ∈ Mxy and
y ∈M , and so

[M, 〈x, y〉, y,My]Y = 0 = [Mxy, 〈x, y〉, y,My]Y = [Mxy, 〈x, y〉, x,Mx]Y .

And hence [M,x,Mx]Y = [M, 〈x, y〉, x,Mx]Y = 0.

Step 2 We now prove inductively, for i ≥ 1, that H1(Xi) has finite image in H1(X)
if H1(Xi−1) does. Fix a loop in Xi. We can again assume that it alternates “peaks”
and “valleys”; and that each peak is either equal [Mi] or lies in Xi−1. If any of the
valleys is a vertex [H ] /∈ Xi−1, then it must be connected on both sides to [Mi] (but
possibly by different edges). This forms a loop (two edges each connecting [H ] to [Mi])
whose homology class lies in the image of H1(F[p])/G for any prime p

∣∣|H|, and this
group vanishes by Corollary 5.7. We are thus reduced to looking at 1-cycles of the form
z = φ− [H,Mi, H

′], where H,H ′ ∈ F ′
i and φ is a path in Xi−1 connecting [H ] and [H ′].

And since the image of N ((F ′
i)>1) in X is connected by (2), the path [H,Mi, H

′] is
homotopic to a path in Xi−1 (and hence [z] is in the image of H1(Xi−1)), modulo loops
of the form [K,Mi, K

′] for G-conjugate subgroups K,K ′ ∈ F ′
i .

The following proposition shows that in certain cases, one can replace F by a different
separating family without changing the homology of N (F>1) or of N (F>1)/G. Note, in
its statement and proof, that any finite group G contains a (unique) maximal normal
perfect subgroup L ⊳ G: the last term in the derived series of G. This normal subgroup
is also characterized by the properties that L is perfect and G/L is solvable.

Proposition 5.12. Let F ′ $ F be two separating families in G, and let H ⊆ F be any
subfamily. Assume that one of the following two conditions holds: either

(a) for each perfect subgroup L ∈ FrF ′, there is a solvable subgroup N ⊳ CG(L)
with N ∈ H; or

(b) the maximal normal perfect subgroup Lmax ⊳ G is simple, and CG(L) ∈ H for
each perfect subgroup L 6= Lmax in S(G)rF ′.

Then the inclusion of N (F ′≥H) into N (F≥H) is a homotopy equivalence, and

H∗(N (F ′
≥H)/G) ∼= H∗(N (F≥H)/G).

Proof. Note that the set of perfect subgroups in FrF ′ is nonempty. Since for any
H ∈ FrF ′ with maximal normal perfect subgroup L ⊳ H , L ∈ FrF ′ since H/L is
solvable.

We first check that condition (b) implies condition (a). Fix any perfect subgroup
L ∈ FrF ′, and let L′ ⊇ L be the maximal normal perfect subgroup of L·CG(L). Then
CG(L

′) ⊆ CG(L), so L
′·CG(L

′) ⊆ L·CG(L), and CG(L
′) is solvable since (L′·CG(L

′))/L′

is solvable and L′ ∩ CG(L
′) = Z(L′) is abelian. Also, CG(L) normalizes L′, and so

CG(L
′) ⊳ CG(L). If (b) holds, then either L = L′ or L′ is not simple (since L ⊳ L′);

and in either case L′ 6= Lmax and so CG(L
′) ∈ H. Condition (a) thus applies, with

N = CG(L
′).

Now assume that condition (a) holds. Fix a conjugacy class L of maximal perfect
subgroups in FrF ′. Set F ′′ = Fr(F≥L): the family of subgroups in F which do
not contain any subgroup in L. This is a separating family (if H/K is solvable and
H ⊇ L ∈ L then K ⊇ L); and we can assume inductively that the inclusion of N (F ′

>1)
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into N (F ′′
>1) is a homotopy equivalence. So upon setting F ′ = F ′′, we are reduced

to the case where FrF ′ contains a single conjugacy class L of perfect subgroups, and
where F ′ is the set of subgroups in F which do not contain any subgroup in L.

For each L ∈ L, let KL be the set of all subgroups H ⊆ N(L) such that HL/L is
solvable, and let K′

L be the set of all H ∈ KL such that L 6⊆ H . Then KL ⊆ F (HL/L
solvable implies HL ∈ F and hence H ∈ F), and K′

L = KL ∩ F ′. By assumption,
there is a solvable normal subgroup N ⊳ CG(L) with N ∈ H. Upon replacing N by
the subgroup generated by its conjugates in N(L) (still solvable since it is generated by
solvable normal subgroups of CG(L)), we can assume that N ⊳ N(L) (and N ∈ F≥H).
Then HN ∈ KL for all H ∈ KL (HNL/L is solvable if HL/L is since HL/L normalizes
NL/L and NL/L is solvable). Also, HN ∈ K′

L for all H ∈ K′
L: since for H ∈ KL,

H/(H ∩ L) ∼= HL/L is solvable, so HN/(H ∩ L) is solvable (since N is solvable and
centralizes H∩L), and thusHN contains L if and only ifH does. The nervesN ((KL)≥H)
and N ((K′

L)≥H) are thus contractible by Lemma 0.4(b).

For each subgroup H ∈ FrF ′, there is a unique L ∈ L contained in H : the subgroups
in L are maximal among perfect subgroups in FrF ′, and hence L must be the last
term in the derived sequence for H . Thus, L ⊳ H and H/L is solvable; and L is the
unique element of L for which H ∈ KL r K′

L. In other words, N (F≥H) is the union
of N (F ′≥H) with the contractible complexes N ((KL)≥H) for L ∈ L, any two of the
complexes N ((KL)≥H) and N ((KL′)≥H) have intersection contained in N (F ′≥H), and
N (F ′≥H) ∩ N ((KL)≥H) = N ((K′

L)≥H) is also contractible for each L. The inclusion of
N (F ′

≥H) into N (F≥H) is thus a homotopy equivalence; and hence H∗(N (F ′
≥H)/G) ∼=

H∗(N (F≥H)/G) by Proposition 5.5.

5d. Connectivity of links at vertices

In Section 5c, conditions were found on a separating family F which imply that if
(G,F) ∈ U2, then N (F>1) is acyclic, and hence there is a 2-dimensional H-universal
(G,F)-complex with no free orbits. The results of this section amount to showing that
if there is such an action, then the links at all of its vertices must be connected. This
result, and its proof, are closely related to [S2, Theorem 2.8].

Proposition 5.13. Let F be a nonempty family of subgroups of G, such that G /∈ F .
Let Fmax be the set of maximal members of F . Assume that

(a) each member of Fmax is self-normalizing;

(b) each member of FrFmax is contained in at least two members of Fmax; and

(c) N (F) is connected and H1(N (F)) = 0.

Then for each M ∈ Fmax, N (F<M) (i.e., the link of M) is connected.

Proof. Set F ′ = FrFmax, for short. Let L be the set of all pairs (M,H) ∈ Fmax×F ′

such that M % H ; regarded as a poset via the relation (M,H) ≤ (M ′, H ′) if M = M ′

and H ⊆ H ′. In both F ′ and L we let ∼ denote the equivalence relation generated by
the poset relation; so that F ′/∼ and L/∼ are the sets of connected components of the
nerves.

Let Γ be the graph with vertex set Fmax ∐ (F ′/∼), and whose set of edges is L/∼.
The edge corresponding to an equivalence class [M,H ] connects the vertices [M ] and
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[H ]. There is an obvious map ψ : N (F)→ Γ, which sends each simplex in N (F ′) to the
vertex for its connected component, and which sends a simplex {M,H1, . . . , Hk} (for
M % H1 % · · · ) to the edge [M,H1].

We next construct a map ϕ : Γ → N (F) in the other direction. For each vertex v
in Γ, let ϕ(v) ∈ F be any subgroup in the equivalence class which v represents. And
for each edge e in Γ, choose a representative (M,H) ∈ L for e, and send e to the path
which follows the edge fromM to H in N (F), and then follows any path in N (F ′) from
H to ϕ([H ]).

The composite ψ ◦ϕ : Γ→ Γ sends each vertex to itself, and sends each closed edge to
itself (although not via the identity). In particular, ψ ◦ϕ is homotopic to the identity,
and so H∗(Γ) is a direct summand of H∗(N (F)). Thus, Γ is connected and H1(Γ) = 0;
and so Γ is a tree.

Now, G acts on Γ via conjugation, and since Γ is a tree there must be a fixed point
x0 ∈ Γ. Since the members of Fmax are assumed to be self-normalizing, no element of
Fmax is normal in G, and hence x0 is not the vertex corresponding to any M ∈ Fmax.

Assume there is some M ∈ Fmax for which N (F<M) is not connected. Then there
are two or more edges attached to [M ] in Γ, and so Γr[M ] is disconnected. Let Γ1 be
the component of Γr[M ] which contains x0, and let Γ2 be any other component. Let
[H ] be a vertex in Γ2. By assumption, either H ∈ Fmax, or H is contained in at least
two maximal subgroups of F . In particular, H is contained in some maximal subgroup
M ′ 6=M .

The action of M ′ on Γ fixes x0 and [M ′], and hence fixes the full minimal path which
connects them. Since M lies on this path, this implies thatM ′ normalizes M . But both
are maximal in F , and so this contradicts assumption (a) thatM is self-normalizing.

The following proposition combines the above result with those in earlier sections.
For any family F of subgroups and any maximal element M ∈ F , we set

LkF>1(M) = N (F<M
>1 ) = N

(
{H ∈ F | 1 6= H $M}

)
.

Proposition 5.14. Fix a separating family F for G. Let F0 ⊆ F be any subfamily
which contains Fc, and such that each nonmaximal subgroup in F0 is contained in two
or more maximal subgroups. Assume that F satisfies the following two conditions:

(a) N (F>1)/G is connected and H1(N (F>1)/G) = 0.

(b) There is a maximal subgroup M ∈ F such that Lk(F0)>1
(M) is not connected.

Then (G,F) /∈ U2.

Proof. Assume that (G,F) ∈ U2. Then by (a) and Lemma 5.10, N (F>1) is acyclic. So
Proposition 5.13, applied to the family (F0)>1, implies that Lk(F0)>1(M) = N ((F0)

<M
>1 )

is connected for all maximal subgroups M ∈ F , and this contradicts point (b). (Recall
that all maximal subgroups in F are self-normalizing by Lemma 1.1.)
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6. Simple groups of Lie rank one

We now focus attention on the simple groups of Lie type and Lie rank one. There
are four families of such groups: the two dimensional projective special linear groups
L2(q), the three dimensional projective special unitary groups U3(q), the Suzuki groups
Sz(22k+1), and the Ree groups Ree(32k+1) = 2G2(2

2k+1). We refer to Appendix D for
more detail on these groups, and on the classification of finite groups of Lie type in
general.

We first show that the only 2-dimensional actions which involve the simple groups
L2(q) or Sz(q) are the ones constructed in Section 3. This will be done in a series of
three lemmas, after which the results will be summarized in Proposition 6.4.

Lemma 6.1. Assume that G = L2(q) or PGL2(q), where q = pk and p is an odd prime.
Let F be a separating family for G which contains no nonsolvable subgroups L2(q0) or
PGL2(q0) for q0 a smaller power of p. Assume also that F 6= SLV if G = L2(q) and
q ≡ ±3 (mod 8). Then (G,F) /∈ U2.

Proof. We refer to the description of maximal subgroups of G in Proposition 3.3. Note
that if G = L2(q) and q ≡ ±3 (mod 8), then F must contain a subgroup isomorphic to
A5 — the only nonsolvable subgroups of G not isomorphic to L2(q0) or PGL2(q0) for q0
a smaller power of p. In particular, q ≡ ±1 (mod 5) in this case.

Case 1: Assume first that p = 3. If k is odd, then q ≡ 3 (mod 8) and q ≡ ±2 (mod
5); and so G 6∼= L2(q) by the above remarks. Thus, either G = L2(3

k) for k even, or
G = PGL2(3

k).

Set K1 = PGL2(3) ∼= Σ4 (the subgroup of matrices with entries in F3), let K2 be the
subgroup of upper triangular matrices (K2

∼= Fq⋊C(q−1)/2 or Fq⋊Cq−1), and let K3 be
the subgroup of monomial matrices (K3

∼= Dq−1 or D2(q−1)). Set Kij = Ki ∩ Kj and
K = K1 ∩K2 ∩K3. Then K12

∼= D6, K13
∼= C2

2 , K23
∼= C(q−1)/2 or Cq−1, and K ∼= C2.

Since K1 is a maximal subgroup in F (see the list of subgroups in Proposition 3.3),
Proposition 5.4 now applies (using condition (a1), or (a2) if G = L2(9)) to show that
(G,F) /∈ U2.
Case 2: Now assume that p ≥ 5. By Proposition 3.3, A4 is a maximal subgroup of G
only if G = L2(q) and q ≡ ±3 (mod 8), in which case (as noted above) F must contain
subgroups isomorphic to A5. And since there is only one conjugacy class of A4 ⊆ G
(Proposition 3.3 again), each such subgroup must be contained in some A5 ∈ F .

Thus, no maximal subgroup of F is isomorphic to A4. From the lists of maximal
subgroups in Proposition 3.3, we now see that each maximal subgroup in F is isomorphic
to one of the groups Fq⋊C(q−1)/2 or Fq⋊Cq−1 (triangular matrices); Dq−1 orD2(q−1); Dq+1

or D2(q+1); or Σ4 or A5. Also, by hypothesis, if p = 5, then A5
∼= L2(5) is not in F .

LetM1 ⊆ G be the (maximal) subgroup of upper triangular matrices, and let T ⊆M1

be the subgroup of diagonal matrices. From the above list (and since p > 3) we see that
M1 and its conjugates are the only maximal subgroups in F of order a multiple of p.
Furthermore, for any subgroup H ∈ F with p

∣∣|H|, H leaves invariant a unique line in
(Fq)

2, and hence is contained in a unique subgroup conjugate to M1 (and thus a unique
maximal subgroup in F). Also, each nontrivial subgroup H ⊆ M1 of order prime to p
is contained in a unique subgroup conjugate to T (i.e., CM1(H)).
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We first check that N (F>1)/G is connected and H1(N (F>1)/G) = 0, using Proposi-
tion 5.11. From the above list of maximal subgroups in F (and since A4 is not among
them), we see that for each maximal subgroup M ∈ F of even order, and each x ∈ M
of odd prime order, NM(〈x〉) has even order. Thus, condition (1a) in Proposition 5.11
holds. Also, the only maximal subgroups in G of odd order are those conjugate to
M1
∼= Fq⋊C(q−1)/2, when G = L2(q) and q ≡ 3 (mod 4). Let F ′

1 be the set of subgroups
of M1 which are contained in maximal subgroups in other conjugacy classes; by the
above remarks each H ∈ F ′

1 is conjugate to a subgroup of T . The image of N ((F ′
1)>1)

in N (F>1)/G is thus connected, and so condition (2) in Proposition 5.11 holds. This
finishes the proof that N (F>1)/G is connected and H1(N (F>1)/G) = 0.

Now let F0 ⊆ F be the subfamily consisting of all maximal subgroups in F , together
with all subgroups in F contained in two or more maximal subgroups. We have seen
that each proper subgroup of M1 contained in F0 is contained in a unique subgroup
conjugate to T . In other words, Lk(F0)>1

(M) = N ((F0)
<M
>1 ) is not connected: it has one

connected component for each subgroup ofM1 conjugate to T . So Proposition 5.14 now
applies to show that (G,F) /∈ U2.

In each of the next two lemmas, we deal simultaneously with simple groups L = L2(q)
and Sz(q), where q = pk and p is prime (p = 2 if L = Sz(q)). It will be convenient to fix
subgroups S, T, B,N ⊆ L of each of these groups, according to the following table:

L L2(q) Sz(q)

S {
(
1 a
0 1

)
| a ∈ Fq} ∼= Fq S(q, θ)

T {diag(λ, λ−1) | λ ∈ (Fq)
∗}/{±I} {M(λ) | λ ∈ (Fq)

∗}
B S⋊T M(q, θ) = S(q, θ)⋊T

N N(T ) = 〈T,
(

0 1
−1 0

)
〉 N(T ) = 〈M(λ), τ〉

Table 4

When L = Sz(q), we are using the notation in Proposition 3.6 (where Sz(q) is regarded
as a subgroup of GL4(q)). All of these subgroups are invariant under the action of
Aut(Fq). In both cases, S is a Sylow p-subgroup, B = N(S) is a Borel subgroup, T is
cyclic (of order q−1 or (q−1)/2), and N is dihedral.

Lemma 6.2. Assume that G = L is one of the simple groups L2(q) or Sz(q), where
q = pk and p is prime (p = 2 in the second case). Let F be any separating family for G
which contains a nonsolvable subgroup isomorphic to L2(q0) or Sz(q0), where q0 = pk0

(and k0|k). Then (G,F) /∈ U2.

Proof. Assume that q0 = pk0 is chosen so that F contains a maximal subgroup iso-
morphic to G0 = L2(q0), PGL2(q0), or Sz(q0). Thus, G0 is the subgroup of all ma-
trices in G with entries in Fq0. (More precisely, if G = L2(q) ⊆ PGL2(q), then
G0 = L2(q) ∩ PGL2(q0).) By Proposition 3.3 or 3.6, if G0

∼= M ∈ F , then there is
an automorphism σ ∈ Aut(G) such that σ(M) = G0. Thus, upon replacing F by σ(F),
we can assume that G0 ∈ F .

We now apply Proposition 5.4, with the subgroups K1 = G0, K2 = B, and K3 = N
(as in Table 4). Then K12 = B0, K13 = N0, K23 = T , and K = K1 ∩ K2 ∩ K3 = T0.
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Condition (b) of 5.4 holds by assumption (K1 = G0 is maximal in F). Conditions (d)
and (e) are clear: NG(G0, B0, T0) = T0, and the triples (K1, B0, T0) and (K1, N0, T0) are
not G-conjugate.

We next consider condition (c). Clearly, K12 = B0 is a maximal subgroup of K1 = G0.
If G = L2(q), then K = T0 is maximal in K12 = B0. And if G = Sz(q), then T0 is
maximal among critical subgroups of B0. (There is one subgroup T0 $ R $ B0, where
R = Z(S(q0, θ))·T0 ∼= Fq0⋊Cq0−1. But using Proposition 3.6(b), it is easy to check that
every maximal subgroup of G which contains R also contains B0. So by Lemma 3.1(a),
R is not critical.)

It remains to check that inequality (a1) or (a2) holds. From the above description of
the groups, we see that

[K12:K] = [B0:T0] =

{
q0 if L = L2(q)

(q0)
2 if L = Sz(q),

[K13:K] = 2, [K23:K] = ǫ· q−1
q0−1

,

where ǫ = 1
2
if G = L2(q), p is odd, and 2k0|k (so G0 = PGL2(q0)), and ǫ = 1 otherwise.

Inequality (a1) now holds (
∑

i<j
1

[Kij :K]
≤ 1) unless G = L2(25) and G0 = PGL2(5). In

this last case, ∑

i<j

1

[Kij:K]
= 1

5
+ 1

2
+ 1

3
< 1 + 1

6
= 1 + 1

[K3:K]
,

and inequality (a2) holds.

The conditions of Proposition 5.4 thus hold, and so (G,F) /∈ U2.

It remains to handle the case of extensions of L2(q) or Sz(q) by field automorphisms.

Lemma 6.3. Let L be one of the simple groups L = L2(q) or Sz(q), where q = pk and
p is prime. Let A ⊆ Aut(Fq) be a subgroup of prime order, regarded as a subgroup of
Aut(L), and set G = L⋊A. Then (G,SLV) /∈ U2.

Proof. Let L0 ⊆ L be the subgroup of elements fixed by A. Let Fq0 be the fixed subfield
of A ⊆ Aut(Fq). If q ≡ ±1 (mod 8), then (L,SLV) /∈ U2 by Lemma 6.1, and so we also
have (G,SLV) /∈ U2. Thus, we can assume that q is a power of 2 or that q = pk ≡ ±3
(mod 8). In the second case, k must be odd, and hence |A|

∣∣k is odd. Thus, L0 = L2(q0)
if L = L2(q), and L0 = Sz(q0) if L = Sz(q).

To simplify the argument, we assume that L 6∼= L2(4) (the case L2(4)⋊C2
∼= PGL2(5)

was already handled in Lemma 6.1).

Fix subgroups S, T, B,N ⊆ L as in Table 4. All of these are A-invariant. Set B0 =
B ∩ L0, N0 = N ∩ L0, and T0 = T ∩ L0.

We claim that conditions (a,b,c) in Proposition 5.3 hold for the subgroupsK0 = B⋊A,
K1 = T⋊A, and K2 = A; this will then imply that (G,SLV) /∈ U2. Condition (b) is
clear: K0 is a maximal subgroup of G since B is a maximal subgroup of L.

We next check condition (c). Let H,H ′ ∈ SLVc be critical subgroups such that
A $ H $ H ′ $ K0 = B⋊A and H ⊆ K1 = T⋊A. We must show that H ′ ⊆ K1.
Assume otherwise. Write H = H0⋊A and H ′ = H ′

0⋊A (where H0 = H ∩ B and
H ′

0 = H ′ ∩ B). Thus, 1 6= H0 $ H ′
0 $ B = S⋊T , H0 ⊆ T , but H ′

0 6⊆ T . So H ′
0

intersects nontrivially with T and S. Since the intersection of any two distinct Sylow
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p-subgroups of L is trivial (see [H1, Theorem II.8.5(a)] or [HB3, Theorem XI.3.10(c)]),
the lists of maximal subgroups of L in Propositions 3.3 and 3.6 show that B is the
unique maximal subgroup of L which contains H ′

0, and hence that K0 = B⋊A is the
unique maximal subgroup of G = L⋊A which contains H ′ = H ′

0⋊A. And by Lemma
3.1(a), this contradicts the assumption that H ′ $ K0 is critical in SLV. This proves
condition (c).

It remains to check condition (a). To avoid conflicting notation, we set Ri = NG(Ki),
Rij = Ri ∩Rj , and R = R0 ∩ R1 ∩R2. Then

R0 = K0 = B⋊A, R1 = N⋊A, R2 = L0×A;
R01 = T⋊A, R02 = B0×A, R12 = N0×A, R = T0×A;

and so

[R01:R] = [T :T0] =
q−1
q0−1

, [R12:R] = 2, [R02:R] = [B0:T0] =

{
q0 if L = L2(q)

(q0)
2 if L = Sz(q)

It follows that
∑

1
[Rij :R]

< 1 except when q0 = 2 and L = L2(q). And in this last case,

since q ≥ 8, we have [R2:R] = [L0×A:A] = 6 < q−1
q0−1

= [R01:R], and so inequality (a)

in 5.3 still holds. (In fact, inequality (a) in 5.3 also holds when q = 4, but one has to
calculate each term explicitly.)

The above three lemmas can now be summarized as follows.

Proposition 6.4. Assume that L is one of the simple groups L ∼= L2(q) or Sz(q), where
q = pk and p is prime (p = 2 in the second case). Let G ⊆ Aut(L) be any subgroup
containing L, and let F be a separating family for G. Then (G,F) ∈ U2 if and only if
G = L, F = SLV , and q is a power of 2 or q ≡ ±3 (mod 8).

Proof. That (G,SLV) ∈ U2 in the given cases was shown in Section 3 (Examples 3.4,
3.5, and 3.7). It remains only to check that all of the other cases have been eliminated
by one of the above three lemmas.

If G = L2(q), then we are assuming that F 6= SLV or q ≡ ±1 (mod 8). So (G,F) /∈ U2
by Lemma 6.1 (if F contains no nonsolvable subgroups L2(q0)) or by Lemma 6.2 (if F
does contain such subgroups). If G = Sz(q) and F 6= SLV , then F must contain some
nonsolvable subgroup Sz(q0) (these are the only nonsolvable subgroups of G by [Sz1,
Theorem 9]); and hence (G,F) /∈ U2 by Lemma 6.2. So we are finished if G = L is
simple.

Now assume that G is not simple: that L $ G ⊆ Aut(G). If L = L2(q), then Aut(L)
is generated by inner automorphisms, by “diagonal” automorphisms (conjugation by
a matrix of non-square determinant), and by field automorphisms (cf. [Ca, Theorem
12.5.1]). In other words,

Aut(L2(q)) ∼= PΓL2(q)
def
= PGL2(q)⋊Aut(Fq).

Also, by [Sz1, Theorem 11], all outer automorphisms of Sz(q) are given by field auto-
morphisms.

Since Aut(L)/L is solvable, if (G,F) ∈ U2, then (G′,F ∩S(G′)) ∈ U2 for any G′ ⊆ G
containing L. So it suffices to consider the case where G is minimal; i.e., when G/L has
prime order and where (L,F ∩ S(L)) ∈ U2. In particular, F = SLV . If L = L2(2

k) or
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Sz(2k), then we are done by Lemma 6.3, since the only outer automorphisms of L are
field automorphisms (PGL2(q) = L2(q) in this case). If L = L2(q) and q = pk ≡ ±3
(mod 8), then k must be odd, and so

Out(L) = PGL2(q)/L2(q)×Aut(Fq) ∼= C2×Ck.

Since G/L has prime order, either G ∼= PGL2(q) (and (G,SLV) /∈ U2 by Lemma 6.1);
or G = L⋊A for some group A of field automorphisms and (G,SLV) /∈ U2 by Lemma
6.3.

The next groups we consider are the unitary groups U3(q) = PSU3(q). The cases q
odd and q a power of two will be handled separately. In both cases, we regard U3(q) as a
group of projective unitary transformations of a vector space V ∼= (Fq2)

3 with hermitian
product denoted (−,−). We fix two bases of V : an orthonormal basis {e1, e2, e3}, and
a basis {v1, v2, v3} with respect to which the hermitian product has matrix

(
0 0 1
0 1 0
1 0 0

)
.

Elements of U3(q) will be regarded as matrices with respect to one or the other basis,
depending on the situation.

Proposition 6.5. Set G = U3(q), where q = pk is any odd prime power. Then there is
no 2-dimensional G-complex without fixed points.

Proof. Assume otherwise: let F be a separating family of subgroups of G such that
(G,F) ∈ U2. Set d = (3, q+1): the order of the center of SU3(q).

Case 1 Assume first that q ≥ 7, and regard elements of G as matrices with respect
to the basis {v1, v2, v3} described above. We apply Proposition 5.4 with the following
subgroups.

K1
∼= SO3(q) ∼= PGL2(q): the subgroup of matrices with entries in Fq.

K2 = S⋊T , where T =
{
diag(λ, λq−1, λ−q)

∣∣λ ∈ (Fq2)
∗}/Cd and

S =
{(

1 a b
0 1 −aq

0 0 1

) ∣∣∣ a, b ∈ Fq2 , b+ bq = −aq+1
}
.

This is the subgroup of upper triangular matrices in U3(q), a Borel subgroup, and of
order q3(q2−1)/d.

K3 = T ⋊
〈(

0 0 1
0 −1 0
1 0 0

)〉
.

Note that SO3(q) ∼= PGL2(q) (cf. [H1, Satz 10.11] or [Art, Theorem 5.20]). So all
three subgroups lie in F : the first by Proposition 6.4, and the others because they are
solvable.

Set Kij = Ki ∩Kj and K = K1 ∩K2 ∩K3, as usual. Then

K12 =
{(

1 a −a2/2
0 1 −a
0 0 1

) ∣∣∣ a ∈ Fq

}
⋊

{
diag(λ, 1, λ−1)

} ∼= Fq⋊Cq−1;

and

K13
∼= D2(q−1), K23

∼= C(q2−1)/d, K ∼= Cq−1.

Then K1 = SO3(q) is a maximal subgroup of G since q ≥ 7 (see [GLS, Theorem 6.5.3]
and its proof, where U3(q) is denoted PSL−

3 (q)). The other conditions in Proposition
5.4 are clear. So (G,F) /∈ U2 in this case.
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Case 2 Assume q = 3. In particular, d = 1. Regard elements of G as matrices with
respect to the orthonormal basis {e1, e2, e3}. Then each subgroup of G isomorphic to
C2

2 is conjugate to the subgroup K of diagonal matrices with entries ±1; and N(K) ∼=
(C4)

2⋊Σ3. Thus, all subgroups A4 containing K are conjugate, and have normalizer
isomorphic to Σ4. So G contains a unique conjugacy class of subgroups isomorphic to
Σ4.

Also, G = U3(3) contains a maximal subgroup L2(7) [Atl], which must be in F by
Lemma 6.1. Since L2(7) contains two conjugacy classes of Σ4’s, and G only contains
one such conjugacy class, Proposition 5.9 applies to show that (G,F) /∈ U2.
Case 3 Finally, assume q = 5 (hence d = 3). Set G = PGU3(5), regarded as a subgroup

of Aut(G). Then G/G ∼= C3 permutes the three conjugacy classes of maximal subgroups

A7 in G [Atl]. Thus, the stabilizer of the G-action on each subgroup A7 is the group
A7 itself. Each A7 contains two conjugacy classes of subgroups L2(7) (permuted by the
outer automorphism of A7). Since L2(7) has order prime to 5, one sees [Bl, Theorem
1.1] via complex characters that it has a unique 3-dimensional representation over Fq2

which is irreducible (unique up to outer automorphism); and this has a unique unitary
structure (since any two would differ by an automorphism). Thus, there is exactly one

G-orbit of L2(7)’s in G. Proposition 5.9 again applies to show that (G,F) /∈ U2.

We next consider the unitary groups U3(2
k).

Proposition 6.6. Set G = U3(q), where q = 2k > 2 is a power of 2. Then there is no
2-dimensional G-complex without fixed points.

Proof. Assume otherwise: let q be such that U3(q) is the smallest counterexample, and
let F be a separating family of subgroups of G such that (G,F) ∈ U2.

Set d = (3, q+1). Then

|G| = 1
d
q3(q2 − 1)(q3 + 1) = q3·(q − 1)·(q + 1)2·( q2−q+1

d
) (1)

(cf. [Ca, Theorem 14.3.2], who writes U3(q) =
2A2(q

2)). Here, the factors in the second

formula are pairwise relatively prime. (Note that 3|(q2 − q + 1) = q3+1
q+1

if and only if

3|(q+1), and that q3+1
q+1

cannot be divisible by 32.)

Let θ be the Frobenius automorphism of order 2 on Fq2 ; and write xθ = θ(x) = xq for
any x.

The following list of maximal subgroups of G can be found in [Ha, p. 158] or in
[GLS, Theorem 6.5.3(a,b,c,g)]. Note also the thesis of Peter Kleidman [Kl1, §5], where
maximal subgroups are listed for classical groups of low rank, and a general procedure
for determining them is described.

(M1): M1
∼= [q3]⋊C(q2−1)/d; the stabilizers of isotropic lines (generated by v with (v, v) =

0); the Borel subgroups of G. We chooseM1 to be the stabilizer of 〈v1〉, or equivalently
the group of upper triangular matrices with respect to the basis {v1, v2, v3}.

(M2): M2
∼= GU2(q)/Cd

∼= C(q+1)/d×L2(q); the stabilizers of anisotropic lines (generated
by v with (v, v) 6= 0). We chooseM2 to be the subgroup of matrices (aij) (with respect
to either of the above bases) for which a22 is the only nonzero entry in the second row
or column.
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(M3): M3
∼= [(Cq+1)

2⋊Σ3]/Cd; the stabilizer of (the union of) three pairwise orthogonal
lines. We choose M3 to be the group of monomial matrices with respect to the
orthonormal basis {e1, e2, e3}.

(M q0
4 ), if q = qb0 and b is an odd prime: M q0

4 = N(U3(q0)), isomorphic to U3(q0) (if
(b, d) = 1) or PGU3(q0) (if b = d = 3). There are (b, d) conjugacy classes of such
subgroups (all conjugate in PGU3(q)).

(M5): M5
∼= C(q2−q+1)/d⋊C3. Consider the hermitian form 〈−,−〉 on Fq6 (viewed as a

vector space over Fq2) defined by 〈x, y〉 = Tr(xyq
3
), where Tr: Fq6 → Fq2 is the trace

map. Let σ ∈ Aut(Fq6) be the automorphism σ(x) = xq
2
, let H ⊆ (Fq6)

∗ be the
subgroup of order q3 + 1, and set

M = H⋊〈σ〉 ⊆ (Fq6)
∗ ⋊ Aut(Fq6).

Then M preserves 〈−,−〉, and M5 is the intersection of U3(q) with the image of M

in PGU3(q). In particular, C3 acts on C(q2−q+1) via x→ xq
2
.

We can assume inductively that none of the groups M q0
4 = N(U3(q0)), for q0 > 2, can

act on an acyclic 2-complex without fixed points. So they must all be contained in F .
Also, by Proposition 6.4, ifM2 /∈ F , then the only subgroups ofM2 (and its conjugates)
which are in F are solvable subgroups. So either F =MAX , the family of all proper
subgroups of G, or F = F0, the family of all subgroups whose intersection with any
subgroup in (M2) is solvable — and this latter only when k is prime or a power of 2.

We first show thatN (F>1)/G is connected andH1(N (F>1)/G) = 0, using Proposition
5.11. Since every perfect subgroup in MAXrF0 is of the form L2(2

k0) where 1 <
k0|k and has nontrivial centralizer, Proposition 5.12 applies, with H =MAX>1 (and
using condition (b)) to show that H∗(N ((F0)>1)/G) ∼= H∗(N (MAX>1)/G). So we can
assume that F =MAX .

The even order maximal subgroups of G are those conjugate to M1, M2, M3, or M
q0
4 .

If M = M2, M3, or M
q0
4 and x ∈ M is of odd prime order, then one easily sees that

NM(〈x〉) has even order. Also, if x ∈M1 and |x|
∣∣(q + 1)/d, then CM(x) has even order:

if M1 is the subgroup of upper triangular matrices with respect to the basis {v1, v2, v3},
then x is conjugate to a diagonal matrix diag(λ, λ−2, λ) and is centralized by the element(

1 0 1
0 1 0
0 0 1

)
. Thus, condition (1a) of Proposition 5.11 holds in all of these cases.

Now let x ∈ M1 be of prime order dividing p − 1. We check that condition (1b)
of Proposition 5.11 holds. Let y ∈ CM(x) ∼= C(q2−1)/d be any element of prime order
dividing (q+1)/d. We have just seen thatNM(〈y〉) has even order, andNG(〈x〉)∩NG(〈y〉)
also has even order since NM (〈y〉) ∼= M2

∼= C(q+1)/d×L2(q). Thus, condition (1b) of
Proposition 5.11 holds in this case.

It remains to check condition (2) of 5.11. Let F1 be the set of all subgroups of
M5
∼= C(q2−q+1)/d⋊C3 which are also contained in even order maximal subgroups. By

inspection, F1 contains subgroups of order 3, and all maximal subgroups in F1 are of the
form Ca⋊C3 (⊆M q0

4 ) for some a. So the image of N ((F1)>1) in N (F>1)/G is nonempty
and connected. Proposition 5.11 thus applies to show that N (F>1)/G is connected and
H1(N (F>1)/G) = 0.

This shows that condition (a) in Proposition 5.14 holds, and it remains to check
condition (b). Set M =M5

∼= C(q2−q+1)/d⋊C3. Let Fc ⊆ F be the subfamily consisting
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of all critical subgroups in F . Fix a prime p|(q2 − q + 1) = (q6−1)(q−1)
(q3−1)(q2−1)

such that

p|∤|(q60 − 1) when q0 is a smaller power of 2 (such a prime exists by Zsigmondy’s theorem
[HB2, Theorem IX.8.3]). Then for any proper subgroup H ⊆ M with p

∣∣|H|, M is the
unique maximal subgroup of G which contains H , and so H /∈ Fc (Lemma 3.1(a)). Let
T ⊳ M be the subgroup of order (q2 − q + 1)/dp; then M/T ∼= Cp⋊C3. And C3 is not

normal in M/T : since C3 acts on Cp via (x 7→ xq
2
), and (q2 − 1, (q2 − q + 1)/d) = 1.

By Proposition 5.14, we will be done upon showing that the nerve of (Fc)
<M
>1 is not

connected. For any 1 6= H ⊆ T , H is not critical by Lemma 3.1(b): N(H) = M ∈ F ,
and NK(H) % K for all K % H (note that K must be contained in M or in one of the
subgroups N(U3(q0))). Thus, any critical subgroup properly contained in M must be of
the form H⋊C3 for H ⊆ T ; and such subgroups do exist (any subgroup of M maximal
among those contained in other maximal subgroups in F is critical). The image of the
poset (Fc)

<M
>1 in S(M/T ) thus consists precisely of the subgroups of order 3. Since the

continuous image of a connected space must be connected, this shows that N ((Fc)
<M
>1 )

is not connected, and finishes the proof of the proposition.

We note here that Proposition 6.6 can also be proven using Propositions 5.3 and 5.4;
but this involves considering several different cases, and requires complicated arguments
that certain subgroups are not critical.

We are now ready to consider the Ree groups 2G2(q).

Proposition 6.7. When q is any odd power of 3, there is no 2-dimensional 2G2(q)-
complex without fixed points.

Proof. Set G = 2G2(q), where q = 3k and k is odd; and assume that F is a separating
family for G such that (G,F) ∈ U2. We can assume inductively that q is the smallest
power of 3 for which this happens. Since 2G2(3) ∼= Aut(L2(8)) [Jan], this subgroup has
no fixed point free action on a Z-acyclic 2-complex by Lemma 6.3. Thus, we must have
2G2(3) ∈ F .

The order of G is given by the formula

|G| = q3(q − 1)(q3 + 1) = q3·23·( q−1
2
)·( q+1

4
)·(q +√3q + 1)·(q −√3q + 1),

(cf. [Ca, Theorem 14.3.2]), where the factors in the last decomposition are pairwise
relatively prime. The maximal solvable subgroups of G, as listed in [Kl2, Theorem C],
all lie in the following conjugacy classes:

(M1): the Borel subgroups P⋊Cq−1, where |P | = q3 (a Sylow 3-subgroup of G). More
precisely, P = (Fq)

3 with multiplication given by

(x1, y1, z1)·(x2, y2, z2) = (x1 + x2, y1 + y2 + x1·xσ2 , z1 + z2 − x1·y2 + y1·x2 − x1·xσ1 ·x2).
Here, xσ = x

√
3q (so xσ

2
= x3). The action of (Fq)

∗ on P is given by

λ(x, y, z)λ−1 = (λx, λλσy, λ2λσz).

(See [HB3, Theorem XI.13.2].)

(M2): M2 = CG(C2) ∼= C2×L2(q) for any C2 ⊆ G

(M3): M3 = N(C2
2 ) = (C2

2×D( q+1
2
))⋊C3 for any C2

2 ⊆ G
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(M+
4 ) and (M−

4 ): M±
4
∼= Cq±√

3q+1⋊C6, where C6 acts via (x 7→ xq). (The action of
C6 is determined by the fact that an element of order 2 or 3 has centralizer of order
prime to q2−q+1.)

(M q0
5 ): M q0

5
∼= 2G2(q0) whenever q = qp0 for some (odd) prime p.

By our inductive assumption, 2G2(q0) ∈ F for all q0 = 3k0 where k0|k. So all of the
maximal subgroups must be included in F , except possibly those in (M2).

We first show thatN (F>1) is connected and thatH1(N (F>1)/G) = 0. By Proposition
5.12 (arguing as in the proof of Proposition 6.6), it suffices to do this when F =MAX :
the family of all proper subgroups of G. We apply Proposition 5.11. From the above
list, we see that all maximal subgroups of G have even order. If M is maximal and
x ∈ M has odd prime order, then NM(x) has even order, except possibly when M is
conjugate to M1 and |x| = 3. And under the above description of P ⊳ M1, any x ∈ P
of order 3 is of the form x = (0, b, c) for b, c ∈ Fq; x is normalized by (−1) ∈ (Fq)

∗ if
b = 0 or c = 0; and if b 6= 0 then x = (0, b, c) is conjugate to (0, b, 0). Condition (1a)
of Proposition 5.11 thus holds (and condition (2) is empty). It follows that N (F>1) is
connected and H1(N (F>1)/G) = 0.

We have now shown that condition (a) in Proposition 5.14 holds. We claim that
condition (b) holds for one of the maximal subgroups M±

4
∼= Cq±√

3q+1⋊C6; once this
has been shown then we can conclude that (G,F) /∈ U2. By Zsigmondy’s theorem [HB2,
Theorem IX.8.3], there is a prime p|(q6 − 1) = (36k − 1) such that p|∤|(3m − 1) for any

m < 6k. In particular, p| q3+1
q+1

= (q +
√
3q + 1)(q − √3q + 1) — and thus divides the

order of M = M+
4 or M−

4 — but does not divide the order of 2G2(q0) for any q0 < q.
We claim that the nerve of the poset of proper subgroups of M which are critical in F
is not connected. Let T ⊳M be the cyclic subgroup of index 6p, and set

H = Im[(Fc)
<M
>1 −−−→ S(M/T )].

From the above list of maximal subgroups, we see that for any proper subgroup H $M
of order a multiple of p, H is contained in no other maximal subgroup in F , and hence
H is not critical (Lemma 3.1(a)). Also, for any 1 6= H ⊆ T , Lemma 3.1(a) applies (with

Ĥ = N(H) = M) to show that H /∈ Fc. Thus, H contains neither the trivial subgroup
nor subgroups of order a multiple of p. Also, H contains the subgroups of order 6 in
M/T , since any subgroup of the form H⋊C6 ⊆M (for H ⊆ T ) which is maximal among
subgroups of M contained in other maximal subgroups of F must be critical. We have
now shown that H consists of the subgroups of order 6 in M/T ∼= Cp⋊C6, as well as
possibly the subgroups of order 2 and 3. Since none of these subgroups is normal (C6

acts on Cp via (x 7→ xq) and p is prime to (q2 − 1) and to (q3 − 1)), this shows that the
nerve of H is not connected. And since the continuous image of a connected space must
be connected, this shows that N ((Fc)

<M
>1 ) also fails to be connected.

Proposition 6.7 can also be proven using Proposition 5.4 (when F contains centralizers
of involutions), and Proposition 5.12 to reduce the general case to this case.



Bob Oliver and Yoav Segev 47

7. Sporadic simple groups

Aschbacher and Segev proved in [AS] that no sporadic simple group, with the possi-
ble exception of the first Janko group J1, can act on a 2-dimensional acyclic complex
without fixed points. In all cases, this was done by applying the four-subgroup crite-
rion, presented here in Proposition E.1. Since the arguments in [AS] use a variety of
structures and definitions unfamiliar to non-group-theorists, we now describe how these
results — as well as the nonexistence of a J1-action — can be proven using Proposi-
tion 5.4 instead. Note however that the arguments presented here, while fairly brief
to present, are not really more elementary than those given in [AS]. They depend on
information about maximal subgroups which has been collected together in [Atl] and
[A2], but whose proofs (especially for the ten sporadic groups listed in Table 5) are
scattered widely throughout the literature.

We first repeat some definitions in [A2, §28]. Fix a finite group G, a subgroup A ⊆
Aut(G), and an A-invariant subgroup B ⊆ G. A regular (A,B)-basis for G is a set
{Gi | i ∈ I} of subgroups containing B which satisfies the following two conditions:

(1) each subgroup H ⊆ G containing B is in the A-orbit of GJ
def
=

⋂
j∈J Gj for some

unique J ⊆ I (in particular, B = GI); and

(2) for each J,K ⊆ I, if a(GK) ⊆ GJ for some a ∈ A, then GK ⊆ GJ and a(GK) =
a′(GK) for some a′ ∈ NA(GJ).

If G has a regular (A,B)-basis of order at least four (for any A and B), then by [AS,
6.1] (and using the four-subgroup criterion described in Proposition E.1), (G,F) /∈ U2
for any separating family F which contains the basis. Using Proposition 5.4, this can
be shown for bases of order three which satisfy certain additional conditions.

Lemma 7.1. Fix a simple group G and a separating family F of subgroups of G.
Assume, for some A ⊆ Inn(G) and some A-invariant subgroup 1 6= K ⊆ G, that there
is a regular (A,K)-basis {Ki | i ∈ I}, and indices r, s, t ∈ I, such that Kr, Ks, Kt ∈ F
and

1

[Krs:Krst]
+

1

[Krt:Krst]
+

1

[Kst:Krst]
≤ 1. (1)

Then (G,F) /∈ U2. In particular, (1) holds if K contains a Sylow p-subgroup for any
prime p

∣∣|G|.

Proof. For simplicity, we write I = {1, 2, . . . , k}, and assume that {r, s, t} = {1, 2, 3}.
By [A2, 28.1], {K1, K2, K3} is a regular (NA(K123), K123)-basis; so we can assume k = 3
and K = K123. It is immediate from the definition of a regular (A,K)-basis that KJ∪{i}
is a maximal subgroup of KJ for any J $ I and any i ∈ IrJ .

We claim that the subgroups K1, K2, K3 satisfy the hypotheses of Proposition 5.4; it
then follows that (G,F) /∈ U2. We have just checked conditions (b) and (c) (maximal-
ity of subgroups). Condition (a1) holds by assumption, and condition (e) (the triples
(K1, K12, K) and (K1, K13, K) are not G-conjugate) is immediate from the definition of
a regular (A,K)-basis.

We next show that the Ki can be ordered so that NG(K1, K12, K) = K, thus proving
condition (d). To see this, note first that NG(K) must be A-conjugate (hence equal)
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to one of the subgroups Ki, Kij, or K. Also, the Ki are maximal in the simple group
G and hence self-normalizing. If NG(K) = K, then we are done. Otherwise, we can
assume (after switching indices if necessary) that NG(K) = K3 or K23. If NG(K) = K23,
then NG(K1, K12, K) ⊆ K1 ∩ K23 = K. So suppose NG(K) = K3. Since K12 is not
normal in G = 〈K1, K2〉, K12 cannot be normal in both K1 and K2, and we can assume
without loss of generality that K12 is not normal in K1. Then NK1(K12) = K12, and so
N(K1, K12, K) ⊆ K12 ∩K3 = K. This finishes the proof that (G,F) /∈ U2.

It remains to show that (1) always holds if K contains a Sylow p-subgroup for some
prime p

∣∣|G|. By definition of a regular basis, [Kij :K] > 1 for all i, j. If [Kij :K] =
[Kik:K] = 2 for some i, then K ⊳ Ki = 〈Kij , Kik〉 ([A2, 28.1(2)]); Ki/K is generated by
two elements of order 2 and hence dihedral; and this is a contradiction since it means
there are other overgroups of K not conjugate to any of the given ones.

Thus, [Kij :K] = 2 for at most one pair of indices i, j. So if (1) does not hold, then
the three indices [Kij :K] must be (2, 3, 3), (2, 3, 4), or (2, 3, 5). Since each index is
prime to p (K contains a Sylow p-subgroup), this shows that p ≥ 5. If [Kij :K] = m,
then the permutation action of Kij on the set Kij/K restricts to a homomorphism
ϕij :K → Σm−1 ⊆ Σ4 whose kernel Rij is normal in Kij. Set H = O{2,3}(K) ⊳ K: the
smallest normal subgroup of index a product 2r·3s. Then H is characteristic in any
subgroup of K which contains H , and in particular characteristic in each Rij . So H is
normal in each Kij, and hence normal in G = 〈K12, K13, K23〉. Since G is simple, H = 1,
so 2 and 3 are the only primes dividing |K|. And this contradicts the assumption that
K contains a Sylow p-subgroup for some p ≥ 5 and p

∣∣|G|.

We are now ready to prove:

Proposition 7.2. Let G be any of the sporadic simple groups, or the Tits group 2F4(2)
′.

Then there is no 2-dimensional acyclic G-complex without fixed points.

Proof. We first prove the proposition for ten of the sporadic groups as well as the
Tits group, by direct application of Proposition 5.4. Since M22 is one of these groups,
Proposition E.3 then applies to prove the proposition for the other four Mathieu groups.
The last twelve sporadic groups are then handled using Lemma 7.1. Throughout the
proof, whenever two names are given for one of the sporadic groups, the first is that
used in [Atl], and the second the name used in [A1] or [A2].

Assume the proposition does not hold, and let G be the smallest such group which has
a fixed-point free action on a 2-dimensional acyclic complex X . Let F be the separating
family of subgroups H ⊆ G such that XH 6= ∅. Consider first the following table, which
describes how Proposition 5.4 can be applied to these eleven simple groups:
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G K1 K2 K3 K12 K K13 K23 [Kij :K]

J1 23:7:3 7:6 C3×D10 7:3 3 6 6 7, 2, 2

= N(7) = C(3)

M22 L3(4) 24:S5 24:A6 24:A5 22+4:3 24:A5 22+4:S3 5, 5, 2

(point) (duad) (hexad) = 24:A4 = 24:S4

J2 U3(3) 3·PGL2(9) 21+4
−

:S3 31+2
−

:8 3:8 4·S4 3:D16 9, 4, 2

= N(3A) = N(4)

HS U3(5):2 U3(5):2 C(2x) 51+2
+ :8:2 5:8:2 2S5.2 2S5.2 25, 6, 6

⊇ N(Syl5)

J3 L2(16):2 L2(17) 21+4
−

:S3 17:4 4 D8×2 D16 17, 4, 4

⊇ N(17) = N(4)

He S4×L3(2) L3(2)×7:3 N(3x) S4×(7:3) S4×3 S4×D6 L3(2)×3 7, 2, 7

= N(7)

Ru 2F4(2) L2(25)·22 3·A6·22 L2(25)·2 D24.2 (31+2
+ :D8).2 D24.22 •, 9, 2

(point) (edge) = N(3)

O’N J1 L3(7):2 (32×A6)·2 19:6 6 D6×D10 S3×S4 19, 10, 24

⊇ N(19) = N(3)

HN A12 M12:2 C(2x) M12 2×S5 25:S6 (22×A5):2 •, 96, 2
= F5 (point) (point pair) = CM12

(2A) = CA12
(2B)

Th 3D4(2):3 (3×13):12 21+8
+ :A9 13:12 12 CK1

(2x) 3×12 13, •, 3
= F3 = N(13) = C(2) order ≥ 9216

2F4(2)′ L2(25) 52:4A4 [29·3] 52:12 12 D24 4A4 25, 2, 4

= N(Syl5) C(2B)

Table 5

We refer to [Atl] for the existence of subgroups with these properties, and to [GLS,
Table 5.3] for tables of normalizers of prime order subgroups of the sporadic groups.
The subgroups in Table 5 are described using mostly the notation of [Atl]. However,
we write, for example, N(3) or C(3) to denote the normalizer or centralizer in G of a
subgroup of order 3 when there is a unique G-conjugacy class of such subgroups; and
write N(3A) or N(3B) (or N(3x) when the class is unspecified) only when there is more
than one class. Also, Sylp always denotes a Sylow p-subgroup of G.

In all cases, the results of Section 6 and Appendix F and the minimality assumption
on G imply that Ki ∈ F for all i = 1, 2, 3. Note in particular the cases G = HS, He,
and HN: K3 ∈ F since K13 or K23 is nonsolvable and in F .

The remarks under the names of the subgroups Ki describe how they are chosen
relative to one another. In all cases except G = M22, K1 and K2 are chosen in one of
the following two ways: either

(a) they are the stabilizers of a vertex and an edge (or point pair) of a standard action
of G on a graph; or

(b) K1 is a maximal subgroup of G, and K2 is the normalizer of some subgroup X ⊆ K1

(as indicated in the table), or a maximal subgroup (not conjugate to K1) containing
NG(X) and such that K12 = NK1(X).
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The subgroup K3 is then chosen as the normalizer or centralizer of a certain subgroup
Y ⊆ K12 as indicated. In all cases where K12 contains more than one conjugacy class
of subgroup of the given order, the choice is either specified under K = NK12(Y ), or is
clear from the description of K. In many cases, it is unnecessary to identify K3 more
precisely, since the only thing we need know about it is that it must lie in F .

When G = M22, K3
∼= 24:A6 is the subgroup which leaves invariant some hexad in

the Steiner system of order 22, and it has the obvious action on this set of order 6 (cf.
[Gr, Theorem 6.8]). Then K1 is taken to be the stabilizer of some point x in the hexad,
and K2 the stabilizer of some pair of points in the hexad including x.

In all cases, each of the subgroups in the sequence K ⊆ K12 ⊆ K1 ⊆ G is maximal
and self-normalizing in the next one. Thus, conditions (b,c,d) in Proposition 5.4 always
hold. Condition (e) ((K1, K12, K) is not G-conjugate to (K1, K13, K)) is clear except
when G =M22; in this case K12 and K13 are distinct parabolic subgroups in K1

∼= L3(4)
containing the same Borel subgroup K, and hence not conjugate in K1. Inequality (a1)
holds in all cases except when G = J1, as can be checked using the list of indices [Kij:K]
in the last column (where “•” means that the index is >10 and hence large enough not
to matter).

We give particular attention to the case G = J1: the first Janko group, and the
only sporadic group not handled in [AS]. Fix some K1

∼= C3
2⋊(C7⋊C3): a maximal

subgroup of G by [A2, 16.17] (see also 16.4 and 16.16 in [A2]). Let K2
∼= C7⋊C6 be

the normalizer of a subgroup of order 7 in K1, and let K3
∼= C3×D10 be the centralizer

in G of a subgroup of order 3 in K12. Then K12
∼= C7⋊C3, K13

∼= C6
∼= K23, and

K = K1 ∩K2 ∩K3
∼= C3. All of these subgroups are solvable, and hence in F . Also,

∑

i<j

1

[Kij :K]
=

1

7
+

1

2
+

1

2
< 1 +

1

14
+

1

10
= 1 +

1

[K2:K]
+

1

[K3:K]
,

which proves inequality (a2) in Proposition 5.4. The other conditions in 5.4 are easily
checked, and so J1 has no fixed-point free action on a 2-dimensional acyclic complex.

The remaining twelve sporadic groups can now be handled using Lemma 7.1. In [A2,
§28], a p-basis for G is defined to be a regular (NG(B), B)-basis for some B ⊆ G which
contains a Sylow p-subgroup T of G, and such that the basis contains representatives for
all G-conjugacy classes of maximal subgroups in G which contain T (not only conjugacy
class representatives for maximal overgroups of B). Maximal overgroups of the Sylow
subgroups of sporadic groups are listed in [A2], and conditions for their forming a p-
basis are given in [A2, Theorem 1]. So from [A2, pp. 7-36], we get the following list of
sporadic groups G and primes p = 2 or 3, where in each case G has a p-basis with at
least three elements already known not to have fixed point free actions on 2-dimensional
acyclic complexes: J4 (p = 2), McL (p = 3), Suz (p = 3), Ly (p = 3, 5), Co3 (p = 2, 5),
Co2 (p = 2, 3, 5), Co1 (p = 2, 3), Fi22 = M(22) (p = 2, 3), Fi23 = M(23) (p = 3),
Fi′24 = M(24)′ (p = 2, 3), B = F2 (p = 2, 3, 5), M = F1 (p = 2, 3, 5). Note in particular
the case G = Ly and p = 3: the maximal overgroup G2 ([A2, p.19]) must lie in F since
it surjects onto S5. This list includes all of the sporadic groups not dealt with in Table
5 or in Proposition E.3, and thus finishes the proof of the proposition.
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8. Proof of Theorem A

We are now ready to prove Theorem A.

Theorem A. For any finite group G, there is an essential fixed point free 2-dimensional
(finite) Z-acyclic G-complex if and only if G is isomorphic to one of the simple groups
L2(2

k) for k ≥ 2, L2(q) for q ≡ ±3 (mod 8) and q ≥ 5, or Sz(2k) for odd k ≥ 3.
Furthermore, the isotropy subgroups of any such G-complex are all solvable.

Proof. By Proposition 4.4, ifG has an essential action on an acyclic 2-complexX without
fixed points, then there is a nonabelian simple normal subgroup L ⊳ G whose action also
is fixed point free, and such that CG(L) = 1 (i.e., G ⊆ Aut(L)). By the classification
theorem, L must be an alternating group, or of Lie type, or the Tits group 2F4(2)

′, or
one of the 26 sporadic simple groups. By [S1, 3.7] (Proposition E.3), L cannot be any
of the alternating groups An for n ≥ 6. By [AS, §5] (or Proposition E.4), L cannot be
of Lie type and of Lie rank two or more. By Proposition 7.2, L cannot be any of the
sporadic simple groups, nor the Tits group (see [AS, §6] for all of these except the first
Janko group J1). Hence L must be of Lie type and of Lie rank one. The groups U3(q)
are eliminated by Propositions 6.5 and 6.6, and the Ree groups 2G2(q) by Proposition
6.7. We are thus reduced to the case where L ∼= L2(q) or Sz(q); and this was handled
in Proposition 6.4.

Appendix

Throughout the appendix, G will always denote a finite group, though most of the
definitions and results stated in Parts A and B apply equally well to actions of an infinite
discrete group. A “map” (between spaces or CW complexes) always means a continuous
map.

Parts A and B give a brief introduction to (G-) CW complexes and their homology,
for readers not already familiar with them. In part C, several results — both elementary
and deep — about projective and free Z[G]-modules are given. A survey of of some of
the theory of finite simple groups of Lie type is given in part D. Finally, in part E, we
sketch some of the results shown in [S1] and [AS] on the nonexistence of fixed point free
actions of certain multiply transitive groups, and of certain simple groups of Lie type,
on 2-dimensional acyclic complexes.

Appendix A. G-CW complexes

We use [LW] as a general reference for the definition(s) and properties of CW com-
plexes. The following is a combination of [LW, Definitions I.1.1 and II.1.1], but extended
to the equivariant case.

Definition A.1. A G-CW complex is a Hausdorff space X with continuous G-action
(i.e., G is represented as a group of homeomorphisms of X), together with a filtration
X(0) ⊆ X(1) ⊆ X(2) ⊆ · · · by closed G-invariant subspaces (the “skeleta” of X), as well
as discrete G-sets Jm and G-equivariant “characteristic maps” ϕm : Jm×Dm → X (for
all m ≥ 0), which satisfy the following properties.
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(a) X =
⋃∞

m=0X
(m). For each m, ϕm restricts to a homeomorphism

Jm×int(Dm)
∼=−−→ (X(m)rX(m−1)).

(b) For each m > 0, ϕm(Jm×Sm−1) ⊆ X(m−1). Moreover, for each j ∈ Jm, there are
finite subsets J ′

k ⊆ Jk (0 ≤ k ≤ m− 1) such that

ϕm(j×Sm−1) ⊆
m−1⋃

k=0

ϕk(J
′
k×Dk).

(c) A subset U ⊆ X is open if and only if ϕ−1
m (U) is open in Jm×Dm for each m ≥ 0.

(X has the “weak topology” with respect to its cell structure.)

In the above definition, G is always assumed to act trivially onDm and Sm−1. Usually,
a G-CW complex will be called a G-complex for short.

A CW complex is just a G-CW complex in the case where G is the trivial group.
An open cell in a (G-)CW complex X is the image ϕm(j×int(Dm)) of one open disk
under the characteristic map. Note that if σ = ϕm(j×int(Dm)) is any open cell, then
ϕm(j×Dm) = σ (the closure of σ) and ∂σ = ϕm(j×Sm−1) = σ r σ (the boundary of σ)
are determined by σ itself as a subspace of X . By condition (a) in the definition, each
point of X lies in exactly one open cell, and the open m-cells of X are the connected
components of X(m)rX(m−1).

The following is an alternative way to regard G-complexes, once CW complexes have
been defined. Fix a CW complex X with continuous G-action. Call the action admissible

if it permutes the open cells of X , and sends a cell to itself only via the identity. If X
is a G-complex, then by definition the G-action is admissible. Conversely, if the action
of G on X is admissible, then the characteristic maps of X can be redefined to yield a
G-complex. More precisely, if ϕm : Jm×Dm → X is the given characteristic map for the
m-cells of X , then the action of G on the m-cells of X induces an action on Jm. Also,
for any orbit Ω of G on Jm and any j ∈ Ω, one can define ϕ′

m on Ω×Dm by setting
ϕ′
m(gj, x) = gϕm(j, x). Upon doing this for all m ≥ 0 and all orbits of Jm, we get the

new characteristic maps which make X into a G-complex.

Note in particular the last part of condition (b). Each cell in a CW complex must
be “closure finite”: its boundary must be contained in a finite union of closed cells of
smaller dimensions. To see the importance of this condition, consider the space X = D2,
let J0 be the circle S1 with the discrete topology, let J2 be a set with one element, and
set Jm = ∅ for all m 6= 0, 2. Let ϕ0 : J0×D0 → X be projection to the first factor (i.e.,
inclusion of the circle), and let ϕ2 : J2×D2 → X be projection to the second factor.
These sets and maps satisfy all of the conditions for a CW structure on D2 except for
closure finiteness. But this goes against our intuitive expectations (by analogy with
simplicial complexes) that the 0-skeleton of any CW complex should be discrete, and
that compact CW complexes should be made up of finitely many cells.

The following lemma describes the principal means of constructing G-complexes (see,
e.g., Proposition 0.2).

Lemma A.2. Let X be a G-complex, let J be any discrete set with G-action, and let
ϕ : J×Sn−1 → X(n−1) be any G-equivariant map. Then the space

Y = X ∪ϕ (J×Dn)
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is a G-complex.

Proof. Let Φ: J×Dn → Y be the obvious map; thus Φ|J×Sn−1 = ϕ. This, together with
the characteristic maps for X , make up the characteristic maps for Y . The other details
are the same as in the nonequivariant case; cf. [LW, Proposition II.2.2].

IfX has been constructed via successively attaching cells, i.e., via successive repetition
of the construction of Lemma A.2, starting with a discrete set, then the closure finiteness
condition holds automatically. In fact, this is the basis for an alternative definition of a
CW complex, described more precisely in [LW, Theorem II.2.4].

A (G-invariant) subcomplex of a G-CW complex is a closed (G-invariant) subspace
A ⊆ X which is a union of closed cells in X ; i.e., a union of images of characteristic
maps. A subcomplex is itself a CW complex in an obvious way. Note in particular that
if X is a G-complex, then for every H ⊆ G, the fixed point set XH is a subcomplex of X :
if ϕm : Jm×Dm → X are the characteristic maps for X , then (ϕm)

H : (Jm)
H×Dm → XH

are the characteristic maps for XH .

The following proposition is an immediate consequence of condition (c) in Definition
A.1. Roughly, it says that a function defined on a CW complex is continuous if and
only if its restriction to each closed cell of the complex is continuous.

Lemma A.3. Let X be a CW complex, with characteristic maps ϕm : Jm×Dm → X .
Then if Y is any topological space, a function f : X → Y is continuous if and only if
f ◦ϕm is continuous for each m.

Recall (cf. [S1], [AS]) that a simplicial complex X with G action is called admissible

if the action permutes the simplices linearly, and sends a simplex to itself only via the
identity. (If this last condition does not hold, then it does hold for the barycentric
subdivision of X .) We claimed in the introduction that Theorem A holds equally well if
one replaces “G-complex” by “admissible G-simplicial complex” in the statement. This
follows from the following proposition, where simplicial complexes are always assumed
to have the metric topology (cf. [LW, Definition IV.4.1]).

Proposition A.4. Any finite dimensional admissible G-simplicial complex is G-homo-
topy equivalent to a G-complex of the same dimension. Any countable, finite dimen-
sional G-complex is G-homotopy equivalent to an admissible G-simplicial complex of
the same dimension.

Proof. For any admissible G-simplicial complex X , one can clearly define skeleta and
characteristic maps for X which satisfy conditions (a) and (b) in Definition A.1; but for
these to also satisfy condition (c) we must replace X with a new space Xcw having the
same underlying set but a finer topology (more open sets). The identity map Xcw →
X is continuous and is a homotopy equivalence by [LW, Proposition IV.4.6] (and the
argument in [LW] can easily be fixed to cover the equivariant case).

The second statement is shown, in the nonequivariant case, by Whitehead in [Wh,
Theorem 13], and his proof carries over immediately to G-complexes. The idea is the
following: once X(m−1) has been replaced by a G-simplicial complex of the same dimen-
sion, then approximate the characteristic map Jm×Sm−1 → X(m−1) by a simplicial map
(possibly after further subdivision of X(m−1)), and attach the m-cells after giving them
appropriate simplicial structure.
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For any space X , we let ΣX denote its unreduced suspension: ΣX
def
= (X×I)/∼,

where (x, 0)∼(x′, 0) and (x, 1)∼(x′, 1) for all x, x′ ∈ X . A G-action on X automatically
determines a G-action on ΣX , via the trivial action on the interval I.

Lemma A.5. The orbit space X/G of a G-complex X inherits a structure of a CW
complex, with one n-cell in X/G for each G-orbit of n-cells in X . The unreduced
suspension ΣX of any G-complex X is itself a G-complex in a natural way. And if X
and Y are any two G-complexes, at least one of which is finite, then their product X×Y
is also a G-complex.

Proof. If X is a G-complex, with skeleta X(m) and characteristic maps ϕm : Jm×Sm →
X , thenX/G is a CW complex with skeleta (X/G)(m) = X(m)/G and characteristic maps
ϕm/G : (Jm/G)×Sm → X/G. This follows immediately from Definition A.1. Note in
particular that condition (c) holds for X/G by definition of the quotient topology: a
subspace is open in X/G if and only if its inverse image is open in X .

The unreduced suspension of a CW complex is again a CW complex by [LW, Corollary
II.5.12]. And if X or Y is finite, then X×Y is a G-complex with the obvious product
structure by [LW, Theorem II.5.2]. In each of these last two cases, the arguments in
[LW] carry over without change to the equivariant case.

We remark here that if X and Y are arbitrary CW complexes, then there is an
obvious way to define skeleta for X×Y : (X×Y )(m) =

⋃
i+j=m(X

(i)×Y (j)). Also, if
ϕm : Jm×Dm → X and ψm : Km×Dm×Y are the characteristic maps for X and Y , then
one can define characteristic maps ωm =

∐
i+j=m(ϕi×ψj) forX×Y . (This requires fixing

identifications Di×Dj ∼= Di+j.) Conditions (a) and (b) in Definition A.1 always hold;
what can go wrong is condition (c).

The following lemma is not used in the paper, but does help to motivate the concept
of “universal” (G,F)-complexes as defined in Section 0.

Proposition A.6. Fix a family F of subgroups of G, and let Y be any universal (G,F)-
complex. Then for any (G,F)-complex X , any G-invariant subcomplex A ⊆ X , and any
equivariant map f0 : A→ Y , f0 extends to an equivariant map f : X → Y . Furthermore,
f is unique up to homotopy, in the sense that if f ′ : X → Y is any other extension of f0,
then there is an equivariant homotopy F : X×I → Y such that F |X×0 = f , F |X×1 = f ′,
and F |A×I = f0 ◦ projA.

Proof. It suffices to prove the existence of f : X → Y ; the uniqueness then follows by
extending the given map on (X×{0, 1}) ∪ (A×I) to X×I.

We construct f : X → Y one skeleton at a time. The construction of f0 : X
(0)∪A→ Y

is easy: let {xi} be orbit representatives for the vertices not in A, set Hi = Gxi
(the

isotropy subgroup), choose any yi ∈ Y Hi , and define f0(gxi) = gyi for all g ∈ G and all
i (and f0|A = fA).

Now assume that n ≥ 1, and that fn−1 : X
(n−1) ∪ A → Y has been constructed. Let

ϕn : Jn×Dn → X be the characteristic map for the n-cells of X (where Jn is a discrete
set with G-action), and let J ′

n ⊆ Jn be the subset of those n-cells not in A. Set

u0 = fn−1 ◦ϕn|J ′

n×Sn−1 : J ′
n×Sn−1 −−−−−→ Y.
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For each j ∈ J ′
n, let Gj = {g ∈ G | gj = j} ∈ F be its isotropy subgroup. Then

u0(j×Sn−1) ⊆ Y Gj . Also, Y Gj is contractible (since Y is (G,F)-universal), the identity
map Y Gj → Y Gj is homotopic to a constant map, and hence any map to Y Gj is homo-
topic to a constant map. In particular, u0 can be extended to a (nonequivariant) map
v′j : j×Dn → Y Gj . This can then be extended to a G-map vj : Gj×Dn → Y (where Gj is
the orbit of j) by setting vj(gj, x) = g·v′j(j, x). Upon repeating this procedure with one
representative from each G-orbit in J ′

n, the vj combine to give a G-map u : J ′
n×Dn → Y

whose restriction to J ′
n×Sn−1 is u0. If we now set fn(x) = fn−1(x) for x ∈ X(n−1) ∪ A,

and fn(ϕn(j, x)) = u(j, x) for (j, x) ∈ J ′
n×Dn, then this is a well defined map of sets from

X(n) to Y , which is equivariant by construction, and continuous by Lemma A.3.

Note that Proposition A.6 implies in particular that any two universal (G,F)-com-
plexes are G-homotopy equivalent.

Appendix B. Cellular homology of G-complexes

The cellular chain complex (Cn(X), ∂n)n≥0 of a CW complex is described in [LW,
§V.2]. Formally, this is defined using singular homology (in particular, Cn(X) =
Hn(X

(n), X(n−1))), as in [LW, Definition V.2.1]. By [LW, Proposition V.1.8], Cn(X)
is the free abelian group with basis the set of (oriented) n-cells in X ; and by [LW, §V.3]
each boundary map ∂n : Cn(X)→ Cn−1(X) can be described via the matrix whose en-
tries are the degrees of maps between (n − 1)-spheres induced by the attaching maps
for the n-cells. By [LW, Theorem V.2.11], the singular homology H∗(X) is isomorphic
to the homology of the complex (Cn(X), ∂n). Hence, if X is a finite complex, the Eu-
ler characteristic χ(X) is equal to the alternating sum of the numbers of cells in each
dimension.

Note that for a map f : X → Y between CW complexes to induce a homomorphism
C∗(X)→ C∗(Y ), it must be a cellular map, in the sense that f(X(n)) ⊆ Y (n) for all n ≥
0. However, since cellular homology H∗(C∗(X), ∂) is isomorphic to singular homology,
any continuous map between CW complexes induces a homomorphism between their
cellular homology groups.

More generally, if X is any CW complex and A ⊆ X is any subcomplex, then the

relative cellular chain complex is defined by setting C∗(X,A)
def
= C∗(X)/C∗(A). Thus,

Cn(X,A) is the free abelian group with one generator for each n-cell of X not in A. By
[LW, Theorem V.2.11] again, the homology of the complex (C∗(X,A), ∂) is naturally
isomorphic to H∗(X,A).

If X is a G-complex and A ⊆ X is a G-invariant subcomplex, then the cellular chain
complexes C∗(X) and C∗(X,A), and the homology groups H∗(X) and H∗(X,A), are all
Z[G]-modules. In fact, each chain group Ci(X) or Ci(X,A) is a permutation module,
in the sense that it has a Z-basis which is permuted by the linear action of G.

Once homology has been defined using the cellular chain complex, then the relative
and Mayer-Vietoris exact sequences, and excision, are immediate. (Note, however, that
excision in singular homology is needed to establish the basic properties of cellular
homology of CW complexes [LW, §V.1–2].) To see this, fix a G-complex X . For any



56 Fixed point free actions on acyclic 2-complexes

G-invariant subcomplexes A0 ⊆ A ⊆ X , the short exact sequence of chain complexes

0 −−−→ C∗(A)/C∗(A0) −−−−→ C∗(X)/C∗(A0) −−−−→ C∗(X)/C∗(A) −−−→ 0

induces, via the snake lemma, the relative exact sequence

· · · −−−→ Hi(A,A0) −−−−→ Hi(X,A0) −−−−→ Hi(X,A)
∂−−−−→ Hi−1(A,A0) −−−→ · · · .

Similarly, for any pair of G-invariant subcomplexes A,B ⊆ X with A∪B = X , there is
a short exact sequence

0 −−−→ C∗(A ∩B) −−−−→ C∗(A)⊕ C∗(B) −−−−→ C∗(A ∪ B) −−−→ 0

which induces the Mayer-Vietoris sequence

· · · −−−→ Hi(A ∩ B) −−−→ Hi(A)⊕Hi(B) −−−→ Hi(X)
∂−−−→ Hi−1(A ∩ B) −−−→ · · · .

All of these are exact sequences of Z[G]-modules.

Similarly, since Br(A∩B) contains exactly the same cells as (A∪B)rA, the inclusion
map induces an isomorphism

H∗(B,A ∩B)
∼=−−−−−→ H∗(A ∪ B,A) (excision)

since it induces an isomorphism of cellular chain complexes.

The following lemma, used in the proof of Proposition 0.2, is one application of
excision and the relative exact sequence. It describes the effect of attaching cells on the
homology of the complexes involved.

Lemma B.1. Let X be a G-complex, let J be a discrete set with G-action, and let
f : J×Sn → X(n) be any G-equivariant map (n ≥ 1). Set Y = X ∪f (J×Dn+1). Then
there is an exact sequence of Z[G]-modules

0 −−−→ Hn+1(X)
incl∗−−−−→ Hn+1(Y ) −−−−→

Hn(J×Sn)
f∗−−−−→ Hn(X)

incl∗−−−−→ Hn(Y ) −−−−→ 0;

and the inclusion X
incl−−→ Y induces isomorphisms Hi(X) ∼= Hi(Y ) for all i 6= n, n+ 1.

Proof. Let α : J×Dn+1 → Y be the characteristic map (so α|J×Sn = f). This induces
an isomorphism C∗(J×Dn+1, J×Sn) ∼= C∗(Y,X) of chain complexes, and hence an iso-
morphism in homology in all degrees. The following square

Hn+1(J×Dn+1, J×Sn)
∂−−−→∼= Hn(J×Sn)

α∗

y∼= Hn(f)

y

Hn+1(Y,X)
∂−−−→ Hn(X)

commutes by the naturality of the relative exact sequences for pairs of CW complexes,
and the upper boundary map is an isomorphism since Hi(J×Dn+1) = 0 for i ≥ 1.
The lemma now follows from the relative exact sequence for the pair (Y,X), where
Hn+1(Y,X) is replaced by Hn(J×Sn) via the above square.

The following more technical application of excision and the relative exact sequences
is needed in the proof of Proposition 1.7.
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Lemma B.2. Fix a CW complex Y and subcomplexes B,X ⊆ Y , and set A = B ∩X .
Assume that the inclusion induces an isomorphism H∗(A)→ H∗(B). Then H∗(Y,X) ∼=
H∗(Y,X ∪ B).

Proof. It suffices to show that H∗(X ∪ B,X) = 0; the result then follows from the
relative exact sequence for Y ⊇ X∪B ⊇ X . But H∗(X ∪B,X) ∼= H∗(B,A) by excision,
and this last group vanishes since H∗(A) ∼= H∗(B).

The following result says, roughly, that a union of homology or homotopy equivalences
between CW complexes is again a homology or homotopy equivalence.

Proposition B.3. Let f : X → Y be a map between CW complexes. Fix subcomplexes
A1, A2 $ X and B1, B2 ⊆ Y such that X = A1 ∪ A2 and Y = B1 ∪ B2, and set
A0 = A1 ∩ A2 and B0 = B1 ∩ B2. Assume that f restricts to homology (homotopy)
equivalences fi : Ai → Bi for i = 0, 1, 2. Then f is itself a homology (homotopy)
equivalence.

Proof. If f0, f1, and f2 are all homology equivalences, then f is a homology equivalence
by the Mayer-Vietoris sequences for the two unions (and the 5-lemma).

Assume now that f0, f1, and f2 are all homotopy equivalences; we must show that f
is a homotopy equivalence. By the Van Kampen theorem, f induces an isomorphism of
fundamental groups (on each connected component). The map between the universal
covers is a homology equivalence, hence a homotopy equivalence; and hence f : X → Y
is itself a homotopy equivalence. For the details of this argument, cf. [Gra, Lemma
16.24 & Theorem 16.22].

Alternatively, and more geometrically, one can show directly that any homotopy in-
verse g0 : B0 → A0 of f0 can be extended (one cell at a time) to homotopy inverses
gi : Bi → Ai (i = 1, 2), while at the same time extending the homotopies of g0 ◦ f0 ≃ IdA0

and f0 ◦ g0 ≃ IdB0 . The result then follows upon taking g = g1 ∪ g2 : Y → X (and simi-
larly for the homotopies). The existence of the gi and the homotopies follows from the
proofs of [LW, Theorems IV.3.2–3] (applied to the 2-ads (Ai, A0) and (Bi, B0)); although
the statements of these theorems are not sufficiently precise to do this.

Appendix C. Projective Z[G]-modules

Recall that for any G-complex X , C∗(X) and H∗(X) are Z[G]-modules in an obvious
way. A finitely generated Z[G]-module M will be called stably free if there are finitely

generated free modules F0 and F such that M ⊕F0
∼= F . Free Z[G]-modules, and hence

(as an intermediate step) stably free Z[G]-modules play a key role when constructing
finite G-complexes in Section 1.

Lemma C.1. If X ⊆ Y are finite G-complexes such that G acts freely on YrX , then
C∗(Y,X) is a finite chain complex of free finitely generated Z[G]-modules.

Proof. By assumption, G permutes freely the cells in Y not in X . Thus, G permutes
freely a basis of C∗(Y,X); and this is a finite basis since X and Y have only finitely
many cells.
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The following lemma says in particular that if C∗ is a finite chain complex of finitely
generated free Z[G]-modules all but one of whose homology groups is stably free, then
the remaining homology group is also stably free. This does not hold for modules over
arbitrary noetherian rings, but uses special properties of group rings.

Proposition C.2. Let C∗ be any finite chain complex of projective Z[G]-modules. As-
sume, for some k, that Hi(C∗) is projective as a Z[G]-module for all i 6= k, and that
Hk(C∗) is Z-free. Then Hk(C∗) is also a projective Z[G]-module, and

⊕

i even

Hi(C∗)⊕
⊕

i odd

Ci
∼=

⊕

i odd

Hi(C∗)⊕
⊕

i even

Ci. (1)

Proof. We first claim the following: if 0 → A→ B → C → 0 is a short exact sequence
of finitely generated Z-free Z[G]-modules, and two of the modules A, B, and C are
projective (stably free), then so is the third. This is clear if C is projective, since in that
case B ∼= A ⊕ C. So assume that A and B are projective (stably free). Since all three
groups are Z-free and finitely generated, the dual sequence 0→ C∗ → B∗ → A∗ → 0 is

also exact. Here, for any Z[G]-moduleM , M∗ def
= HomZ(M,Z) has the obvious structure

as a Z[G]-module. Dualization clearly takes finitely generated free Z[G]-modules to free
Z[G]-modules, hence the same for projective modules; and so the dualized sequence
splits. Thus B∗ ∼= A∗ ⊕ C∗ as Z[G]-modules; and upon dualizing again we see that
B ∼= A⊕ C. So C is Z[G]-projective (stably free).

Now fix any m,n ∈ Z such that m < k < n, and Ci = 0 for all i < m and all i > n.

For each i, set Zi = Ker[Ci
∂−−→ Ci−1] and Bi = Im[Ci+1

∂−−→ Ci]. Consider the short
exact sequences

0 −−→ Zi −−−→ Ci −−−→ Bi−1 −−→ 0 and 0 −−→ Bi −−−→ Zi −−−→ Hi(C∗) −−→ 0.

By induction starting at i = m, one sees that Zi is projective for each i ≤ k, and that
Bi is projective for each i < k. Similarly, by downward induction starting at i = n+ 1,
one sees that Bi is projective for each i ≥ k, and that Zi is projective for each i > k. In
particular, Bk and Zk are both projective, and so the same holds for Hk(C∗).

In particular, the above short exact sequences split, since all of their terms are pro-
jective. Set Cev =

⊕
(C2i), Cod =

⊕
(C2i+1), Hev =

⊕
(H2i(C∗)), Hod =

⊕
(H2i+1(C∗));

and similarly for Zev, Zod, Bev, and Bod. Then

Hev ⊕ Cod
∼= Hev ⊕Bev ⊕ Zod

∼= Zev ⊕ Zod,

Hod ⊕ Cev
∼= Hod ⊕ Bod ⊕ Zev

∼= Zod ⊕ Zev,

and this proves (1).

The following property of projective Z[G]-modules is a consequence of a theorem of
Swan.

Proposition C.3. Let P and P ′ be any two finitely generated projective Z[G]-modules.
Then P ⊗Z P

′ is stably free as a Z[G]-module.

Proof. Assume first that P is free. Let {ai} be a Z[G]-basis for P , and let {bj} be a
Z-basis for P ′. Then {ai⊗ bj} is a Z[G]-basis for P ⊗P ′, and this module is free. (Note
that we did not need to know that P ′ is projective, only that it is Z-free.)
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Now consider the general case. By [Sw, Theorems 7.1 and 8.1], for any n > 0, any
finitely generated projective Z[G]-module contains a free submodule of finite index prime
to n. In particular, we can choose free submodules F ⊆ P and F ′ ⊆ P ′, such that [P :F ]
and [P ′:F ′] are finite and relatively prime. Consider the commutative diagram

0 −−−→ F ⊗ F ′ i1−−−→ P ⊗ F ′ −−−→ (P/F )⊗ F ′ −−−→ 0

j1

y j2

y α

y∼=

0 −−−→ F ⊗ P ′ i2−−−→ P ⊗ P ′ −−−→ (P/F )⊗ P ′ −−−→ 0,

where all tensor products are taken over Z. The rows are both exact, and α is an
isomorphism since (P/F )⊗ (P ′/F ′) = 0. So by an easy diagram chase, the sequence

0 −−−→ F ⊗ F ′ (i1,j1)−−−−−−→ (P ⊗ F ′)⊕ (F ⊗ P ′)
j2−i2−−−−−−→ P ⊗ P ′ −−−→ 0

is exact. We have just seen that the first two terms in this sequence are free, and so
P ⊗ P ′ is stably free.

In fact, using stability results of Swan, one can show that the tensor product of
any two finitely generated projective Z[G]-modules is free. This is not needed for the
constructions in this paper, but the following much deeper stability result is used. It is
not needed to prove the existence of 2-dimensional acyclic G-complexes, but it is used
in Section 3 to show that all of the complexes we construct can be taken to have exactly
one free orbit of 2-cells (and no free orbits of cells in other dimensions).

Proposition C.4. If G is simple, or (more generally) if there is no homomorphism
G → SU(2) (= SU(2,C)) with nonabelian image, then any stably free Z[G]-module is
free.

Proof. By a theorem of Jacobinski [Jac, Theorem 4.1], if A is any Z-order in a finite di-
mensional semisimple Q-algebra A which satisfies the Eichler condition, then all finitely
generated stably free A-modules are free. Here, the algebra A satisfies the Eichler con-
dition if it has no simple factor B, with center K, for which every embedding K →֒ C
has image contained in R and induces an isomorphism R ⊗K B ∼= H (the quaternion
algebra over R).

If Q[G] does not satisfy the Eichler condition — if B is a simple summand of Q[G]
and R⊗K A ∼= H — then the composite

Q[G]
proj−−−−−→ B −−−−−→ H

restricts to a multiplicative homomorphism α : G → S3 ∼= SU(2,C). Here, S3 denotes
the group of quaternions of norm 1. And since the image of G in H generates H as an
R-vector space, Im(α) must be nonabelian. See also [Re, §38] for more discussion.

Appendix D. Finite simple groups of Lie type

We give here a very short discussion of groups of Lie type. For more detail, we refer
to [St1], [St2], [Ca], or [GLS].
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The finite simple groups of Lie type consist of the Chevalley groups and their twisted
analogs. The finite Chevalley groups are analogs of the (complex or compact) Lie groups,
but realized over a finite field. They thus include the four families of classical groups:
An(q) ∼= Ln+1(q) = PSLn+1(q), Bn(q) ∼= PΩ2n+1(q) (the commutator subgroup of the
projective orthogonal group PGO2n+1(q)), Cn(q) ∼= PSpn(q), and Dn(q) ∼= PΩ+

2n(q)
(the commutator subgroup of the projective special orthogonal groups with respect to
a quadratic form of “plus type”); as well as the exceptional groups E6(q), E7(q), E8(q),
F4(q) and G2(q). All of these are defined over any finite field; i.e., for any prime power
q.

The finite twisted groups of Lie type were first treated systematically by Steinberg
in [St1] and [St2], where (very roughly) they are obtained a s fixed points of certain
automorphisms of the Chevalley groups — group automorphisms which are associated
with automorphisms of the Dynkin diagram. Let G be one of the symbols An, Bn, Cn,
etc. Then mG(q) denotes the fixed subgroup of an automorphism of order m of G(qm)
(or of G(q) when G = B2, G2, or F4). The finite twisted groups thus consist of the
classical groups 2An(q) ∼= PSUn+1(q) = Un+1(q) and

2Dn(q) ∼= Ω−
2n(q) (the commutator

subgroup of the projective special orthogonal groups of “minus type”); as well as the
Suzuki groups 2B2(2

2k+1), the Ree groups 2G2(3
2k+1) and 2F4(2

2k+1), and the Steinberg
groups 2E6(q) and

3D4(q).

To make this more concrete, it is necessary to work with automorphisms of the Cheval-

ley groups over the algebraic closure Fp, where p is prime. Let G(Fp) denote a simple

algebraic group of type G defined over Fp. We will always assume that G(Fp) is of ad-
joint type (i.e., with trivial center), or equivalently that it is a group of automorphisms
of the corresponding Lie algebra. For q a power of p, the finite Chevalley group G(q)

can (roughly) be thought of as the fixed subgroup of the automorphism ϕq of G(Fp)
induced by the field automorphism (t 7→ tq). More generally, a Steinberg endomorphism

of G = G(Fp) is defined to be an algebraic endomorphism of G whose fixed subgroup

C
G
(σ) = {x ∈ G | σ(x) = x} is finite. (In fact, the Steinberg endomorphisms are all

automorphisms of G as an abstract group, but none of them is invertible as an algebraic
endomorphism.) The finite twisted groups of Lie type are (roughly) the fixed subgroups

of Steinberg endomorphisms of G, which are field automorphisms (t 7→ tq) “twisted” by
graph automorphisms.

More precisely, if σ is a Steinberg endomorphism of G = G(Fp), let Gσ denote the sub-

group of C
G
(σ) generated by its Sylow p-subgroups. Equivalently, Gσ = 〈CU(σ), CV (σ)〉,

where U, V ⊆ G are subgroups defined in the next paragraph. If G̃ is the universal cen-

tral extension of G, then Gσ
∼= CG̃(σ)/Z, where Z denotes the center. For example, if q

is a power of p, then SLn(q) = C
SLn(Fp)

(ϕq), while PSLn(q) can be a proper subgroup

of C
PSLn(Fp)

(ϕq). For all G and all q = pk, G(q) = Gϕq
.

To describe the Steinberg endomorphisms, we must first establish notation for certain

elements of the Chevalley groups. Fix a prime p, and let F ⊆ Fp be any subfield. Set
G = G(F), and let Σ be the system of roots of type G. Let Σ+,Σ− ⊆ Σ denote the sets
of positive and negative roots, respectively. To each r ∈ Σ there corresponds a subgroup
(the root subgroup) Xr = {xr(t) | t ∈ F} ⊆ G, isomorphic to the additive group F. Then
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U
def
= 〈Xr | r ∈ Σ+〉 and V

def
= 〈Xr | r ∈ Σ−〉 are both maximal unipotent subgroups of

G; they are closed and connected if F = Fp, and are Sylow p-subgroups of G if F is

finite. Also, G = 〈U, V 〉. The subgroup H
def
= NG(U)∩NG(V ) is a maximal torus of G

if F = Fp, and is called a Cartan subgroup of G when G is finite. This subgroup H
is abelian, generated by elements hr(t) for simple roots r and t ∈ F∗; and its elements
are called “diagonal elements” of G. Also, NG(U) = UH and NG(V ) = V H (the Borel

subgroups of G).

For example, when G = An(F) ∼= Ln+1(F), (of adjoint type), then the roots correspond
to the pairs (i, j) for i 6= j, and the positive roots correspond to the pairs (i, j) for i < j.
In this case, xij(t) = eij(t), the matrix which has 1’s on the diagonal, t in position
(i, j), and zeros elsewhere. Thus U and V are the subgroups of (strict) upper and lower
triangular matrices, and H is the subgroup of diagonal matrices. Note that when we
describe elements and subgroups here in terms of matrices, we mean their images under
the surjection of SLn+1(F) onto Ln+1(F) = PSLn+1(F).

Let σ be a Steinberg endomorphism of G = G(Fp) (still assumed of adjoint type). By

the Lang-Steinberg theorem [St2, Theorem 10.1], for any g ∈ G, there exists h ∈ G such

that g = σ(h)h−1. Hence, all elements in Inn(G) ◦ σ are conjugate in Aut(G). In other

words, composing a Steinberg endomorphism σ with an inner automorphism of G, does

not change Gσ (up to conjugation).

Next, Steinberg showed that for any σ, there is some g ∈ G such that conj(g) ◦σ
leaves U and V invariant, and permutes the root subgroups Xr. It thus suffices to
consider those σ for which σ(Xr) = Xρ(r) for some automorphism ρ of the root system
Σ of type G, which preserves the positive roots; i.e., a permutation of Σ which preserves
angles between the roots, such that ρ(Σ+) = Σ+. Hence ρ permutes the simple roots, and
induces a symmetry of the Dynkin diagram of G. By inspection of the Dynkin diagrams,
one sees that if ρ 6= Id, then either G = An, Dn, or E6 and ρ is the automorphism of
order 2 of the root system; or G = D4 and ρ is an automorphism of order 3; or G = B2,
F4, or G2 and ρ is an automorphism of order 2 which interchanges long and short roots.

If σ(Xr) = Xρ(r) for such ρ, then necessarily σ(xr(t)) = xρ(r)(ǫrt
qr) for some ǫr ∈ (Fp)

∗

and some qr powers of p. After composing with conjugation by a diagonal element, we
can assume ǫr = 1 for all simple roots r (and ǫr = ±1 for all r). Also, by studying the
action of σ on diagonal elements, one can show that the ratio qr·‖r‖/‖ρ(r)‖ is constant,
independent of r. In particular, if ρ = Id, then σ = ϕq (q = qr for all r) is a field
automorphism.

Assume that ρ 6= Id, and that all roots in Σ have the same length. Then σ = ϕq ◦ψρ,
where q = pk > 1 (q = qr for all r); and where ψρ(xr(t)) = xρ(r)(t) for all simple roots

r and all t ∈ Fp (and ψρ(xr(t)) = xρ(r)(±t) for arbitrary r). The existence of such an
automorphism ψρ is shown in [St1, Theorem 29] or [Ca, Proposition 12.2.3]. If m is the

order of ρ, then σm = ϕqm , so Gσm = G(qm), and mG(q)
def
= Gσ can be viewed as the

subgroup of CG(qm)(τ) generated by its Sylow-p subgroups, where τ is the restriction
of σ to G(qm). In other words, we can regard mG(q) = G(qm)τ , where τ is the field
automorphism (t 7→ tq) “twisted” by the “graph automorphism” of G(qm).
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As one example, consider the automorphism τ(aij) = (((−1)i+jan+2−j,n+2−i)
q)−1 of

Ln+1(q
2). This preserves upper and lower triangular matrices, and sends xij(t) to

xn+2−j,n+2−i(±tq). The signs have been chosen so that τ(xr(t)) = xρ(r)(t
q) when r is

a simple root (i, i+ 1) (but not for all roots). Then 2An(q)
def
= (Ln+1(q

2))τ = PSUn+1(q)
is the projective special unitary group defined with respect to the hermitian form
(x, y) = u·∑(−1)i+1xi(yn+2−i)

q on (Fq2)
n+1 (where u = 1 if n is even and uq−1 = −1 if

n is odd). Note that there can be elements of PSLn+1(q
2) fixed by τ which are not rep-

resented by unitary matrices, which is why one must define 2An(q) = 〈CU(τ), CV (τ)〉. If
one works in the universal central extension SLn+1(q

2) , the subgroup of elements fixed
by τ is SUn+1(q).

If Σ has roots of distinct lengths and ρ is nontrivial, then as mentioned above G = B2,
F4, or G2 and ρ interchanges long and short roots. Set p0 = 2 if G = B2, F4 and p0 = 3
if G = G2, so that ‖ρ(r)‖

‖r‖ = (p0)
±1/2 for each r ∈ Σ. Since qr· ‖r‖

‖ρ(r)‖ is independent of r

(and the qr all powers of p), this is possible only if p = p0. Hence, σ = ϕq ◦ψρ for some
q = pk ≥ 1, where

ψρ(xr(t)) =

{
xρ(r)(t

p) if r is a short root

xρ(r)(t) if r is a long root.

Then σ2 = ϕq2p, so Gσ2 = G(q2p) = G(p2k+1), and 2G(p2k+1)
def
= Gσ can be regarded

as the fixed subgroup of an involution on G(p2k+1). This group is sometimes denoted
2G(pk+

1
2 ).

As an example, Ono [On] carried out this procedure on Sp4(2
2k+1) = B2(2

2k+1),
regarded as the group of 4×4 matrices which preserve the symplectic form (x, y) =
x1y4 + x2y3 + x3y2 + x4y1. He obtained precisely the matrix presentation of Sz(22k+1)
described in Proposition 3.6, as the fixed points (Sp4(2

2k+1))τ , where τ is the restriction
of the above σ = ϕq ◦ψρ to Sp4(2

2k+1).

The rank of a Chevalley group G(q) is just the rank of G = G(Fp) in the usual
sense; i.e., the number of simple roots in its root system, or the number of nodes in its
Dynkin diagram. The rank of a twisted group mG(q) is equal to the number of orbits
of roots (or of nodes) under the corresponding automorphism of the root system or the
Dynkin diagram of G. There are thus four families of finite simple groups of Lie type
and Lie rank 1: the two dimensional projective special linear groups L2(q) ∼= A1(q), the
three dimensional projective special unitary groups U3(q) ∼= 2A2(q), the Suzuki groups
Sz(q) ∼= 2B2(2

2k+1), and the Ree groups Ree(32k+1) ∼= 2G2(3
2k+1).

We now return to the internal structure of the groups of Lie type. First let G = G(F )
be a Chevalley group over any field F , and let Σ be a root system of type G. We have
already discussed the root subgroups Xr = {xr(t) | t ∈ F} for each root r ∈ Σ, and
the subgroups U = 〈Xr | r ∈ Σ+〉 and V = 〈Xr | r ∈ Σ−〉. For each root r, there is
a surjection φr:SL2(F ) ։ 〈Xr, X−r〉 which sends

(
1 t
0 1

)
to xr(t) and

(
1 0
t 1

)
to x−r(t).

This allows the definition of elements hr(λ) = φr

(
λ 0
0 λ−1

)
and nr = φr

(
0 1
−1 0

)
. The

elements hr(λ), for r ∈ Σ and λ ∈ F ∗, generate the subgroup H of diagonal elements

of G, and together with the nr they generate the subgroup N = 〈H, nr | r ∈ Σ〉 of
monomial elements. Then N/H ∼= W , the Weyl group of G (and of its root system),

and B
def
= 〈U,H〉 = NG(U) is the Borel subgroup of G.
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Now set G = G(Fp), and let σ be a Steinberg morphism of G. Set Uσ = CU(σ)

and Vσ = CV (σ), the subgroups of elements fixed by σ, and let Ĝ = 〈Uσ, Vσ〉 be the

corresponding group of Lie type. Set Ĥ = CH(σ) ∩ Ĝ, N̂ = CN(σ) ∩ Ĝ, and B̂ =

CB(σ) ∩ Ĝ. Let ρ be the automorphism of the root system Σ associated to σ, as
described earlier. In particular ρ permutes the positive roots, and hence the simple

roots. By a root (or simple root) of Ĝ is meant a ρ-orbit r̂ ⊆ Σ (or ρ-orbit of simple

roots). Note that if ρ = Id, then Ĝ is an (untwisted) Chevalley group, and its roots are

the roots in the usual sense. We write Σ̂ = Σ/ρ for the set of roots, −r̂ = {−r | r ∈ r̂};
and 〈J〉 (when J ⊆ Σ̂) for the set of ρ-orbits of roots which are linear combinations of
elements r ∈ r̂ ∈ J . The root subgroup Xr̂ corresponding to an orbit r̂ is the subgroup

(
∏

r∈r̂Xr)σ of σ-invariant elements. The Weyl group of Ĝ is the group Ŵ = N̂/Ĥ ; or
equivalently the subgroup of W = N/H of elements which commute with σ (cf. [Ca,
Proposition 13.5.2]) when both are considered as groups of permutations of the roots Σ
(or of the real vector space generated by the roots). The Weyl group is generated by
elements wŝ of order two, one for each ρ-orbit ŝ of simple roots, where the wŝ-action on

Σ sends s to −s for all s ∈ ŝ. The root subgroups of Ĝ are discussed in detail in [Ca,
Proposition 13.6.3] and [GLS, Table 2.4]; in particular, they need not be abelian. The
Weyl groups of the twisted groups are described in [Ca, §13.3]; each is isomorphic to

that of some Chevalley group except when Ĝ = 2F4(2
2k+1), in which case Ŵ is dihedral

of order 16.

For notational convenience we now drop the “hat” from our notation for the finite
simple groups of Lie type of the previous paragraph. Thus from now through the end

of Appendix D, G = Ĝ, U = Û , etc. Also, we’ll abuse notation and write r = r̂ for a
ρ-orbit in Σ.

Tits has axiomatized the properties of the pairs (B,N) in groups of Lie type. These
permit, for example, uniform proofs of the simplicity of these groups in all cases where
they are simple. See, e.g., [Ca, §8.2] or [GLS, §1.11] for more detail about such BN -pairs.

By definition, any group of Lie type is generated by its root subgroups (for a given
choice of root system). In fact, it suffices to take the simple roots.

Lemma D.1. Let G be a finite simple group of Lie type, with root system Σ. Then G
is generated by the root subgroups Xs and X−s for simple roots s ∈ Σ+.

Proof. See [Ca, Proposition 13.6.5]. Very briefly, when G is a Chevalley group, this holds
since conjugation by elements of N (or of W = N/H) permutes the root subgroups in
the same way as the Weyl group permutes the roots, and each root is in the W -orbit of
a simple root. Since N/H is generated by the elements ns ∈ 〈Xs, X−s〉 for simple roots
s, this shows that 〈Xs, X−s | s simple〉 contains all of the Xr for r ∈ Σ, and hence is all
of G. The same argument works for the twisted groups.

We now turn attention to parabolic subgroups: proper subgroups of G which contain
a Borel subgroup. For convenience, set B′ = V H (and B = UH as usual). Let Σ be
the root system corresponding to G. For each proper subset J of simple roots of G, let
〈J〉 ⊆ Σ be as defined above, and set

PJ = 〈B, ns | s ∈ J〉 = 〈B,Xr | r ∈ 〈J〉〉 and P ′
J = 〈B′, ns | s ∈ J〉 = 〈B′, Xr | r ∈ 〈J〉〉.
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By [Ca, Theorem 8.3.2], these are precisely the overgroups of B in G (i.e., the parabolic
subgroups containing B).

Lemma D.2. Let G be a finite simple group of Lie type. Let Σ be the root system
associated with G, and let Σ+ and Σ− be the sets of positive and negative roots. Fix
a set J of simple roots which does not contain all of them, and let LJ be the subgroup
generated by the diagonal subgroup H together with the root subgroups Xr for all
r ∈ 〈J〉. Let UJ and VJ be the subgroups generated by allXr for roots r ∈ Σ+ or r ∈ Σ−,
respectively, which are not in 〈J〉. Then UJ ⊳ PJ = UJLJ and VJ ⊳ P ′

J = VJLJ , UJ

and VJ are nilpotent, and 〈UJ , VJ〉 = G.

Proof. When G is a Chevalley group, the nilpotency of U ⊇ UJ and V ⊇ VJ follows from
[Ca, Theorem 5.3.3], and LJ normalizes UJ and VJ by [Ca, Theorem 8.5.2]. Both of
these are consequences of Chevalley’s commutator formula, which says that for any pair
of roots r, s ∈ Σ, [Xr, Xs] is generated by the subgroups Xt for all roots t = ir+js where
i, j > 0. The twisted group case follows immediately by restriction. And PJ = UJLJ

and P ′
J = VJLJ since U and V are generated by their root subgroups: by definition when

G is a Chevalley group, and by [Ca, Proposition 13.6.1] when G is a twisted group.

This also shows that 〈LJ , UJ , VJ〉 = 〈U, V 〉 = G. Thus 〈UJ , VJ〉 ⊳ G, since LJ

normalizes UJ and VJ ; and so G = 〈UJ , VJ〉 since G is simple.

The decomposition PJ = UJLJ of Lemma D.2 is called the Levi decomposition of PJ ,
and LJ is called the Levi subgroup.

We now return to looking at group actions on 2-dimensional acyclic complexes.

Lemma D.3. Let G be a finite simple group of Lie type, and let P $ G be one of the
parabolic subgroups PJ or P ′

J of Lemma D.2. Then for any action of G on an acyclic
2-complex X , XP 6= ∅.

Proof. We can assume XG = ∅. By Lemma D.2, there are subgroups UJ ⊳ PJ , VJ ⊳ P ′
J ,

and LJ = PJ ∩ P ′
J , such that UJ and VJ are nilpotent, PJ = UJLJ , P

′
J = VJLJ , and

〈UJ , VJ〉 = G. In particular, XUJ and XVJ are acyclic, disjoint, and LJ -invariant. Then
XLJ 6= ∅ by Corollary 4.2, applied to the action of LJ on X with invariant subspaces
A = XUJ and B = XVJ ; and so XPJ and XP ′

J are nonempty by Lemma 4.3(a).

To see this more directly, let Y be the complex obtained by collapsing XUJ and XVJ

to separate points. Then Y is still acyclic, LJ acts on Y , and Y LJ contains at least the
two collapse points. Thus, Y LJ is acyclic by Theorem 4.1, is in particular connected,
and hence XLJ must intersect with both subcomplexes XUJ and XVJ . It follows that
XPJ = XLJ ∩XUJ 6= ∅ and XP ′

J = XLJ ∩XVJ 6= ∅.

Appendix E. The four-subgroup criterion

In [S1] and [AS], very strong restrictions were placed on the finite simple groups
which could possibly have actions on 2-dimensional acyclic complexes without fixed
points. The main tool for doing this was a “four subgroup criterion”, which for the
sake of completeness we present here as Proposition E.1. To illustrate its use, we then
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describe how it was applied to certain multiply transitive groups, and to simple groups
of Lie type and Lie rank at least two — those cases of the proof of Theorem A which
were not dealt with in Sections 6 and 7.

Proposition E.1 [S1, Theorem 3.2]. Fix a finite group G and a 2-dimensional acyclic
G-complex X . Let H1, H2, H3, H4 ⊆ G be subgroups such that X〈Hi,Hj ,Hk〉 6= ∅ for any
i, j, k. Then X〈H1,H2,H3,H4〉 6= ∅.

Proof. Assume otherwise: that X〈H1,H2,H3,H4〉 = ∅. Set H = {H1, H2, H3, H4}. By Theo-
rem 4.1, XH is the union of the acyclic subcomplexes XHi, which have the property that
any two or three of them have acyclic intersection, but the four have empty intersection.
This implies that H2(X

H) ∼= H2(S
2) ∼= Z (see Lemma 0.1, applied using the poset S

of nonempty proper subsets of {1, 2, 3, 4}). But this is impossible, since XH must be
homologically 1-dimensional by Lemma 1.6.

The simplest application of Proposition E.1 is to multiply transitive groups.

Corollary E.2. Assume that G acts 4-transitively on a set S with point stabilizer
H ⊆ G. Let X be a 2-dimensional acyclic G-complex such that XH 6= ∅. Then XG 6= ∅.

Proof. If |S| = 4, then this follows from Theorem B. So assume |S| ≥ 5, and fix four
elements s1, s2, s3, s4 ∈ S. For each i = 1, 2, 3, 4, let Hi ⊆ G be the subgroup of elements
which fix sj for all j 6= i. For each {i, j, k, r} = {1, 2, 3, 4}, 〈Hi, Hj, Hk〉 is the point
stabilizer of sr, and hence fixes a point in X by assumption. So XG 6= ∅ by Proposition
E.1.

This is now applied to the alternating groups, as well as most of the Mathieu groups.

Proposition E.3 [S1, 3.6]. If G ∼= An for n ≥ 6, or if G is one of the Mathieu groups
M11, or M12, then every G-action on an acyclic 2-complex has fixed points. The same
holds for M23 and M24 if it holds for M22.

Proof. Let X be a 2-dimensional acyclic G-complex. If G = An for n ≥ 6, then by
Corollary E.2, XG 6= ∅ if XAn−1 6= ∅. By Proposition 6.4 above, A6

∼= L2(9) must have
nonempty fixed point set, and the result now follows by induction on n.

Each of the simple Mathieu groups Mn for n = 11, 12, 23, 24 acts 4-transitively on a
set with point stabilizer Mn−1 (cf. [A3, 18.9–10 & 19.4], [Gr, 5.33 & 6.18], [Mat], or
[Wt]). So by Corollary E.2, the proposition holds forMn if it holds forMn−1. Since M10

contains a subgroup A6 of index 2, this proves the proposition when n = 11 or 12; and
it will follow for the other simple Mathieu groups once it has been shown for M22.

Proposition E.1 can also be applied to simple groups of Lie type of Lie rank at least
two. In this case, the subgroups in question come from the root system of the group.
Note that the following proof applies only to groups of Lie type which are themselves
simple. The Tits group 2F4(2)

′, which has index two in 2F4(2), is dealt with here in
Proposition 7.2, as well as in [AS, 5.2].

Proposition E.4 [AS, §5]. If G is a simple group of Lie type and Lie rank at least 2,
then every G-action on an acyclic 2-complex has fixed points.
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Proof. We use the notation of Lemma D.2. Fix a root system Σ = Σ+ ∐ Σ− for G, and
let J1∐J2 be a decomposition of the set of simple roots as a disjoint union of nonempty
subsets. For each i = 1, 2, set

H+
i = 〈H,Xs | s ∈ Ji〉 and H−

i = 〈H,X−s | s ∈ Ji〉.
The subgroup generated by any three of the H±

i is contained in one of the parabolic
subgroups PJi or P ′

Ji
(in the notation of Lemma D.2), and hence has nonempty fixed

point set in X by Lemma D.3. But 〈H±
1 , H

±
2 〉 = G by Lemma D.1, since it contains all

subgroups Xs and X−s for simple roots s, and hence XG 6= ∅ by Proposition E.1.

List of notation:

Groups:

Cm: a cyclic group of order m

D2m: a dihedral group of order 2m

An: the alternating group on n letters

Σn: the symmetric group on n letters

PGLn(q) = GLn(q)/(center): the projective general linear group over Fq

Ln(q) = PSLn(q): the projective special linear group over Fq

PGUn(q): the projective general unitary group over Fq2

Un(q) = PSUn(q): the projective special unitary group over Fq2

Topological spaces:

I = [0, 1]: the unit interval

Dn =
{
x ∈ Rn

∣∣ ‖x‖ ≤ 1
}
: the unit ball in Rn

Sn =
{
x ∈ Rn+1

∣∣ ‖x‖ = 1
}
: the unit sphere in Rn+1

X ∼= Y : X and Y are homeomorphic

X ≃ Y : X and Y are homotopy equivalent

X ≃ ∗: X is contractible

H∗(X)
def
= H∗(X ;Z)

Acyclic means Z-acyclic: X is acyclic iff H∗(X ;Z) ∼= H∗(pt,Z)

Families and sets of subgroups of G:

S(G): the family of all subgroups of G

(H): the conjugacy class of H ⊆ G

F ⊆ S(G) is a family ⇐⇒ H ∈ F implies (H) ⊆ F
SLV(G): the family of solvable subgroups of G

MAX (G): the maximal separating family of subgroups of G

(G,F) ∈ U2 ⇐⇒ ∃ a 2-dimensional Z-acyclic (G,F)-complex
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For any families F , F ′ of subgroups of G:

Fmax: the set of maximal subgroups of F
F≥H = {K ∈ F |K ⊇ H} ∀H ⊆ G

F>H = {K ∈ F |K % H} ∀H ⊆ G

F<M
>H = {K ∈ F |H $ K $M} ∀H $M ⊆ G

F≥H = {K ∈ F |K ⊇ H , some H ∈ H} ∀H ⊆ S(G)
F[n] =

{
H ∈ F

∣∣n
∣∣|H|

}
∀n > 1

F∧F ′ = {H ∩H ′ |H ∈ F , H ′ ∈ F ′}
H ∈ F is critical in F ⇐⇒ N (F>H) 6≃ ∗
Fc = {H ∈ F |H critical in F}

If X is a G-complex:

Gx = {g ∈ G | gx = x} ∀x ∈ X
X is a (G,F)-complex ⇐⇒ Gx ∈ F ∀x ∈ X
XH = {x ∈ X | hx = x ∀h ∈ H}: the fixed point set

X>H = {x ∈ X |Gx % H} = ⋃
K%H X

K

XH =
⋃

H∈HX
H ∀H ⊆ S(G)

X [n] =
⋃

n||H|X
H = {x ∈ X

∣∣ |Gx ∈ nZ} ∀n > 1

X(H) =
⋃

g∈GX
gHg−1

Xs =
⋃

16=H⊆GX
H = {x ∈ X |Gx 6= 1}: the “singular set” of X
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